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We define the Barbasch—Evens—Magyar varieties. We show they are iso-
morphic to the smooth varieties defined in [D. Barbasch and S. Evens
1994] that map generically finitely to symmetric orbit closures, thereby
giving resolutions of singularities in certain cases. Our definition parallels
P. Magyar’s [1998] construction of the Bott—Samelson varieties [H. C. Hansen
1973; M. Demazure 1974]. From this alternative viewpoint, one deduces a
graphical description in type A, stratification into closed subvarieties of the
same kind, and determination of the torus-fixed points. Moreover, we explain
how these manifolds inherit a natural symplectic structure with Hamiltonian
torus action. We then express the moment polytope in terms of the moment
polytope of a Bott—Samelson variety.
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1. Introduction

Let X be a generalized flag variety of the form G/B, where G is a connected
reductive complex algebraic group and B is a Borel subgroup of G. The left action
of B on X has finitely many orbits BwB/B, where w is a Weyl group element. The
Schubert variety X, is the closure BwB/B of the B-orbit. The study of Schubert
variety singularities is of interest; see, e.g., [1; 4; 8].

In the 1970s, H. C. Hansen [19] and M. Demazure [11] constructed a Bott—
Samelson variety BSC for each reduced word Q of w, building on ideas of
R. Bott and H. Samelson [6]. These manifolds are resolutions of singularities
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of X,,. In recent years, Bott—Samelson varieties have been used, e.g., in studies
of Schubert calculus (M. Willems [44]), Kazhdan-Lusztig polynomials (B. Jones
and A. Woo [22]), standard monomial theory (V. Lakshmibai, P. Littelmann and
P. Magyar [28]), Newton—Okounkov bodies (M. Harada and J. Yang [20]), and
matroids over valuation rings (A. Fink and L. Moci [15]).

In 1983, A. Zelevinsky [52] gave a different resolution for Grassmannian Schubert
varieties, presented as configuration spaces of vector spaces prescribed by dimension
and containment conditions. In 1998, P. Magyar [29] gave a new description of BS?
in the same spirit, replacing the quotient by group action definition with an iterated
fiber product.

Similar constructions have been used subsequently in, e.g.:

(I) P. Polo’s proof that every polynomial f € 1+ gZ>¢lq] is a Kazhdan-Lusztig
polynomial (in type A) [37].

(II) A. Cortez’s proof of the singular locus theorem for Schubert varieties in
type A [10] (compare [5; 23; 30]).

() N. Perrin’s extension of Zelevinsky’s resolution to minuscule Schubert vari-
eties [33] (one application is [34]).

(IV) A. Woo’s classification of “short” Kazhdan—Lusztig polynomials [45].

(V) The definition of the brick variety, which provides resolutions of singularities
of Richardson varieties [13].

(VI) The connection [14] of Magyar’s definition to S. Elnitsky’s rhombic tilings [12].

We are interested in the parallel story where orbit closures for symmetric
subgroups replace Schubert varieties. A symmetric subgroup K of G is a group
comprised of the fixed points G? of an involution 6 of G. Like B, K is spherical,
meaning that it has finitely many orbits O under the left action on X. The study of
the singularities of a K-orbit closure ¥ = O is relevant to the theory of Kazhdan—
Lusztig—Vogan polynomials and Harish-Chandra modules for a certain real Lie
group Gr. This may be compared with the connection of Schubert varieties to
Kazhdan—Lusztig polynomials and the representation theory of complex semisimple
Lie algebras.

In 1994, D. Barbasch and S. Evens [3] constructed a smooth variety, using a
quotient description that extends the one for Bott—Samelsons from [11; 19]. This
variety comes equipped with a natural map to a particular K%-orbit closure, where
K? is the connected component of 1. In certain situations, this map provides a
resolution of singularities of the orbit closure in question.

This paper introduces and initiates our study of the Barbasch—Evens—Magyar
variety (BEM variety). Just as P. Magyar [29] describes, via a fiber product, a
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variety that is equivariantly isomorphic to a Bott—Samelson variety, the BEM variety
reconstructs the manifold of [3] (Theorem 3.3(I)).
Our definition gives general-type results about the varieties of [3]:

o A stratification (in the sense of [26, Section 1.1.2]) into smaller BEM varieties
(Corollary 3.8).

« Description of its torus fixed points (Proposition 4.3).

o A symplectic structure with Hamiltonian torus action as well as analysis of
the moment map image, e.g., we show that it is the convex hull of certain
Weyl group reflections of the moment polytope of a Bott—Samelson variety
(Theorem 4.1).

« An analogue of the brick variety (Theorem 3.3(II)).

In type A we give a diagrammatic description of the BEM varieties (Section 5) in
linear algebraic terms, avoiding the algebraic group generalities. For example, we
obtain more specific results (Section 6) for K= GL, x GL, acting on GL,,/B. We
show (Theorem 6.2) that the study of BEM polytopes can be reduced to a special case.
We determine the torus weights for this special case (Theorem 6.4) which permits
us to partially understand the vertices (Corollary 6.6). We also give a combinatorial
characterization of the dimension of the BEM polytope (Theorem 6.8).

We anticipate that many uses of the Zelevinsky/Magyar-type construction of the
Bott—Samelson variety, such as (I)-(VI) above, have BEM versions. In particular,
an analogue of (II), even in the case of K= GL, x GL,, would bring important new
information about the singularities of the symmetric orbit closures. More generally,
analogues of (I)—-(IV) would illuminate the combinatorics of the celebrated Kazhdan—
Lusztig—Vogan polynomials.

2. Background on K-orbits

In this section we describe the background in general. See Section 5 for background
on K-orbits of type A.

Let G be a connected complex reductive algebraic group and B a Borel subgroup
of G containing a maximal torus T. Furthermore we assume 6 is an involution
of G and that B and T are 6-stable. We denote by K the symmetric subgroup G°.
Throughout this paper we assume that K is the connected component of the fixed
point set of 6.

Let W = Ng(T)/T be the Weyl group. Let r be the rank of the root system
of Gand A ={«y, ..., o,} be the system of simple roots corresponding to B, with
{w1, ..., o} the corresponding fundamental weights. Denote the simple reflection
corresponding to the simple root «; by s;. Thus, W is generated by the simple
reflections {s; | 1 <i <r}.
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Given I C A, Py is the standard parabolic subgroup of G corresponding to /;
namely,

(1) P,:Bu(U BwB),

weW;
where W is the set of w € W such that w =s;,...s;, where alli; e I. P;isa
minimal parabolic if I = {«;}; it is a maximal parabolic if I ={ay, ..., &;, ..., a }.

These are denoted P; and P;, respectively.

As described in [38, Section 3.10], the Richardson—Springer monoid M (W)
is generated by the simple reflections s; of W, with relations sl.2 = s;, together
with the braid relations of W. As a set, this monoid may be canonically identified
with W, with the ordinary product on W being replaced by the Demazure product x,

a product having the property that

{s,-w if £(s;w) > £(w),
Sixw = .
w otherwise,

where £(-) denotes ordinary Coxeter length, and where the juxtaposition s; w denotes
the ordinary product in W. A word Q = (ji, ja2, ..., jn) is an ordered tuple of
numbers from {1,2,...,r}. Let Dem(Q) :=sj, x5, x---*s;,. If Dem(Q) = w,
then Q is a Demazure word for w.

Consider the natural projection m; : G/B — G/P;. Given a K-orbit closure Y
on G/B and a simple reflection s; € W, s; x Y := JT;I(T[,'(Y)) is also a K-orbit
closure. This extends to an M (W)-action on the set of K-orbit closures: given a
Demazure word Q = (s}, ..., sj,) for w, define

wrY i=s5j x(sj,x--x (s, *xY)...).

The K-orbit closure w = Y is independent of the choice of Demazure word Q for w
[38, Section 4.7].
The weak order on the set of K-orbit closures is defined by

Y<Y =Y =wxY

for some w € M(W). The minimal elements of this order are the closed orbits, i.e.,
those Yo = © = O. The following is well known; see, e.g., [7, Proposition 2.2(1)].

Lemma 2.1. Each closed orbit is isomorphic to K/B' where B' is a Borel subgroup
of K. In particular, every closed orbit is smooth.

Remark 2.2. If K is disconnected, then [7, Proposition 2.2(i)] says that Yy is
isomorphic to a finite union of flag manifolds K%B’, where K° is the connected
component of 1 and B’ is a Borel subgroup of K°.
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3. Barbasch-Evens—Magyar varieties

As in the previous section, G is a connected reductive complex algebraic group,
K = G? is connected, and B is a 6-stable Borel subgroup of G. We begin with the
definition of the manifold of Barbasch and Evens [3, Section 6].

If B¥1 acts on X x --- x X by

(2) (bis -y b1) - (ks + oo x1) = (g, by x—1br—t, .., by ' py),

then X; xB ... xB X| denotes the quotient of X; x - - - x X by this action, when it
exists. In [16, Section 3.3] this quotient is shown to exist in cases which include
when the X; for i > 1 are subgroups of G such that B C X; N X;1; and X; =P/B
for some parabolic subgroup P of G.

Let Yy be a closed K-orbit and Q = (ji, jo, ..., jn) a (not necessarily reduced)
word. The Barbasch—Evens variety 3, (6.3.5)] for Yy and Q is

(3) BEYC .= 170 XBPJ-N xBPqu %B...xB P, /B,

where 170 denotes the preimage of Y in G under G — G/B. By [16, Section 3.3]

this quotient exists. Recall that by Lemma 2.1 Y is smooth. Since BEY*€ is an
iterated P'-bundle over Yy, then BEY €2 is a manifold.

Remark 3.1. Even though (3) looks different from [3, (6.3.5)] (3) is actually a
special case. This is because by [3, (6.3.2)] any closed K-orbit Yy is isomorphic to
a K xknp P/B so the preimage of Yy in G can be taken to be K xknp P. In general,
K xknp P/B need not be a closed K-orbit. Description (3) appears in [27, Section 5].

K acts on BEY*C by

(4) k[g,PN"plB]z[kg,PN,,PlB]
There is a K-equivariant map 8 : BEY¢ — G/B given by

(5) [g’PNa---sPIB]'i)gPN---PlB-

Indeed, both the action (4) and the map (5) are well defined, i.e., independent of
choice of representative of the equivalence class [g, py, ..., p1]-

R. W. Richardson and T. A. Springer [38] proved that for any Y, there is a closed
orbit Yy (possibly nonunique) below it in weak order. That is, there is some w € W
such that ¥ = w % Yy and dim(Y) = £(w) + dim(Yy). Let Y and w be as above
and Q = (ji, ja, - -, jew)) be a reduced word for w. Then B : BEY-C — ¥ is
generically finite since f is surjective onto Y (by [3, Proposition 6.4]) and since

dim(BEY Q) = dim(Yp) + £(w) = dim(Y).

When (G, K) = (GL 44, GL, x GL,), B is a resolution of singularities for ¥, again
by [3, Proposition 6.4] (see also [27, Lemma 5.1]). Even for this case, not all
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reduced words Q give a resolution of singularities 8, although this is true if g is
generically one-to-one, that is, under the condition that dim(Y) = £(w) + dim(Yp).
In general, the image of B is ¥ and B : BEY©2 — ¥ is a resolution of singularities
for Y under certain hypotheses [3, Section 6].! These hypotheses are sufficiently
technical that we do not wish to recall them here since we will not use them.

We now define the Barbasch-Evens—Magyar varieties. See Section 5 for a
diagrammatic description in type A.

Definition 3.2 (Barbasch-Evens—Magyar variety). Let Q = (ji, j2, ..., jy) isa
(not necessarily reduced) word. The Barbasch-Evens—Magyar variety is

(6) BSMYO’Q =Y X(;/ijG/B XG/P; -'-Xg/pj] G/B.

IN—1

Recall that if X, L,y and X » %5 Y are two varieties mapping to the same
variety Y, then

@) X1 xy Xo={(x1,x2) € X1 x X5 | f(x1) =g(x2)}

denotes the fiber product. In (6), each map of (7) is the natural projection G/B —
G/Pj, defined by gB > gP; (or, in the case of Y, the restriction of said projection).

Evidently, K acts diagonally on BEMY-€. Our next theorem asserts that the
projection

(8) @ BEMYC 5 G/B,  (XN41, XNy ..., X1) > X]

maps into Y. We remark that since we are not assuming that Q is a reduced word,
this map may not be generically one-to-one.

Theorem 3.3. Suppose that Y = w x Yy for a closed orbit Yy and Q is a (not
necessarily reduced) Demazure word for w.

() BEMY0-Q = BeV0.Q 45 K-varieties.
(II) Suppose Y is the closure of the K-orbit KgB. The fiber of ¢ over a point of KgB
of Y is smooth of dimension dim(BEMY Q) — dim(Y).

Proof. We prove (I) by a modification of the argument of Magyar in the Schubert
setting. The map

) ¢ : BE™C - ¥y x (G/B)Y,
(10) [g, pn.pN=1,..., P1Bl— (gB,gpnB,gpnpn-1B, ..., gpNnpPN-1... P1B),

ITo construct a resolution of singularities, it is not necessary to take Y to be a closed orbit. We
need only take Y to be a smooth orbit closure underneath Y in weak order [27], or take Y to be
the closure of a “distinguished” orbit [3]. However, closed orbits are both smooth and distinguished.
Taking them as a starting point seems closest in spirit to the construction of the Bott—Samelson
resolution.
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is well defined (independent of choice of representative), K-equivariant, and since
pi € Pj,, we have ¢ (BEY2) C BEMY0-C.

¢ is injective: If ¢([g, pn, pN-1, ..., P1B]) = ¢ (g, P> Py_1> - --» P1BD), then
there exist by, by, ..., by € B such that

g=g8bo, gpn=8pPNbn, ..., gpn--P1=8 PN Pib1.
Combining these equations with the definition of BEY*€ (specifically (2)),

8. PNy PN-1. ... 1Bl =[g'bo, by ' Piybn., by Ply_1bn-1. ... by pbiB]
=[8". Py Pv-1----- PIBl.
establishing injectivity.
¢ is surjective: Let (gB, gnB, gn—1B, ..., g1B) € BEMY:C,
Claim 3.4. [e. 8 e, &y en—1, ..., &5 @Bl € BEYL.
Proof of Claim. First, by definition g € 170, as desired. Second, by (6) and (7)
combined we have
8Py =8nPjy => g 'gn €Pjy.

Similarly, in general

8P = 8i+1Pj = & 'git1 €Pji,..
as required. ([

Combining the claim with

d(g. 8 'en, gy en—1,--., 8 'g1B) = (¢B, gnB, gn_1B, ..., g1B),
we obtain ¢ (BEY>2) = BEMT0-Q,

@ maps into Y: Since 8 maps into Y, we have

Bod '(gB, gnB,gn_1B,...,21B) = B(g. ¢ 'en. gy gn_1. ..., &5 ' &1B)
:ng eY.

However, by definition ¢ (gB, pyB, py—1B, ..., p1B) = p1B and so ¢ maps into Y
as well.

Since BEMY€ is smooth (and thus normal) and BEY € is irreducible, the
bijective morphism (of C-varieties) above is an isomorphism of varieties by Zariski’s
main theorem (see, e.g., [41, Theorem 5.2.8]).

For (II), we apply:

Theorem 3.5 [21, Corollary 10.7 of Chapter III]. Let f : X — Y be a morphism of
varieties over an algebraically closed field k of characteristic 0, and assume that X
is nonsingular. There is a nonempty open subset V.C Y such that f - f~' (V) = V
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is smooth. In the case in which f~'(V) # @, the fiber f~'(v) is nonsingular and
dim(f~'(v)) = dim(X) — dim(Y) forallv e V.

Let f be the projection map ¢ : BEMY€ — Y. Since BEMY€ is nonsingular,
by Theorem 3.5 applied to this f, there exists a nonempty V C Y such that f
restricted to f‘l(V) is smooth. If v € V then said theorem says dim(f_l(v)) is of
the desired dimension.

However, we want the above to be true for p € KgB. To see this, note that
everything said above holds for f~!(kV) for all k € K since f is K-equivariant and
multiplication by k is a smooth morphism. Let p € KgB be a general point. Since
KpBisdensein Y, Y NkV # & for all k € K. Now we can pick k so that p € kV,
completing the argument. ([

The generic fibers of part (II) of the theorem may be considered an analogue of
the brick variety of [13], which is the generic fiber of the Bott—Samelson map (this
generic fiber being positive dimensional only when Q is not a reduced word). See
loc. cit. for a connection to the brick polytope of [35; 36] and the associahedron.

Remark 3.6. BEMY€ is an iterated P!-bundle over Y.

Let
pYO,Q(Z) = sz dimg H2k(BgMY0,Q; Q)
k>0

and
ry,(z) = Z ZF dimg H2k(Yo; Q)
k>0

be the Poincaré polynomials of BEMY0-€ and Yy, respectively.

Corollary 3.7. py o(z) =ry,(2)(1 + 2N, where ry,(z) is known since each closed
orbit Yy is isomorphic to the flag variety of K.

Proof. In view of Remark 3.6, the claim follows by repeated applications of the
Leray—Hirsch theorem. O

Following [27, Section 1.1.2], a stratification by closed subvarieties of a variety X
is a decomposition X = | J; S¢ into closed varieties S¢ such that the intersection of
any two closed strata is the union of strata. We have a stratification of BEAMY0-€
with strata given by subwords P of Q. A subword of Q = (ji, ..., jn) is a list

P = (i, ..., Bn) such that §; € {—, ji}.
Corollary 3.8 (of Theorem 3.3). BEMY0-Q js stratified with strata given by sub-
words P of Q. The stratum corresponding to a subword P is

S(P) = {(xN41, -, x1) € BEM™C | xi = xi 41 if Bys1-i = — ).

This stratum is canonically isomorphic to BEMYO13UP) ywhere flat(P) is the word
which deletes all — appearing in P.
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Proof. The union of these strata covers BEMY0€ because S(Q) = BEMY2 . For
P=(B1,...,Bn)and P'=(By, ..., By) define the subword PV P'=(y1, ..., yn),
where y; = — if B; or B! equals —. Then

S(P)NS(P')
= {(N41, -0y x1) € BEMMOC | x; = x4y if By1—i = — or By = —)

= S(PV P).

The isomorphism from S(P) to BEMY-1aP) g the projection that deletes all
components of S(P) associated to a —. ]

4. Moment polytopes

The projective space P is a symplectic manifold with Fubini—Study symplectic form.
Following [40, Section 6.6], consider the restriction of the action of T4 = (C*)?
on P4, given by coordinatewise multiplication, to the compact real subtorus

T = (%, ..., %) e (C*) | 6; € R for all i}.

As explained in [25, Example 4] the action of T[S on P4 has a moment map, that is,
P? is a Hamiltonian Tﬂg -manifold.

Now let X be a smooth algebraic variety with an action of a torus 7' = (C*)"
with n < dim(X) and a T-equivariant embedding into P¢. Again, we restrict the
T-action to the compact real subtorus Tr. Since T is isomorphic to a subgroup
of T¢ then [25, p. 64, point 1] tells us that P¢ is also a Hamiltonian Tk-manifold.
Smoothness says X is a T-invariant submanifold of P4, By [25, p. 64, point 1], it
is a Hamiltonian 7g-manifold. Hence X has a moment map

DX > £,

where t;; >~ R" is the dual of the Lie algebra of 7. There are only finitely many
isolated fixed points since the fixed point locus X7 is closed for the Zariski topology.
Therefore by [2; 17], the image ®(X) is a polytope in t; namely, it is the convex
hull of the image under ® of the Tr-fixed points. ®(X) is known as the moment
polytope of X. A primer on moment maps which outlines their most important
properties, including the ones we will use, can be found in [25, Section 2.2]. From
now on, we will omit the subscript R from 7 and the Lie algebra.

Moment map images provide a source of polytopes. It is natural to consider
®(BS?) for T a maximal torus of G, which is the moment polytope of the Bott—
Samelson variety BS?. To our best knowledge, the first analysis of this polytope in
the literature is [13] (an anonymous referee has suggested to us the relevance of the
preprint [18] who studies T-equivariant cohomology of Bott—Samelson varieties).
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We are interested on the action of S := T N K, a maximal torus in K, on Y and on
its BEM varieties. We will show in Theorem 4.1 that ® (BEMY2) is the convex
hull of certain reflections of ®s(BS?), where ®s denotes the moment map of BS<
for the S-action. The proof exploits the analogies between the descriptions of the
manifolds.

In order to compute ®(BEMY2) we embed BEMY?-€ into a product of G/ P:.
To compute ®(BEMY Q) it is not necessary to explicitly embed BEM € into
projective space (via generalized Pliicker embeddings followed by the Segre map).
This is since the Grassmannian G/P; is diffeomorphic to the coadjoint orbit O, =
Gr/(GRr)s, Where w; € t* is a fundamental weight, G is a compact form of G, and
(GRr)w, denotes the stabilizer of w; under the coadjoint action; see, e.g., [9]. This
coadjoint orbit is already a Hamiltonian T-manifold with Kostant—Kirillov—Souriau
symplectic form and moment map

(11) ®; : Gp/(GR)w, — g* — t* = R",

where the first map is (gP;) — gw; and the second map is the projection induced
from the inclusion T C G. For each g representing an element of the Weyl group
of G we have that ®;(gw;) = gw;.

Actually, if we embed BEMY-€ into projective space as indicated above we
wouldn’t get a different polytope anyway. This is because the Kostant—Kirillov—
Souriau form coincides with the pullback of the Fubini—-Study form to G/P; under
the T-equivariant embedding given by the line bundle £(w;); see [9, Remark 3.5].

Thinking of the fundamental weights w; € t* as functions w; : t - R, w;|; is the
restriction of w; to s C t.

Theorem 4.1. BEMYC has an embedding into a product of G/P with P maxi-
mal as a symplectic submanifold of this product with Hamiltonian S-action; the
corresponding moment polytope is

D (BEM Q)
1
Z il sj;a)i|5) | x e YOS and (ji, ’J|Q|) < Q}

P
= conv{x (Z wils +
i=1 i=|0Q]

= conv{x - Ds(BS?) | x € ¥j).
Proof. BEMY2 embeds into a product of G/P with P maximal, as follows:

Proposition 4.2. The following map is an embedding:

r 10|
. Yo,0 R R
§:BEM™C — TT6/Px [T6/P;,
i=1 =1
(xB, g10B,...,81B) = (xPj, ..., xP;, g|Q‘Pf\Q|’ g|Q‘_1Pl¢|Q‘_], R glpgl).
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By [43, 9.2.2] the fibered product with a closed subscheme is a closed subscheme
of the fibered product. From this it immediately follows that BEM is a closed
subscheme of a fibered product of G/B’s. It is well known that this fibered product
embeds into the desired product of G/P;. Thus the proposition follows. To be more
explicit, we include the proof below.

Proof. First to see that § is injective suppose
S(XB, a|Q\B, ey alB) = 8(yB, b\Q|B, ey b]B),

then xP; = yP; for 1 <i <r and therefore ylxeN_, P; = B. Thus, xB = yB.
Next, the assumption

—1
12) a10|Pi5, = bioPig = biga0 € Py

Also, using the definition of BEMY-C (7),

-1
(13) a10|Pijg = xPiy = YPijo; = b0|Pijg = D ga10| € Pig-
Combining (12) and (13) gives

beI‘a|Q\ eP—nNP

o i) :B:>a\Q|B:b|Q\B.

Reasoning similarly, we see that ayB = b B forall k = |Q| -1, |Q|—2,..., 1, as
required. Thus § is injective.
It is well known that the map

.
G/B— [[G/P;: xB+> (xPj.....xP;)

i=1
is an embedding of algebraic varieties. Consequently, the map

[Q1+1 r

k:(G/B)eH — TT [T6/Ps

m=1 i=1

(X|Q|+1B, X|Q|B, ey xlB) [ ((X|Q\+1Pi, ey X|Q|+]P,¢), ey (lei, ey le;))

is also an embedding. Let Q = (q1, ¢, ..., qy). The image of BEMYC
(G/B)!2I*1 under « satisfies

14) XmP; = Xm+1P3,

whenever i # g, form =1,2,...,|Q|. Thus § factors:
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BeMY0¢ —— 11217, G/P;

\ ‘1//
[Ti—i 6/P; x T}, 6/P, —

where i is the projection that forgets the repetitions of (14). Thus, § is an embed-
ding. U

Gr:=[]_, G/ P: x ]_[IQ‘ G/P I is naturally a symplectic manifold, and is
Hamiltonian with respect to the (diagonal) action of T. By [25, p. 64, point 1] the
same is true for this action restricted to the subtorus S. As a submanifold of Gr,
BEMY0-Q is also symplectic, and is clearly stable under the S-action. From this
it follows (compare [25, p. 65, point 4]) that the S-action is Hamiltonian, whence
BEMY-€ has a moment map ®. Then one sees from [25, p. 64, point 1 and p. 65,

point 3] that ® is given by
(15) BEMWC s Gr 22 ¢, g%,

where ®; : G/P; — t* is the moment map for G/P; and t* — s* is induced from
the inclusion S C T. The second map restricts functions t — R to s. Therefore,
by (11) and (15) combined, the moment map ® : BEMYC — s* is given by

10|

(16) (xB.g|gB. ... g1B) —> wa,|s+2g,w,|s
i=1

Proposition 4.3 (S-fixed points of BEMY0:Q). The S-fixed points of BEMY-C are
indexed by pairs (xB, J), where xB is a T-fixed point of G/B contained in Yy, and
J = (B1,...,Bjg)) is a subword of Q. Indeed, the fixed points are precisely the
points

(7)) puB.sy = (xB, x5p,4 B, x58,5,56,01-1Bs - - -, X5, - 55,B) € BEMY-C,
where sg, is the identity if f; = —
Proof. We first verify that pg,s) € BEMYC Note that fori =1, ..., |Q], since
by (1), Bsg,B € Pj,, in particular sg, € P, and hence

XSpig - SpPp = XSpo - g P

Therefore (xsg,, -« $p_> XS, - -+ 5p;) satisfies (7) fori =1,..., [Q], as needed.
Since

(18) (G/B)>=(G/B)T
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(see [7, p. 128]), the S-fixed points of Y are of the form xB where x € Ng(T).
Therefore,

(19) XSBio """ S € NG(T).
Moreover, since S C T, for t € S we have by (19) that
t-xsgg o 8pB=xsp, - 54 B,

SO p(xB,J) 1s an S-fixed point.
Conversely, suppose (x|g|+1B, X|g|B, . . ., x1B) is an S-fixed point of BEM0-2.
Clearly, xo+1B € (Yo)S. By (18), each x;B is a T-fixed point so we may assume

(20) x; € Ng(T).

By the definition (7) of BEMY0-Q |y, Pj, =xi—1Pj,. Thus, xl.__llx,- € P;,. Hence, in
view of (20) we may further assume that x;_ 11 x; € {id, Sa, }. Therefore

(X|Q|+1B, X|Q|B, ey xlB)

is of the form p(,g, ), as asserted. O

Since ®(BEMY0 Q) is the convex hull of & applied to this set of points, the first
equality of the theorem holds by Proposition 4.3 combined with (16).
Similar arguments [13] show the moment polytope of a Bott—Samelson variety is

(21) ®(BS9)

r 1
=conviZwi + Z St Spwi | (Bis -, Bio)) is a subword of Q}.
i=1 i=|Q|

The second equality follows by restricting the weights to s. U

Define the BEM polytope Py, ¢ as ®(BE MY-2) In Section 6 we study Py, 0
for the symmetric pair G = GL 4, and K= GL, x GL,.

We remark it would be interesting to study the polytopes coming from the K-
action on BEMY0-C BEMY0:C is a Hamiltonian K-manifold and therefore has a
moment map Pk. Two polytopes associated with the image of ® are described
in [25, Section 2.5]. One of these is the intersection of the image of ®x with the
positive Weyl chamber. Kirwan’s noncommutative convexity theorem [24] states
that this intersection is a polytope.

5. The Barbasch—Evens—Magyar varieties in type A

In this section we describe the K-orbits and Barbasch—-Evens—Magyar varieties for
the case of symmetric pairs (G, K) where G is a general linear group. The three
possible pairs are (GL,4, GL, x GLg), (GL2,, Spy,), and (GL,, O,,). All of these
symmetric subgroups are connected; see, e.g., [48].
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When G = GL,, we take the simple roots to be A ={a; =¢; —¢€; 11 |1 <i <n—1},
where ¢; € R" is the standard basis vector. With this choice of root system embedding,
we may identify the fundamental weight w; with the vector 22:1 éi. W=G6, is
identified with the symmetric group of permutations on {1, 2, ..., n}. Thus, s; is
the simple transposition interchanging i and i + 1.

K-orbits of type A. The running example here is (G, K) = (GL 44, GL, x GL,).
Let n = p 4 ¢, and consider the involution 6 of G = GL,, defined by conjugation
using the diagonal matrix having p-many 1’s followed by g-many —1’s. Then
K=G’=GL » X GL,, embedded as block diagonal matrices with an upper-left
invertible p x p block, a lower-right invertible ¢ x g block, and zeros outside of
these blocks.

The orbits in this case are parametrized by (p, g)-clans [31; 51], which we
now describe. A (p, g)-indication is a string of characters y = ¢y ... c, with each
¢; € {+, —}UZ.( and such that

e if ¢; € Z-, then there is a unique j # i such that ¢; = ¢;; and
e#lilci=+}—-#i|lci=—}=p—q.

Consider the equivalence relation between indications given by y ~ ' if and only if
e ¢; = ¢; whenever ¢; € {+, —}; and

o there exists a bijection f : Z.g — Z-¢ such that ¢; = f (clf) for all i with
C; € Z>Q.

The (p, g)-clans are the equivalence classes of this equivalence relation. By slight
abuse of notation, we use the same notation for indications to denote clans; for
example 1+ —1 is the same clan as 2 + —2. Let Clans, , be the set of (p, q)-
clans. The closed orbits are indexed by matchless clans, i.e., clans using only +, —.
Lemma 2.1 implies these closed orbits are isomorphic to (GL,/B) x (GL,/B), the
product of two flag varieties.

We briefly remark that each (p, g)-clan corresponds to an involution in & ,1,.
Indeed, given a clan y we obtain an involution w by letting w; = i whenever
¢; € {+, —} and w; = j whenever ¢; =c; € Z..

Next, we explicitly describe the orbit closures Y. Fix y =c¢;...c, € Clans, 4.
Fori =1, ...,n, define:

ey H)=#H. b |cj=creloo, 1< j<k=<i}+#jlcj=+,1=j=<i}
and

s y(@;—)=#H(. b |cij=cr€l0, 1< j<k=<i}+#{jlcj=—,1=<j=<i}.
For 1 <i < j <n, define

e y@i; j)=#kell,il|ck =ce €N with £ > j}.
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Let E, = span{éj, €, ..., €,} be the span of the first p standard basis vectors, and
let EY = span{€,41, €p42, . . -, €} be the span of the last ¢ standard basis vectors.
Let p : C" — E, be the projection map onto the subspace E,.

Suppose y € Clans, , and € € Clans, ;. Then € =€ ... €, (pattern) avoids
Y =Y1...Yptq if there are no indices iy <ip <--- <ip44 such that:

(1) if y; =+ then €;, = y;; and
(2) if yx = ye then ¢, =¢;,.
A clan y is noncrossing if y avoids 1212.

Theorem 5.1 [50, Corollary 1.3; 49, Remark 3.9]. The K-orbit closure Y, is the set
of flags Fe = (V1, ..., V) such that:

(1) dim(V;NE,) > y(i; +) foralli.

(2) dim(V; NE%) > y(i; —) forall i.

(3) dim(o(V}) +V)) < j+y(i: j) forall i <.
If y is noncrossing, the third condition is redundant.

Example 5.2. Let p =g =2 and y = 1 4+ —1 (a noncrossing clan). In fact,
Y, =s *xs3xso*x Y, _ and

Y, ={(V1, V2, V3)€Gr(1,4) x Gr(2,4) x Gr(3,4)|dim(V,NE>) > 1,dim(V3NE?) > 1}.

A projectivized depiction of a general point in this orbit closure is given in Figure 1
(left). The blue and red lines represent E, and E? respectively. The moving flag
(V1, V2, V3) is the (black point, black line, front face). O

W. McGovern characterized the singular orbit closures:

Theorem 5.3 [32]. Y, is smooth if and only if y avoids the patterns 1+ —1, 1 —+1,
1212, 1 +221,1-221, 12241, 122 — 1, 122331.

E? /Ez EZ2

N/ r

V3 | V3
V2 V2
Vi Vi &

Figure 1. Y1+_1 and Y++__.
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Example 5.4. By Theorem 5.3, Y|4 _ is singular. One computes (e.g, using the
methods of [46]) that the singular locus is the closed orbit Y, __ where V, = E»
(the black and blue lines agree). In Figure 1 (left), the general picture of Y|, _i,
the black line V, has three degrees of freedom to move. Now consider the picture
of Yy, _ (Figure 1, right). Pick any point of the blue line E,. Then the black
line V, has two degrees of freedom to pivot and remain inside Y;4_;. This is true
of any other point as well. Informally, this additional degree of freedom is singular
behavior. [l

Barbasch—Evens—Magyar varieties of type A. In Section 3 we gave our general
definition of the Barbasch—Evens—Magyar varieties. We now describe, using dia-
grams, these configuration spaces for the special case of symmetric pairs (G, K)
where G is a general linear group.

Let 0= (i, j2,..., jn) beaword and F C G/B. We first define the configuration
space C(Q, F). Informally, a point of C(Q, F) is a collection of vector spaces forming
a diagram. Figure 2 is an example for G = GL3, F = G/B, and O = (2, 1, 2, 1).
The edges indicate containments among the vector spaces. For instance, we have
C'c Fic F, cC aswellas C° C V, C V; C C, etc. We require that the flag
COcFicFRcCbeinF.

To be precise, to define C(Q, F) we start with a vertical chain whose n+ 1 vertices
are labeled by the vector spaces C% F\, F»,...F,_;,C", from south to north, such
that the corresponding flag is an element of F. The dimension of a vertex is the
dimension of the labeling vector space. At the start, this chain is declared to be the
right border of the diagram.

We now grow the diagram as follows. Consider the last letter jy of Q. Introduce
a new vertex on the right of the diagram, labeled by Vy of dimension jy with
edges between the vertices of dimension jy — 1 and jy + 1 (thus indicating the
containment relation F;, 1 C Vy C Fj, 4+1). We modify the current right border by
replacing the vertex of the current right border of dimension jy with the new vertex
labeled by V. Now repeat successively with jy_1, jy—2, ... j2, j1. At step k, a

Figure2. G=GL3, F=G/B,and 0 =(2,1,2,1).
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Figure 3. Quadrangle corresponding to the letter jy_xy1 of Q.

new vertex labeled by Viy_;41 is added to the right of the right border, of dimension
JN—k+1, and becomes the new member of the right border, replacing the unique
vertex of dimension jy_g+; of the current right border. Note that the letter jy_r41
of Q corresponds to the quadrangle in Figure 3 where V,, V;, and V, lie on the
right border before Vy_41 is added, and dim(Vp) = jy—g+1-

Finally, a point in C(Q, F) is a collection of vector spaces arranged in the diagram
described, where the dimension of a vector space equals the length of a shortest
path to C° and V; C V; whenever there is an upward edge V; — V;. For the example
above,

C(O,F)={(F1, F2, Vi,...,Va) | F1, V4 C F2, V4, Vo, C V3, Vo C Vi}
C Gr(1,3) x Gr(2, 3) x Gr(2.3) x Gr(1, 3) x Gr(2. 3) x Gr(L. 3).

The above diagram extends the configuration space used in [29] to construct the
Bott—Samelson variety. The difference is that [29] takes the initial chain to be a B
or GL,-orbit, while here we take any subset F. For Bott—Samelson varieties, the
initial chain corresponds to a point (usually the standard basis flag).

The following result interprets the G = GL,, case of Theorem 3.3(I):

Theorem 5.5. The configuration space C(Q, Yo) is the image of BEMYC under
the map § of Proposition 4.2. Therefore, C(Q, Yy) is isomorphic as a K-variety to
BeN-Q,

Proof. In type A, the map § may be interpreted as listing the vector spaces on
the flags of successive right borders of the diagram for BEM-€, but avoiding
redundancy by listing only the additional new vector space introduced at each step.
Thus the first part of the theorem follows. The isomorphism between BEY0:€ and
C(Q, Yp) is the composition of the map in Theorem 3.3 and with 4. [l

Definition 5.6 (Barbasch-Evens—Magyar variety for the symmetric pairs (GL,, K)).
Suppose that Q = (j1, jo, ..., jn) is a (not necessarily reduced) word and Yy is a
closed K-orbit. Then we abuse notation and denote C(Q, Yy) by BEM™ 0.0

Consider the map from BEMY-€ to G/B that maps a point in the configuration
space to the rightmost flag (corresponding to the rightmost border) in the diagram.
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For example, the point of BEMY0-€ depicted by the example diagram above maps
to the flag C° € V» € V; ¢ C3. The image of this map is a K-orbit closure. Moreover,
every K-orbit closure is the image of such a map for some BEMY-C_ In fact, this
map agrees with the map ¢ defined in (8).

To complete the description of BEMY0-€ for the three type A cases we require a
description of the flags in the closed orbit Yy, i.e., which flags may occur on the
left-hand side of the diagram.

In the case (G, K) = (GL,44, GL, x GL,) the closed orbits are indexed by
matchless clans, i.e., y consists of p +’s and ¢ —’s. The description of these orbits
is given by Theorem 5.1. Since matchless clans are clearly noncrossing, the third
condition is redundant. In the case (G, K) = (GLy,, Sp,,), there is a unique closed
orbit Yy [47, Proposition 2.4.1]. This closed orbit is isomorphic to the flag variety
for K = Sp,,, by Lemma 2.1. In the case of (G, K) = (GL,, O,) with n there is a
unique closed orbit Yy [47, Proposition 2.2.1 and Remark 2.3.3]. Again, this orbit
is isomorphic to the flag variety for O,,. For sake of brevity, we refer the reader to
[48, Section 2] for a linear algebraic description of the points of the closed orbits in
these cases.

Example 5.7. The diagram for BEMY€ where Yo =Y,,__ and Q = (1, 3, 2) is

([:4

N

Fs \%}

[\
E,=F V3

| /]

F; Vi

|/
([:O

The depiction of this variety is given in Figure 4. Here Vi, V3, V, are given
by the (projectivized) green point, line and plane respectively. The green spaces
have the same incidence relations as the moving (black) flag in Y;4_1. Thus, the
projection forgetting all except the green spaces maps to Y14 _i. U

Example 5.8. Let us compute the Poincaré polynomial py, o(z) of BEMY0-€ when
K=GL, x GL,. Recall that Corollary 3.7 says that py, o(z) =ry,(z)(1 +2)V, where
N is the length of Q. Let [n].! =[1],[2]. - - - [n]. where [i], = 14742744771
The Poincaré polynomial of GL,/B is [n];!. We now have ry,(z) = [pl;!lg];!
for any choice of closed orbit Y. This is since by Lemma 2.1, we have Yy =
(GL,/B) x (GL,/B), combined with the Kiinneth formula.
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Figure 4. BEMY++-1.3.2): the green flag maps to Y} 4_;.

The standard maximal torus T = (C*)" in GL,, consists of invertible diagonal
matrices. There is a natural K-action on BEMY>-€ described in Section 3, which
induces an S-action, where S = T N K. Let us describe this action in the present
setting. A matrix in K acts on the Grassmannian of m-dimensional subspaces of C"
by change of basis. We extend this to an action of K on BEMY0-€ diagonally:

k'(FlvFZ""7anls Vla V2’~VN):(kF19kF2’anfl’kVIskV2’~7kVN)’

where k € K.

We study the moment polytope of BEMY0-€ for the pair (GL p+q» GLp X GLy) in
Section 6. To do so, we utilize the following concrete description of the S-fixed
points of BEMY-@ for this symmetric pair. Notice that in this case S = T. A
subword of Q = (ji,..., jy) is alist P = (B, ..., Bn) such that g; € {—, j;}.
As we saw above, each letter of Q corresponds to a quadrangle of the associated
diagram. A subword P corresponds to a subset of these quadrangles. Concretely,
for each quadrangle in the set, require the two vertices associated to vector spaces
of equal dimension to be the same space. For each quadrangle not in the set, insist
those same vector spaces be different. Call such an assignment given a left border
associated to a flag F, a P-growth of F,.

Given a matchless clan y, a permutation o € &, is y-shuffled if it assigns

e 1,2,..., pin any order to the +’s;
e p+1,p+2,...,nin any order to the —’s.

Hence there are plq! such permutations (independent of y).
Associated to any y-shuffled permutation define F."° to be the o-permuted
coordinate flag, i.e., the one whose d-dimensional subspace is (€5 (1), - - - € (a))-
We will use this result, due to A. Yamamoto:
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Proposition 5.9 [51]. The S-fixed points of Y,, are flags FUV° where o € & ptq IS
y -shuffled.

Proposition 5.10 (S-fixed points of BEMY€ for (GL 44, GL, x GLy)). The set of
S-fixed points of BEMY*C correspond to P-growth diagrams whose initial vertical
chain is F1*° (where Y = Y,).

Proof. The following is straightforward:

Claim 5.11. Fix a coordinate flag F, for the initial vertical chain, i.e., F, € (G/B)T.
There exists exactly one P-growth of F, which uses only subspaces of the form

(€iyy .- €iy)

Clearly any such P-growth of F, is an S-fixed point of BEMY-C_ Conversely,
consider any S-fixed point of BEMY-€ and its corresponding diagram. The left
border is an S-fixed point of ¥ = Y,,. The result then holds by Proposition 5.9
together with Claim 5.11. (]

Proposition 4.3 gives a general form of Proposition 5.10.
Corollary 5.12. #(BEMY2)S = plg12101,

Similar descriptions for the torus fixed points can be given for the other two
symmetric pairs of the form (GL,, K). In these cases T # S, however it is known
that the fixed points in the respective flag varieties agree (see [7, p. 128]). In brief, in
the case (G, K) = (GLy,, Sp,,,), as elements of S,,,, these S-fixed points correspond
to “mirrored” permutations, i.e., those permutations w having the property that
w(2n+1—i)=2n+1—w(i) for each i; this is described in detail in [48]. Similarly,
in the case of (G, K) = (GL,, O,,), these fixed points correspond to mirrored elements
of G,,, as described in [48].

In [14] one considers Bott—Samelson varieties in relation to zonotopal tilings of
an Eltnitsky polygon. This puts a poset structure on Bott—Samelson varieties (in
type A) by introducing generalized Bott—Samelson varieties for which the fibers are
larger flag varieties rather than P!’s. The diagram definition of BEMY>-€ permits
one to obtain similar definitions and results here mutatis mutandis.

6. Moment polytopes for the GL, x GL, case

Recall from the end of Section 4 that the BEM polytope Py, o denotes the moment
polytope & (BEMY-2),

Example 6.1. Let O = (3,2) and Yy = Y,,__. Following the construction in
Section 5, and applying Theorem 5.1, BEMY0-€ is described by the following
diagram.
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([:4
AN
W Vv

N

E> | %
|/
W
|

(EO

By Corollary 5.12, BEMY0-€ has 4.2 = 16 S-fixed points. We apply Theorem 4.1
to construct the moment polytope. First, by (21), ®(BS?) is the convex hull of the
following points:

(B1, B2) >t wi+Zi1:|Q\ SBio| " SBi Wi

(= =) | (5,4,2,0)=(3,2,1,00+s_-(1,1,0,0)+s_s_-(1, 1,1, 0)
3,-) | 5,41,1)=@3,2,1,004+s--(1,1,0,0)+s_s3-(1,1, 1, 0)
(-,2) 165,3,30=03,2,1,004+s5-(1,1,0,0) +s25_-(1,1,1,0)
3,2) | 5,2,3,1)=(3,2,1,0)+s2:(1,1,0,0) +s253-(1,1,1,0)

The polytope ®(BS?) is the white quadrilateral in Figure 5. We consider the
reflections of ®(BS?) by the T-fixed points of Y, corresponding to the + + ——
shuffled permutations:

[1,2,3,4], [2,1,3,4], [1,2,4,3], and [2,1,4,3].
By Theorem 4.1, Py, ¢ is the convex hull of the reflections

[1,2,3,4]-®(BS?) = conv{(5,4,2,0), (5,4, 1, 1), (5,3,3,0), (5,2, 3, D},
[2,1,3,4]-®(BSY) = conv{(4, 5,2,0), (4,5,1,1),(3,5,3,0), (2,5,3, )},
[1,2,4,3]-®(BS?) = conv{(5,4,0,2), (5,4, 1, 1), (5,3,0,3), (5,2, 1, 3)}, and
[2,1,4,3]-®(BSY) = conv{(4, 5,0,2), (4,5,1,1),(3,5,0,3), (2,5, 1, 3)}.

By the discussion of K-orbits of type A, the number of choices of closed orbits
Yo =Y, equals the number of matchless clans in Clans, , and this number is (p ;q )
However, as we verify in the following theorem, if we fix Q and let Y, vary, then
all the BEM-polytopes are isometric, being reflections of one other.

Theorem 6.2 (Reduction to +---+ —---— case). Py, g is a w-reflection of
PYooo, o Where w is the smallest permutation such that w-(+ -+ -+—--- =) =y.
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id, (3,2)
id, (—,2)

id, (3, —-)
id, (—, —)

[1,2,4,3],3,2)

[2,1,3,4], 3, 2) [1,2,4,3],(—,2)

[2,1,4,3],3,2)

Figure 5. Py, o for Yo=Y, __ and Q = (3, 2) is the convex hull
of four reflections in R3 of the Bott—Samelson polytope (white).
We have labeled some of the points ®(p(y,s)) using x, J; all other
points can be inferred from these.

Proof. Suppose y € Clans, , is matchless and there exists an i such that y; = —
and y;41 =+. Let y’ € Clans,, , be obtained by interchanging —+ > +— at those
positions.

By Proposition 5.9, the T-fixed points of Y, are the y-shuffled permutations;
call this set A. Similarly, the T-fixed points of Y, are the y’-shuffled permutations;
call this set B.

Claim 6.3. As; = B.

Proof of Claim 6.3. Let 0 € A. Since y; = —, by definition o (i) e {p+ 1, p +
2,...,n}. Also, since y;41 =+,0( +1) € {1,2,..., p}. Thus if 6’ = os; then
o'(i)e{l,2,...,ptando’(i+1)e{p+1, p+2,...,n},asis required for ¢’ € B.
The claim follows. U

The claim, combined with Proposition 5.10 imply that the T-fixed points of
BEMYC are the s;-reflection of those of BEMY»€. Since the moment map
images are determined by these T-fixed points, the respective polytopes must
be an s; reflection of one another. Now iterate this process down to the case
Fee = —, O

The Table 1 summarizes some information about the resulting polytopes for
p=q =2. Inview of Theorem 6.2, we only need to consider y = ++——. We have
restricted to Q reduced and | Q| < 3 for brevity. Actually, based on such calculations,
it seems true that if Q and Q' are Demazure words for the same w then the BEM
polytopes are combinatorially equivalent. For example, Q = (1), (1, 1), (1, 1, 1)
are all two-dimensional with (V, E, F) = (4, 4, 1). However, we have no proof of
this at present.
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0 dm|V E F

(1) 2 | 4 41

2) 318 12 6

3) 2 | 4 4 1
(1,2) 3 012 18 8
(1,3)=@3, 1) 2 | 4 4 1
2,1) 318 12 6
2,3) 318 12 6
(3,2) 3 (12 18 8
1,2,h)=2,1,2)| 3 |12 18 8
(1,2,3) 3 (12 18 8
(1,3,2)=(3,1,2)| 3 | 8 12 6
2,1,3)=2,3,)| 3 |8 12 6
2,3,2) 3 (12 18 8
(3,2, 1) 3 (12 18 8
(3,2,3) 3 (12 18 8

Table 1. BEM polytope data for (GL4, GLy x GL;) where Q is
reduced and |Q] < 3.

Following [42, Section 5], let X be a projective algebraic variety with a torus
action T. Suppose p € X'. Let T,(X) be the tangent space; this too carries a
T action and a Tg action. The Tr-decomposition is 7, (X) = @a E,, where E,
are the eigenspaces with eigenvalues o € t*. These {«} are the T-weights. The
nonnegative cone spanned by these T-weights of 7),(X) is equal to the cone spanned
by the edges of the moment polytope ® (X) incident to ®(p).

For w =5}, ... s, areduced expression of w we define

il’lV(w) = {Otj] » Sy (Otjz), eSS e S (O{j()}.
Theorem 6.4 (combinatorial description of T-weights). Let Q = (j1, j2, .-, JN)
be aword and J = (B1, ..., Bn) be a subword of Q. The T-weights of the tangent

space of BEMY+-+——2 qt PwB, ), where uB is a T-fixed point of Y,..4_.._, are
u-(—inv(w))Uu - {sgy, - (—ctjy ), SgySpy_y - (—=jy_)s .. s Sy ... 5, - (=)},

where w=I[p,p—1,...,1,n,n—1,..., p+1].

Proof. We apply:

Theorem 6.5 [16, Corollary 3.11]. Let Qo, ..., Q, be subgroups of an algebraic
group G and let T be a torus in G. Suppose that R, ..., R, are subgroups of G
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with R C Q;—1 N Q; fori > 0and Ry C Qq. Let
X =0, x® 0,y xBrr xR0y B Qo /Ry
-1

and [qn, . .., qo)l € X a T-fixed point. Assume in addition that for every i, ql._l S q,
is in the normalizer of T. Then the weights of T acting on the tangent space
qo1 X is the multiset union of

.....

qnqn—1 - - - qi - {weights of T acting on Q;/R;},
where i runs from n to 0.

More precisely, we apply this result to T and

BENC =Yy xBpP,;, xBP;, , xB...xBP; /B,

where Y} is the preimage of Yo =Y., _.._ in G under G — G/B.
Let us verify that BEY0-€ satisfies the required hypotheses. The orbit

Yiiooo={C'CF C---CFy_1 CCP C Fpyy C---CCPT}.

Thus Y, is the maximal parabolic subgroup Pj;. We have that Yo, P jy» .-, Py, are
subgroups of GL,. Since B is a Borel subgroup then B C YoN PjyandBCP;_ NP,
forl1 <t <N.

The T-fixed point of BEY0-€ corresponding to pus. sy is [, Sgy > Spy_ys - - - » S8, Bl
where u € N(T). Therefore (usgysgy_, ---5) " is in the normalizer of T for all i.
We have now verified that BEY0-€ satisfies the required hypotheses.

Since Yy is the Schubert variety for w, the T-weights of Yo /B =Y, at B are the
negatives of the inversions of w. The T-weight of P,, /B at B is the simple root «;.
By Theorem 6.5, the T-weights of BEY-€ at the fixed point [u, sgy, Sgy_;» - - -+ 5]
is the multiset-union

u-(—inv(w)) Ufusgy - (—oj ) YU{usgy sy, - (—ajy_)YU. . A{usgy ... sg, - (—aj)}

By Theorem 3.3, the T-weights for the tangent spaces of BEY>-€ are the same as
those for BEMY0-2, (]

Corollary 6.6. The point ®(pwg,s)) is a vertex of Py, ., ._ o if and only if
®(pw,s)) is avertex of Py, . . 0.

Proof. ®(pws,)) is a vertex whenever there is not a line in the cone spanned by
the T-weights of the tangent space T),, ,, (BE MY+-+==0) By Theorem 6.4,

T-weights of T, ,, (BEM ++==@)=y.(T-weights of Tp , (BEM +-+--2)),

uB,J)

The claim follows since a cone contains a line if and only any reflection contains a
line. (]
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Example 6.7. Consider the BEM polytope Py, o of Example 6.1 and Figure 5.
The vertices of Py, o adjacent to ®(ps,3,2))) are

D(p@,(-2)) P(pq1,243B.3.2)), and DP(pq2,1,3,4]8,3,2))-

The cone spanned by the edges of Py, ¢ incident to ®(p(s,3,2))) is

pos{P(p(,(-,2))) — P(p®.3,2)), P(P(38,3,2)) — P(PB,3,2))>
D (ps:B,3,2)) — P (P, 3,2)}
= pOS{(O, 09 _15 1)7 (O’ 15 07 _1)5 (_17 13 O’ 0)}'

Let us compute the T-weights for the tangent space of BEMY-€ at DP(B,(3,2)) We
have that w =[2, 1, 4, 3] = 5153 S0

inv(w) = {ai, si(az)} ={a1, a3} ={(1,-1,0,0), (0,0, 1, =D}.
Since J = (3, 2), then by Theorem 6.4 the T-weights are

{—a1, —a3} Ufsa(—a2), s253(—a3)}
={—a1, —o3, 00, 0x + a3}
= {(_17 19 O’ 0)7 (03 O’ _17 1)’ (Oa 17 _1s 0)7 (O’ ls 07 _1)}
The cone spanned by the T-weights coincides with the cone spanned by the edges
incident to ®(p,3,2)). Since this cone does not contain a line it follows that
®(p,3,2) is a vertex of Py, .

Now consider the T-fixed point p(g,(3,—)). The T-weights for the tangent space
of BEMY0-Q at P(B,(3,—)) are

{—a1, —a3}U{s_(—a2), s_s3(—a3)}
= {—a1, —a3, —a2, a3}
={(-1,1,0,0), (0,0, —-1,1,), (0, —1,1,0), (0,0, 1, —1)}.
By Theorem 6.4 the cone spanned by these vectors is the cone spanned by the edges

incident to ¢ (pg,3,—)))- Since this cone contains the line spanned by o3 then this
point is not a vertex of Py, o. O

Although we have not done so here, it should be possible to give a combinatorial
description of the vertices of Py, o. Doing so is equivalent to classifying the T-fixed
points for which the cone spanned by the T-weights does not contain a line.

We conclude this paper with:

Theorem 6.8 (dimension of Py, o). For (G, K) = (GL,44, GL, x GL,),

ptq—1 ifpisinQ,

dim(P =
( Yo,Q) {p+q_2 if pisnotin Q.
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Proof. A T-action on a space X is effective if each element of T, other than the
identity, moves at least one point of X. In the proof of [39, Corollary 27.2] it is
shown that for an effective Hamiltonian 7'-action the dimension of the corresponding
moment polytope equals the dimension of the torus. If the T-action is not effective
it is known that it can be reduced it to an effective action with the same moment
polytope. The stabilizer of the T-action is the normal subgroup

St(X):={teT|t-x=xforall x € X}.

The T-action on X reduces to the effective action of 7'/S7(X) given by tS7(X)-x :=
t - x. To prove the theorem we will consider the cases in which p is in Q and when
it isn’t separately. In each case we will explicitly compute the stabilizer of the
T-action on BEMY0-€_ First, note that Ty = {te T |#; = - -- =1,} acts trivially on
BEMY0:€ and therefore it is a subgroup of St(BEMY0-Q).

In view of Theorem 6.2, we assume without loss of generality, that Yy =
Y4, ie,

Yo={(F1, F>,...,F,_1) €G/B| F,=E,}.

Consider the projection ¢g : BEMY:C — ¥, that maps a point in the configuration
space to the leftmost flag (corresponding to the leftmost border) in the diagram.
Since the projection is T-equivariant, ST(BEMY Q) is a subgroup of St(¥p). Let
us first describe St(Yp). Note that

T2={t€T|t1=---=tp, tp+1=--'=l‘n}

acts trivially on Yj. Furthermore, since Y| is isomorphic to GL,/B x GL,/B then
St(¥p) is isomorphic to St(GL,/B) x ST(GL,/B). It follows that St(Yp) = T, and
therefore St(BEMYQ) is either equal to Ty or T».

First suppose that p is in Q and let k be such that j, = p, where Q = (ji, ..., jn)-
It is straightforward from Section 5 that if we set

Vk = Span{ela RN ep—la ep +ep+l}a

then the following holds:

Y,
(E\,Esy .o, Eno1,Ej Ejyy oo Ej v Vi Ejiys oo, Ejy) € BEMY Q.
Furthermore, fort € T,
t' Vk = Span{gla 527 LR ] Zp—la gp +tnzp+l} 7& Vk?

so T, does not act trivially on BEMY-2 and St(BEMYQ) = T,. From this and
the first paragraph it follows that

dim(Py,,0) =p+q—1.



K-ORBIT CLOSURES AND BARBASCH-EVENS-MAGYAR VARIETIES 129

Now suppose that p is not in Q. This implies that every vector space in
(Fi, Fa, ...y Faet, Vi, Vo, o, Vi) € BEMT0C

must either be a subspace of E, or contain E,. So T, acts trivially on BEM Yo.0
and ST(BEMY2) = T,. We conclude that dim(Py, o) = p +¢q — 2. O

Example 6.9. The data of Table 1 is consistent with Theorem 6.8. Furthermore,
note that the dimension characterization only depends on p and not ¢. Indeed, if
p =2 and g = 3, one can check Py, __ (3) has dimension 3, also in agreement
with the theorem. ([
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