ELSEVIER

Contents lists available at ScienceDirect

Biofilm

journal homepage: www.sciencedirect.com/journal/biofilm

Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives

Erika J. Espinosa-Ortiz ^{a,b,*}, Robin Gerlach ^{a,b}, Brent M. Peyton ^{a,b}, Luke Roberson ^c, Daniel H. Yeh ^d

- ^a Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- ^b Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
- ^c Exploration Research and Technology Directorate, NASA, Kennedy Space Center, 32899, USA
- ^d Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA

ABSTRACT

Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from "waste streams" (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).

1. Introduction

For a long time, humankind has shared the desire to explore space; there are currently different efforts for space missions to the Moon, Mars, and beyond [1,2]. Water is a crucial resource for crewed long-duration deep space exploration and habitation. As the best-known example of extended space missions, the International Space Station (ISS) recycles most of its water via a suite of physical and chemical treatment processes. However, to meet its water demands, the ISS still relies on water resupply from Earth. As future missions will travel further from Earth with longer duration, the need for self-sufficient systems that reliably provide water without resupply from Earth will be essential. Water of different purity will be needed for diverse purposes, including consumption by the crew, sanitation, laundry, urinal flushing and food preparation, as well as for oxygen (O2) generation, potential food production (e.g., plant cultivation), and different research activities. It has been estimated that for space missions longer than 30 days, about 2.4 kg of water per crewmember per day would be required to cover human consumption needs (i.e., considering only drinking

water) [3]. A suitable option to fulfill water demands would be to recover and recycle water from waste streams such as urine and hygiene wastewater. For instance, the total wastewater generation rates (kg of water per crewmember per day) for various missions have been estimated to be 3.7 on the ISS, 4.1 on a transit vehicle, 11.4 for the Early Planetary Base (EPB), and 29.3 for a mature planetary base [4]. Thus, through regenerative water reclamation systems, it would be possible to convert the "wastewater" or "used water" into useable water for different purposes while potentially recovering value-added products (VAPs). Designing more reliable, robust, self-sustaining and regenerative water subsystems would further close the water loop in the Environmental Control and Life Support System (ECLSS). Given the potential to convert waste into resources, this review will use the term "used water" to refer to wastewater. This review will provide an overview of the different used waters generated in space, including their origin and characteristics, as well as the intrinsic challenges for treatment of such streams during space exploration and habitation.

Current systems used in space missions rely solely on physicochemical methods for the treatment of used water streams [5]. Organic wastes are generally not treated but are gathered and either returned to

^{*} Corresponding author. Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA. *E-mail address:* erika.espinosaortiz@montana.edu (E.J. Espinosa-Ortiz).

List of abbreviations		ISS	International Space Station
		MABR	Membrane Aerated Biofilm Reactor
APH	Advanced Plant Habitat	MBfR	Membrane Biofilm Reactor
BLSS	Bioregenerative Life Support Systems	OD	Outer Diameter
BOD	Biochemical Oxygen Demand	OGA	Oxygen Generating Assembly
BPA	Brine Processor Assembly	PHAs	Polyhydroxyalkanoates
CELSS	Closed/Controlled Ecological Life Support Systems	PBR	Packed-Bed Reactor
COD	Chemical Oxygen Demand	SSA	Specific Surface Area
EBR	Expanded-Bed Reactors	TBR	Trickling filter Biofilm Reactor
ECLSS	Environmental Control and Life Support System	TN	Total Nitrogen
EPB	Early Planetary Base	TOC	Total Organic Carbon
EPS	Extracellular Polymeric Substances	TSS	Total suspended solids
FBR	Fixed-Bed Reactor	UPA	Urine Processor Assembly
HC	Humidity Condensate	VAPs	Value-added products
HRT	Hydraulic Retention Time	WPA	Water Processor Assembly
ID	Inner Diameter	WRM	Water Recovery and Management

Earth for analysis or burnt in the atmosphere. In this review, we discuss the potential use of biological systems, particularly biofilm-based systems, as a possible alternative or addition to current technologies for water reclamation and waste treatment in space. In general, biological systems do not require addition of potentially harmful chemicals (e.g., urine is treated at the ISS using chromium trioxide, a highly toxic substance, in a solution of phosphoric acid [8]), offer the possibility of self-regeneration and need minimal maintenance or energy for operations. Furthermore, the products of the biological degradation of pollutants typically results in biomass, water, and inorganic species depending on the available energy source for microbial growth (e.g., production of carbon dioxide and nitrogen gas). Some of these products can be considered VAPs, given that they could be recovered, recycled and reused as resources in other life support subsystems (e.g., habitation, waste, air, etc.). This review will discuss the advantages, disadvantages, and limitations of biological systems for water treatment, particularly under space conditions (e.g., microgravity, partial gravity). Biological systems are typically classified as suspended growth, attached growth, or combined systems. While biological pollutant degradation metabolisms in these systems are similar, there are clear distinctions between the reactor types. As indicated by the name, in suspended growth systems, microorganisms in the form of single cells, aggregates or flocs are maintained in suspension along with the water to be treated. In attached growth (also known as fixed film or biofilm) systems, microbial growth occurs on a surface; this can be achieved in different ways including attaching the microbial film to the reactor walls, fixed plates in the fluid flow, hollow tubes, or different carriers and packing media. There are systems in which the fixed film is attached to carriers suspended within the water to be treated; these types of systems are commonly referred to as moving bed biofilm bioreactors. This review will focus on attached growth systems, herein referred to as biofilm systems, due to their potential to treat used water in space and their potential use to recover VAPs for their integration in ECLSS. This review will discuss the fundamentals of biofilm systems, their potential applications for waste stream treatment in space, as well as the opportunities and challenges to incorporating these kinds of systems in long-duration missions.

2. Used water in space: characteristics, challenges and opportunities

2.1. Origin and characteristics

Used water aboard crewed spacecraft or space stations is typically the result of a combination of primary waste stream sources including humidity condensate, hygiene water, urine/urine flush, and the product from the Sabatier process [6]. The humidity condensate is the water condensed and collected from heat exchangers that control cabin humidity levels; this effluent contains small amounts of carbonaceous and nitrogenous compounds mainly comprised of low molecular weight carboxylic acids and alcohols [7]. Hygiene water is typical grey wastewater originating from washing, showering, and other general hygiene practices; hygiene water is characterized by the presence of soaps, particulates, and dissolved organics. Urine and urine flush commonly contain high concentrations of urea (CH₄N₂O) as well as dissolved organic compounds and inorganic salts [6]. Currently, solid human waste (e.g., feces) generated during spaceflight is collected and disposed of separately. For instance, in the ISS, fecal matter is stored in an aluminum can that, when full, is jettisoned off the ISS to burn up on reentry. However, NASA's Exploration Capabilities Program is looking into the possibility of reclaiming resources from solid organic wastes, e. g., water content from feces, to further close the water loop in ECLSS. Beyond water, solid organic wastes also contain nutrients that can potentially be recovered as VAPs to sustain plant growth or other activities. While discussion of the treatment of solid organic waste is beyond the scope of this review, the integration of solid organic waste treatment with used water treatment for ECLSS will be discussed throughout this review, as the two streams intertwine (or could intertwine) in several instances.

The ISS produces wastewater at an approximate rate of 3.7 kg/d per crewmember; this waste stream is mainly a mixture of pretreated urine, flush, and humidity condensate [4]. The ISS wastewater is typically combined with the Sabatier water product (water produced from the CO₂ reduction system using the Sabatier process to convert CO₂ and H₂ to water and CH₄) and treated in the Water Recovery and Management (WRM) system [8,9]. The WRM system can recover about 70% of the waste stream [10], through chemical pretreatment combined with physical desalination and post-treatment to drinking water standards [8, 11]. The WRM system is comprised of three units (Fig. 1): the Urine Processor Assembly (UPA), the Brine Processor Assembly (BPA), and the Water Processor Assembly (WPA). In the UPA, crew urine is stored in the wastewater storage tank assembly, where the waste stream is chemically stabilized with H₃PO₄ and Cr⁶⁺ to prevent microbial growth. Afterwards, the waste stream is recirculated through the distillation assembly, where the distillate stream is evaporated in vacuum and then condensed before it is sent to the WPA for further treatment [11,12]. In the BPA, residual brine from the UPA is further processed to increase water recovery to 98% [13]. The WPA uses a series of different physicochemical technologies including filtration, ion exchange, adsorption, catalytic oxidation, and iodination to treat the humidity condensate, grey wastewater, the Sabatier product water, and the water treated by the UPA [11,14]. The WPA produces potable water for crew consumption, science experiments, and for the oxygen generating assembly

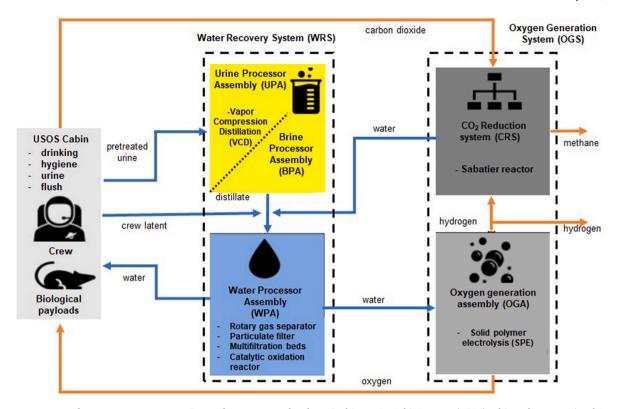


Fig. 1. Water Recovery and Management system treating used water generatd at the United States On-Orbit Segment (USOS) cabin at the International Space Station.

(OGA) [15]. The OGA produces O₂ that is used in the cabin, and hydrogen that is either vented overboard or used in the Sabatier system.

Compared to ISS wastewater, the wastewater generated in planetary missions (e.g., Mars) is expected to include other waste streams in addition to those currently considered in the ISS (e.g., wastewater generated from laundry) [4]. An Early Planetary Base (EPB) has been estimated to produce wastewater at a rate of approximately 14 L/d per crewmember [16]. Wastewater formulations, known as "Ersatz" (German for substitute), have been developed to mimic the composition of different waste streams in space [6]. Ersatz formulations contain different fractions of the primary stream sources and simulate the characteristics of used water generated on a transit mission, on an EPB, as well as EPB wastewater that has undergone various physicochemical and biological treatments (e.g., effluent from the bioreactor, effluent from the reverse osmosis system, etc.) [6]. Waste streams from ISS and EPB can be considered high strength based on high concentrations of carbon and nitrogen (Table 1) [6], with total carbon and nitrogen concentrations much higher than typical values for municipal wastewater

Table 1Characteristics of different wastewater produced in space vs. municipal wastewater on Earth.

	Transit Wastewater ^a	EPB Wastewater ^a	ISS Wastewater ^a	Municipal Wastewater on Earth ^b
Total C (mg/ L)	2209	631	1500	80–250 mg/L
Total N (mg/ L)	221	852	2000	20–60 mg/L
C:N ratio	10.00	0.74	0.75	3.00-4.00
pH	2.7	8.9	7.0	6.0–10.0

^a [6].

(Total Organic Carbon [TOC]: 80-250 mg/L; Total Nitrogen [TN]: 20–60 mg/L) [17]. Most waste streams in space are also characterized by having low carbon-to-nitrogen ratios (C:N < 1), high total dissolved solids concentrations (1000-3000 mg/L), and nitrogen mostly present as urea or ammonia/ammonium ion (NH_3/NH_4^+) [6]. Having C:N < 1 is a challenge for the traditional denitrification process in wastewater treatment, in which carbon acts as the electron donor to reduce nitrate (NO₃⁻) to N₂. In traditional activated sludge systems used for wastewater treatment on Earth, it has been reported that C:N < 2 results in decreased nitrogen removal efficiencies [18]. Typically, on Earth, an external carbon source would be added to compensate for the lack of carbon; however, in space this same strategy would be challenging since the goal is to minimize the use of consumables. The use of excess hydrogen from the OGA would be an opportunity to provide (non-carbon) reduction equivalents though. Other challenges include the high NH₃ concentration, which could limit nitrification, and low alkalinities, which can result in fluctuating pH values [19].

Composition and volume of wastewater generated in space may fluctuate based on the number of crewmembers onboard, the crew urine composition, and the amount of product water generated from the Sabatier system [20]. The composition and quantity of urine produced by crewmembers is significant for the treatment process, as urine is a key component in space wastewater. Ref. [21] indicated that urine would make up about 18% of the wastewater in partial gravity habitats, however urine composition and volume generated varies for each individual depending on their sex, metabolic rates, nutrition, hydration, health status, and place of origin [22]. Furthermore, it has been demonstrated that microgravity can have effects on the human body that impact the composition and quantity of urine. For instance, there is increased calcium excretion in urine due to bone loss experienced by crewmembers during spaceflight [23]. It has also been suggested that under microgravity conditions, crewmembers experience less sensation of thirst, which can result in decreased water intake and thus decreased urine production [24]. Whereas urine of crewmembers has been collected and analyzed on multiple occasions, the data collected have

^b [17].

been mostly for medical purposes [22,25,26]; hence, there is a lack of information regarding relevant parameters for wastewater treatment, particularly regarding the organic content in urine (e.g., Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) concentrations and loads) as well as total suspended solids (TSS). Furthermore, there are no data for partial gravity habitation wastewater systems, so there remains a technology gap between terrestrial (1 g) and ISS (microgravity) conditions. This information would be valuable to estimate, for example, the amount of oxygen or other oxidants required for biological treatment of this waste stream. Ref. [27] compiled information on the various urine generation rates reported from space studies; on average the total urine wastewater load is in a range of 1.5–2 kg per crewmember per day. Knowing the urine composition and volume generated is crucial to design adequate treatment systems.

2.2. Challenges for treatment of used water in space

There are unique challenges associated with the treatment of used waters for long-duration space missions, including: (i) designing treatment systems compatible with space conditions and limitations (e.g., microgravity, self-sustaining, compact and confined unit treatments), and (ii) integrating treatment technologies as part of ECLSS.

With the current plans to return to the Lunar surface and eventually the Martian surface, water treatment technologies for space will need to operate under gravity conditions different from terrestrial gravity (1 g), including microgravity (10^{-4} to 10^{-6} g) and partial gravity (10^{-4} to < 1 g). In space, objects are subjected to weightlessness (zero-gravity) or almost weightlessness (microgravity) conditions.

Microgravity occurs in most low-Earth-orbit spaceflight platforms such as space shuttles and the ISS, where "the Earth's gravitational force is almost entirely balanced by the inertia force (proportional to the change in time of the velocity vector)" [28]; microgravity represents a fraction of the gravitational acceleration experienced at sea level on Earth, with values typically in the range of 10^{-4} to 10^{-6} g [29,30]. On Earth, gravity plays a key role in the way fluids behave and how they flow; on Earth, wastewater systems have to account for or rely on gravity to move waste streams through the treatment process and separate solids, liquid, and gases based on density. In the absence of gravity, fluid dynamics change, and flow is driven by capillary forces and surface tension [31]. Various phenomena are experienced under microgravity, including loss of the hydrostatic pressure gradient, buoyancy, natural convection (thermal/concentration), and sedimentation [28,32]. All of this has consequences in the behavior of fluid phases in space. For instance, separation of gases and liquids occur uniquely in space; gas bubbles coalesce into larger bubbles and typically move to the center of vessels as the liquid moves to the surface due to differences in density. Thus, differences in the behavior of gases and liquids becomes highly relevant in designing suitable wastewater treatment systems for use in space. During its first years of operation, the ISS water recovery system experienced issues related to the lack of gravity, for example, two-phase fluid dynamics were altered, affecting the operation of the different unit treatments in the system [11]. Current treatment technologies require the presence of pressurized systems to achieve the flow of waste streams and to separate gas and liquid phases [33].

Partial gravity is experienced in environments like the surface of the Moon (0.17 g) or Mars (0.38 g), and density driven processes in these partial gravity environments display characteristics similar to those encountered in terrestrial systems; in gravity or density driven systems, this would be contrary to behavior in low-Earth-orbit spaceflight conditions. Water treatment technologies designed for the EPB systems will experience partial gravity and can then make use of gravity-dependent phenomena, such as particle settling. However, the rate and extent of settling or flotation will differ from terrestrial 1 g systems. Proposed treatment technologies should be tested under different gravity scenarios and periods of time to assure their functionality and robustness, e. g., testing under short duration (<90 days) microgravity, long duration

(>90 days) microgravity, periods of dormancy (>90 days), and planetary surface conditions with partial gravity [34].

Given the physical constraints in spacecraft and extraplanetary bases, technologies designed for space have unique technical considerations. Reactor size and mass are top considerations for any space system due to constraints imposed by launch vehicles for mass delivery, as well as the cost of payload to reach low-Earth orbit (i.e., the cost of payload can range between \$1200 per pound with companies like SpaceX, to \$30,000 per pound for the now retired NASA space shuttles used until 2011) [35]. Furthermore, if a system is too large for a single launch vehicle, the system must be modular and will require in-space assembly; thus, any technology proposed should be designed to minimize the volume, footprint, and overall mass [33]. The proposed treatment systems in space must be self-contained (closed environment), reliable, durable, robust, lightweight and compact. Additionally, it is necessary to minimize the amount of supplemental chemicals used for wastewater treatment, particularly dangerous (e.g., hazardous, toxic, or explosive) chemicals, to avoid potential risks to crewmembers since these systems will be housed inside. While biological systems are promising technologies for wastewater treatment, their use as standalone technologies in space is, at this point, unlikely; biological treatment systems specifically must be capable of producing a high-quality treated effluent with similar recovery efficiencies compared to what would be expected with physicochemical treatments (> 90%, e.g., chemical treatment and physical desalination at the WRM system at the ISS) [11-13]. Thus, it would be expected that biological treatments would be used in combination with other physicochemical treatment units in space. It will also be crucial to determine optimal storage and recovery conditions of bioreactors after dormancy (>90 days). Further, due to the cost and feasibility of resupplying resources in space, all systems proposed for space applications must optimize and minimize the use of spares and consumables such as filters, disposable membranes, pretreat solutions, etc. Thus, there is a need to design self-sustaining systems that do not depend on re-supplying resources from Earth; these systems should ideally also require minimal maintenance and handling by crewmembers so that they do not have to spend significant periods of time attending these systems, which would take them away from performing other tasks.

When designing future water treatment technologies, a holistic approach should be taken, considering not only the needs for water treatment (e.g., desired water quality) and recovery of VAPs from waste streams, but also the limited conditions for the transport of the proposed technologies and their compatibility and integration with already existing systems in space. Future wastewater treatment units could be modular to minimize space and overall mass and facilitate their transport, as well as to allow for easy and rapid exchange when necessary. Furthermore, it is crucial to have a comprehensive understanding of the already existing systems in space (e.g., materials, fluxes, operation, etc.), so that the proposed technologies can be compatible and operate cohesively with what is already in use [33].

2.3. Resource recovery from used water in space

Different factors such as length of mission, distance, cost of propulsion, and resupply dictate the requirements for waste management in space [36]. While short-duration missions focus on collection, compaction and storage or disposal of waste, long-duration missions additionally require stabilization and disinfection of wastes, and resource recovery [36]. Thus, a paradigm shift from "waste removal" to "resource recovery" is necessary to advance waste management in space and reduce payload [33]. Converting waste into resources would reduce waste liabilities and increase sustainability of the treatment technologies for long-duration exploration or permanent habitation in ECLSS. However, current views are that human habitats will have to be resupplied with many critical resources until beyond 2030. Ultimately, ECLSS are envisioned to be regenerative and sustainable, which means that waste processing needs to be optimized so the loss of resources is

minimized to produce and/or recover water, nutrients, food and oxygen repeatedly and independently from resupplying these materials from Earth. Such systems are known as Bioregenerative Life Support Systems (BLSS) or Closed/Controlled Ecological Life Support Systems (CELSS) and their use would significantly reduce launch mass and therefore the costs of future missions.

On Earth, different biotechnologies and/or their combination with physicochemical treatments (e.g., micro- & ultrafiltration membranes, osmosis systems, bioelectrochemical systems, etc.) have been integrated to concentrate, transform and recover resources from used waters, including municipal and industrial wastewater [37,38]. Under this premise, used waters in space are not a waste, but rather a resource; thus, the design of technologies for water treatment should also consider the recovery of VAPs, including clean water, fertilizers, nutrients, energy, metals, and secondary byproducts (e.g., polymers) (Fig. 2).

Reusable water recovery. Efforts have been made to recover water from waste streams in space. Besides the recovery of water from the ISS WRM system [8,10], NASA has also explored the potential use of different technologies to recover water from brines, including aerosol dryers [39,40], wick evaporation [41,42], membrane systems [43,44], and bulk/surface drying [45–47].

Nutrient recovery. Currently, there are no technologies ready for space deployment to recover or reuse nutrients (e.g., nitrogen and phosphorus) from waste streams; transformation of wastes for food production (edible biomass) will be essential to further close the loop in ECLSS [48]. Given its high concentration of nutrients, recovery of VAPs from urine would be a very attractive alternative in space. Through treatment of source-separated urine (separated from other waste streams), nutrients such as urea, ammonia, nitrate, phosphate and different mineral precipitates like struvite (MgNH₄PO₄*6H₂O) could be recovered [49] and potentially be used to amend food production compartments (e.g., as fertilizers for plants). The precipitation of struvite using ureolytic microorganisms (i.e., microbes that produce enzymes that can split urea, releasing NH₄⁺ and increasing the pH) has been proposed as an alternative to recover phosphorus from wastewater in terrestrial systems. Due to its slow-releasing properties [50], struvite has been suggested as an alternative to P-rich fertilizers [51,200]; the recovered struvite in space could then be used as fertilizer for food production or could also be used as an alternative source of nutrients for cultivating algae [52]. Different forms of nitrogen can also be used as nutrients; for instance, photoautotrophic microbes (e.g., microalgae and cyanobacteria) can assimilate nitrate (NO_3^-), urea or ammonium (NH_4^+), and could be used in space to produce biomass. Current nitrogen

recovery processes on Earth include ammonia stripping, struvite precipitation, and membrane technology [53].

Biogas recovery. Depending on the treatment technology used (e.g., bioelectrochemical systems, anaerobic digestion, etc.), different gas streams such as methane, hydrogen, and carbon dioxide can be produced, all of which could be used to produce energy [54]. Another gas stream that could be recovered is $N_{2(g)}$, which is used for balancing the atmosphere in the air revitalization system; crew air needs to be balanced and topped off with makeup air against incidental losses. O_2 can be produced from water, CO_2 , and other sources; however, $N_{2(g)}$ is more difficult to obtain, and it would have to be hauled from Earth. Timmer et al. [201] estimated that a long-duration (1000-day) deep space exploration (e.g., to Mars) mission with 4 crewmembers would require 8–74 kg of $N_{2(g)}$. Thus, recovery of N as $N_{2(g)}$ from used water and/or urine (e.g., through nitrification/denitrification processes) would add great value to long-duration and habitation missions.

Other product recovery. On Earth, there are different emerging VAPs including bioplastics and microbial protein, that have been recovered from industrial and municipal wastewater. Bioplastics such as polyhydroxyalkanoates (PHAs) are plastics made from bio-based polymers that can be recovered from biomass, produced by different microorganisms (e.g., algae, bacteria, fungi), or synthesized by bio-derivatives [37]. On Earth, PHAs have been successfully produced from pure and mixed cultures (i.e., activated sludge) [55]. Protein-rich biomass, a.k.a microbial protein, is a VAP that could be generated from nutrients and CO2 recovered from used waters. On Earth, microorganisms including algae, fungi and bacteria have been used to produce microbial protein that could be used as feedstock for animals [56,57]. To satisfy microbial growth for microbial protein production, a C:N ratio >5 in wastewater should be required (considering C₅H₇O₂N as the formula for biomass [58]); given the low C:N ratios in used water in space, added sources of carbon would be a consideration in space. The production of microbial protein via electrochemical ammonia recovery from source-separated urine is one example; here, the co-production of hydrogen allowed for the direct production of microbial protein from gaseous phase hydrogen using hydrogen oxidizing bacteria [59]. This approach could potentially be used in long-duration or habitation missions in space. Currently, there are no technologies available in space for the recovery of other products such as PHAs or microbial protein, which would be crucial for habitation systems.

Metals recovery. The use of microorganisms to remove and recover metals and metalloids from different metals-laden wastewaters (e.g., acid mine drainage, industrial wastewater) has shown promise on Earth.

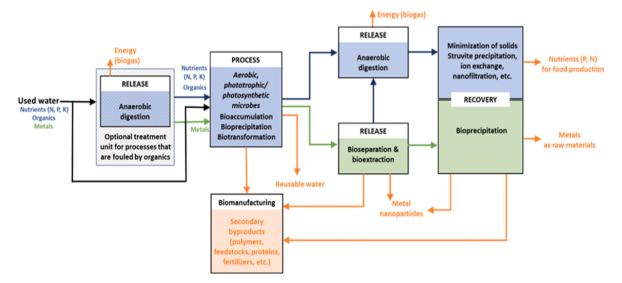


Fig. 2. Fig. 2 Process (Partition)-Release-Recovery concept for wastewater treatment and potential recovery of value-added products (e.g., nutrients, feedstocks, metals, etc.) in space. Based on proposed systems used on Earth for municipal wastewater [198,199].

For instance, metals/metalloids can be recovered as nanoparticles synthesized by microbes; metal nanoparticles have unique characteristics (different from bulk materials) and have been widely used in different applications, including antimicrobials, biocatalysts, sensors, etc. [60]. While the recovery of metals and metalloids from used waters in space would be of interest, this would depend on the concentrations of these inorganic pollutants. Eventually, this could be of interest in habitation missions.

3. Biofilms in wastewater treatment: principles and applications

On Earth, the use of attached-growth microbial systems to remove organic carbon and nutrients (e.g., nitrogen and phosphorus) from various waste streams dates from over 100 years ago [61,62]. These types of systems rely on the formation of biofilms, in which microbial cells, responsible for the conversion of organic material and nutrients, grow attached to the surface of support media and are embedded in a self-produced matrix of extracellular polymeric substances (EPS) [63, 64]. Most knowledge on biofilms has been elicited from research on different medical, ecological, biotechnological and environmental engineering fields [65-68]. Biofilms develop through different stages, often starting with a pre-conditioning step in which macromolecules and nutrients sorb to a surface, followed by cell transport adhesion and then irreversible attachment of cells; next, microbial microcolonies develop and EPS are produced, followed by maturation of the biofilm and finally partial biofilm detachment [64,69,70]. Due to the social and physical interactions among microorganisms and the unique properties of the EPS matrix, biofilm communities exhibit "emergent properties" that differ from the known properties of individual (free-living) microbial components of the biofilm [71]. For instance, biofilms exhibit social cooperation and enhanced resistance to antimicrobials and other stress conditions. This is typically attributed to different factors including the presence of the EPS matrix, the inherent physiological heterogeneity of biofilms, adaptive microbial strategies and presence of persister cells

Biofilm systems or biofilm reactors (terms used interchangeably) consist of four main components: the biofilm, the surface on which the biofilm grows (i.e., substratum or carrier), the bulk fluid (e.g., waste effluent in wastewater treatment), and the gas phase if the system requires or contains one (e.g., air or oxygen, hydrogen, methane, nitrogen, etc.) [67], (Fig. 2). In wastewater treatment applications, substrata used to retain and grow microorganisms traditionally consist of inert materials such as rocks, stones, sand, wood, rubber, plastic and ceramics. There are new materials used in biofilm reactors known as "active substrata" that provide not only a support for biofilm growth, but also other functionalities; for example hollow gas transfer membranes allow for the delivery of electron donors (i.e., chemicals that donate electrons to another compound in redox reactions during microbial growth), whereas the anode of an electrochemical cell can act as an electron acceptor (chemicals that accept electrons transferred to it from other compounds) in biofilm reactors [74]. The spatial-temporal characteristics (e.g., architecture) and physicochemical heterogeneity of biofilms in wastewater treatment reactors will depend on different factors, including the type of carrier, microbial community (metabolism, physiology and interactions), physicochemical characteristics of the wastewater to be treated, and operational conditions in the reactor such as shear stress, retention times, etc. [71,75].

Differently from suspended-growth systems, such as activated sludge systems, biofilm reactors mostly retain microorganisms within the biofilm, although microbial cells will periodically detach from the biofilm and potentially exit the reactor along with the treated effluent. In biofilm reactors, microbial cells can be either attached to fixed or free moving carriers [67]. In fixed-media systems, the biofilm forms on a static medium in the reactor, examples of this type of reactor include the membrane biofilm reactor and fixed-bed biofilm reactors (e.g., trickling filters). In moving-media systems, the biofilm develops attached to

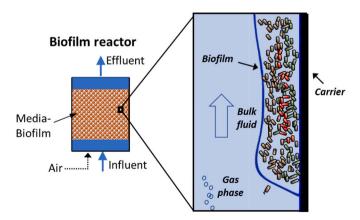
carriers that are constantly or intermittently being moved mechanically or by the fluids themselves [76]. Examples of these reactors include the rotating biological contactor, moving bed biofilm reactor, and the fluidized bed reactor. The different types of bioreactors used in wastewater treatment will be discussed in the next section. The fact that microorganisms are (for the most part) attached to carriers creates a clear distinction between the biofilm biomass and the bulk liquid in the reactor, resulting in Refs. [67,77]:

- i. Separation of the biomass from the treated effluent. If biomass is retained effectively, downstream biosolids separations from biofilm reactors can represent an advantage over suspended growth systems in which a separation process (e.g., sedimentation or membrane separations) is needed to remove biomass from the bulk liquid. Even in biofilm systems, biomass removal will be necessary, albeit, typically to lower extents than in suspended systems. While not reviewed here, processes for liquid–solids separation can include gravity dependent processes of dissolved air flotation, sedimentation basins, and flocculation/settling, as well as other processes that may be less sensitive to microgravity and partial gravity including membrane (ultra- and micro-) filtration, granular media filtration, and porous-disc filtration.
- ii. Diffusional substrate concentration gradients. Transport of substrates into and through the biofilm can occur via diffusion which slows desired reaction rates. How deep substrates penetrate the biofilm depends on the porosity and/or diffusivity of the biofilms, concentration of the substrates in the bulk liquid, as well as mass transfer and reaction rates inside the biofilm.
- iii. Stratification of biofilms. In multi-species biofilms, the formation of diffusional substrate concentration gradients can promote microbial growth rate gradients as well; fast growing microorganisms will typically be found on the outer layer of the biofilm in areas of greater exposure to the growth limiting substrate in the bulk fluid, whereas slow growing (and often more efficient) microorganisms are typically found on the inside of the biofilm where they are more protected from removal. This stratification protects slower-growing microorganisms from external shear forces, biocides, detachment and wash-out. The stratification can also enable the establishment of multiple seemingly exclusive metabolisms inside a very thin (10s–100s of micrometers) biofilm, such as aerobic ammonium oxidizers on one side of the biofilm while nitrate reduction occurs in the absence of oxygen only a few micrometers away on the other side of the biofilm.

Due to biofilms' unique structures, functions and emergent properties [71,78], biofilms can have increased robustness and resistance to toxic and recalcitrant compounds, leading to more stable communities and more effective transformation of substrates. Thus, on Earth, biofilm reactors have been widely used in wastewater treatment applications for the removal of organic carbon (measured as COD and BOD) and nutrients (e.g., nitrogen and phosphorus).

The removal of total nitrogen (TN) from wastewater is one of the major goals in wastewater treatment plants. Biological nitrogen removal in wastewater starts with the nitrification process, in which the oxidation of inorganic nitrogen as ammonium (NH $_{+}^{+}$) to nitrite (NO $_{2}^{-}$) and nitrate (NO $_{3}^{-}$) is carried out by a group of autotrophic aerobic microorganisms (utilize inorganic carbon and O $_{2}$) known as nitrifiers. In a secondary step known as denitrification, microorganisms in anoxic environments (devoid of O $_{2}$) perform the reduction of nitrite and nitrate to nitrogen gas (N $_{2}$) [79]. Denitrifiers may be heterotrophic (utilizing organic carbon as electron donor) or autotrophic (utilizing electron donors such as sulfur or H $_{2}$). It should be noted that in some systems anaerobic ammonium oxidation (anammox) is being established as an alternative to denitrification [80,81]; the anammox process is attractive because of its high efficiency and low energy consumption. Furthermore, anammox bacteria do not require an organic carbon source, the

production of sludge is minimized compared to aerobic processes, and there is a reduction in CO_2 emissions. However, slow growth of anammox bacteria and retention of bacteria in the reactor remain challenges of anammox processes [202].


Given that nitrification and denitrification are performed by diverse groups of microorganisms that thrive under different environments, as outlined above, these processes typically are carried out individually in sequential bioreactors or in different steps as part of the same system [82]. However, nitrification and denitrification processes, either individually or simultaneously, have been successful in biofilm reactors [83], and simultaneous nitrification and denitrification occur naturally in biofilm systems due to the inherent O2 gradients across a biofilm, where nitrifiers are active in the oxic zones of the biofilm, while denitrifiers thrive under the anoxic zones of the biofilm (Fig. 3). Both groups of microorganisms, nitrifiers and denitrifiers, utilize different dissolved organic and inorganic carbon sources present in the bulk fluid, which results in a simultaneous COD removal. The successful removal of TN by heterotrophic biological systems depends on having an appropriate carbon-to-nitrogen ratio (C:N), if there is not enough carbon in the system (e.g., COD), the removal of nitrogen, particularly in the denitrification step, becomes limited [84]. A common practice to achieve proper C:N ratio for the denitrification process is to add external organic carbon sources (e.g., acetic acid, methanol, etc.) to the reactor to ensure sufficient electron donors [85].

4. Biofilm reactors as technologies to treat used water in space

4.1. Influence of space conditions on biofilms

The microgravity environment experienced during space travel $(10^{-3} \text{ to } 10^{-6} \text{ times}$ the terrestrial gravity) impacts microbial life [29, 30]. The lack of buoyant convection under microgravity conditions results in low-shear fluid environments for microbial growth. Reduced convection creates substrate and metabolic product concentration gradients around microbial cells, which has been proposed to be one of the main factors behind altered microbial behavior in space [86]. Microgravity seems to influence growth and cell physiology [87–91], biofilm formation [92–98], stress resistance [87,99] and virulence [89,100, 101]

To consider implementation of biofilm reactors in space, it is crucial to have a fundamental understanding of biofilm formation and development under space conditions. Biofilm formation in space has been demonstrated; various studies have reported fungal and bacterial biofilm formation on different surfaces and water systems in space shuttles,

Fig. 3. Elements of biofilm reactors: Biofilm, comprised of microorganisms embedded in a matrix of extracellular polymeric substances; Carrier, fixed or free-moving surface to which the microorganisms attach; Bulk fluid, which is the liquid that contains nutrients and/or compounds to be removed; and the gas phase (*i.e.*, air bubbles), which can be optional depending on the system.

the ISS, and the MIR space station [102-106]. Moreover, several microorganisms with the ability to form biofilms have been isolated from spacecraft environments, including water and waste lines in the ISS [107–109]. Although research on biofilms in space is still in its infancy, in general it has been observed that biofilm formation increases in some microorganisms (e.g., Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli) in both spaceflight and ground-based simulated microgravity studies [95,96,101]. Under simulated microgravity conditions, E. coli biofilms were thicker and showed increased resistance to stress (e. g., salt, antibiotics) compared to biofilms of the same species grown under normal gravity conditions [93]. Moreover, production and composition of EPS can also be affected under reduced gravity conditions; Mauclaire and Egli [203] observed increased EPS production under microgravity conditions in Micrococcus luteus strains isolated from the ISS, as compared to the Earth reference strain under Earth gravity conditions. EPS contained less colloidal carbohydrates and proteins, depending on the isolate, under microgravity conditions [203]. While most biofilm studies under microgravity conditions have focused on bacteria, a few studies have been performed on fungi. Experiments with veast (i.e., unicellular fungi including Candida albicans and Saccharomyces cerevisiae) under simulated microgravity showed that low-shear environments result in differential expression of genes, increased filamentation, increased or decreased biofilm formation (depending on the system) and randomness in the budding (asexual reproduction) pattern [110-112]. More extended discussion on biofilms, their impacts on human health, strategies to prevent their growth and relevance to space travel can be found elsewhere [113-118].

Most information regarding biofilms in space is focused on the impact on human health. However, if bioprocesses, specifically biofilm-based technologies, are to be used for water and waste treatment, along with recovery of resources, further studies should focus on environmentally relevant (e.g., pollutant-degrading) microorganisms and resource-producing (including food and other high-VAPs) microorganisms and their behavior in space. It is also important to gain more knowledge on the different microbial mechanisms involved in biofilm formation and the performance of biofilm reactors including the following: microbial growth, cell attachment and detachment, colony formation, cell aggregation, biofilm thickness, EPS production rate and composition on Earth and in space.

4.2. Advantages and disadvantages of biofilm reactors

For applications in space, traditional biological suspended-growth systems are not ideal for use in wastewater treatment under microgravity conditions due to their reliance on air/gas buoyancy in the reactor and their significantly large amounts of biomass (sludge) generated [16]. However, suspended-growth systems tend to have higher unit process rates compared to immobilized biomass systems; these systems could be potentially used in partial gravity environments (e.g., Mars or the Moon). There are several advantages to biofilm reactor systems for the treatment of waste streams compared to conventional suspended-growth systems. Biofilm reactors typically have lower energy demands, with simple operation and maintenance, increased operational stability, and reduced hydraulic retention time [76,119]. Biofilm reactors often allow for high volumetric loadings to be treated without the need for liquid-solid separation or solids recirculation (biomass) to the reactor [120]. Furthermore, biofilm reactors exhibit lower sludge production, with minimal issues with sludge bulking and better sludge thickening properties [76]. Biofilms offer high specific surface area, which allows for an increased utilization of substrates (i.e., nutrients and contaminants) from the bulk liquid in a smaller space; this lowers the volume requirements for biofilm reactors [76]. Biofilms have a very heterogeneous nature fostering increased availability of different ecological niches within the biofilm, which allows the co-existence of microorganisms with different growth requirements (e.g., aerobic and anoxic conditions near each other). Increased biofilm microbial

diversity may allow systems to degrade a wide range of complex substrates (e.g., organic pollutants) [71,78]. Moreover, as described above, the EPS matrix confers protection to the cells within the biofilm, which provides biofilm reactors with a higher tolerance to variation in waste stream characteristics (e.g., temperature, pH, toxic compounds) and shock loads [120]. Biofilm reactors also allow for easy separation of the biomass and the treated effluent, which reduces the need for post-treatment to separate the liquid phase from the microbial cells (solid phase). Lastly, on Earth, biofilm reactors have also been used to produce and/or recover high VAPs, including treated water, nutrients, biomass and various microbial products [45,121,122]. This is relevant for technologies to treat used water in space. Converting waste into resources would reduce the liabilities of wastes, increase sustainability of the systems, allow for integration of the treatment technology to further close the loop of life support systems, and recover valuable resources that would otherwise have to be transported into space (Fig. 5).

Whereas biofilm reactors can have advantages over traditional suspended-growth systems for wastewater treatment, there are some inherent limitations. Biofilm reactors generally have longer start-up times since these systems require time for the formation of active biofilms on the carriers [77,123,124]; this is a bigger issue for systems that use anaerobic biofilms, in which the start-up period can take long periods of time, especially compared to aerobic processes [123,124].

One of the main challenges in co-diffusional biofilm systems is the diffusional limitation within the biofilm due to poor mass transfer, which results in reduced reaction rates. Biofilm thickness is key in the successful operation of biofilm reactors, and it is also one of the most difficult parameters to control. Biofilm thickness can impact biofilm structure, activity and biodiversity [125]. Depending on the system (e.g., microorganisms and environmental conditions), there is a maximum biofilm thickness that allows for optimal transfer of O2, nutrients and removal of pollutants (e.g., COD) in the biofilm. Thin biofilms might not provide sufficient active biomass to reach the desired conversion. Increased biofilm thickness can limit the diffusive transport of O2 and substrates into the biofilm [77], leading to decreased biofilm efficiencies [126,127]. Furthermore, excess biomass accumulation in biofilm reactors and carrier materials can lead to clogging of the reactors or carriers, which results in decreased reactor working volume and thus reduced treatment capacity of the system [123,124]. Optimal biofilm thicknesses can be predicted based on well-determined reaction and diffusion kinetics [126,127].

4.3. Biofilm reactor configurations

Biofilm reactors can be classified based on the number of phases involved (*i.e.*, air, bulk water, biofilm-loaded carrier), how electron donors and acceptors are applied, and whether the biofilm is attached to fixed- or moving-media [67,128]. In this review, biofilm reactors (Fig. 6) will be classified into fixed-bed (media), expanded-bed (moving media), and hybrid reactors. The next sections will discuss the types of reactors that have been proposed for potential treatment of used water in space and will discuss the feasibility of such systems under different gravity conditions, relevant to different types of missions.

4.3.1. Fixed-bed reactors

Fixed-bed reactors (FBRs) are characterized by the attachment and development of the biofilm on static media; this type of reactors can be non-submerged such as the trickling filter (Fig. 6A), partially submerged like the rotating biological contactor (a.k.a. Rotary disc) (Fig. 4B), or fully submerged such as packed-bed reactors (Fig. 6C) and membrane biofilm reactors (Fig. 6D) [67,128]; Sørensen 2020). Except for a trickling filter reactor, FBRs do not rely on buoyancy, and thus these systems could be used under microgravity conditions. The FBRs that have been proposed to treat space-based wastewater are discussed below.

4.3.1.1. Trickling filter biofilm reactor. The trickling filter biofilm reactor (TBR), also known as biofilter, is a type of non-submerged FBR. In this three-phase biofilm reactor, the liquid is flowing through a packed bed with biofilm covered media (e.g., plastic or inert mineral carriers); the bed is never fully saturated and contains a gas (e.g., air) and a liquid (e.g., water) phase (Fig. 6A) [130]. Air can be supplied either by mechanical means such as air distribution piping and fans, or by natural ventilation [130,131]. The treated effluent exits the reactor but is often recirculated a number of times to achieve the desired water quality (e.g., removal of pollutants). Like other biological systems, TBRs require a liquid-solid separation unit, which most commonly consists of a secondary clarifier [130]. Different factors affect the efficiency of TBRs, including the type of filter media (e.g., plastic rings, polystyrene, rubber, gravel, zeolite, sponge, etc.) [131,132] and its characteristics (e.g., specific surface area, weight), as well as the void ratio in the packed bed (i.e., fraction of the total volume in the reactor filled with air after the media has been filled into the filter) [133,134]. On Earth, TBRs have been used for the treatment of different waste streams, including municipal and industrial wastewater, to oxidize organic carbon, perform

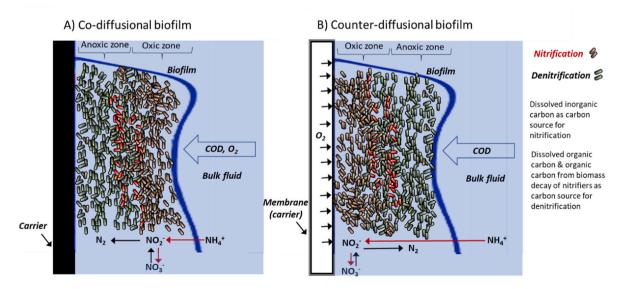


Fig. 4. Substrate conversion and simultaneous aerobic nitrification and heterotrophic denitrification in a (A) co-diffusional biofilm, and (B) counter-diffusional biofilm. Modified from Ref. [83].

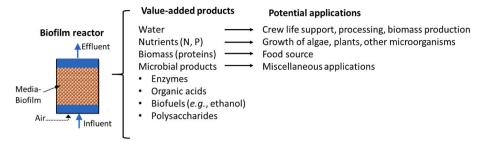


Fig. 5. Value-added products obtained during water treatment and potential applications.

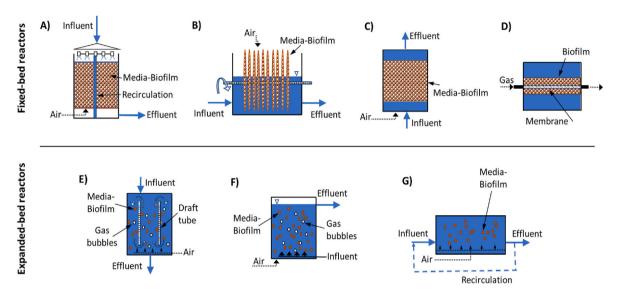


Fig. 6. Biofilm reactor configurations. Fixed-bed reactors: (A) Trickling filter, (B) Rotating biological reactor, (C) Packed-bed reactor (up-flow), (D) Membrane biofilm reactor. Expanded-bed reactors: (E) Suspended reactor (airlift), (F) Fluidized bed reactor, and (G) Moving bed biofilm reactor. Modified from Ref. [129].

nitrification or denitrification [134–136], and even remove toxic heavy metals such as Cr⁶⁺ [137]. TBRs have been used in combination with other biological systems to enhance the removal of pollutants from waste effluents; for instance, TBRs have been used as a pre-treatment unit for wastewater with high organic loads [138] before activated sludge treatment, and as post-treatment after up-flow anaerobic sludge blanket reactors [139]. TBRs are characterized by high concentrations of cells and microbial activity, high tolerance for treating effluents with varying hydraulic and organic loads, low energy requirements, low cost, simplicity and ease of operation and maintenance; furthermore, compared to suspended processes such as activated sludge, TBRs typically have shorter treatment times [130,140]. Some disadvantages of TBRs include the possibility of clogging, poor nutrient removal efficiency (specifically for denitrification, as this process requires the absence of oxygen and preventing the natural convection of air in the TBF is not feasible) and limited oxygen transfer efficiency in the reactor, [140,141].

Few TBRs have been proposed to treat synthetic waters with compositions similar to used waters in space [142,143], (Table 3); however, it should be noted that these studies have been performed on Earth with synthetic wastewater and have not been tested under microgravity

Table 2Compounds transformed in MBfRs using different gas-phases.

Gas	Pollutant removed	References
Oxygen/Air Methane (CH ₄)	Carbonaceous and nitrogenous compounds. SeO ₄ ²⁻ , BrO ₃ ⁻ , ClO ₄ ⁻ , CrO ₄ ²⁻ , NO ₃ ⁻ /NO ₂ ⁻	[144–148] [97,98, 149–153]
Hydrogen (H ₂)	SO ₄ ² -, CrO ₄ ² -, AsO ₃ ⁻ , TCE, ClO ₄ ⁻ , BrO ₃ ⁻ , SeO ₄ ² -	[154–158]

conditions. TBRs rely on gravity and on density differences between air and water to maintain unsaturated water flow. Thus, TBRs are the least likely to be used for space operations under microgravity conditions; operations under microgravity would likely cause improper air and water flow, resulting in poor performance. Partial gravity TBR's may operate similar to here on Earth, but fluid dynamics of these biofilm reactors should be explored more thoroughly before application on the Moon or Mars.

4.3.1.2. Packed-bed reactor. The packed-bed biofilm reactor (PBR) is a reactor packed with solid support media engineered to provide high surface area to promote biofilm formation while also allowing wastewater to flow through the system. These reactors, as defined here, are completely saturated and, on Earth, are usually fed from the bottom and operated in up-flow mode (Fig. 6C), although downflow configurations also exist (Sørensen 2020). In PBRs, the concentration of substrates decreases axially from the inlet to the outlet of the reactor. This type of reactor can be run under aerobic or anoxic conditions (e.g., when denitrification is desired). Most commonly, this type of reactor is used as a three-phase system for aerobic processes, in which air or O2 is supplied as gas bubbles [67]. When low levels of organic carbon are present in the wastewater, the electron donors for microbial processes may be insufficient for denitrification, such that addition of an external electron donor (e.g., methanol, sugar or other non-defined C sources) is needed; the most common carbon-free electron donors used in PBRs include elemental sulfur, hydrogen, hydrogen sulfide and thiosulfate [167,168].

The type of support material used is key in PBR performance, as the carrier characteristics (*e.g.*, porosity and particle size) will determine biomass retention and overall reactor efficiency. Common support

 Table 3

 Summary of published studies on the potential use of biofilm reactors for wastewater treatment in space and extraterrestrial environments.

Reactor	System configuration & Operational conditions	Application and removal efficiency	References	
Trickling filter reactor	System configuration Influent: simulated advanced life support graywater (TOC: 250 mg/L; COD: 880 mg/L; TN: 35 mg/L) Reactor: 60 cm long acrylic tube with top and bottom acrylic	Experiment 1: under steady-state performance (after 40 days), TOC removal: 65%; nitrification did not occur.	[142]	
	fitting; TV 5L. Packing material: Tripacks SA: 281 m²/m³, OD: 2.5 cm; Bee-cell packing material, SA: 653 m²/m³, ID: 1.3 cm, Biobale SA: 825 m²/m³, ID: 0.4 cm. System operation Feed flow rate 5 L/d; recirculation flow rate	Experiment 2: under steady-state performance (after 40 days), TOC removal: 50–65%.		
	100 L/d; T: 20 °C; Gas supplied: air. Startup period: 40 d. Experiment 1: packing material: Tri-packs;			
	operation: 65 d; 6 replicates. Experiment 2: packing material: Bee-cell (3 replicates) & Biobale (3 replicates); operation: 145 d.			
Trickling filter reactor	System configuration Influent: simulated advanced life support graywater (COD 16.1 mM, 14.3 mM DOC, 6.9 mM TN, 0.4 mM N-NH $^{\downarrow}$) Operated to treat graywater along with gas phase contaminants (H ₂ S, NH ₃). Reactor: 91 cm long acrylic tube with top and bottom acrylic fitting; ID: 10.2 cm; TV: 4.9 L. Packing material: 2.54 cm Jaeger rings System operation Phase 1 \rightarrow Fed-batch inoculation for 10 d (25 g activated sludge); flow rate 300 L/d for 24 h periods. Gas-phase flowrate (20% O ₂) constant throughout inoculation at 2 L/min; no H ₂ S(g), CO _{2(g)} or NH ₃ (g) were supplied. Phase 2 \rightarrow Gas-phase loading experiments. Grey wastewater flow rate 5 L/d; recirculation	>90% removal efficiency of parent surfactant and waste gas constituents.	[143]	
	rate 5 L/d; recirculation flow rate 375 L/d; HLR 1.9 m/h; T: 20 °C; Total gas (H ₂ S, NH ₃ , CO ₂) flowrate 1.24 L/ min, air (20% O2) flowrate 0.52 L/min. Different			

Table 3 (continued)

Reactor	System configuration & Operational conditions	Application and removal efficiency	Reference
	concentrations of gases were used at different periods of time. CO ₂ 0–2660 ppm; HN _{3(g)} 0–145 ppm; H ₂ S(g)		
	0–18 ppm. Total operation time:		
	300 d.		54 = 0.7
MABR	System configuration Influent: modified EPB wastewater Counter-diffusion Membrane Aerated Nitrifying Denitrifying Reactor. The system can be coupled to the	Removal C 90%, nitrification 70%, denitrification 50%.	[159]
	osmosis secondary treatment system. Liquid-up flow configuration. <i>Reactor</i> : Column, shell: 158 L, OD: 45.7 cm, ID: 40.6 cm; Liquid: 104 L.		
	Membranes: #membranes = 1775, $SA = 27.6 \text{ m}^2$, $SSA = 265 \text{ m}^2/\text{m}^3$. System operation		
	Inoculation & start up period: 2 months. Continuous flow operation. Five testing periods were performed		
	with various operational conditions: loading rates = 15–40 L/d; effluent as flow = 200–600 mL/min; Gas		
	pressure = $7.5-9.5$ psi; liquid pressure = $8-10.5$ psi; operation time = $15-32$ d Gas supplied: O_2 or air.		
MABR	System configuration Influent: ISS (DOC 780 g/m ³ ; TN 740 g/m ³), EPB Ersatz (DOC 2300	Continuous EPB: C removal 87%; 45% nitrification.	[160]
	g/m³; TN 2200 g/m³) Reactor: rectangular configuration with cross flow; dimensions: L = 90 cm, W = 52 cm, H = 50 cm; TV = 0.23 m³; Liquid volume: 0.095 m³.	Continuous ISS: C removal 94%; 49% nitrification.	
	Membrane: OD = 0.55 cm; #membranes = 1755. SSA = 100 m ² / m ³ .	Pulse ISS: C removal 93%; 47% nitrification.	
	System operation Continuous flow operation for EPB and ISS; pulses for ISS. Continuous EPB: 15 L/ crew-d; operation time = 15 d; V treated = 451 L; Gas supplied: air (30 L/d). Continuous ISS: 4 L/crew-d; operation time = 42 d; V treated	Pulse ISS + pulse hygiene: C removal 80%, 54% nitrification.	
	= 340 L. Pulse ISS: 4 L/crew-d; operation time = 28 d; V treated = 227 L. Pulse ISS + pulse hygiene: 11.5 L/crew-d;		

Table 3 (continued)

Table 3 (continued)

able 3 (conti	nuea)			Table 3 (conti	nuea)		
Reactor	System configuration & Operational conditions	Application and removal efficiency	References	Reactor	System configuration & Operational conditions	Application and removal efficiency	Reference
MABR	operation time = 14 d; V treated = 316 L. System configuration Influent: EPB (DOC 410–790 mg/L; TN 540–840 mg/L), HC (DOC 200–270 mg/L; TN 30–42 mg/L), ISS	ISS: OC removal 84–98%; ON oxidation efficiency 56–70%.	[16]		Reactor: L = 89 cm, W = 51 cm, and H = 51 cm; TV = 0.23 m ³	Aerobic mode: DOC removal 85–95%; ON oxidation efficiency 50–60%; N removal 10–20%. Anoxic mode: DOC removal 62%; ON oxidation efficiency	
	(DOC 1800–2600 mg/L; TN 1900–3300 mg/L), urine (DOC 200–4500 mg/L; TN 3200–5100 mg/L), Reactor: Seven (A1,2; B1-5) rectangular MABR were used. A1: L = 82 cm, W = 53 cm, H = 40 cm; TV = 173 L; LV: 104 L; #membranes = 1755; SSA = 117 m²/m³; treated EPB, HC. A2: L = 81 cm, W = 44 cm, H = 40 cm; TV =	EPB: OC removal 80–98%; ON oxidation efficiency 35–70%. HC: OC removal 80–94%; ON oxidation efficiency 36–81%. Urine: OC removal 90–99%; ON oxidation			Membrane: siloxane; OD = 0.55 cm, #membranes = 1600. System operation Continuous and on-production modes; aerobic (DO > 3 mg/L) and anoxic (DO ~0.5-2 mg/L). Gas supplied: 100% air to 100% O ₂ (0.6 L/d).	50%; N removal 26%. Transit wastewater: Aerobic & anoxic mode: DOC removal 85–86%; N removal 60%. ISS wastewater: Aerobic mode: DOC removal 90–95%; ON oxidation efficiency 60–65%; N removal 13% Anoxic mode: DOC removal 90–95%; ON oxidation efficiency 70%; N removal	
	143 L; LV: 110 L; #membranes = 1552; SSA = 90 m²/m³; treated EPB, ISS. B1: L = 66 cm, W = 30 cm, H = 58 cm; TV = 115 L; LV: 90 L; #membranes = 1228;	efficiency 30-70%.		Modified- MABR	System configuration Influent: EPB Ersatz (COD:N = 1.8; NH ₄ ⁺ -N = 650 g/m ³) Reactor dimensions: ID = 15.2 cm, L = 35.5 cm; TV: 6.4 L.	50–55%. Nitrification, denitrification and carbon removal.	[19]
	SSA = 105 m ² /m ³ ; treated EPB, urine. B2, B3: L = 69 cm, W = 31 cm, H = 50 cm; TV = 107 L; LV: 48 L; #membranes = 1228;				Gas headspace: 0.54 L Membrane: silicone; ID- 0.1 cm, OD-0.21 cm; L = 2.4 × reactor L; # membranes = 100. Gas supplied: Air.	Removal: TC: 75.3 g/(m ³ ·d)	
	SSA = $119 \text{ m}^2/\text{m}^3$; urine. B2, B3: L = 30 cm, W = 15 cm , H = 30 cm; TV = 13 L ; LV: 11 L ; #membranes = 307 ; SSA = $104 \text{ m}^2/\text{m}^3$; urine. System operation				Modification: additional surface area was provided by adding polyethylene biospheres (106 cm^2 , $6.3 \times 10^{-3} \text{ L}$) connected to the membranes. Total SSA = $291 \text{ m}^2/\text{m}^3$.	NH ₄ -N: 0.22 g-N/ (m ³ ·d)	
	MABR treating EPB, ISS waste streams: continuous and Onproduction modes. MABR treating HC and urine waste streams: continuous mode. Operation time = 1.5-5				System operation Operation time: 1 year start-up period, 3 years continuous operation. Different conditions were tested: Number of days (44–133); Pair (1.4–11 kPa); influent		
	years. HRT: EPB, 3.9–7.7 d; ISS, 16–32 d; urine, 20–100 d; HC, 6–28 d. <i>Gas supplied</i> : Air; different DO				flow rate (0.22–0.86 L/d); HRT (5.9–23.4 d); RR (10–250); OLR (19.2–94 g DOC/m³·d); NLR (46–123 g TN/m³·d).		
MABR	concentrations tested: fully aerobic (>2 mg/L) and low DO (<2 mg/L). System configuration Influent: EPB (DOC, 540–780 g/m³, TN, 644–880 g/m³), Transit (DOC, 950–1000 g/m³; TN, 590–1500 g/m³),	EPB wastewater:	[161]	MABR	System configuration Influent: EPB Ersatz (DOC 436–593 mg/L; NH $\frac{1}{4}$ -N 565-1030 mg- N/L; C:N = 0.59–0.79). Reactor: acrylic; dimensions: ID = 10.2 cm; L = 25.4 cm; TV: 2.08 L; WV = 1.56 L.	Nitrification: 65%, Denitrification: 35%. DOC removal 0.33 g- C/(m²·d), nitrification 0.32 g-N/(m²·d); TN removal efficiency: 36.5%	[162]
	ISS (DOC, 1900–2700 g/m ³ ; TN, 2100–3100 g/m ³)				Gas supplied: O_2 Membrane: silicone; ID- 0.1 cm, OD-0.21 cm; L = $3.6 \times \text{reactor L}$; #membranes = 150.		

Table 3 (continued)

Table 3 (continued)

Reactor	System configuration & Operational conditions	Application and removal efficiency	References	Reactor	System configuration & Operational conditions	Application and removal efficiency	Reference
H ybrid systems Packed-Bed reactor & MABR	Operational conditions Total SSA = 597 m ² /m ³ . System operation Operation time: 555 d; HRT: 2.7–10.8 d; liquid velocity: 0.07–0.2 cm/min; P ₀₂ (22.8–27 kPa); number of days (11–123); RR (50–250); OLR (44–207 g TOC/m ³ ·d); NLR (70–304 g TN/m ³ ·d); pH (6.2–7.9). System configuration Influent: Transit mission waste stream Hybrid system: the anaerobic packed-bed reactor was located	Packed-bed reactor: carbon removal MABR: Nitrification, denitrification	[163]		TBR Reactor: acrylic cylinder; dimensions: ID = 25.4 cm, L = 145 cm; TV = 0.07 m³. Packing material: alternating layers of polypropylene Pall rings (2.5 cm) and ceramic saddles (6 mm). Gas supplied: air (2 L/min). System operation Influent flow rate: 75 mL/min of wastewater for both PBR and TBR; RR:150 mL/min of recycled water from the TBR for the PBR; 10,000 mL/min of	removal efficiency	
	reactor was located upstream of the MABR.				recycled water from the TBR for the TBR. HRT:		
	Packed-bed (Up-flow) Reactor dimensions: TV				1 d for PBR, 0.66 d for TBR.		
	= 1.6 L; WV = 1.1 L Packing material: lava rock (SA = 0.2 m ²) MABR Reactor: cylindrical polyvinyl chloride column; WV = 3.56 L. Membrane: silicon; ID- 0.08 cm, OD-0.17 cm; L = 2.3 × reactor L;	Removal: DOC removal 80–90% (400-600 g-C/[m^3 -d]). TN removal $<$ 0% (\sim 400 g-C/[m^3 -d]).		Pack-Bed reactor & MABR	System configuration Influent: EPB Ersatz (DOC 239–272 mg/L; NH ¹ ₄ -N 150–294 mg/L; TN 243–413 mg/L; C:N = 0.74) Hybrid system: the packed-bed reactor was located upstream of the MABR.	PBR: denitrification; MABR: nitrification.	[165]
	#membranes = 150; Total SA = 1.09 m²; Useable SA = 0.825 m². Gas supplied: Air (41 kPa). System operation Different conditions were tested: Number of days (30–85); influent				Packed-bed (Up-flow) Reactor: polyvinyl chloride column; dimensions: ID = 7.6 cm, L = 43.8 cm; TV = 2.5 L; WV = 1.1 L; packing ratio = 0.69. Packing material: lava rock (5 cm).	Removal:	
acked-Bed reactor & Trickling filter	flow rate (0.86–2.3 L/d); HRT (2.02–5.39 d). System configuration Influent: wastewater generated by JSC crew (hygiene water, urine) confined in a test chamber for 91 d mixed with simulated humidity condensate. (TOC 247 mg/L; NH ₄ -N	Overall removal efficiencies (considering TBR effluent quality): TOC removal 95%; NH ₄ ⁺ -N removal 60%.	[164]		MABR Reactor: acrylic column; dimensions: ID = 10.2 cm , L = 54.7 cm ; TV = 4.3 L ; WV = 3.78 L . Membrane: silicon; ID = 0.08 cm , OD = 0.17 cm ; L = $2.3 \times \text{reactor L}$; #membranes = 150 ; SSA = $186 \text{ m}^2/\text{m}^3$; Total SA = 0.825 m^2 . Gas supplied: Air (20.7 kPa).	PBR: DOC removal (Avg 87%); TN removal (55%).	
	150 mg/L). Hybrid system: the packed-bed reactor was located upstream of the TBR, followed by physicochemical treatment. Packed-bed (Up-flow) Reactor: acrylic				System operation Different conditions were tested: Number of days (41–138); influent flow rate (0.72–5.04 L/ d); HRT (0.98–6.8 d). RR: 10:1. Operation time: 417 d.	MABR: nitrification efficiency 60–80%, low values associated with decreasing retention times.	
	cylinder; dimensions: ID = 25.4 cm, L = 218 cm; TV = 0.11 m³. Packing material: 60 acrylic plates covered by a porous polymer support. Gas supplied: air (1.5 L/min); air was injected at 16.5 cm from the bottom of the reactor.			Membrane- aerated, membrane- coupled bioreactor (M2BR)	System configuration Wastewater: modified EPB Ersatz, 4:1 COD to N ratio, COD 800 mg/L, TN 700 mg/L. Hybrid system: the effluent of the MABR was fed to an external filtration membrane module and returned to the bioreactor. MABR Reactor:	COD & N removal: 90% Experiment 1: COD removal efficiency 87%; NH ₃ removal efficiency neglectable. Experiment 2:Phase 1:	[166]

Table 3 (continued)

able 3 (continued)						
Reactor	System configuration & Operational conditions	Application and removal efficiency	References			
	(1.5 L) Membrane: polyolefin; OD = 0.3 cm; SA = 0.118 m^2 ; Gas supplied: Air or O ₂ (200 mL/min @ 1 atm).	efficiency 90%. Phase 2: COD removal efficiency 90%. Phase 3: 90% removal efficiency COD and TN. Phase 4: COD 90% removal efficiency.				
	TN					
	33 d, COD 480 mg/L, NH ₃ 180 mg N/L; Phase 4: 20 d, COD 780 mg/L, NH ₃ 700 mg N/L Experiment 3. Phase 1: 46 d; COD 0 mg/L; NH ₃ 200 mg N/L; Phase 2: 51 d, COD 480 mg/L, NH ₃ 180 mg N/L; Phase 3: 12 d, COD 480 mg/L, NH ₃ 180 mg N/L; Phase 4: 17 d, COD 780 mg/L, NH ₃ 700 mg N/L.	Experiment 3: Phase 1: NH ₃ removal efficiency 95%. Phase 2: NH ₃ removal efficiency 90%. Phase 3: NH ₃ removal efficiency 60–82%. Phase 4: NH ₃ removal efficiency 40%.				

ID= Inner diameter; OD = outer diameter; L = Length; TC = Total carbon; TN = Total nitrogen; TV = Total volume; LV=Liquid volume; SSA= Specific surface area; SA = surface area; HRT= Hydraulic retention time; RR= Recycle ratio; OLR= Organic loading rate; NLR= Nitrogen loading rate; WV= Wetted volume; T = temperature; EPB = Early planetary base; HC=Humidity condensate. Continuous mode = waste streams were mixed in an influent tank daily and pumped into the reactor continuously over 24 h; On-production mode = each separate waste component was pumped into the reactor as produced during a nominal crew day.

materials used in PBRs include plastic rings, sand, gravel, rocks, ceramics, clay, and granular carbon, while alternative materials such as bamboo [169] have also been used in wastewater treatment. While high biomass concentrations in and on the carriers allow for high treatment capacities, clogging issues and channeling in the packed bed can arise, causing a decrease in reactor efficiency. To address this pitfall, periodic backwashing is performed. The use of carriers with high void fraction (e. g., corrugated plastic media with void fraction higher than 90%) has been proposed as an alternative to decrease clogging issues in PBRs; these types of carriers provide enough surface for biofilm accumulation while allowing enough void space for the flow of fluids (air and water) [170].

Due to their operational flexibility and capability to provide large volumetric productivity, on Earth, PBRs have been used for the treatment of a variety of different waste streams including the dairy, food and beverage industry [171,172], petroleum refineries [170,173] and municipal wastewater [174]. Different PBRs have been proposed as part of hybrid systems (combination of one or more different types of reactors) to treat synthetic waters with similar compositions to those obtained from various used waters in space (see Table 3); these systems are discussed in Section 4.3.3. It should be noted that all the studies targeting treatment of used water in space with PBRs have been performed on Earth, with synthetic waters and have not been tested under microgravity conditions. In partial gravity, PBR's will likely operate similar to how they operate on Earth, but these biofilm reactors should be studied in additional detail before use on Mars or a lunar base as subtle changes in the fluid dynamics may impact operations.

4.3.1.3. Membrane biofilm reactor. Membrane biofilm reactors (MBfRs) use gas-permeable, typically hollow-fiber, membranes for both biofilm immobilization on the membranes' exterior and gas transfer [175,176] (Fig. 6D). In a MBfR, typically a gaseous electron donor or acceptor (e.g., O2, H2, CH4) diffuse through the membrane to the biofilm growing on the membrane; complementary substrates (electron donor or acceptor), typically in the form of waste products when used for water treatment, diffuse from the bulk liquid into the biofilm (Fig. 4B, [176]. As pressurized gas enters the biofilm through the membrane from the opposite direction as substrates from the bulk liquid, a counter-diffusional system develops (Fig. 4B, [176]. Having a counter-diffusional biofilm allows the diffusion of two substrates (i.e., gas-substrate and substrate delivered with the bulk fluid) from opposite sides of the biofilm simultaneously, often making the inner (center) part of the biofilm the most metabolically active zone [176]. This is different from conventional biofilm systems in which the most active zone is often the outer layer of the biofilm (cf. Fig. 4A). Compared to traditional biofilms, counter-diffusional biofilms possess unique characteristics and behavior, including (i) stratification of the microorganisms within the biofilms, which promotes the existence and interrelation of microorganisms with different growth needs (e.g., nitrifiers and denitrifiers) and (ii) low liquid diffusion layer resistance [175,176].

On Earth, MBfRs have been used in laboratory or pilot studies for the treatment of various waste streams, including municipal wastewater [177-181], digester influent and source separated urine [182,183]. Either on their own or in combination with other treatment units (hybrid systems), MBfRs have also been used for the treatment of high strength wastewaters [144-146], the removal of COD and nutrients (e.g., nitrogen) via simultaneous nitrification and denitrification processes [147, 148,162], as well as the removal of micropollutants such as pharmaceuticals [184]. As mentioned above, MBfRs can have different gas-phases. When air or O2 are used as the gas phase, the system is often referred to as a membrane aerated biofilm reactor (MABR). In MABRs, O2 is used as the electron acceptor to oxidize compounds (often organic and nitrogenous). In hydrogen (H₂)-based MBfRs, H₂ is delivered as the electron donor to be oxidized by microorganisms that reduce oxidized contaminants such as perchlorate (ClO_4^-), selenate (SeO_4^{2-}) and trichloroethylene (TCE) [154–156,185]. Similarly, (CH₄)-based MBfRs have been used for the bioreduction of selenate (SeO₄) [97,98,150], bromate (BrO₃) [151], perchlorate [152], chromate [153], and NO₃/NO₂ [149]. Table 2 provides a summary of the compounds transformed in MBfRs using oxygen, hydrogen and methane as gas-phases.

Similar to other biofilm reactors, MBfRs provide advantages like supporting the growth of slow-growing microorganisms, decreased amounts of sludge production compared to suspended-growth systems, no requirement for aeration tanks and sludge storage, as well as the capability to maintain high biomass concentrations in the reactor [175, 176]. Compared to conventional activated sludge systems, MBfRs have been suggested to have higher gas transfer efficiency, which results in lower energy consumption and thus costs [186]. Further, MBfRs require

small reactor volumes and allow for the development of mixed microbial communities with different growth requirements [175,176]; these types of reactors also display high functional stability against shock loads and toxic inhibitors [175,176]. Some of the challenges of MBfRs include biomass control and membrane fouling; as the thickness of the biofilm increases there is greater mass transfer resistance which can decrease biofilm activity. Further, membrane capital costs can be high and defects on the membranes can affect biofilm formation and activity. Moreover, the challenge with counter-diffusion systems such as MBfRs, for simultaneous nitrification and denitrification is to identify the optimum rate of gas transfer to ensure that enough gas is transferred to the biofilm to promote complete NH $_4^+$ oxidation, but not so much that the biofilm is fully penetrated with O $_2$ [175,176].

When it comes to applications in space, MBfRs possess unique characteristics that might make them good candidates for space-based water treatment. The compact size and modular nature of these reactors makes them suitable to be installed and/or integrated into existing space habitation water recycling systems. The bubbleless gas transfer in MBfRs is applicable in microgravity and partial gravity environments, and minimizes foaming [16] and transfer of volatiles (e.g., odors, organics). Accumulation of biomass on the membrane not only facilitates the separation of the biomass from the treated effluent, but it also minimizes the release of microorganisms with the effluent, which could pose a threat to human health [166]. For the past couple of decades, the use and incorporation of MBfRs into space habitation water recycling systems has been investigated. NASA has funded research on the application of MBfRs mostly for the removal of nitrogen species from water, either as coupled nitrification/denitrification systems [187,188], or as stand-alone nitrification systems [189]. On-ground testing of various laboratory scale systems has been performed (from bench top reactors to stand alone systems) using MBfRs, specifically MABRs, for the treatment of different space-based used waters (e.g., ISS, transit, EPB) (Table 3). Investigations have focused on testing different configurations, operational conditions, reactor designs and membrane characteristics to achieve enhanced C and N removal efficiencies. For instance, different reactor geometries and sizes (e.g., cylindrical, rectangular) have been tested to optimize and facilitate the integration of MABRs into flight hardware. The effect of varying membrane surface area (specific surface area - SSA) was tested in these systems; for example, [19]; added polyethylene biospheres connected to the membranes to provide additional surface area. Early studies by Ref. [159] demonstrated the successful use of two full size MABRs (cylindrical geometry, SSA 265 m²/m³, parallel flow) to treat EPB used water. The MABRs achieved C removal of 90%, nitrification ~ 70%, and denitrification~ 50% [160]. used a MABR (rectangular geometry, low SSA, cross flow regime) to treat various space habitation used waters (e.g., ISS, EPB), achieving overall dissolved organic carbon removal of $\sim 90\%$ and nitrification of $\sim 50\%$. After treating 1400 L, the system had not shown any maintenance issues; furthermore, flow lines of the system were not clogged by microbial growth and no buildup of biofilm in the reactor was observed compared to similar systems with parallel flow cylinder configurations [159]. [162] used a MABR that was capable of performing simultaneous nitrification and denitrification for an EPB Ersatz formulation dominated by nitrogen species (C:N < 1); the system showed a removal efficiency of 36% for total nitrogen species (removal rate 0.24 g-N/[m²·d]). In a different study [16], investigated the performance and optimal loading capacities of multiple MABRs with various habitation waste streams (e.g., EPB, HC, ISS, urine). The MABRs stably operated for up to 5 years with limited maintenance (less than 0.5% of the membranes failed or were plugged), minimal consumables (O2 and recirculation pumps) and no solids processing. A wide range of organic N and C loading rates were tested, 2–220 g-C/(m³·d) and 7–200 g-N/(m³·d) across all types of used waters; the MABRs were able to oxidize organic C (>80%) proportionally to loading rates for all types of used waters, whereas N oxidation varied between 30% and 80% independently of the loading rates. These results showed the potential of MABRs to stabilize and pretreat used waters in space to reduce downstream growth and prevent pH increase, which could result in the volatilization of N species (e.g., NH_3) and precipitation of mineral species such as $CaSO_4$ or $NH_4MgPO_4 \bullet 6H_2O$ (struvite).

It should be noted that all the studies to treat space-based used water with MBfRs have been performed on Earth and have not been tested under microgravity conditions. Traditional MABRs, like the ones used in the discussed studies, are not very effective for the removal of nitrogen compounds for carbon limited wastewater such as waste streams in space with low C:N; however, an alternative could be the use of MBfRs with alternative electron donors including $\rm H_2$ to promote autohydrogenotrophic denitrification [190], or methanol to achieved enhanced denitrification.

4.3.2. Expanded-bed reactors

Expanded-bed reactors (EBR) include systems in which biofilms grow attached to free-moving carriers that are maintained in continuous suspension by air, high liquid velocity or mechanical stirring. These reactors are typically completely submerged and include systems like suspended reactors (e.g., airlift reactor) (Fig. 6E), fluidized bed reactors (Fig. 6F) and moving-bed biofilm reactors (Fig. 6G) [67,128,129]. Among the different types of biofilm reactors, generally EBR are not suitable for applications in space under microgravity conditions given that the beds in these systems are typically expanded by the upward flow of liquid and gas bubbles, which makes them dependent on buoyancy. However, these types of systems could be potentially used in partial gravity environments. If mechanical stirring is used, moving-bed biofilm reactors could potentially be used under microgravity conditions (Fig. 7).

4.3.3. Hybrid systems

Hybrid systems involve the combination of two or more different treatment systems to increase the removal efficiency of pollutants from a waste effluent. In this case, hybrid systems refer to the combination of a biofilm system with any other type of system, e.g., suspended-growth reactors, to enhance the quality of the treated effluent. The different treatment technologies can either be integrated in the same reactor, or they can be separated into different reactors operating in a sequential mode [191]. Some of the reasons for choosing a hybrid system may include improving biomass separation, enhancing nitrification (or any other process that involves the use of slow-growing microorganism), or the overall performance of the system.

Examples of hybrid systems include combinations of packed-bed reactors with other bioreactors such as the trickling filter or MABRs. Ref. [163] used a hybrid system to treat a transit mission waste stream (comprised of urine, flush water, humidity condensate), using an anaerobic packed-bed reactor for denitrification coupled to a MABR for nitrification (see Table 3 for details of the experimental set-up and operational conditions). The packed-bed reactor was located upstream of the MABR to reduce the organic carbon load entering the nitrifying reactor, and through recirculation, nitrate (NO₃) and nitrite (NO₂) produced during nitrification in the MABR were used in the packed-bed reactor for denitrification, which required the high organic load [164]. developed a hybrid system to treat and recycle wastewater (hygiene water, urine, humidity condensate; TOC 247 mg/L; NH₄-N 150 mg/L) generated by crewmembers confined in a test chamber for 91 days as part of the Lunar-Mars Life Support Test Project - Phase III at Johnson Space Center. The system consisted of a PBR for organic carbon removal coupled with a TBR for ammonia removal, followed by physicochemical treatment for final consumption by the crew. The system treated $\sim 110\,$ kg wastewater per day, with removal efficiencies of 95% and 60% for TOC and NH₄⁺-N, respectively. Both biological reactors were inoculated with commercially available microbial consortia; microbial populations in the reactors were characterized by the presence of unique heterotrophic and denitrifying bacteria (i.e., ε-Proteobacteria, Cytophagales, Planctomycetales) and ammonia-oxidizing bacteria that were closely

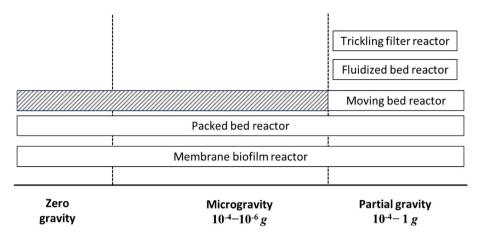


Fig. 7. Potential usability of biofilm reactors under different gravity environments. Note: if operated using mechanical stirring, moving bed biofilm reactors could be used in a broader range of gravity environments.

related to common denitrifiers (Pseudomonas-Paracoccus-Achromohacter group) found in other wastewater treatment systems. Ref. [165] evaluated the use of a hybrid system consisting of a PBR for denitrification and a MABR for nitrification, operated in series to treat EPB Ersatz (DOC 239-272 mg/L; NH₄⁺-N 150-294 mg/L; TN 243-413 mg/L; C:N = 0.74). The system was operated with a 10:1 recycle ratio and various loading rates and hydraulic retention times (HRTs) (1-6.8 d). This nitrification-denitrification system showed to be robust enough, reaching on average 87% and 55% removal efficiency of organic carbon and total nitrogen, respectively, in the PBR, and 60-80% nitrification efficiency in the MABR, with lower nitrification efficiencies with decreasing HRT. According to the authors, the system performance was hindered by kinetic and stoichiometric limitations. The pH of the effluent (controlled by the rate of nitrification) was inversely related to the HRT; at long HRTs the MABR showed alkalinity limitations as the pH of the system got close to 6.0. At short HRTs, the MABR presented kinetic limitations. The PBR suffered from DOC limitations. Ref. [166] developed and tested a membrane-aerated, membrane-coupled bioreactor (M2BR) to treat a modified EPB used water (Ersatz formulation). In this coupled system, the effluent of the MABR (cylindrical geometry, SA 0.118 m²) was fed to an external filtration membrane module and returned to the bioreactor. Four different experiments, each with different phases, were performed using various strengths of the EPB Ersatz, operation times, nutrient loading, and oxygen content of the aeration gas, to assess the performance of the system. The first experiment used full-strength EPB Ersatz and the system was run for 66 d using air as the aeration gas; while COD removal of 87% was achieved, no ammonia oxidation was observed during this experiment. In the second experiment, the authors aimed to establish an actively nitrifying biofilm in the system before feeding it with the EPB Ersatz; thus, initially, the system was fed with an ammonia-only solution for 29 d (NH3 removal efficiency >90%), and later fed a dilute version of the EPB Ersatz to also establish a heterotrophic bacterial community in the M2BR. After achieving $\sim 90\%$ removal of both COD and NH3 (and 35% of the nitrate), the system was fed a more concentrated EPB Ersatz with a C:N ratio that would support simultaneous nitrification/denitrification in the M2BR, achieving high removal efficiencies of both COD and total nitrogen species (> 90%). Although most of the microbial activity was assumed to occur in the biofilm, a large amount of suspended biomass was observed in the system. While removal of COD and TN was observed in this second experiment, a decrease in the nitrification/denitrification efficiency was observed when the system was fed the full strength EPB Ersatz. This was attributed to the O2 demand exceeding the O2 transfer rate in the MABR, thus, a third experiment aimed to address this issue. The third experiment had four phases, all of which were similar to the ones in the second experiment, except that pure O2 was used instead of air. While NH3

removal efficiency and simultaneous increase of nitrate in the effluent were observed in the presence of O_2 , once the full-strength EPB Ersatz was used, decreased NH_3 removal efficiency and nitrate concentrations were again observed. While the M2BR system showed the potential to simultaneously remove both C and N compounds, the system did not perform effectively when using full strength EPB Ersatz. This highlights the challenge of having low C:N ratio in most space-based used waters, which leads to the lack of electron donor to achieve complete denitrification.

4.4. Bioreactors for treatment of used water in space: overall lessons learned

In this review we have discussed the potential use of biofilm reactor systems as alternatives or additions to current technologies for water reclamation and waste treatment in space. Biofilm systems can align well with the unique constraints of treating used water in space, including the need to assure and maximize effluent quality and recover or produce VAPs (e.g., N2, nutrients for food production, feedstocks for polymers, etc.) while avoiding the use of potentially harmful chemicals. Most biofilm reactor systems discussed in this review have shown potential to treat various types of used water generated in space (e.g., ISS, transit, EPB), either in the form of simulated/synthetic water (e.g., Ersatz formulations) or collected used water, with various removal efficiencies depending on the composition of the water, the configuration of the system, and the operational conditions (Table 3). Most systems have been designed to remove organic carbon and nitrogen compounds, either independently or concomitantly via simultaneous nitrification and denitrification, using either a single reactor or a combination of different reactors (i.e., hybrid systems). While most systems have shown the ability to remove both C and N compounds, the treatment of fullstrength space-based used waters remains a challenge due to the low C:N ratios, which makes it stoichiometrically difficult to achieve complete denitrification. All reviewed systems, ranging from bench top reactors to stand alone systems, have been tested on Earth with some promising results; however, the performance under different gravity conditions needs further investigation. Fig. 7 summarizes options for biofilm reactor selection under different gravity conditions. It is not clear what the lower limits of partial gravity are for efficient operation of density driven reactors (e.g., trickling filter or fluidized bed reactors) such that additional research and testing will be necessary under various partial gravity conditions. Clearly, not all discussed systems would be appropriate under microgravity conditions, but all might be feasible options for partial gravity environments (e.g., lunar/planetary surface).

5. Limitations, challenges, opportunities, and scope for future research

This review has identified various opportunities and challenges related to the use of biofilm reactors for the management of used water and the recovery of VAPs in space. The main challenges, limitations, opportunities, and scope for further research for different space missions will be discussed in the following sections.

5.1. Limitations and challenges

There are several limitations and challenges for the use of biofilmbased reactors in space. Basic requirements for space bioreactors are limited by weight, size, durability and reliability, compatibility with other systems, crew time and biosafety (see Section 2.2.1). Additional unique challenges are related to the space environment (e.g., gravity conditions), the type (e.g., exploration vs. colonization) and extent of mission (short vs. long duration). There are several limitations and challenges for the use of biofilm-based reactors in space. Gravity is one of the main factors that limits the use of bioreactors in space. Different biofilm reactors used on Earth were designed to operate with "normal" (i. e., 1 g) gravitational forces; however, the lack of Earth-like gravitational forces in space can result in changes in fluid dynamics, including bubble formation and movement, which complicates or makes almost impossible the operation of certain reactors in space in the manner they are run on Earth (e.g., trickling filters). Density difference-dependent processes will not occur in microgravity and in partial gravity will not behave in the same manner as in Earth's gravitational field. Hence, microgravity compatible bioreactor systems are limited to a few options (e.g., MBfRs) and must be chosen carefully and/or specifically designed to fulfill mission-critical services without requiring density driven flows. Furthermore, microgravity and partial gravity might also have effects on stability of metabolically active biological systems. As stated before, biofilm reactors proposed to treat space-based wastewater have been tested on Earth; however, the knowledge of the impact of microgravity or partial gravity conditions on microbial systems, specifically on biofilms and their stability and functionality in bioreactors, is currently limited.

The duration of prospective missions represents another challenge for the use of bioreactors in space. For instance, there might be potentially different performance expectations of these systems during short duration (<90 days) and long duration (>90 days), microgravity missions vs. the operation on the lunar or a planetary surface with at least partial gravity. These reactors should be robust and resilient enough to ensure the stability of the system even for missions with the longest duration (>10-20 months). Questions, however, remain regarding the start-up and resiliency of bioreactors, including the recovery of bioreactors from culture crashes, potentially detrimental contamination of the desired microbial communities, as well as large sloughing events, which could very quickly remove a large part of the biologically active community and thus may cause temporary loss of function. It is important to understand that operational bioreactors for treatment of used water in microgravity and partial gravity will likely be undefined mixed prokaryotic communities enriched for a specific purpose (e.g., carbon removal), and will be subject to a number of issues that can impact process operations. Overall, it is critical that any biological system used on planetary bases or in space have a backup system or contingency and be tested as thoroughly as possible since bioreactor failures are well documented but can be managed. Operational wastewater failures in space will likely be similar to those observed on earth, which have been shown to result from bacteriophage [192], toxic upsets [193], predation [194], foaming, scaling, biofouling [195], poor biomass settling, operator error, physical damage, and design problems, among others. We expect that the optimal source of inoculum for bioreactor start-up will be identified during future research and development activities. Based on experience in the water and wastewater treatment industry, stable consortia performing the desired functions establish themselves during the optimization of the treatment process. Hence, the microbial consortia establishing themselves in pilot studies are anticipated to become the source of start-up cultures for these reactors. While inoculation with individual strains or defined mixed cultures of microbes might be considered a strategy, operation of wastewater treatment reactors on Earth indicates that undefined mixed prokaryotic communities will establish themselves for specific purposes. Cultures are expected to adapt to changing conditions in time and location as they do on Earth in response to changes in the environment. Furthermore, while it has been shown on Earth that stable biofilm communities establish themselves and often recover quickly, backup seed cultures may be necessary in space, and it should be considered how to best supply such seed cultures and decrease necessary start-up times at the beginning of the mission, after possible failure or after dormancy. For instance, these systems could be designed using modules with pre-seeded microbes, which can be exchanged quickly if necessary and can ideally be regenerated on board or on planet (e.g., through off-line seeding). A remaining concern for these bioreactor systems will always be the necessary start-up or recovery time after perturbation (e.g., an upset through toxic materials or adverse conditions) or after extended dormancy. However, biofilm systems are generally characterized as resilient when exposed to environmental stresses, including the lack of nutrient supply, desiccation, etc., which would potentially occur during extended dormancy. While we expect biofilm systems to perform stably and reliably in the face of changing operating conditions and after longer-term dormancy, these processes likely have to be simulated, as will the start-up phases. Studies on Earth might or might not be able to provide the long-term microgravity conditions necessary to perform these inoculum & viability studies easily. Maintenance of these bioreactors is also a challenge; especially in events where biomass is detaching, either slowly or through sudden biofilm sloughing events, biomass would have to be removed reliably from the effluent of the reactors. One of the most common ways of removing biomass is filtration. Membrane filtration systems are already being applied in used water treatment systems, but other filtration systems might also be possible and desirable to provide proper quality water for downstream use. While removal of biomass might be necessary for the safe operation of the system, it also provides an opportunity to recover biomass for other purposes, e.g., seeding of reactors or as raw material for other processes, that might become part of ECLSS, such as use of biomass as fertilizer for plant or fungal growth or as feedstock for the generation of bioplastics or similar products.

Scalability and integration of the envisioned biofilm-based used water and VAP systems is another area that will require increased attention. While modular systems can be expanded upon if designed properly, size restrictions in planetary developments or in spacecraft could pose limitations. Furthermore, integration of biofilm systems with current physicochemical processes for water treatment (e.g., the WRM in the ISS) needs to be considered. On Earth, some approaches enabling the potable reuse of water include filtration (incl. Micro-, ultra- and nanofiltration), reverse osmosis, ion exchange, activated carbon treatment, disinfection and oxidation processes (e.g., UV, chlorine, ozone) as well as thermal treatments (e.g., distillation, sterilization or pasteurization) [196]. However, as summarized in Refs. [117,118]; the types of processes and chemicals to be used might be limited in ECLSSs; for instance chlorine and bromine (commonly use on Earth for water treatment) are currently not the most favored biocides to be used in space due to their ability to form hazardous byproducts; however, more energy-intensive processes such as thermal treatment, radiation treatments (such as UV), and the in situ generation of oxidants such as ozone might be feasible approaches in space because energy efficiency is usually not a strong consideration in the process design in space. The exact level of integration of biofilm systems with other physicochemical treatment units in space remains at this point unclear. Hence, future work will have to address questions and concerns regarding the performance and reliability of biologically based systems because physicochemical treatment processes are currently the state of the art in space travel [8,9]. As indicated throughout this review, one of the main drivers for the integration of these more ecosystem-like treatment and processing systems could be their potential to be self-sustaining, requiring no or only minor inputs of raw-materials and energy, and to produce VAPs. Microorganisms reproduce while removing undesirable components from water and air, potentially producing desirable, higher value products, which could become an integral part of a more efficient resource utilization and recycling scheme that seems to be necessary for long-duration space missions. Utilizing biological processes for life support systems could be achievable through proper design and might significantly reduce the need to supply parts and feedstocks (necessary chemicals) through resupply missions.

Composition of the space-based used water is also a major challenge in the use of biological reactors. While many wastewater treatment systems on Earth have C:N>1 ratios, thus generally supplying sufficient electron donor to support substantial denitrification, used water in space often has C:N<1 ratios. Thus, while many of the bioreactor systems discussed were able to remove C and N compounds, complete denitrification was often not achieved due to the lack of electron donor in the system. This is something that could be addressed by using autohydrogenotrophic denitrification systems [190] or other electron donors, e.g., elemental sulfur. Similar challenges are foreseen for phosphorus management.

Minor challenges might result from considerations related to the transport of the reactors to their point of use. This will not be discussed in detail here because the challenges are similar -if not identical-to the challenges faced when establishing physicochemical treatment reactor systems.

One major concern that has been raised is the potential unsafe and non-aesthetic nature of biological processes. While this concern is understandable due to the concerns of microbial infections, and while biofilms have been shown to harbor pathogens for longer periods than other systems, biological and especially biofilm-life support systems offer significant opportunities as well. Research and development activities in this area should integrate the study of concerns that exist and likely develop educational and informational materials and activities, which will allow stakeholders to learn more about the strengths and risks of biological and other life support systems along with their potential in space.

5.2. Opportunities and scope for future research

While much progress has been made in the testing and operation of space compatible bioreactors on Earth, there is a significant amount of research still needed to build and successfully operate bioreactors in partial gravity and microgravity. It is anticipated that bioreactor development in space will progress in a manner similar to plant growth in space. Plants were first grown in space in a micro-greenhouse by Soviet astronauts in 1981, NASA astronauts first ate lettuce grown in space in 2015, and in 2018 the Advanced Plant Habitat (APH) was added to the ISS to accelerate learning to grow plants in space.

Most microbial experiments in space have been performed in batch reactors, yet future research is needed to develop and test continuous flow bioreactors in partial and microgravity that can effectively treat used water to demanding standards for drinking water and lower requirements for other water needs. Like the APH, a module should be developed for advanced bioreactor studies in space, which can be continuously operated with used water to determine treatment effectiveness and reliability under actual conditions. The bioreactor module could be paired with the APH and other modules to perform studies where effluent treated by biofilm systems could be used to provide nutrients (e.g., N, P) for plant cultivation for food production, or cultivation of algae for O₂ production. Additional research is needed in the areas of harvesting microbial products (e.g., edible fungi), biomass recovery for composting or use as a fertilizer, use of liquids containing N and P for plant growth as well as in other areas.

Additional studies are needed to understand biofilm formation, development, and control in continuous systems in space. Potential process streams for water recovery include the following: urine, fecal or food waste, hygiene water, condensate, and Sabatier [33]. In a dedicated bioreactor module, these streams could be carefully tested in space to determine treatment efficiency, reliability, and observe and correct potential operational issues. Further, the effects of radiation, microgravity, mutations, shifting microbial communities, and changes in environmental compositions in the bioreactors should be studied carefully. It is not clear what the lower limits of partial gravity are for efficient operation of density driven reactors (e.g., trickling filter or fluidized bed) such that additional research and testing would be necessary under specific partial gravity conditions. These studies would allow a critical perceptual change of bioprocesses from currently unused in space, to limited use for waste treatment and removal, and eventually to resource recovery and recycling with integration into all other life support systems.

Microgravity and partial gravity design considerations need to be tested on Earth and in space to determine the range of operational parameters and assess potential need for bioreactor redundancy to allow necessary maintenance and ensure dependable operations. Development of bioreactor technology for integration into critical regenerative life support systems should include small- and large-scale experimental studies along with real-time monitoring and computer modeling at the subsystem and the water recovery system level [197] to predict and correct potential problems before they prevent proper bioreactor operations.

The studies described above would provide critical insights into continuous flow biofilm reactor operation in space, pave the way for these reactors to be implemented for used water treatment systems, and ultimately allow these reactors to be operated as integral parts of life support system infrastructure in space. With additional development these bioreactor systems would provide services well beyond used water treatment and could include a variety of VAP generation services. While the scope of this review was the potential use of biofilm-based systems for wastewater treatment in space, it should be highlighted that other types of biological systems, e.g., suspended-growth systems, of course also have potential roles in space, particularly under partial gravity conditions. Hence, suspended-growth systems and other bioreactors for potential use in space should be further explored, separately and in combination with biofilm-based systems.

6. Conclusions

As future missions will travel further from Earth and for longer duration, the need for self-sufficient systems that can reliably provide water without relying on resupply from Earth will be essential. Through regenerative water reclamation systems, it would be possible to convert 'wastewater' and 'used water' into useable water for different purposes while recovering value added products (VAPs). Designing more reliable, robust, self-sustaining and regenerative water subsystems would further close the loop in ECLSS. Biological reactor systems are promising alternatives or additions to existing technologies for the treatment of space-based used water (e.g., ISS, transit, EPB); these systems can align well with the unique constraints of treating water in space (e.g., microgravity, limited size, compatibility with other systems) while assuring and optimizing effluent quality and recovery of VAPs (e.g., clean drinking water, N and P nutrients). A variety of biofilm reactors, from benchtop to larger systems, have successfully removed organic carbon and nitrogen compounds from space-based used waters or their analogs on Earth. Treatment efficiencies vary depending on the water composition, the configuration of the system, and the operational conditions. System performance under different gravity conditions needs significant additional investigation, as only packed bed or membrane biofilm reactors would perform well under microgravity conditions but many other reactor types could be feasible options for partial gravity

environments.

We make the case that numerous opportunities exist in integrating biological (and specifically biofilm) systems into ECLSS:

- 1. Biological components and processes (*e.g.*, plant growth) will be necessary to provide food on extended missions. Biological systems provide an opportunity to contribute to this need by growing algal or fungal biomass directly for consumption or to efficiently scavenge nutrients, such as N and P, from used or process waters, which can then be used as fertilizer for plant growth.
- Under Earth gravity conditions, biological reactors, including biofilm systems, have been proven to be viable alternatives to resource and energy intensive physicochemical water treatment approaches. Most domestic and many industrial water treatments rely on biological processes to provide clean water.
- Biological processes for water and air treatments can generally be characterized as low energy, low maintenance and little resourceintensive processes that provide opportunities to recycle and reuse resources in other life support subsystems (e.g., habitation, waste, air).
- 4. Because spacecraft and future planetary or lunar bases will be resource-limited, resource recovery and recycling will have to become an essential component in the design, planning and maintenance of these settlements.

Because the health and safety of crewmembers must remain the foremost concern, the risks and opportunities outlined here will have to be balanced. Thus, more research, development and testing will be necessary under zero-, micro-, and partial gravity conditions, either on Earth or as part of future space missions. Active treatment systems and backup systems will have to be designed, built and operated to ensure the safety of crew and spacecraft. We look forward to being part of the community that will provide the necessary insights and technologies to safely implement, establish and improve biological components into NASA's and other space agencies' life support systems.

CRediT authorship contribution statement

Erika J. Espinosa-Ortiz: Conceptualization, lead, Visualization, lead, Writing – original draft, lead. Robin Gerlach: Conceptualization, supporting, Writing – original draft, supporting, Writing – review & editing, equal. Brent M. Peyton: Writing – original draft, supporting, Writing – review & editing, equal. Luke Roberson: Writing – original draft, supporting, Writing – review & editing, equal. Daniel H. Yeh: Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors acknowledge the support by NASA under the EPSCoR Rapid Response Research award 80NSSC21M0167, and a NASA EPSCoR Cooperative Agreement 80NSSC21M0331. Partial support was provided by the National Science Foundation (NSF) Grant #s2223756, 2125083 and 2131916.

References

- NASA. The Moon. 13 December 2021. from https://nssdc.gsfc.nasa.gov/planeta ry/planets/moonpage.html; 2021. [Accessed 7 March 2022].
- [2] NASA, Mars. 27 June 2022, 2022, Retrieved 07/03/2022.
- [3] Muirhead DL, Marshall SL, Romero L, Adam N, Callahan MR. Baseline assumptions and Ersatz waste streams for partial gravity habitats with mobile female and male crew. 16-20 July 2023. In: 52nd international conference on environmental systems; 2023. Calgary, Canada. ICES-2023-385.
- [4] Anderson M, Ewert M, Keener J. Life support baseline values and assumptions document. 2018. NASA/TP-2015–218570/REV1.
- [5] Carter D.L., Williams J. Status of ISS water management and recovery. Boston, Massachusetts: 49th International Conference on Environmental Systems; ICES-2019-36,2019.
- [6] Verostko CE, Carrier C, Finger BW. Ersatz wastewater formulations for testing water recovery systems. SAE Trans 2004:1008–24.
- [7] Muckle SV, Schultz JR, Sauer RL. Characterization of spacecraft humidity condensate. SAE Trans 1993;102:1115–29.
- [8] Carter L, Williamson J, Brown CA, Bazley J, Gazda D, Schaezler R, Thomas F, Molina S. Status of ISS water management and recovery. Washington, DC, USA: Proceedings of the 45th International Conference on Environmental Systems; 2015
- [9] Pruitt JM, Carter L, Bagdigian RM, Kayatin MJ. Upgrades to the ISS water recovery system. Washington, DC, USA: Proceedings of the 45th International Conference on Environmental Systems: 2015.
- [10] Broyan JJ, Pickering K, Adam N, Mitchell J, Anderson M, Carter L, Muirhead D, Gazda D. Evaluation of technologies to prevent precipitation during water recovery from urine. 42nd International Conference on Environmental Systems; 2011.
- [11] Volpin F, Badeti U, Wang C, Jiang J, Vogel J, Freguia S, Fam D, Cho J, Phuntsho S, Shon HK. Urine treatment on the international space station: current practice and novel approaches. Membranes 2020;10(11):327.
- [12] Carter L, Williamson J, Hill J, Graves R, Long D, Clifton J. Upgrades to the ISS urine processor assembly. New Mexico: 48th International Conference on Environmental Systems Albuquerque; 2018.
- [13] Boyce SP, Molina S, Pasadilla P, Tewes P, Joyce CJ, Harrington W. Closing the water loop for exploration: 2021-2022 status of the brine processor assembly. In: 51st international conference on environmental systems; 2022 [Paul, Minnesota].
- [14] Carter L., Tabb D., Tatara J., Mason R. Performance qualification test of the ISS water processor assembly (WPA) expendables. SAE Technical Paper 2005-01-2837. International Conference On Environmental Systems 2005.
- [15] Cloud D., Zarzycki M. Development status of the ISS oxygen generation assembly and key components. SAE Technical Paper 2002-01-2269. International Conference On Environmental Systems 2002.
- [16] Pourbavarsad MS, Jalalieh BJ, Harkins C, Sevanthi R, Jackson WA. Nitrogen oxidation and carbon removal from high strength nitrogen habitation wastewater with nitrification in membrane aerated biological reactors. J Environ Chem Eng 2021;9(5):106271.
- [17] Metcalf, Eddy I. Wastewater engineering: treatment and reuse. In: Franklin L, Burton H, David Stensel, editors. Revised by george tchobanoglous. fifth ed. Boston: McGraw-Hill; 2014.
- [18] Mo W, Kim H, Choi H. The operation characteristics of advanced sewage treatment process using aerobic granular sludge in pilot plant. Journal of Korean Society of Environmental Engineers 2019;41(2):61–8.
- [19] Landes NC, Jackson WA, Morse AN. Limitations encountered for the treatment of a low C:N waste using a modified membrane-aerated biofilm reactor. Water Environ Res 2011;83(2):128–39.
- [20] Bazley J. ISS Regenerative Life Support: challenges and success in the quest for long-term habitability in space. Pasadena, CA: AIAA Improving Space Operations Workshop; 2015.
- [21] Muirhead DL, Moller SL, Adam N, Callahan MR. A review of baseline assumptions and Ersatz waste streams for partial gravity habitats and orbiting micro-gravity habitats. St. Paul, Minnesota: 51st International Conference on Environmental Systems; 2022.
- [22] Putnam DF. Composition and concentrative properties of human urine Washington, D.C: NASA; 1971.
- [23] Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ. The impact of microgravity on bone in humans. Bone 2016;87:44–56.
- [24] Liakopoulos V, Leivaditis K, Eleftheriadis T, Dombros N. The kidney in space. Int Urol Nephrol 2012;44(6):1893–901.
- [25] Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. The risk of renal stone formation during and after long duration space flight. Nephron 2001;89(3): 264–70.
- [26] Bilancio G, Cavallo P, Lombardi C, Guarino E, Cozza V, Giordano F, Cirillo M. Urea and minerals monitoring in space missions by spot samples of saliva and urine.". Aerospace Medicine and Human Performance 2019;90(1):43–7.
- [27] Jurga A, Janiak K, Ratkiewicz K, Podstawczyk D. An overview of blackwater data collection from space life support systems and its comparison to a terrestrial wastewater dataset. J Environ Manag 2019;241:198–210.
- [28] Monti R. Fluid science relevance in microgravity research. In: Physics of fluids in microgravity. R. Monti. CRC Press; 2001. p. 1–20.
- [29] Albrecht-Buehler G. The simulation of microgravity conditions on the ground.". ASGSB Bull 1992;5(2):3–10.
- [30] NASA. What is Microgravity?. https://www.nasa.gov/centers/glenn/shuttlestation/station/microgex.html; 2009. from.

- [31] Meseguer J, Sanz-Andrés A, Pérez-Grande I, Pindado S, Franchini S, Alonso G. Surface tension and microgravity. Eur J Phys 2014;35(5):055010.
- [32] Pellis NR. Space bioreactors. Handbook of bioastronautics. L. R. Young and J. P. Sutton. Cham: Springer International Publishing; 2021. p. 531–7.
- [33] Pickett MT, Roberson LB, Calabria JL, Bullard TJ, Turner G, Yeh DH. Regenerative water purification for space applications: needs, challenges, and technologies towards 'closing the loop'. Life Sci Space Res 2020;24:64–82.
- [34] Anderson MS, Macatangay AV, McKinley MK, Sargusingh MJ, Shaw LA, Perry JL, Schneider WF, Toomarian N, Gatens RL. NASA Environmental control and life support technology development and maturation for exploration: 2018 to 2019 overview. Boston, Massachusetts: 49th International Conference on Environmental Systems; 2019.
- [35] Chow D. To cheaply go: how falling launch costs fueled a thriving economy in orbit. https://www.nbcnews.com/science/space/space-launch-costs-growing-bus iness-industry-rcna23488. [Accessed 21 September 2022]. from.
- [36] Fisher JW, Hogan JA, Delzeit L, Liggett T, Wignarajah K, Alba R, Litwiller E, Pace G, Fox TG. Waste management technology and the drivers for space missions. SAE International Journal of Aerospace 2009;1(1):207–27.
- [37] Yadav A, Rene ER, Sharma M, Jatain I, Mandal MK, Dubey KK. Valorization of wastewater to recover value-added products: a comprehensive insight and perspective on different technologies. Environ Res 2022;214(2):113957.
- [38] Arun AS, Pakshirajan K, Lens PNL. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sustain Energy Rev 2020;132:110041.
- [39] Akse J, Holtsnider JT, Wheeler Jr RR, Fisher JW. Brine dewatering using ultrasonic nebulization. Portland, OR: 41st International Conference on Environmental Systems; 2011.
- [40] Coppa NV, Milani AM, Fardig DA. Reduction of brine to dry solids using nanopowder drying agents. In: 41st international conference on environmental systems; 2011 [Portland, OR].
- [41] Campbell ML, Finger BW, Verostko CE, Wines KR, Pariani GM, Pickering KD. Integrated water recovery system test. Vancouver, BC: 33rd International Conference of Environmental Systems; 2003.
- [42] Akse JR, Wilson GA. Advanced air evaporation system with reusable Wicks for water recovery. San Diego, California: 42nd International Conference on Environmental Systems: 2012.
- [43] Delzeit L, Fisher J, Pace G, Shaw H. Brine evaporation bag design concept and initial test results. In: 42nd international conference of environmental systems; 2012 [San Diego, CA].
- [44] Kelsey L, Straus J, MacCallum T. Employing ionomer-based membrane pair technology to extract water from brine. San Diego, CA: 42nd International Conference on Environmental Systems; 2012.
- [45] Wheeler RR, Hadley NM, Dahl RW, Williams TW, Zavala DB, Akse JR, Fisher JW. Microwave enhanced freeze drying of solid waste. Chicago, IL: 37th International Conference of Environmental Systems; 2007.
- [46] Remiker RW, Marten AM, Zelle BC, Hunter JB. Development of an enhanced brine dewatering system. Savannah, GA: 39th International Conference of Environmental Systems: 2009.
- [47] Callahan M, Pensinger S, Pickering K. Preliminary feasibility testing of the brine residual in-containment (BRIC) concept. San Diego, CA: 42nd International Conference on Environmental Systems; 2012.
- [48] Clauwaert P, Muys M, Alloul A, De Paepe J, Luther A, Sun X, Ilgrande C, Christiaens MER, Hu X, Zhang D, Lindeboom REF, Sas B, Rabaey K, Boon N, Ronsse F, Geelen D, Vlaeminck SE. Nitrogen cycling in Bioregenerative Life Support Systems: challenges for waste refinery and food production processes. Prog Aero Sci 2017;91:87–98.
- [49] Maurer M, Pronk W, Larsen TA. Treatment processes for source-separated urine. Water Res 2006;40(17):3151–66.
- [50] Le VG, Vo DVN, Nguyen NH, Shih YJ, Vu CT, Liao CH, Huang YH. Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemistry Engineering 2021;9:105019.
- [51] Talboys PJ, Heppell J, Roose T, et al. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016;401:109–23.
- [52] Moed NM, Lee DJ, Chang JS. Struvite as alternative nutrient source for cultivation of microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 2015;56:73–6.
- [53] Zhou Y, Zhu Y, Zhu J, Li C, Chen G. A Comprehensive review on wastewater nitrogen removal and its recovery processes. Int J Environ Res Publ Health 2023; 20(4):3429.
- [54] Matassa S, Verstraete W, Pikaar I, Boon N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res 2016;101:137–46.
- [55] Bengtsson S, Werker A, Visser C, Korving L. PHARIO: stepping stone to a sustainable value chain for PHA bioplastic using municipal activated sludge. Stichting Toegepast Onderzoek Waterbeheer. Report STOWA 2017-15, 2017 (Source: https://library.wur.nl/WebQuery/hydrotheek/2206475) (Source:.
- [56] Anupama PR. Value-added food:: single cell protein. Biotechnol Adv 2000;18(6): 459–79
- [57] Vethathirri RS, Santillan E, Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. Bioresour Technol 2021;341:125723.
- [58] Rittmann BE, McCarty PL. Environmental biotechnology: principles and applications. Boston: McGraw-Hill; 2001.
- [59] Christiaens MER, Gildemyn S, Matassa S, Ysebaert T, De Vrieze J, Rabae K. Electrochemical ammonia recovery from source-separated urine for microbial protein production. Environ Sci Technol 2017;51(22):13143–50.

[60] Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010;156(1-2):1-13.

- [61] Corbett J. A Dozen years of sewage purification experiments on a large scale at Salford. Eng News Rec 1903;49:191–2.
- [62] Stoddart F. Nitrification and the absorption theory. J Soc Chem Ind 1911;30: 236–7.
- [63] Bakke R, Trulear MG, Robinson JA, Characklis WG. Activity of Pseudomonas aeruginosa in biofilms: steady state. Biotechnol Bioeng 1984;26(12):1418–24.
- [64] Costerton JW. Introduction to biofilm. Int J Antimicrob Agents 1999;11(3–4): 217–21.
- [65] Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000;64(4):847–67.
- [66] Schachter B. Slimy business—the biotechnology of biofilms. Nat Biotechnol 2003; 21(4):361–5.
- [67] Lewandowski Z, Boltz JP. Biofilms in water and wastewater treatment. P. Wilderer. In: Treatise on water science. Oxford: Academic Press; 2011. p. 529–70.
- [68] Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology 2015;84(6):731–50.
- [69] Peyton BM, Characklis WG. A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 1993;41(7):728–35.
- [70] O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000;54(1):49–79.
- [71] Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016;14(9): 563-75.
- [72] Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9(1):34–9.
- [73] Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol 2008;6(3):199–210.
- [74] Rittmann BE. Biofilms, active substrata, and me. Water Res 2018;132:135-45.
- [75] Bishop PL. The effect of biofilm heterogeneity on metabolic processes. In: Biofilms in wastewater treatment: an interdisciplinary approach. London, UK: IWA Publishing; 2003. p. 125–46. S. Wuertz, P. L. Bishop and P. A. Wilderer.
- [76] Rodgers M, Zhan XM. Moving-medium biofilm reactors. Rev Environ Sci Biotechnol 2003;2(2):213–24.
- [77] Nicolella C, van Loosdrecht MCM, Heijnen JJ. Wastewater treatment with particulate biofilm reactors. J Biotechnol 2000;80(1):1–33.
- [78] Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002;56:187–209.
- [79] Focht DD, Chang AC. Nitrification and denitrification processes related to waste water treatment. Adv Appl Microbiol 1975;19:153–86. D. Perlman, Academic Press.
- [80] Jetten MSM, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Curr Opin Biotechnol 2001;12(3):283–8.
- [81] Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. Chemosphere 2021; 278:130436
- [82] Luostarinen S, Luste S, Valentín L, Rintala J. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature. Water Res 2006;40(8):1607–15.
- [83] Bhattacharya R, Mazumder D. Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems. Bioproc Biosyst Eng 2021;44 (4):635–52.
- [84] Narkis N, Rebhun M, Sheindorf CH. Denitrification at various carbon to nitrogen ratios. Water Res 1979;13(1):93–8.
- [85] Racys V, Dapkiene M, Bikulciene L, Jankunaite D, Vaiciukyniene D. Effect of external carbon source on municipal wastewater at low temperatures. Water, Air, Soil Pollut 2018;229(6):210.
- [86] Zea L, Prasad N, Levy SE, Stodieck L, Jones A, Shrestha S, Klaus D. A molecular genetic basis explaining altered bacterial behavior in space. PLoS One 2016;11 (11):e0164359.
- [87] Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson CA. Low-shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 2002;68(11):5408–16.
- [88] Baker PW, Meyer ML, Leff LG. Escherichia coli growth under modeled reduced gravity. Microgravity Sci Technol 2004;15(4):39–44.
- [89] Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, Jejelowo O. Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 2010;85(4):885–91.
- [90] Vukanti R, Model MA, Leff LG. Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiol 2012;12(1):4.
- [91] Kim HW, Matin A, Rhee MS. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions. Appl Environ Microbiol 2014;80(7):2270–8.
- [92] McLean RJC, Cassanto JM, Barnes MB, Koo JH. Bacterial biofilm formation under microgravity conditions. FEMS (Fed Eur Microbiol Soc) Microbiol Lett 2001;195 (2):115-9.
- [93] Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol 2006;72(12):7701–10.

- [94] Searles SC, Woolley CM, Petersen RA, Hyman LE, Nielsen-Preiss SM. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in *Candida albicans*. Astrobiology 2011;11(8): 825–36
- [95] Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH. "Spaceflight promotes biofilm formation by *Pseudomonas aeruginosa*. PLoS One 2013;8(4):e62437.
- [96] Wang H, Yan Y, Rong D, Wang J, Wang H, Liu Z, Wang J, Yang R, Han Y. Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment. Microbiologyopen 2016;5(5): 793–801.
- [97] Wang D, Bai P, Zhang B, Su X, Jiang X, Fang T, Wang J, Liu C. Decreased biofilm formation in Proteus mirabilis after short-term exposure to a simulated microgravity environment. Braz J Microbiol 2021;52(4):2021–30.
- [98] Wang Y, Lai C-Y, Wu M, Song Y, Hu S, Yuan Z, Guo J. Roles of oxygen in methanedependent selenate reduction in a membrane biofilm reactor: stimulation or suppression. Water Res 2021;198:117150.
- [99] Kim HW, Rhee MS. Influence of low-shear modeled microgravity on heat resistance, membrane fatty acid composition, and heat stress-related gene expression in *Escherichia coli* O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl Environ Microbiol 2016;82(10):2893–901.
- [100] Chopra V, Fadl AA, Sha J, Chopra S, Galindo CL, Chopra AK. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J Toxicol Environ Health 2006;69(14): 1345–70
- [101] Wilson JW, Ott CM, Bentrup KHz, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 2007;104(41):16299–304.
- [102] Novikova ND. Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 2004;47(2):127–32.
- [103] Ott CM, Bruce RJ, Pierson DL. Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 2004;47(2):133–6.
- [104] Song B, Leff LG. Identification and characterization of bacterial isolates from the Mir space station. Microbiol Res 2005;160(2):111–7.
- [105] Perrin E, Bacci G, Garrelly L, Canganella F, Bianconi G, Fani R, Mengoni A. Furnishing spaceship environment: evaluation of bacterial biofilms on different materials used inside International Space Station. Res Microbiol 2018;169(6): 280–95
- [106] Gorti S, Zea L, McLean RJ, Chiaramonte FP. Necessity of understanding biofilm formations in closed habitats. Southeast Branch meeting of the American Society for Microbiology (ASM): 2020.
- [107] Sobisch L-Y, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, Novikova N, Grohmann E. Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the International Space Station.". Front Microbiol 2019:10.
- [108] O'Rourke A, Lee MD, Nierman WC, Everroad RC, Dupont CL. Genomic and phenotypic characterization of *Burkholderia* isolates from the potable water system of the International Space Station. PLoS One 2020;15(2):e0227152.
- [109] Yang J, Barrila J, Mark Ott C, King O, Bruce R, McLean RJC, Nickerson CA. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. npj Biofilms and Microbiomes 2021;7(1):70.
- [110] Purevdorj-Gage B, Sheehan KB, Hyman LE. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 2006;72(7):4569–75.
- [111] Altenburg SD, Nielsen-Preiss SM, Hyman LE. Increased filamentous growth of Candida albicans in simulated microgravity. Dev Reprod Biol 2008;6(1):42–50.
- [112] Crabbé A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, Inglis DO, Searles SC, Nelman-Gonzalez MA, Ott CM, Wilson JW, Pierson DL, Stefanyshyn-Piper HM, Hyman LE, Nickerson CA. Spaceflight enhances cell aggregation and random budding in *Candida albicans*. PLoS One 2013;8(12): e88677
- [113] Gu JD. Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: a review. Int Biodeterior Biodegrad 2007;59(3): 170...9
- [114] Diaz A, Li W, Calle LM, Callahan MR. Investigation of biofilm formation and control for spacecraft-an early literature review. In: 49th international conference on environmental systems; 2019 [Boston, Massachusetts].
- [115] Vaishampayan A, Grohmann E. Multi-resistant biofilm-forming pathogens on the international space station. J Biosci 2019;44(5):125.
- [116] Landry KS, Morey JM, Bharat B, Haney NM, Panesar SS. Biofilms—impacts on human health and its relevance to space travel. Microorganisms 2020;8(7):998.
- [117] Zea L, McLean RJC, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilms 2020;2:100026.
- [118] Zea L, McLean RJC, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez-Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilms 2020;2:100026.

[119] Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: current stateof-the-art, challenges, and opportunities. Bioresour Technol 2019;288:121619.

- [120] Ercan D, Demirci A. Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 2015;35(1):1–14.
- [121] Demirci A, Pongtharangkul T, Pometto III AL. Applications of biofilm reactors for production of value-added products by microbial fermentation. Biofilms in the Food Environment 2006:167–90.
- [122] Germec M, Demirci A, Turhan I. Biofilm reactors for value-added products production: an in-depth review. Biocatal Agric Biotechnol 2020;27:101662.
- [123] Escudié R, Cresson R, Delgenès J-P, Bernet N. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Res 2011; 45(1):1–10
- [124] Escudié R, RomainCresson JP, Delgenès, NicolasBernet. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Res 2011;45(1):1–10.
- [125] Torresi E, Fowler SJ, Polesel F, Bester K, Andersen HR, Smets BF, Plósz BG, Christensson M. Biofilm thickness influences biodiversity in nitrifying MBBRs—implications on Micropollutant Removal. Environ Sci Technol 2016;50 (17):9279–88.
- [126] Characklis W, Marshall K. Biofilms. 1993 [New York].
- [127] Stewart PS. Diffusion in biofilms. J Bacteriol 2003;185(5):1485-91.
- [128] Harremoes P, Wilderer P. Fundamentals of nutrient removal in biofilters. In: Proceedings from the 9th annual EWPCA–ISWA symposium. Munchen, Germany: Abwassertechnische Vereinigung e.V; 1993.
- [129] Sørensen KHM, Eberhard. Biofilm reactors. Biological wastewater treatment: principles, modeling and design. IWA Publishing: 0; 2020.
- [130] Daigger GT, Boltz JP. Trickling filter and trickling filter-suspended growth process design and operation: a state-of-the-art review. Water Environ Res 2011; 83(5):388-404.
- [131] Zhang X, Li J, Yu Y, Xu R, Wu Z. Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: comparison of three kinds of biofilm carriers. Biochem Eng J 2016;106:87–96.
- [132] Naz I, Saroj DP, Mumtaz S, Ali N, Ahmed S. Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environ Technol 2015;36(4):424–34.
- [133] Timmons MB, Losordo T. Aquaculture water reuse systems. Elsevier; 1994.
- [134] Lekang OI, Kleppe H. Efficiency of nitrification in trickling filters using different filter media. Aquacult Eng 2000;21(3):181–99.
- [135] Persson F, Wik T, Sörensson F, Hermansson M. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Res 2002; 36(6):1439–48.
- [136] Bressani-Ribeiro T, Almeida PGS, Chernicharo CAL, Volcke EIP. Inorganic carbon limitation during nitrogen conversions in sponge-bed trickling filters for mainstream treatment of anaerobic effluent. Water Res 2021;201:117337.
- [137] Dermou E, Velissariou A, Xenos D, Vayenas DV. Biological chromium(VI) reduction using a trickling filter. J Hazard Mater 2005;126(1):78–85.
- [138] Hannah SA, Austern BM, Eralp AE, Dobbs RA. Removal of organic toxic pollutants by trickling filter and activated sludge. Journal (Water Pollution Control Federation) 1988;60(7):1281–3.
- [139] Bressani-Ribeiro T, Almeida PGS, Volcke EIP, Chernicharo CAL. Trickling filters following anaerobic sewage treatment: state of the art and perspectives. 2018. p. 1721–38. 4(11).
- [140] Cheng KC, Demirci A, Catchmark JM. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 2010;87(2):445–56.
- [141] Schroeder ED, Tchobanoglous G. Mass transfer limitations on trickling filter design. Journal (Water Pollution Control Federation) 1976;48(4):771–5.
- [142] Sharvelle SM, Eric S Clark, Banks KM. Characterization of effluent from biological trickling filters treating graywater in advanced life support systems. Habitation 2007;11(3):95–104.
- [143] McLamore E, Sharvelle S, Huang Z, Banks K. Simultaneous treatment of graywater and waste gas in a biological trickling filter. Water Environ Res 2008;80(11): 2096–103.
- [144] Wei X, Li B, Zhao S, Qiang C, Zhang H, Wang S. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J Membr Sci 2012;389:257–64.
- [145] Li P, Zhao D, Zhang Y, Sun L, Zhang H, Lian M, Li B. Oil-field wastewater treatment by hybrid membrane-aerated biofilm reactor (MABR) system. Chem Eng J 2015;264:595–602.
- [146] Tian H, Zhang H, Li P, Sun L, Hou F, Li B. Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system. RSC Adv 2015;5(85):69829–38.
- [147] Peeters J, Adams N, Long Z, Côté P, Kunetz T. Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD. Water Pract Technol 2017;12(4):927–36.
- [148] Corsino SF, Torregrossa M. Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater. J Environ Chem Eng 2022;10(1):106983.
- [149] Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 2013;47(20):11577–83.
- [150] Lai CY, Wen LL, Shi LD, Zhao KK, Wang YQ, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao H-P. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 2016;50 (18):10179–86.

- [151] Luo JH, Wu M, Yuan Z, Guo J. Biological bromate reduction driven by methane in a membrane biofilm reactor. Environ Sci Technol Lett 2017;4(12):562–6.
- [152] Xie T, Yang Q, Winkler MKH, Wang D, Zhong Y, An H, Chen F, Yao F, Wang X, Wu J, Li X. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J Hazard Mater 2018;357:244–52.
- [153] Luo JH, Wu M, Liu J, Qian G, Yuan Z, Guo J. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. Environ Int 2019;130:104926.
- [154] Van Ginkel SW, Yang Z, Kim B-o, Sholin M, Rittmann BE. Effect of pH on nitrate and selenate reduction in flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Water Sci Technol 2011;63(12):2923–8.
- [155] Van Ginkel SW, Lamendella R, Kovacik WP, Santo Domingo JW, Rittmann BE. Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Bioresour Technol 2010;101(10):3747–50.
- [156] Velizarov S, Crespo JG, Reis MA. Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev Environ Sci Biotechnol 2004;3 (4):361–80
- [157] Chung J, Nerenberg R, Rittmann BE. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res 2006;40(8):1634–42.
- [158] Zhou C, Ontiveros-Valencia A, Nerenberg R, Tang Y, Friese D, Krajmalnik-Brown R, Rittmann BE. Hydrogenotrophic microbial reduction of oxyanions with the membrane biofilm reactor. Front Microbiol 2019;9.
- [159] Christenson D, Morse A, Jackson WA, Pickering KD, Barta DJ. Optimization of a membrane-aerated biological reactor in preparation for a full scale integrated water recovery test. In: 43rd International Conference on Environmental Systems. Vail. CO: 2013.
- [160] Sevanthi R, Christenson D, Morse A, Jackson WA. Impact of waste stream composition and loading regime on the performance of a new flight compatible membrane aerated biological reactor. Vienna, Austria: 46th International Conference on Environmental Systems; 2016.
- [161] Sevanthi R, Pourbavarsad MS, Morse A, Jackson A, Callahan M. Long term biological treatment of space habitation waste waters in a one stage MABR: comparison of operation for N and C oxidation with and without simultaneous denitrification. 48th International Conference on Environmental Systems, ICES-2018-274, 2018.
- [162] Landes N, Rahman A, Morse A, Jackson WA. Performance of a lab-scale membrane aerated biofilm reactor treating nitrogen dominant space-based wastewater through simultaneous nitrification-denitrification. J Environ Chem Eng 2021;9(1):104644.
- [163] Morse A, Khatri S, Jackson WA. Treatment efficiency and stoichiometry of a highstrength graywater. Water Environ Res 2007;79(13):2557–63.
- [164] Sakano Y, Pickering KD, Strom PF, Kerkhof LJ. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support.". Appl Environ Microbiol 2002;68(5): 2285–93.
- [165] Jackson WA, Morse A, McLamore E, Wiesner T, Xia S. Nitrification-denitrification biological treatment of a high-nitrogen waste stream for water-reuse applications. Water Environ Res 2009;81(4):423–31.
- [166] Chen RD, Semmens MJ, LaPara TM. Biological treatment of a synthetic space mission wastewater using a membrane-aerated, membrane-coupled bioreactor (M2BR). J Ind Microbiol Biotechnol 2008;35(6):465–73.
- [167] Scheible O, Mulbarger M, Sutton P, Simpkin T, Daigger G, Heidman J, Yoder M, Schwinn D, Storrier D. Process design manual: nitrogen control. 1993.
- [168] Di Capua F, Papirio S, Lens PNL, Esposito G. Chemolithotrophic denitrification in biofilm reactors. Chem Eng J 2015;280:643–57.
- [169] Detalina M, Pradanawati SA, Rani W, Mamat D Nilawati, Sintawardani N. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor. J Phys Conf 2018;985(1):012056.
- [170] Vendramel S, Bassin JP, Dezotti M, Sant'Anna GL. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor. Environ Technol 2015;36(16):2052–9.
- [171] Ganesh R, Rajinikanth R, Thanikal JV, Ramanujam RA, Torrijos M. Anaerobic treatment of winery wastewater in fixed bed reactors. Bioproc Biosyst Eng 2010; 33(5):619–28.
- [172] Gogoi M, Banerjee S, Pati S, Chaudhuri SR. Microbial bioconversion of dairy wastewater in packed bed biofilm reactor into liquid biofertilizer. Geomicrobiol J 2022;39(3–5):249–58.
- [173] Jou CJG, Huang GC. A pilot study for oil refinery wastewater treatment using a fixed-film bioreactor. Adv Environ Res 2003;7(2):463–9.
- [174] Schlegel S, Koeser H. Wastewater treatment with submerged fixed bed biofilm reactor systems – design rules, operating experiences and ongoing developments. Water Sci Technol 2007;55(8–9):83–9.
- [175] Martin KJ, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 2012;122:83–94.
- [176] Nerenberg R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol 2016;38:131–6.
- [177] Cole AC, Shanahan JW, Semmens MJ, LaPara TM. Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater. Desalination 2002;146(1):421–6.

[178] Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J Biosci Bioeng 2003;95(2):170–8.

- [179] Chae SR, Shin HS. Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures. Process Biochem 2007;42(2): 193-8
- [180] Ukaigwe S, Zhou Y, Shaheen M, Liu Y. Municipal wastewater treatment using a membrane aerated biofilm reactor. J Environ Eng Sci 2021;0(0):1–9.
- [181] Anh-Vu N, Yun-Je L, Masumi K, Visvanathan C. Effects of membrane relaxation rate on performance of pilot-scale membrane aerated biofilm reactors treating domestic wastewater. Environ Res 2022;211:113003.
- [182] Udert KM, Wächter M. Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Res 2012;46(2):453–64.
- [183] Jiang J, Phuntsho S, Pathak N, Wang Q, Cho J, Shon HK. Critical flux on a submerged membrane bioreactor for nitrification of source separated urine. Process Saf Environ Protect 2021;153:518–26.
- [184] Sanchez-Huerta C, Fortunato L, Leiknes T, Hong PY. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR). J Hazard Mater 2022;432:128698.
- [185] Nerenberg R, Rittmann BE, Najm I. Perchlorate reduction in a hydrogen-based membrane biofilm reactor. J AWWA (Am Water Works Assoc) 2002;94(11): 103–14.
- [186] Aybar M, Pizarro G, Boltz JP, Downing L, Nerenberg R. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR). Water Sci Technol 2014;69(8):1735–41.
- [187] Finger BLNS, DallBauman L, Pickering KD. Development and testing of membrane biological wastewater processors. International Conference on Environmental Systems, Society of Automotive Engineers; 1999.
- [188] McLamore E, Morse A, Jackson AW, Rainwater K. Incorporation of a membraneaerated bioreactor in a water recovery system. In: International conference on environmental systems. Colorado Springs, CO, Society of Automotive Engineers; 2004.
- [189] Morse A, Jackson AW, Rainwater K, Pickering KD. Nitrification using a membrane-aerated biological reactor. In: International conference on environmental systems. Vancouver, Canada: Society of Automotive Engineers; 2003.
- [190] Zhang Y, Zhang H, Zhang Z, Wang Y, Marhaba T, Li J, Sun C, Zhang W. Autohydrogenotrophic denitrification using the membrane biofilm reactor for removing nitrate from high sulfate concentration of water. Archaea (Vancouver, B.C.). 2018. p. 9719580. 9719580.
- [191] Odegaard H, Sorensen KH, Christensson M. Hybrid systems. Activated sludge -100 Years and counting. D. Jenkins and J. Wanner 2014:293–318.
- [192] Barr JJ, Slater FR, Fukushima T, Bond PL. Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS (Fed Eur Microbiol Soc) Microbiol Ecol 2010;74(3):631–42.
- [193] Zhang Q, Cheng YF, Huang BC, Jin RC. A review of heavy metals inhibitory effects in the process of anaerobic ammonium oxidation. J Hazard Mater 2022;429: 128362.
- [194] Chan SH, Ismail MH, Tan CH, et al. Microbial predation accelerates granulation and modulates microbial community composition. BMC Microbiol 2021;21:91.
- [195] Gkotsis PK, Banti DC, Peleka EN, Zouboulis AI, Samaras PE. Fouling issues in membrane bioreactors (MBRs) for wastewater treatment: major mechanisms, prevention and control strategies. Processes 2014;2:795–866.
- [196] Environmental Protectin Agency. Potable reuse compendium. https://www.epa. gov/sites/default/files/2018-01/documents/potablereusecompendium_3.pdf; 2017.
- [197] Nacheff-Benedict M, Kumagai G, Petrie G, Schweickart R, McFadden CD, Edeen MA. An integrated approach to bioreactor technology development for a regenerative life support primary water processor. 1994. SAE Technical Paper 941397.
- [198] Batstone D.J., Hülsen T., Mehta C.M., Keller J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere 2015;(140):2-11.
- [199] Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front Microbiol 2017;7:2106.
- [200] Valle SF, Giroto AS, Dombinov V, et al. Struvite-based composites for slow-release fertilization: a case study in sand. Sci Rep 2022;12:14176.
- [201] Timmer M., de Paepe J., van Winckel T., Spiller M., Markus P., Ganigue R., Lasseur C., Udert K., Vlaeminick S. Nitrogen gas production from urine to mitigate gas leakage for long-term Space missions: Proof of concept for an energy-efficient microgravity-compatible bioreactor. 44th COSPAR Scientific Assembly. Abstract F4.1-0013-22.
- [202] Wang L, Gu W, Liu Y, Liang P, Zhang X, Huang X. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment. Sci Total Environ 2022;820:153351.
- [203] Mauclaire L, Egli M. Effect of simulated microgravity on growth and production of exopolymeric substances of *Micrococcus luteus* space and earth isolates. FEMS Immunol Med Microbiol 2010;59(3):350–6.