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1 | INTRODUCTION

Susan S. Suarez? |

Steve Dorus®

Abstract

Interactions between spermatozoa and the female reproductive tract (FRT) are com-
plex, in many cases poorly understood, and likely to contribute to the mechanistic basis
of idiopathic infertility. As such, it is not surprising that the FRT was often viewed his-
torically as a “hostile” environment for spermatozoa. The FRT has also been touted as
a selective environment to ensure that only the highest quality spermatozoa progress
to the oocyte for the opportunity to participate in fertilization. Recent advances, how-
ever, are giving rise to a far more nuanced view in which supportive spermatozoa x
FRT interactions—in both directions—contribute to beneficial, even essential, effects
on fertility. In this perspective article, we discuss several examples of positive sper-
matozoa x FRT interactions. We believe that these examples, arising in part from
studies of taxonomically diverse nonmammalian systems, are useful to efforts to study
mammalian spermatozoa x FRT interactions and their relevance to fertility and the

advancement of assisted reproductive technologies.
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The concept of a hostile FRT has also resonated with evolutionary

biologists, as a selective environment in which competition between

Successful sexual reproduction requires coordinated interactions
between animals®, gametes, and, in internal fertilizers, between the
ejaculate and the female reproductive tract (FRT).2* Studies of
these phenomena have revealed how male and female players work
together, including the requirement for binding between molecules on
spermatozoa and egg surfaces for fertilization, (reviewed by Springate
and Frasier®) or the requirement for genomes with complementary
female and male imprinting to allow a mammalian zygote to develop
properly.” Despite recognition of these many cooperative inter-
actions, there has been the perception that interactions between
spermatozoa and the FRT tend to be hostile in the sense that the
FRT provides a selective environment for high quality spermatozoa.

© 2022 American Society of Andrology and European Academy of Andrology.

ejaculates of different males provides a means for females to select
the “best” spermatozoa (i.e., “sperm selection” or “cryptic female
choice”).8? A hostile FRT, however, is hard to reconcile with the fact
that spermatozoa are often stored and maintained within the FRT,
extending the postmating period in which eggs can be fertilized.

Here, we review examples that led to the idea that the FRT is hostile
to spermatozoa, and then present findings, mostly recent, that argue
for a more-nuanced view in which there are positive effects of the FRT
on spermatozoa and vice-versa. Our intent is not to present an exhaus-
tive review of all relevant studies but rather to illustrate the more
balanced view that is emerging with respect to interactions between
spermatozoa and the FRT.

Andrology. 2023;11:943-947.
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2 | ABRIEF HISTORY OF THE PERCEPTION OF
THE FRT AS HOSTILE TO SPERMATOZOA

In the field of mammalian reproduction, the perception that the FRT is
hostile certainly seems understandable at face value, given that males
inseminate millions (and in some species billions) of spermatozoa to
fertilize relatively few oocytes.1 In fact, this situation is certainly not
limited to mammals: the bursa copulatrix of the brown garden snail
(Cantareus aspersus) enzymatically digests 99.98% of the spermatozoa
it receives.!! While culling of substantial numbers of spermatozoa that
enter the female can help decrease the chance of polyspermy, a phe-
nomenon that is usually lethal to the oocyte, a number of additional
reasons have been suggested for this apparent hostility. One relates
to the female’s need for immunological protection against infection
by pathogens that are introduced into the FRT by the male during
coitus. Although spermatozoan cells are not as genetically dissimilar to
females’ as are pathogens, they too stimulate both innate and adaptive
immune responses in the FRT.1213 The FRT has also been thought to
provide selective barriers to spermatozoa migration, perhaps “because
only a small proportion of spermatozoa are competent.”'* Investi-
gators of mammalian reproduction have long described the cervix
as a barrier to spermatozoa migration in species that inseminate
into the vagina (including humans and cows), emphasizing that the
cervix steeply reduces spermatozoa passage to the uterus.>~” The
mammalian uterus has also been considered hostile to spermatozoa,
because coitus results in the massive migration into the uterus of neu-
trophils that subsequently trap and kill spermatozoa.’® It has been
proposed that, in order to reach the oviduct to participate in fertil-
ization, spermatozoa must pass through the uterus before sufficient
numbers of neutrophils enter the uterine cavity to destroy the sper-
matozoa within.!” For example, bull (Bos taurus) spermatozoa trigger
neutrophil invasion when they encounter thousands of glands that line
the uterine cavity. Spermatozoa are quickly trapped in these glands and
their interaction with glandular epithelium induces an inflammatory

innate-immune response and neutrophil invasion.?

3 | HOWEVER, SPERMATOZOA x FRT
INTERACTION IS NOT SOLELY HOSTILE OR
SELECTIVE

Additional data have moved the view away from the idea that the FRT is
solely hostile to spermatozoa. Studies have identified ways in which the
FRT is supportive to spermatozoa, and even ways in which spermato-
zoa exert positive effects on the FRT (or female fertility, beyond simply
fertilizing eggs). Below, we touch on some of the studies that have led
to this revised, more balanced, view of spermatozoa x FRT interactions
(as has also happened for other phenomena in reproductive biology;

e.g., see references [1°~7] for a small sampling).

The FRT can help spermatozoa physically navigate toward the egg.
A careful histological study of serial sections of spermatozoa in the

cervices of naturally-mated cows?° found that the walls of the cervi-
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cal canal are lined with microgrooves that can be traced all the way
through the cervix to the uterus, and that contain many spermatozoa.
This led to the proposition that the microgrooves provide “privileged
paths” for spermatozoa to swim through the cervix and avoid being
carried away by the strong flow of mucus in the main canal that
sweeps pathogens and cellular debris out to the vagina.2® This was sup-
ported by subsequent advances in the understanding of spermatozoan
hydrodynamics?? in conjunction with technological developments in
microfluidics?? that enabled the creation of a device that models the
microgrooves and fluid flows in the cervix. In this device, bull sper-
matozoa tended to swim upstream in microgrooves, a direction that
would lead to the uterus in vivo. In contrast, the sexually transmit-
ted bovine pathogen Tritrichomonas foetus failed to enter microgrooves
and were swept downstream.?324 These findings indicate that that the
cervix is not simply a barrier to spermatozoa but actually assists with
spermatozoan migration toward the egg, while simultaneously pro-
tecting the uterus from pathogens. The situation is nuanced, however,
because (as noted earlier) the cervix concomitantly imposes selection
on migrating spermatozoa: human and bovine cervical mucus have
been demonstrated to filter out spermatozoa with morphological and

motility abnormalities.2>26

The FRT can help sperm by modifying their molecular constitution.

Mammalian spermatozoa are not fully mature and fertilization-
competent when they leave the testis, or even after additional mat-
uration within the epididymis. To be capable of fertilizing an oocyte,
mammalian spermatozoa must undergo “capacitation”?’, a postejac-
ulatory modification of spermatozoa (PEMS?) in which biochemical
and physiological changes to spermatozoa lead them to acquire a
form of motility that improves their migration through the oviduct
and enables them to fertilize the egg.?® Although capacitation can be
induced in some species by incubating spermatozoa in a bicarbonate-
buffered physiological solution containing energy metabolites and
serum albumin,?’ in others it requires a more complex environment,
suggesting the involvement of FRT secretions in this final and crit-
ical maturation step. Indeed, some candidate secretions have been
identified. For example, in humans and other eutherian mammals, the
oviduct-secreted glycoprotein oviductin (OVGP1) binds to spermato-
z0oa, and purified recombinant human OVGP1 has been demonstrated
to enhance human sperm capacitation.2?

Although mammalian sperm capacitation has received the most
attention, given its relevance to human fertility, mammals are far from
the only animals in which spermatozoa are modified within the FRT to
complete their maturation and gain fertilization competency. In fact,
PEMs likely represent the rule rather than the exception among inter-
nally fertilizing organisms and include a diverse array of morphological,
physiological, and biochemical processes.?2 PEMS can be structural
alterations, such as removal of the “coats” in which some insects’
(Bombyx mori silkmoths3C; Aedes aegypti mosquitoes®!) spermatozoa
arrive in the female, transformation of millipede spermatozoa from
little barrels to long ribbons in the FRT2, or enzymatic release of
spermatozoa from capsules (spermatophores) that contain them in

moth (Pieris) FRT.3® These changes presumably make spermatozoa
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available for, and capable of, fertilization. In another example, the
heads of spermatozoa from the marsupial Sminthopsis crassicaudata
pivot in the oviducts making the spear-shaped spermatozoan assume a
T-shape.3* This structural modification is thought to enhance binding
to and penetration of the zona pellucida that surrounds the oocyte.3>

PEMS also include molecular changes to the spermatozoa within the
FRT including the incorporation of female molecules. For example, the
protein composition of Drosophila spermatozoa changes substantively
after their entry, residence, and movement within the FRT, because
of tight associations with female-derived proteins.3¢ The association
of female proteins with spermatozoa begins shortly after the latter
enter the Drosophila FRT and increases with time, such that by four
days after insemination almost 20% of spermatozoal protein composi-
tion (i.e., the sperm proteome) is female-derived. These female-derived
proteins include metabolic enzymes and chaperones, which may provi-
sion spermatozoa and enhance their viability during long-term storage.
Consistent with this idea, secretions of the reproductive glands of
honeybee FRTs also appear to play an important supportive role
for spermatozoa. Following their mating flights, when young queen
bees mate with multiple drones, each ejaculate decreases the viabil-
ity of spermatozoa from other males.3” FRT secretions counter those
effects,3” allowing stored spermatozoa from different drones to be
safely stored in the female’s storage organs for long-term use. Notably,
female-derived proteins in Drosophila spermatozoa were also found to
overlap substantially with integral male-derived spermatozoa proteins.
Although the functional significance of females supplementing the
proteomic composition of sperm has yet to be determined, this obser-
vation generally supports the hypothesis that spermatozoa experience
a molecular “hand-off” when transferred from males to female and
that molecular continuity between the male and FRT may be critical
to support spermatozoa during its protracted life history in the FRT.3¢
One can also envision that female-mediated spermatozoa modification
might permit female assessment of spermatozoa quality and/or distin-
guishing spermatozoa from the ejaculates of competing males,23¢ but
these hypotheses have not yet been tested.

The FRT can store spermatozoa, keeping them viable and stable, and
releasing them from storage at optimal times and rates for extended fertility.

In many animals, spermatozoa are stored in the FRT, with gradual
release into the FRT lumen (see Neubaum and Wolfner38 for review).
Although many species store spermatozoa for only hours or days,
some species store spermatozoa for long periods of time. For exam-
ple, many temperate bat species mate shortly before entering winter
hibernation, and the females store spermatozoa until they emerge
from hibernation in the spring, releasing the spermatozoa to fertilize
their freshly ovulated oocytes.3? Several species of temperate snakes
also mate in the fall and their spermatozoa are held in the females
until spring.*® However, some other reptiles store spermatozoa for
even longer periods. For example, a Western diamond-backed rat-
tlesnake (Crotalus atrox) produced viable litters up to 6 years after
isolation from males.*? Other examples of species with long-term
sperm storage include social insects,*? birds,*> amphibians,** and

fishes.

ANDROLOGY
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In many species of mammal, inseminated spermatozoa traverse
the uterus and enter the uterotubal junction. From there, the sper-
matozoa begin to form a storage reservoir by binding to the wall of
the FRT in the junction and/or lower isthmus of the oviduct. Here,
the spermatozoa remain alive and eventually capacitate.*® The FRT
may then control the release of spermatozoa from the reservoir. This
regulated release extends the window of opportunity for an ovulated
egg to encounter a fertilization-ready spermatozoa and reduces the
chances of polyspermic fertilization by reducing the rate at which
spermatozoa reach oocytes.*” Mammalian spermatozoa are retained
in the oviduct storage reservoir by binding to the oviductal epithelium,
and capacitation of the spermatozoa has been associated with sperma-
tozoa detachment from this epithelium. For example, bull spermatozoa
detached from isthmic epithelium after addition of heparin,*® which
has been demonstrated to induce capacitation in that species.*? Also,
mouse spermatozoa initiated capacitation-associated hyperactivated
motility directly before detaching from epithelium in the spermatozoa
storage reservoir, whereas nonhyperactivated mouse spermatozoa
were not observed to detach.”® However, we note that spermatozoa
capacitation is a complex process. It is not known at what stage in the
process that spermatozoa are released from storage—in some cases
hyperactivated spermatozoa have been observed to detach and re-
attach to epithelium in oviducts.>® This complexity provides multiple
opportunities for the FRT to regulate spermatozoa detachment from

epithelium and release from the isthmic reservoir.

It is not a one-way interaction: spermatozoa can have beneficial effects
on females’ fertility, beyond fertilizing eggs.

It has been thought that the spermatozoa-induced neutrophil inva-
sion of the uterus described above serves to (1) remove dead, abnor-
mal, and excess spermatozoa, (2) kill the pathogens that enter the
female tract during coitus, and (3) prevent the development of anti-
spermatozoa antibodies via the adaptive immune system, an event that
can lead to infertility.!2 Recently, evidence from mouse studies has
pointed to an additional function: the uterine inflammatory response
to spermatozoa prepares the endometrium for embryo implantation by
promoting immune tolerance, thereby decreasing the likelihood that
the embryo will be attacked by an immune response.®2 The results
suggest that spermatozoa that do not participate in fertilization can
nevertheless enhance fertility through the induction of inflammatory
response by the innate immune system in the uterus, an observation
worth potential clinical consideration.

Drosophila spermatozoa also play a role in enhancing fertility
beyond their role in fertilization. These spermatozoa act as carriers of
a seminal peptide (“sex peptide,” SP3¢->3.54) that induces egg produc-
tion, oviposition, spermatozoal release from storage, and a range of
physiological and behavioral changes.>>°¢ SP bound to spermatozoa in
the sperm-storage organs is stably retained there for 10-14d, bound
to the spermatozoa that have not yet been released to fertilize eggs.
Over time, the active portion of SP is gradually cleaved from sperma-
tozoa by a trypsin-like activity, freeing it to bind to its receptor®” in
the female and induce the physiological, behavioral, and reproduc-

tive effects noted above. Without spermatozoa, SP remains within
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the female for only a few hours, being degraded in her circulatory

system®® without enough time to effect long-term changes. Thus, in
this case as well, even a nonfertilizing spermatozoan can influence
the FRT (and in this case beyond the FRT), increasing reproductive

success.

4 | CONCLUDING PERSPECTIVES

While there is clear evidence for some "hostility" between spermato-
zoa and the FRT, we have described current evidence that shows that
there are also important supportive effects of the FRT on spermatozoa
(and vice versa) at various levels. This more nuanced view of sper-
matozoa x FRT interactions motivates new areas of investigation and
application in reproductive biology. We believe that this view will also
interest evolutionary biologists who study postcopulatory selective
events,®?°7¢0 such as sperm competition and cryptic female choice.
In the future, ways in which spermatozoa-mediated immune effects
could be leveraged to support implantation, as embryo implantation is
considered to be the rate limiting step in the success of in vitro fertiliza-
tion, including intracytoplasmic sperm injection (IVF/ICSI).6T A better
understanding of how innate immune responses to spermatozoa in
the uterus help to prepare the endometrium for implantation could be
applied to improving the preparation of patients’ uteri for implantation
of embryos created via IVF/ICSI.

Other mechanisms of positive FRT/spermatozoa interaction need
to be elucidated, including (for example) the roles of female proteins
that bind to spermatozoa in Drosophila. Such information could also
guide the search for mammalian female proteins that bind to sperma-
tozoa and support fertilization. Of relevance to reproductive medicine,
assessment of human FRT proteins binding to spermatozoa could
lead to therapeutic (or diagnostic) developments. Finally, knowing the
mechanisms of spermatozoa selection by the FRT could improve the
selection of spermatozoa for IVF/ICSI, where natural selection on, and
modification to, the fertilizing spermatozoa are currently bypassed by
laboratory preparation of semen samples and technician selection of
the spermatozoa to inject into the oocyte during 1CSI.% For exam-
ple, better understanding of the mechanisms acting on spermatozoa
within the mammalian FRT could inspire development of microflu-
idic devices that more faithfully reproduce the selective pressures
encountered by spermatozoa in the FRT prior to using the sperm for
IVF/ICSI.
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