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We define the Barbasch–Evens–Magyar varieties. We show they are iso-
morphic to the smooth varieties defined in [D. Barbasch and S. Evens
1994] that map generically finitely to symmetric orbit closures, thereby
giving resolutions of singularities in certain cases. Our definition parallels
P. Magyar’s [1998] construction of the Bott–Samelson varieties [H. C. Hansen
1973; M. Demazure 1974]. From this alternative viewpoint, one deduces a
graphical description in type A, stratification into closed subvarieties of the
same kind, and determination of the torus-fixed points. Moreover, we explain
how these manifolds inherit a natural symplectic structure with Hamiltonian
torus action. We then express the moment polytope in terms of the moment
polytope of a Bott–Samelson variety.
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1. Introduction

Let X be a generalized flag variety of the form G/B, where G is a connected
reductive complex algebraic group and B is a Borel subgroup of G. The left action
of B on X has finitely many orbits BwB/B, where w is a Weyl group element. The
Schubert variety Xw is the closure BwB/B of the B-orbit. The study of Schubert
variety singularities is of interest; see, e.g., [1; 4; 8].

In the 1970s, H. C. Hansen [19] and M. Demazure [11] constructed a Bott–

Samelson variety BS
Q for each reduced word Q of w, building on ideas of

R. Bott and H. Samelson [6]. These manifolds are resolutions of singularities
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of Xw. In recent years, Bott–Samelson varieties have been used, e.g., in studies
of Schubert calculus (M. Willems [44]), Kazhdan–Lusztig polynomials (B. Jones
and A. Woo [22]), standard monomial theory (V. Lakshmibai, P. Littelmann and
P. Magyar [28]), Newton–Okounkov bodies (M. Harada and J. Yang [20]), and
matroids over valuation rings (A. Fink and L. Moci [15]).

In 1983, A. Zelevinsky [52] gave a different resolution for Grassmannian Schubert
varieties, presented as configuration spaces of vector spaces prescribed by dimension
and containment conditions. In 1998, P. Magyar [29] gave a new description of BS

Q

in the same spirit, replacing the quotient by group action definition with an iterated
fiber product.

Similar constructions have been used subsequently in, e.g.:

(I) P. Polo’s proof that every polynomial f 2 1 + qZ�0[q] is a Kazhdan–Lusztig
polynomial (in type A) [37].

(II) A. Cortez’s proof of the singular locus theorem for Schubert varieties in
type A [10] (compare [5; 23; 30]).

(III) N. Perrin’s extension of Zelevinsky’s resolution to minuscule Schubert vari-
eties [33] (one application is [34]).

(IV) A. Woo’s classification of “short” Kazhdan–Lusztig polynomials [45].

(V) The definition of the brick variety, which provides resolutions of singularities
of Richardson varieties [13].

(VI) The connection [14] of Magyar’s definition to S. Elnitsky’s rhombic tilings [12].

We are interested in the parallel story where orbit closures for symmetric
subgroups replace Schubert varieties. A symmetric subgroup K of G is a group
comprised of the fixed points G

✓ of an involution ✓ of G. Like B, K is spherical,
meaning that it has finitely many orbits O under the left action on X . The study of
the singularities of a K-orbit closure Y = O is relevant to the theory of Kazhdan–
Lusztig–Vogan polynomials and Harish-Chandra modules for a certain real Lie
group GR. This may be compared with the connection of Schubert varieties to
Kazhdan–Lusztig polynomials and the representation theory of complex semisimple
Lie algebras.

In 1994, D. Barbasch and S. Evens [3] constructed a smooth variety, using a
quotient description that extends the one for Bott–Samelsons from [11; 19]. This
variety comes equipped with a natural map to a particular K0-orbit closure, where
K

0 is the connected component of 1. In certain situations, this map provides a
resolution of singularities of the orbit closure in question.

This paper introduces and initiates our study of the Barbasch–Evens–Magyar

variety (BEM variety). Just as P. Magyar [29] describes, via a fiber product, a
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variety that is equivariantly isomorphic to a Bott–Samelson variety, the BEM variety
reconstructs the manifold of [3] (Theorem 3.3(I)).

Our definition gives general-type results about the varieties of [3]:

• A stratification (in the sense of [26, Section 1.1.2]) into smaller BEM varieties
(Corollary 3.8).

• Description of its torus fixed points (Proposition 4.3).
• A symplectic structure with Hamiltonian torus action as well as analysis of

the moment map image, e.g., we show that it is the convex hull of certain
Weyl group reflections of the moment polytope of a Bott–Samelson variety
(Theorem 4.1).

• An analogue of the brick variety (Theorem 3.3(II)).

In type A we give a diagrammatic description of the BEM varieties (Section 5) in
linear algebraic terms, avoiding the algebraic group generalities. For example, we
obtain more specific results (Section 6) for K= GLp ⇥GLq acting on GLp+q/B. We
show (Theorem 6.2) that the study of BEM polytopes can be reduced to a special case.
We determine the torus weights for this special case (Theorem 6.4) which permits
us to partially understand the vertices (Corollary 6.6). We also give a combinatorial
characterization of the dimension of the BEM polytope (Theorem 6.8).

We anticipate that many uses of the Zelevinsky/Magyar-type construction of the
Bott–Samelson variety, such as (I)–(VI) above, have BEM versions. In particular,
an analogue of (II), even in the case of K = GLp ⇥GLq , would bring important new
information about the singularities of the symmetric orbit closures. More generally,
analogues of (I)–(IV) would illuminate the combinatorics of the celebrated Kazhdan–
Lusztig–Vogan polynomials.

2. Background on K-orbits

In this section we describe the background in general. See Section 5 for background
on K-orbits of type A.

Let G be a connected complex reductive algebraic group and B a Borel subgroup
of G containing a maximal torus T. Furthermore we assume ✓ is an involution
of G and that B and T are ✓-stable. We denote by K the symmetric subgroup G

✓ .
Throughout this paper we assume that K is the connected component of the fixed
point set of ✓ .

Let W = NG(T)/T be the Weyl group. Let r be the rank of the root system
of G and 1= {↵1, . . . ,↵r } be the system of simple roots corresponding to B, with
{!1, . . . ,!r } the corresponding fundamental weights. Denote the simple reflection
corresponding to the simple root ↵i by si . Thus, W is generated by the simple
reflections {si | 1  i  r}.
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Given I ✓ 1, PI is the standard parabolic subgroup of G corresponding to I ;
namely,

(1) PI = B[

✓ [

w2WI

BwB

◆
,

where WI is the set of w 2 W such that w = si1 . . . sik
where all i j 2 I . PI is a

minimal parabolic if I = {↵i }; it is a maximal parabolic if I = {↵1, . . . , ↵̂i , . . . ,↵r }.
These are denoted Pi and P

î
, respectively.

As described in [38, Section 3.10], the Richardson–Springer monoid M(W)

is generated by the simple reflections si of W, with relations s
2
i

= si , together
with the braid relations of W. As a set, this monoid may be canonically identified
with W, with the ordinary product on W being replaced by the Demazure product ?,
a product having the property that

si ?w =

⇢
siw if `(siw) > `(w),

w otherwise,

where `(·) denotes ordinary Coxeter length, and where the juxtaposition siw denotes
the ordinary product in W. A word Q = ( j1, j2, . . . , jN ) is an ordered tuple of
numbers from {1, 2, . . . , r}. Let Dem(Q) := s j1 ? s j2 ? · · · ? s jN

. If Dem(Q) = w,
then Q is a Demazure word for w.

Consider the natural projection ⇡i : G/B ! G/Pi . Given a K-orbit closure Y

on G/B and a simple reflection si 2 W, si ? Y := ⇡�1
i

(⇡i (Y )) is also a K-orbit
closure. This extends to an M(W)-action on the set of K-orbit closures: given a
Demazure word Q = (s j1, . . . , s jN

) for w, define

w ? Y := s j1 ? (s j2 ? · · · ? (s jN
? Y ) . . . ).

The K-orbit closure w ? Y is independent of the choice of Demazure word Q for w

[38, Section 4.7].
The weak order on the set of K-orbit closures is defined by

Y  Y
0
() Y

0
= w ? Y

for some w 2 M(W). The minimal elements of this order are the closed orbits, i.e.,
those Y0 = O = O. The following is well known; see, e.g., [7, Proposition 2.2(i)].

Lemma 2.1. Each closed orbit is isomorphic to K/B0
where B

0
is a Borel subgroup

of K. In particular, every closed orbit is smooth.

Remark 2.2. If K is disconnected, then [7, Proposition 2.2(i)] says that Y0 is
isomorphic to a finite union of flag manifolds K

0/B0, where K
0 is the connected

component of 1 and B
0 is a Borel subgroup of K0.
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3. Barbasch–Evens–Magyar varieties

As in the previous section, G is a connected reductive complex algebraic group,
K = G

✓ is connected, and B is a ✓-stable Borel subgroup of G. We begin with the
definition of the manifold of Barbasch and Evens [3, Section 6].

If Bk�1 acts on Xk ⇥ · · · ⇥ X1 by

(2) (bk, . . . , b1) · (xk, . . . , x1) = (xkbk, b
�1
k

xk�1bk�1, . . . , b
�1
2 p1),

then Xk ⇥B · · ·⇥B
X1 denotes the quotient of Xk ⇥ · · ·⇥ X1 by this action, when it

exists. In [16, Section 3.3] this quotient is shown to exist in cases which include
when the Xi for i > 1 are subgroups of G such that B ⇢ Xi \ Xi+1 and X1 = P/B

for some parabolic subgroup P of G.
Let Y0 be a closed K -orbit and Q = ( j1, j2, . . . , jN ) a (not necessarily reduced)

word. The Barbasch–Evens variety [3, (6.3.5)] for Y0 and Q is

(3) BE
Y0,Q

:= eY0 ⇥
B
P jN

⇥
B
P jN�1 ⇥

B
· · · ⇥

B
P j1/B,

where eY0 denotes the preimage of Y0 in G under G ! G/B. By [16, Section 3.3]
this quotient exists. Recall that by Lemma 2.1 Y0 is smooth. Since BE

Y0,Q is an
iterated P1-bundle over Y0, then BE

Y0,Q is a manifold.

Remark 3.1. Even though (3) looks different from [3, (6.3.5)] (3) is actually a
special case. This is because by [3, (6.3.2)] any closed K-orbit Y0 is isomorphic to
a K⇥K\P P/B so the preimage of Y0 in G can be taken to be K⇥K\P P. In general,
K⇥K\PP/B need not be a closed K-orbit. Description (3) appears in [27, Section 5].

K acts on BE
Y0,Q by

(4) k · [g, pN , . . . , p1B] = [kg, pN , . . . , p1B].

There is a K-equivariant map � : BEY0,Q ! G/B given by

(5) [g, pN , . . . , p1B]
�

7�! gpN . . . p1B.

Indeed, both the action (4) and the map (5) are well defined, i.e., independent of
choice of representative of the equivalence class [g, pN , . . . , p1].

R. W. Richardson and T. A. Springer [38] proved that for any Y , there is a closed
orbit Y0 (possibly nonunique) below it in weak order. That is, there is some w 2 W

such that Y = w ? Y0 and dim(Y ) = `(w) + dim(Y0). Let Y and w be as above
and Q = ( j1, j2, . . . , j`(w)) be a reduced word for w. Then � : BEY0,Q ! Y is
generically finite since � is surjective onto Y (by [3, Proposition 6.4]) and since

dim(BEY0,Q) = dim(Y0) + `(w) = dim(Y ).

When (G,K) = (GLp+q ,GLp ⇥GLq), � is a resolution of singularities for Y , again
by [3, Proposition 6.4] (see also [27, Lemma 5.1]). Even for this case, not all
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reduced words Q give a resolution of singularities �, although this is true if � is
generically one-to-one, that is, under the condition that dim(Y ) = `(w) + dim(Y0).
In general, the image of � is Y and � : BEY0,Q ! Y is a resolution of singularities
for Y under certain hypotheses [3, Section 6].1 These hypotheses are sufficiently
technical that we do not wish to recall them here since we will not use them.

We now define the Barbasch–Evens–Magyar varieties. See Section 5 for a
diagrammatic description in type A.

Definition 3.2 (Barbasch–Evens–Magyar variety). Let Q = ( j1, j2, . . . , jN ) is a
(not necessarily reduced) word. The Barbasch–Evens–Magyar variety is

(6) BEM
Y0,Q

:= Y0 ⇥G/P jN
G/B⇥G/P jN�1

· · · ⇥G/P j1
G/B.

Recall that if X1
f

�! Y and X2
g

�! Y are two varieties mapping to the same
variety Y , then

(7) X1 ⇥Y X2 = {(x1, x2) 2 X1 ⇥ X2 | f (x1) = g(x2)}

denotes the fiber product. In (6), each map of (7) is the natural projection G/B !

G/P ji
defined by gB 7! gP ji

(or, in the case of Y0, the restriction of said projection).
Evidently, K acts diagonally on BEM

Y0,Q . Our next theorem asserts that the
projection

(8) ' : BEM
Y0,Q

! G/B, (xN+1, xN , . . . , x1) 7! x1

maps into Y . We remark that since we are not assuming that Q is a reduced word,
this map may not be generically one-to-one.

Theorem 3.3. Suppose that Y = w ? Y0 for a closed orbit Y0 and Q is a (not

necessarily reduced) Demazure word for w.

(I) BEM
Y0,Q ⇠= BE

Y0,Q
as K-varieties.

(II) Suppose Y is the closure of the K-orbit KgB. The fiber of ' over a point of KgB

of Y is smooth of dimension dim(BEMY0,Q) � dim(Y ).

Proof. We prove (I) by a modification of the argument of Magyar in the Schubert
setting. The map

� : BE
Y0,Q

! Y0 ⇥ (G/B)N ,(9)

[g, pN , pN�1, . . . , p1B] 7! (gB,gpNB,gpN pN�1B, . . . ,gpN pN�1 . . . p1B),(10)

1To construct a resolution of singularities, it is not necessary to take Y0 to be a closed orbit. We
need only take Y0 to be a smooth orbit closure underneath Y in weak order [27], or take Y0 to be
the closure of a “distinguished” orbit [3]. However, closed orbits are both smooth and distinguished.
Taking them as a starting point seems closest in spirit to the construction of the Bott–Samelson
resolution.
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is well defined (independent of choice of representative), K-equivariant, and since
pi 2 P ji

, we have �(BEY0,Q) ✓ BEM
Y0,Q .

� is injective: If �([g, pN , pN�1, . . . , p1B]) = �([g0, p
0

N
, p

0

N�1, . . . , p
0

1B]), then
there exist b0, b1, . . . , bN 2 B such that

g = g
0
b0, gpN = g

0
p

0

N
bN , . . . , gpN · · · p1 = g

0
p

0

N
· · · p

0

1b1.

Combining these equations with the definition of BEY0,Q (specifically (2)),

[g, pN , pN�1, . . . , p1B] = [g
0
b0, b

�1
0 p

0

N
bN , b

�1
N

p
0

N�1bN�1, . . . , b
�1
2 p

0

1b1B]

= [g
0, p

0

N
, p

0

N�1, . . . , p
0

1B],

establishing injectivity.

� is surjective: Let (gB, gNB, gN�1B, . . . , g1B) 2 BEM
Y0,Q .

Claim 3.4. [g, g
�1

gN , g
�1
N

gN�1, . . . , g
�1
2 g1B] 2 BE

Y0,Q
.

Proof of Claim. First, by definition g 2 eY0, as desired. Second, by (6) and (7)
combined we have

gP jN
= gNP jN

=) g
�1

gN 2 P jN
.

Similarly, in general

giP ji+1 = gi+1P ji+1 =) g
�1
i

gi+1 2 P ji+1,

as required. ⇤
Combining the claim with

�(g, g
�1

gN , g
�1
N

gN�1, . . . , g
�1
2 g1B) = (gB, gNB, gN�1B, . . . , g1B),

we obtain �(BEY0,Q) = BEM
Y0,Q .

' maps into Y : Since � maps into Y , we have

� ���1(gB, gNB, gN�1B, . . . , g1B) = �(g, g
�1

gN , g
�1
N

gN�1, . . . , g
�1
2 g1B)

= g1B 2 Y.

However, by definition '(gB, pNB, pN�1B, . . . , p1B) = p1B and so ' maps into Y

as well.
Since BEM

Y0,Q is smooth (and thus normal) and BE
Y0,Q is irreducible, the

bijective morphism (of C-varieties) above is an isomorphism of varieties by Zariski’s
main theorem (see, e.g., [41, Theorem 5.2.8]).

For (II), we apply:

Theorem 3.5 [21, Corollary 10.7 of Chapter III]. Let f : X ! Y be a morphism of

varieties over an algebraically closed field k of characteristic 0, and assume that X

is nonsingular. There is a nonempty open subset V ⇢ Y such that f : f
�1(V ) ! V
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is smooth. In the case in which f
�1(V ) 6= ?, the fiber f

�1(v) is nonsingular and

dim( f
�1(v)) = dim(X) � dim(Y ) for all v 2 V .

Let f be the projection map ' : BEMY0,Q ! Y . Since BEM
Y0,Q is nonsingular,

by Theorem 3.5 applied to this f , there exists a nonempty V ⇢ Y such that f

restricted to f
�1(V ) is smooth. If v 2 V then said theorem says dim( f

�1(v)) is of
the desired dimension.

However, we want the above to be true for p 2 KgB. To see this, note that
everything said above holds for f

�1(kV ) for all k 2 K since f is K-equivariant and
multiplication by k is a smooth morphism. Let p 2 KgB be a general point. Since
KpB is dense in Y , Y \ kV 6= ? for all k 2 K. Now we can pick k so that p 2 kV ,
completing the argument. ⇤

The generic fibers of part (II) of the theorem may be considered an analogue of
the brick variety of [13], which is the generic fiber of the Bott–Samelson map (this
generic fiber being positive dimensional only when Q is not a reduced word). See
loc. cit. for a connection to the brick polytope of [35; 36] and the associahedron.

Remark 3.6. BEM
Y0,Q is an iterated P1-bundle over Y0.

Let
pY0,Q(z) =

X

k�0

z
k dimQ H

2k(BEMY0,Q
; Q)

and
rY0(z) =

X

k�0

z
k dimQ H

2k(Y0; Q)

be the Poincaré polynomials of BEMY0,Q and Y0, respectively.

Corollary 3.7. pY,Q(z) = rY0(z)(1 + z)N , where rY0(z) is known since each closed

orbit Y0 is isomorphic to the flag variety of K.

Proof. In view of Remark 3.6, the claim follows by repeated applications of the
Leray–Hirsch theorem. ⇤

Following [27, Section 1.1.2], a stratification by closed subvarieties of a variety X

is a decomposition X =
S
⇠ S⇠ into closed varieties S⇠ such that the intersection of

any two closed strata is the union of strata. We have a stratification of BEMY0,Q

with strata given by subwords P of Q. A subword of Q = ( j1, . . . , jN ) is a list
P = (�1, . . . ,�N ) such that �i 2 {�, ji }.

Corollary 3.8 (of Theorem 3.3). BEM
Y0,Q

is stratified with strata given by sub-

words P of Q. The stratum corresponding to a subword P is

S(P) = {(xN+1, . . . , x1) 2 BEM
Y0,Q

| xi = xi+1 if �N+1�i = �}.

This stratum is canonically isomorphic to BEM
Y0,flat(P)

where flat(P) is the word

which deletes all � appearing in P.
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Proof. The union of these strata covers BEM
Y0,Q because S(Q) = BEM

Y0,Q . For
P = (�1, . . . ,�N ) and P

0 = (� 0

1, . . . ,�
0

N
) define the subword P_P

0 = (�1, . . . , �N ),
where �i = � if �i or � 0

i
equals �. Then

S(P) \S(P
0)

= {(xN+1, . . . , x1) 2 BEM
Y0,Q

| xi = xi+1 if �N+1�i = � or � 0

N+1�i
= �}

= S(P _ P
0).

The isomorphism from S(P) to BEM
Y0,flat(P) is the projection that deletes all

components of S(P) associated to a �. ⇤

4. Moment polytopes

The projective space Pd is a symplectic manifold with Fubini–Study symplectic form.
Following [40, Section 6.6], consider the restriction of the action of T

d = (C⇤)d

on Pd , given by coordinatewise multiplication, to the compact real subtorus

T
d

R = {(ei✓1, . . . , e
i✓d ) 2 (C⇤)d

| ✓i 2 R for all i}.

As explained in [25, Example 4] the action of T
d

R on Pd has a moment map, that is,
Pd is a Hamiltonian T

d

R -manifold.
Now let X be a smooth algebraic variety with an action of a torus T ⇠= (C⇤)n

with n  dim(X) and a T -equivariant embedding into Pd . Again, we restrict the
T -action to the compact real subtorus TR. Since T is isomorphic to a subgroup
of T

d then [25, p. 64, point 1] tells us that Pd is also a Hamiltonian TR-manifold.
Smoothness says X is a T -invariant submanifold of Pd . By [25, p. 64, point 1], it
is a Hamiltonian TR-manifold. Hence X has a moment map

8 : X ! t⇤R,

where t⇤R ' Rn is the dual of the Lie algebra of TR. There are only finitely many
isolated fixed points since the fixed point locus X

T is closed for the Zariski topology.
Therefore by [2; 17], the image 8(X) is a polytope in t⇤R; namely, it is the convex
hull of the image under 8 of the TR-fixed points. 8(X) is known as the moment

polytope of X . A primer on moment maps which outlines their most important
properties, including the ones we will use, can be found in [25, Section 2.2]. From
now on, we will omit the subscript R from T and the Lie algebra.

Moment map images provide a source of polytopes. It is natural to consider
8(BS

Q) for T a maximal torus of G, which is the moment polytope of the Bott–
Samelson variety BS

Q . To our best knowledge, the first analysis of this polytope in
the literature is [13] (an anonymous referee has suggested to us the relevance of the
preprint [18] who studies T-equivariant cohomology of Bott–Samelson varieties).
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We are interested on the action of S := T\K, a maximal torus in K, on Y and on
its BEM varieties. We will show in Theorem 4.1 that 8(BEMY0,Q) is the convex
hull of certain reflections of 8S(BS

Q), where 8S denotes the moment map of BS
Q

for the S-action. The proof exploits the analogies between the descriptions of the
manifolds.

In order to compute 8(BEMY0,Q) we embed BEM
Y0,Q into a product of G/P

î
.

To compute 8(BEMY0,Q) it is not necessary to explicitly embed BEM
Y0,Q into

projective space (via generalized Plücker embeddings followed by the Segre map).
This is since the Grassmannian G/P

î
is diffeomorphic to the coadjoint orbit O!i

⇠=

GR/(GR)!i
where !i 2 t⇤ is a fundamental weight, GR is a compact form of G, and

(GR)!i
denotes the stabilizer of !i under the coadjoint action; see, e.g., [9]. This

coadjoint orbit is already a Hamiltonian T-manifold with Kostant–Kirillov–Souriau

symplectic form and moment map

(11) 8i : GR/(GR)!i
! g⇤

! t⇤ ' Rn,

where the first map is (gP
î
) 7! g!i and the second map is the projection induced

from the inclusion T ⇢ G. For each g representing an element of the Weyl group
of G we have that 8i (g!i ) = g!i .

Actually, if we embed BEM
Y0,Q into projective space as indicated above we

wouldn’t get a different polytope anyway. This is because the Kostant–Kirillov–
Souriau form coincides with the pullback of the Fubini–Study form to G/P

î
under

the T-equivariant embedding given by the line bundle L(!i ); see [9, Remark 3.5].
Thinking of the fundamental weights !i 2 t⇤ as functions !i : t ! R, !i |s is the

restriction of !i to s ⇢ t.

Theorem 4.1. BEM
Y0,Q

has an embedding into a product of G/P with P maxi-

mal as a symplectic submanifold of this product with Hamiltonian S-action; the

corresponding moment polytope is

8(BEMY0,Q)

= conv

⇢
x

✓ rX

i=1

!i |s +

1X

i=|Q|

s j|Q|
· · · s ji

!i |s

◆
| x 2 Y

S
0 and ( j1, . . . , j|Q|) ✓ Q

�

= conv{x ·8S(BS
Q) | x 2 Y

S
0 }.

Proof. BEM
Y0,Q embeds into a product of G/P with P maximal, as follows:

Proposition 4.2. The following map is an embedding:

� : BEM
Y0,Q ,!

rY

i=1

G/P
î
⇥

|Q|Y

j=1

G/P
î|Q|� j+1

,

(xB, g|Q|B, . . . , g1B) 7! (xP1̂, . . . , xPr̂ , g|Q|Pî|Q|
, g|Q|�1Pî|Q|�1

, . . . , g1Pî1
).
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By [43, 9.2.2] the fibered product with a closed subscheme is a closed subscheme
of the fibered product. From this it immediately follows that BEM is a closed
subscheme of a fibered product of G/B’s. It is well known that this fibered product
embeds into the desired product of G/P

î
. Thus the proposition follows. To be more

explicit, we include the proof below.

Proof. First to see that � is injective suppose

�(xB, a|Q|B, . . . , a1B) = �(yB, b|Q|B, . . . , b1B),

then xP
î
= yP

î
for 1  i  r and therefore y

�1
x 2

T
r

i=1 Pî
= B. Thus, xB = yB.

Next, the assumption

(12) a|Q|Pdi|Q|
= b|Q|Pdi|Q|

=) b
�1
|Q|

a|Q| 2 Pdi|Q|
.

Also, using the definition of BEMY0,Q (7),

(13) a|Q|Pi|Q|
= xPi|Q|

= yPi|Q|
= b|Q|Pi|Q|

=) b
�1
|Q|

a|Q| 2 Pi|Q|
.

Combining (12) and (13) gives

b
�1
|Q|

a|Q| 2 Pdi|Q|
\Pi|Q|

= B =) a|Q|B = b|Q|B.

Reasoning similarly, we see that akB = bkB for all k = |Q| � 1, |Q| � 2, . . . , 1, as
required. Thus � is injective.

It is well known that the map

G/B !

rY

i=1

G/P
î
: xB 7! (xP1̂, . . . , xPr̂ )

is an embedding of algebraic varieties. Consequently, the map

 : (G/B)|Q|+1 ,!

|Q|+1Y

m=1

rY

i=1

G/P
î
,

(x|Q|+1B, x|Q|B, . . . , x1B) 7! ((x|Q|+1P1̂, . . . , x|Q|+1Pr̂ ), . . . , (x1P1̂, . . . , x1Pr̂ ))

is also an embedding. Let Q = (q1, q2, . . . , qN ). The image of BEM
Y0,Q ⇢

(G/B)|Q|+1 under  satisfies

(14) xmPî
= xm+1Pî

,

whenever i 6= qm for m = 1, 2, . . . , |Q|. Thus � factors:
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BEM
Y0,Q

�



 

Q|Q+1|

m=1
Q

r

i=1 G/P
î

Q
r

i=1 G/P
î
⇥

Q|Q|

j=1 G/P \i|Q|� j+1

where  is the projection that forgets the repetitions of (14). Thus, � is an embed-
ding. ⇤

Gr :=
Q

r

i=1 G/P
î
⇥

Q|Q|

j=1 G/P \i|Q|� j+1
is naturally a symplectic manifold, and is

Hamiltonian with respect to the (diagonal) action of T. By [25, p. 64, point 1] the
same is true for this action restricted to the subtorus S. As a submanifold of Gr ,
BEM

Y0,Q is also symplectic, and is clearly stable under the S-action. From this
it follows (compare [25, p. 65, point 4]) that the S-action is Hamiltonian, whence
BEM

Y0,Q has a moment map 8. Then one sees from [25, p. 64, point 1 and p. 65,
point 3] that 8 is given by

(15) BEM
Y0,Q ,! Gr

P
8i

���! t⇤ ! s⇤,

where 8i : G/P
î
! t⇤ is the moment map for G/P

î
and t⇤ ! s⇤ is induced from

the inclusion S ⇢ T. The second map restricts functions t ! R to s. Therefore,
by (11) and (15) combined, the moment map 8 : BEMY0,Q ! s⇤ is given by

(16) (xB, g|Q|B, . . . , g1B) 7�!

rX

i=1

x!i |s +

|Q|X

i=1

gi!i |s.

Proposition 4.3 (S-fixed points of BEMY0,Q). The S-fixed points of BEM
Y0,Q

are

indexed by pairs (xB, J ), where xB is a T-fixed point of G/B contained in Y0, and

J = (�1, . . . ,�|Q|) is a subword of Q. Indeed, the fixed points are precisely the

points

(17) p(xB,J ) := (xB, xs�|Q|
B, xs�|Q|

s�|Q|�1B, . . . , xs�|Q|
· · · s�1B) 2 BEM

Y0,Q,

where s�i
is the identity if �i = �.

Proof. We first verify that p(xB,J ) 2 BEM
Y0,Q . Note that for i = 1, . . . , |Q|, since

by (1), Bs�i
B 2 P ji

, in particular s�i
2 P ji

and hence

xs�|Q|
· · · s�i

P�i
= xs�|Q|

· · · s�i�1P�i
.

Therefore (xs�|Q|
· · · s�i�1, xs�|Q|

· · · s�i
) satisfies (7) for i = 1, . . . , |Q|, as needed.

Since

(18) (G/B)S = (G/B)T



K-ORBIT CLOSURES AND BARBASCH–EVENS–MAGYAR VARIETIES 115

(see [7, p. 128]), the S-fixed points of Y0 are of the form xB where x 2 NG(T).
Therefore,
(19) xs�|Q|

· · · s�i
2 NG(T).

Moreover, since S ⇢ T, for t 2 S we have by (19) that

t · xs�|Q|
· · · s�i

B = xs�|Q|
· · · s�i

B,

so p(xB,J ) is an S-fixed point.
Conversely, suppose (x|Q|+1B, x|Q|B, . . . , x1B) is an S-fixed point of BEMY0,Q .

Clearly, x|Q|+1B 2 (Y0)
S. By (18), each xiB is a T-fixed point so we may assume

(20) xi 2 NG(T).

By the definition (7) of BEMY0,Q , xiP ji
= xi�1P ji

. Thus, x
�1
i�1xi 2 P ji

. Hence, in
view of (20) we may further assume that x

�1
i�1xi 2 {id, s↵ ji

}. Therefore

(x|Q|+1B, x|Q|B, . . . , x1B)

is of the form p(xB,J ), as asserted. ⇤
Since 8(BEMY0,Q) is the convex hull of 8 applied to this set of points, the first

equality of the theorem holds by Proposition 4.3 combined with (16).
Similar arguments [13] show the moment polytope of a Bott–Samelson variety is

(21) 8(BS
Q)

= conv

⇢ rX

i=1

!i +

1X

i=|Q|

s�|Q|
· · · s�i

!i | (�1, . . . ,�|Q|) is a subword of Q

�
.

The second equality follows by restricting the weights to s. ⇤
Define the BEM polytope PY0,Q as 8(BEMY0,Q). In Section 6 we study PY0,Q

for the symmetric pair G = GLp+q and K = GLp ⇥GLq .
We remark it would be interesting to study the polytopes coming from the K-

action on BEM
Y0,Q . BEMY0,Q is a Hamiltonian K-manifold and therefore has a

moment map 8K. Two polytopes associated with the image of 8K are described
in [25, Section 2.5]. One of these is the intersection of the image of 8K with the
positive Weyl chamber. Kirwan’s noncommutative convexity theorem [24] states
that this intersection is a polytope.

5. The Barbasch–Evens–Magyar varieties in type A

In this section we describe the K-orbits and Barbasch–Evens–Magyar varieties for
the case of symmetric pairs (G,K) where G is a general linear group. The three
possible pairs are (GLp+q ,GLp ⇥GLq), (GL2n, Sp2n), and (GLn,On). All of these
symmetric subgroups are connected; see, e.g., [48].
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When G=GLn we take the simple roots to be1= {↵i = Eei �Eei+1 | 1  i  n�1},
where Eei 2Rn is the standard basis vector. With this choice of root system embedding,
we may identify the fundamental weight !i with the vector

P
i

k=1 Eei . W = Sn is
identified with the symmetric group of permutations on {1, 2, . . . , n}. Thus, si is
the simple transposition interchanging i and i + 1.

K-orbits of type A. The running example here is (G,K) = (GLp+q ,GLp ⇥ GLq).
Let n = p + q, and consider the involution ✓ of G = GLn defined by conjugation
using the diagonal matrix having p-many 1’s followed by q-many �1’s. Then
K = G

✓ ⇠= GLp ⇥ GLq , embedded as block diagonal matrices with an upper-left
invertible p ⇥ p block, a lower-right invertible q ⇥ q block, and zeros outside of
these blocks.

The orbits in this case are parametrized by (p, q)-clans [31; 51], which we
now describe. A (p, q)-indication is a string of characters � = c1 . . . cn with each
ci 2 {+, �} [ Z>0 and such that

• if ci 2 Z>0, then there is a unique j 6= i such that ci = c j ; and
• #{i | ci = +} � #{i | ci = �} = p � q .

Consider the equivalence relation between indications given by � ⇠ � 0 if and only if

• ci = c
0

i
whenever ci 2 {+, �}; and

• there exists a bijection f : Z>0 ! Z>0 such that ci = f (c0

i
) for all i with

ci 2 Z>0.

The (p, q)-clans are the equivalence classes of this equivalence relation. By slight
abuse of notation, we use the same notation for indications to denote clans; for
example 1 + �1 is the same clan as 2 + �2. Let Clansp,q be the set of (p, q)-
clans. The closed orbits are indexed by matchless clans, i.e., clans using only +, �.
Lemma 2.1 implies these closed orbits are isomorphic to (GLp/B) ⇥ (GLq/B), the
product of two flag varieties.

We briefly remark that each (p, q)-clan corresponds to an involution in Sp+q .
Indeed, given a clan � we obtain an involution w by letting wi = i whenever
ci 2 {+, �} and wi = j whenever ci = c j 2 Z>0.

Next, we explicitly describe the orbit closures Y� . Fix � = c1 . . . cn 2 Clansp,q .
For i = 1, . . . , n, define:

• � (i; +) = #{( j, k) | c j = ck 2 Z>0, 1  j < k  i}+#{ j | c j = +, 1  j  i};
and

• � (i; �) = #{( j, k) | c j = ck 2 Z>0, 1  j < k  i}+#{ j | c j = �, 1  j  i}.

For 1  i < j  n, define

• � (i; j) = #{k 2 [1, i] | ck = c` 2 N with `> j}.
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Let E p = span{Ee1, Ee2, . . . , Eep} be the span of the first p standard basis vectors, and
let E

q = span{Eep+1, Eep+2, . . . , Een} be the span of the last q standard basis vectors.
Let ⇢ : Cn ! E p be the projection map onto the subspace E p.

Suppose � 2 Clansp,q and ✏ 2 Clansr,s . Then ✏ = ✏1 . . . ✏r+s (pattern) avoids

� = �1 . . . �p+q if there are no indices i1 < i2 < · · · < i p+q such that:

(1) if � j = ± then ✏i j
= � j ; and

(2) if �k = �` then ✏ik
= ✏i` .

A clan � is noncrossing if � avoids 1212.

Theorem 5.1 [50, Corollary 1.3; 49, Remark 3.9]. The K-orbit closure Y� is the set

of flags F• = (V1, . . . , Vn) such that:

(1) dim(Vi \ E p) � � (i; +) for all i .

(2) dim(Vi \ E
q) � � (i; �) for all i .

(3) dim(⇢(Vi ) + Vj )  j + � (i; j) for all i < j .

If � is noncrossing, the third condition is redundant.

Example 5.2. Let p = q = 2 and � = 1 + �1 (a noncrossing clan). In fact,
Y� = s1 ? s3 ? s2 ? Y++�� and

Y�={(V1,V2,V3)2Gr(1,4)⇥Gr(2,4)⇥Gr(3,4)|dim(V2\E2)�1,dim(V3\E
2)�1}.

A projectivized depiction of a general point in this orbit closure is given in Figure 1
(left). The blue and red lines represent E2 and E

2 respectively. The moving flag
(V1,V2,V3) is the (black point, black line, front face). ⇤

W. McGovern characterized the singular orbit closures:

Theorem 5.3 [32]. Y� is smooth if and only if � avoids the patterns 1+�1, 1�+1,
1212, 1 + 221, 1 � 221, 122 + 1, 122 � 1, 122331.

E2E
2

V3

V1

V2

E2

E
2

V3

V1

V2

Figure 1. Y1+�1 and Y++��.
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Example 5.4. By Theorem 5.3, Y1+�1 is singular. One computes (e.g, using the
methods of [46]) that the singular locus is the closed orbit Y++�� where V2 = E2
(the black and blue lines agree). In Figure 1 (left), the general picture of Y1+�1,
the black line V2 has three degrees of freedom to move. Now consider the picture
of Y++�� (Figure 1, right). Pick any point of the blue line E2. Then the black
line V2 has two degrees of freedom to pivot and remain inside Y1+�1. This is true
of any other point as well. Informally, this additional degree of freedom is singular
behavior. ⇤

Barbasch–Evens–Magyar varieties of type A. In Section 3 we gave our general
definition of the Barbasch–Evens–Magyar varieties. We now describe, using dia-
grams, these configuration spaces for the special case of symmetric pairs (G,K)

where G is a general linear group.
Let Q = ( j1, j2, . . . , jN ) be a word and F✓G/B. We first define the configuration

space C(Q, F). Informally, a point of C(Q, F) is a collection of vector spaces forming
a diagram. Figure 2 is an example for G = GL3, F = G/B, and Q = (2, 1, 2, 1).
The edges indicate containments among the vector spaces. For instance, we have
C0 ⇢ F1 ⇢ F2 ⇢ C3, as well as C0 ⇢ V2 ⇢ V1 ⇢ C3, etc. We require that the flag
C0 ⇢ F1 ⇢ F2 ⇢ C3 be in F.

To be precise, to define C(Q, F) we start with a vertical chain whose n+1 vertices
are labeled by the vector spaces C0, F1, F2, . . . Fn�1, Cn , from south to north, such
that the corresponding flag is an element of F. The dimension of a vertex is the
dimension of the labeling vector space. At the start, this chain is declared to be the
right border of the diagram.

We now grow the diagram as follows. Consider the last letter jN of Q. Introduce
a new vertex on the right of the diagram, labeled by VN of dimension jN with
edges between the vertices of dimension jN � 1 and jN + 1 (thus indicating the
containment relation FjN �1 ⇢ VN ⇢ FjN +1). We modify the current right border by
replacing the vertex of the current right border of dimension jN with the new vertex
labeled by VN . Now repeat successively with jN�1, jN�2, . . . j2, j1. At step k, a

C3

F2

F1 V4

V3

V2

V1

C0

Figure 2. G = GL3, F = G/B, and Q = (2, 1, 2, 1).
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Va

Vb

Vc

VN�k+1

Figure 3. Quadrangle corresponding to the letter jN�k+1 of Q.

new vertex labeled by VN�k+1 is added to the right of the right border, of dimension
jN�k+1, and becomes the new member of the right border, replacing the unique
vertex of dimension jN�k+1 of the current right border. Note that the letter jN�k+1
of Q corresponds to the quadrangle in Figure 3 where Va , Vb, and Vc lie on the
right border before VN�k+1 is added, and dim(Vb) = jN�k+1.

Finally, a point in C(Q, F) is a collection of vector spaces arranged in the diagram
described, where the dimension of a vector space equals the length of a shortest
path to C0 and Vi ⇢ Vj whenever there is an upward edge Vi � Vj . For the example
above,

C(Q, F) = {(F1, F2, V1, . . . , V4) | F1, V4 ⇢ F2, V4, V2 ⇢ V3, V2 ⇢ V1}

⇢ Gr(1, 3) ⇥Gr(2, 3) ⇥Gr(2, 3) ⇥Gr(1, 3) ⇥Gr(2, 3) ⇥Gr(1, 3).

The above diagram extends the configuration space used in [29] to construct the
Bott–Samelson variety. The difference is that [29] takes the initial chain to be a B

or GLn-orbit, while here we take any subset F. For Bott–Samelson varieties, the
initial chain corresponds to a point (usually the standard basis flag).

The following result interprets the G = GLn case of Theorem 3.3(I):

Theorem 5.5. The configuration space C(Q, Y0) is the image of BEM
Y0,Q

under

the map � of Proposition 4.2. Therefore, C(Q, Y0) is isomorphic as a K-variety to

BE
Y0,Q

.

Proof. In type A, the map � may be interpreted as listing the vector spaces on
the flags of successive right borders of the diagram for BEM

Y0,Q , but avoiding
redundancy by listing only the additional new vector space introduced at each step.
Thus the first part of the theorem follows. The isomorphism between BE

Y0,Q and
C(Q, Y0) is the composition of the map in Theorem 3.3 and with �. ⇤
Definition 5.6 (Barbasch–Evens–Magyar variety for the symmetric pairs (GLn,K)).
Suppose that Q = ( j1, j2, . . . , jN ) is a (not necessarily reduced) word and Y0 is a
closed K-orbit. Then we abuse notation and denote C(Q, Y0) by BEM

Y0,Q .

Consider the map from BEM
Y0,Q to G/B that maps a point in the configuration

space to the rightmost flag (corresponding to the rightmost border) in the diagram.
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For example, the point of BEMY0,Q depicted by the example diagram above maps
to the flag C0 ⇢ V2 ⇢ V1 ⇢ C3. The image of this map is a K-orbit closure. Moreover,
every K-orbit closure is the image of such a map for some BEM

Y0,Q . In fact, this
map agrees with the map ' defined in (8).

To complete the description of BEMY0,Q for the three type A cases we require a
description of the flags in the closed orbit Y0, i.e., which flags may occur on the
left-hand side of the diagram.

In the case (G,K) = (GLp+q ,GLp ⇥ GLq) the closed orbits are indexed by
matchless clans, i.e., � consists of p +’s and q �’s. The description of these orbits
is given by Theorem 5.1. Since matchless clans are clearly noncrossing, the third
condition is redundant. In the case (G,K) = (GL2n, Sp2n), there is a unique closed
orbit Y0 [47, Proposition 2.4.1]. This closed orbit is isomorphic to the flag variety
for K = Sp2n by Lemma 2.1. In the case of (G,K) = (GLn,On) with n there is a
unique closed orbit Y0 [47, Proposition 2.2.1 and Remark 2.3.3]. Again, this orbit
is isomorphic to the flag variety for On . For sake of brevity, we refer the reader to
[48, Section 2] for a linear algebraic description of the points of the closed orbits in
these cases.

Example 5.7. The diagram for BEMY0,Q where Y0 = Y++�� and Q = (1, 3, 2) is

C4

F3

E2 = F2

F1

V3

V2

V1

C0

The depiction of this variety is given in Figure 4. Here V1, V3, V2 are given
by the (projectivized) green point, line and plane respectively. The green spaces
have the same incidence relations as the moving (black) flag in Y1+�1. Thus, the
projection forgetting all except the green spaces maps to Y1+�1. ⇤

Example 5.8. Let us compute the Poincaré polynomial pY0,Q(z) of BEMY0,Q when
K=GLp⇥GLq . Recall that Corollary 3.7 says that pY0,Q(z)= rY0(z)(1+z)N , where
N is the length of Q. Let [n]z!= [1]z[2]z · · · [n]z where [i]z = 1+z+z

2+· · ·+z
i�1.

The Poincaré polynomial of GLn/B is [n]z!. We now have rY0(z) = [p]z! [q]z!

for any choice of closed orbit Y0. This is since by Lemma 2.1, we have Y0 ⇠=

(GLp/B) ⇥ (GLq/B), combined with the Künneth formula.
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E2

E
2

F1

F3
F2

V1

V2

V3

Figure 4. BEM
Y++��,(1,3,2): the green flag maps to Y1+�1.

The standard maximal torus T ⇠= (C⇤)n in GLn consists of invertible diagonal
matrices. There is a natural K-action on BEM

Y0,Q , described in Section 3, which
induces an S-action, where S = T\K. Let us describe this action in the present
setting. A matrix in K acts on the Grassmannian of m-dimensional subspaces of Cn

by change of basis. We extend this to an action of K on BEM
Y0,Q diagonally:

k·(F1, F2, . . . , Fn�1,V1,V2, . . .VN )=(k·F1,k·F2, . . .k·Fn�1,k·V1,k·V2, . . . ,k·VN ),

where k 2 K.
We study the moment polytope of BEMY0,Q for the pair (GLp+q ,GLp ⇥GLq) in

Section 6. To do so, we utilize the following concrete description of the S-fixed
points of BEM

Y0,Q for this symmetric pair. Notice that in this case S = T. A
subword of Q = ( j1, . . . , jN ) is a list P = (�1, . . . ,�N ) such that �i 2 {�, ji }.
As we saw above, each letter of Q corresponds to a quadrangle of the associated
diagram. A subword P corresponds to a subset of these quadrangles. Concretely,
for each quadrangle in the set, require the two vertices associated to vector spaces
of equal dimension to be the same space. For each quadrangle not in the set, insist
those same vector spaces be different. Call such an assignment given a left border
associated to a flag F• a P-growth of F•.

Given a matchless clan � , a permutation � 2 Sp+q is � -shuffled if it assigns

• 1, 2, . . . , p in any order to the +’s;
• p + 1, p + 2, . . . , n in any order to the �’s.

Hence there are p!q! such permutations (independent of � ).
Associated to any � -shuffled permutation define F

� ,�
• to be the � -permuted

coordinate flag, i.e., the one whose d-dimensional subspace is hEe� (1), . . . Ee� (d)i.
We will use this result, due to A. Yamamoto:
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Proposition 5.9 [51]. The S-fixed points of Y� are flags F
� ,�
• where � 2 Sp+q is

� -shuffled.

Proposition 5.10 (S-fixed points of BEMY0,Q for (GLp+q ,GLp ⇥GLq)). The set of

S-fixed points of BEM
Y0,Q

correspond to P-growth diagrams whose initial vertical

chain is F
� ,�
• (where Y = Y� ).

Proof. The following is straightforward:

Claim 5.11. Fix a coordinate flag F• for the initial vertical chain, i.e., F• 2 (G/B)T.

There exists exactly one P-growth of F• which uses only subspaces of the form

hEei1, . . . , Eeid
i.

Clearly any such P-growth of F• is an S-fixed point of BEMY0,Q . Conversely,
consider any S-fixed point of BEMY0,Q and its corresponding diagram. The left
border is an S-fixed point of Y = Y� . The result then holds by Proposition 5.9
together with Claim 5.11. ⇤

Proposition 4.3 gives a general form of Proposition 5.10.

Corollary 5.12. #(BEMY0,Q)S = p! q! 2|Q|
.

Similar descriptions for the torus fixed points can be given for the other two
symmetric pairs of the form (GLn,K). In these cases T 6= S, however it is known
that the fixed points in the respective flag varieties agree (see [7, p. 128]). In brief, in
the case (G,K) = (GL2n, Sp2n), as elements of S2n , these S-fixed points correspond
to “mirrored” permutations, i.e., those permutations w having the property that
w(2n+1�i)= 2n+1�w(i) for each i ; this is described in detail in [48]. Similarly,
in the case of (G,K)= (GLn,On), these fixed points correspond to mirrored elements
of Sn , as described in [48].

In [14] one considers Bott–Samelson varieties in relation to zonotopal tilings of
an Eltnitsky polygon. This puts a poset structure on Bott–Samelson varieties (in
type A) by introducing generalized Bott–Samelson varieties for which the fibers are
larger flag varieties rather than P1’s. The diagram definition of BEMY0,Q permits
one to obtain similar definitions and results here mutatis mutandis.

6. Moment polytopes for the GL p ⇥GLq case

Recall from the end of Section 4 that the BEM polytope PY0,Q denotes the moment
polytope 8(BEMY0,Q).

Example 6.1. Let Q = (3, 2) and Y0 = Y++��. Following the construction in
Section 5, and applying Theorem 5.1, BEMY0,Q is described by the following
diagram.



K-ORBIT CLOSURES AND BARBASCH–EVENS–MAGYAR VARIETIES 123

C4

W3

E2

W1

V2

V1

C0

By Corollary 5.12, BEMY0,Q has 4·22 =16 S-fixed points. We apply Theorem 4.1
to construct the moment polytope. First, by (21), 8(BS

Q) is the convex hull of the
following points:

(�1,�2)
P

r

i=1 !i +
P1

i=|Q|
s�|Q|

· · · s�i
!i

(�, �) (5, 4, 2, 0) = (3, 2, 1, 0)+s� ·(1, 1, 0, 0)+s�s� ·(1, 1, 1, 0)

(3, �) (5, 4, 1, 1) = (3, 2, 1, 0)+s� ·(1, 1, 0, 0)+s�s3 ·(1, 1, 1, 0)

(�, 2) (5, 3, 3, 0) = (3, 2, 1, 0)+s2 ·(1, 1, 0, 0) +s2s� ·(1, 1, 1, 0)

(3, 2) (5, 2, 3, 1) = (3, 2, 1, 0)+s2 ·(1, 1, 0, 0) +s2s3 ·(1, 1, 1, 0)

The polytope 8(BS
Q) is the white quadrilateral in Figure 5. We consider the

reflections of 8(BS
Q) by the T-fixed points of Y0, corresponding to the + + ��

shuffled permutations:

[1, 2, 3, 4], [2, 1, 3, 4], [1, 2, 4, 3], and [2, 1, 4, 3].

By Theorem 4.1, PY0,Q is the convex hull of the reflections

[1, 2, 3, 4] ·8(BS
Q) = conv{(5, 4, 2, 0), (5, 4, 1, 1), (5, 3, 3, 0), (5, 2, 3, 1)},

[2, 1, 3, 4] ·8(BS
Q) = conv{(4, 5, 2, 0), (4, 5, 1, 1), (3, 5, 3, 0), (2, 5, 3, 1)},

[1, 2, 4, 3] ·8(BS
Q) = conv{(5, 4, 0, 2), (5, 4, 1, 1), (5, 3, 0, 3), (5, 2, 1, 3)}, and

[2, 1, 4, 3] ·8(BS
Q) = conv{(4, 5, 0, 2), (4, 5, 1, 1), (3, 5, 0, 3), (2, 5, 1, 3)}.

By the discussion of K-orbits of type A, the number of choices of closed orbits
Y0 = Y� equals the number of matchless clans in Clansp,q and this number is

�
p+q

p

�
.

However, as we verify in the following theorem, if we fix Q and let Y� vary, then
all the BEM-polytopes are isometric, being reflections of one other.

Theorem 6.2 (Reduction to + · · · + � · · ·� case). PY� ,Q is a w-reflection of

PY+···+�···�,Q where w is the smallest permutation such that w ·(+ · · ·+� · · · �) = � .
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id, (3, 2)

id, (�, �)
id, (3, �)

id, (�, 2)

[1, 2, 4, 3], (�, 2)

[1, 2, 4, 3], (3, 2)

[2, 1, 3, 4], (3, 2)

[2, 1, 4, 3], (3, 2)

Figure 5. PY0,Q for Y0 = Y++�� and Q = (3, 2) is the convex hull
of four reflections in R3 of the Bott–Samelson polytope (white).
We have labeled some of the points 8(p(x,J )) using x, J ; all other
points can be inferred from these.

Proof. Suppose � 2 Clansp,q is matchless and there exists an i such that �i = �

and �i+1 = +. Let � 0 2 Clansp,q be obtained by interchanging �+ 7! +� at those
positions.

By Proposition 5.9, the T-fixed points of Y� are the � -shuffled permutations;
call this set A. Similarly, the T-fixed points of Y� 0 are the � 0-shuffled permutations;
call this set B.

Claim 6.3. Asi = B.

Proof of Claim 6.3. Let � 2 A. Since �i = �, by definition � (i) 2 {p + 1, p +

2, . . . , n}. Also, since �i+1 = +, � (i + 1) 2 {1, 2, . . . , p}. Thus if � 0 = � si then
� 0(i) 2 {1, 2, . . . , p} and � 0(i +1) 2 {p+1, p+2, . . . , n}, as is required for � 0 2B.
The claim follows. ⇤

The claim, combined with Proposition 5.10 imply that the T-fixed points of
BEM

Y� 0 ,Q are the si -reflection of those of BEM
Y� ,Q . Since the moment map

images are determined by these T-fixed points, the respective polytopes must
be an si reflection of one another. Now iterate this process down to the case
+ · · · +� · · · �. ⇤

The Table 1 summarizes some information about the resulting polytopes for
p = q = 2. In view of Theorem 6.2, we only need to consider � =++��. We have
restricted to Q reduced and |Q| 3 for brevity. Actually, based on such calculations,
it seems true that if Q and Q

0 are Demazure words for the same w then the BEM
polytopes are combinatorially equivalent. For example, Q = (1), (1, 1), (1, 1, 1)

are all two-dimensional with (V, E, F) = (4, 4, 1). However, we have no proof of
this at present.
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Q dim V E F

(1) 2 4 4 1
(2) 3 8 12 6
(3) 2 4 4 1

(1, 2) 3 12 18 8
(1, 3) ⌘ (3, 1) 2 4 4 1

(2, 1) 3 8 12 6
(2, 3) 3 8 12 6
(3, 2) 3 12 18 8

(1, 2, 1) ⌘ (2, 1, 2) 3 12 18 8
(1, 2, 3) 3 12 18 8

(1, 3, 2) ⌘ (3, 1, 2) 3 8 12 6
(2, 1, 3) ⌘ (2, 3, 1) 3 8 12 6

(2, 3, 2) 3 12 18 8
(3, 2, 1) 3 12 18 8
(3, 2, 3) 3 12 18 8

Table 1. BEM polytope data for (GL4,GL2 ⇥ GL2) where Q is
reduced and |Q|  3.

Following [42, Section 5], let X be a projective algebraic variety with a torus
action T. Suppose p 2 X

T. Let Tp(X) be the tangent space; this too carries a
T action and a TR action. The TR-decomposition is Tp(X) =

L
↵E↵, where E↵

are the eigenspaces with eigenvalues ↵ 2 t⇤. These {↵} are the T-weights. The
nonnegative cone spanned by these T-weights of Tp(X) is equal to the cone spanned
by the edges of the moment polytope 8(X) incident to 8(p).

For w = s j1s j2 . . . s j` a reduced expression of w we define

inv(w) := {↵ j1, s j1(↵ j2), . . . , s j1s j2 . . . s j`�1(↵ j`)}.

Theorem 6.4 (combinatorial description of T-weights). Let Q = ( j1, j2, . . . , jN )

be a word and J = (�1, . . . ,�N ) be a subword of Q. The T-weights of the tangent

space of BEM
Y+···+�···�,Q

at p(uB,J ), where uB is a T-fixed point of Y+···+�···�, are

u · (� inv(w)) [ u · {s�N
· (�↵ jN

), s�N
s�N�1 · (�↵ jN�1), . . . , s�N

. . . s�1 · (�↵ j1)},

where w = [p, p � 1, . . . , 1, n, n � 1, . . . , p + 1].

Proof. We apply:

Theorem 6.5 [16, Corollary 3.11]. Let Q0, . . . , Qn be subgroups of an algebraic

group G and let T be a torus in G. Suppose that R0, . . . , Rn are subgroups of G
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with Ri ⇢ Qi�1 \ Qi for i > 0 and R0 ⇢ Q0. Let

X = Qn ⇥
Rn Qn�1 ⇥

Rn�1 · · · ⇥
R2 Q1 ⇥

R1 Q0/R0

and [qn, . . . , q0]2 X a T -fixed point. Assume in addition that for every i , q
�1
i

· · · q
�1
n

is in the normalizer of T . Then the weights of T acting on the tangent space

T[qn,...,q0]X is the multiset union of

qnqn�1 . . . qi · {weights of T acting on Qi/Ri },

where i runs from n to 0.

More precisely, we apply this result to T and

BE
Y0,Q

= eY0 ⇥
B
P jN

⇥
B
P jN�1 ⇥

B
· · · ⇥

B
P j1/B,

where eY0 is the preimage of Y0 = Y+···+�···� in G under G ! G/B.
Let us verify that BEY0,Q satisfies the required hypotheses. The orbit

Y+···+�···� = {C0
⇢ F1 ⇢ · · · ⇢ Fp�1 ⇢ Cp

⇢ Fp+1 ⇢ · · · ⇢ Cp+q
}.

Thus eY0 is the maximal parabolic subgroup Pp̂. We have that eY0,P jN
, . . . ,P j1 are

subgroups of GLn . Since B is a Borel subgroup then B⇢ eY0\P jN
and B⇢P jt�1 \P jt

for 1  t  N .
The T-fixed point of BEY0,Q corresponding to p(uB,J ) is [u, s�N

, s�N�1, . . . , s�1B],
where u 2 N (T). Therefore (us�N

s�N�1 . . . s�i
)�1 is in the normalizer of T for all i .

We have now verified that BEY0,Q satisfies the required hypotheses.
Since Y0 is the Schubert variety for w, the T-weights of eY0/B = Y0 at B are the

negatives of the inversions of w. The T-weight of P↵i
/B at B is the simple root ↵i .

By Theorem 6.5, the T-weights of BEY0,Q at the fixed point [u, s�N
, s�N�1, . . . , s�1]

is the multiset-union

u ·(� inv(w))[{us�N
·(�↵ jN

)}[{us�N
s�N�1 ·(�↵ jN�1)}[ . . . {us�N

. . . s�1 ·(�↵ j1)}

By Theorem 3.3, the T-weights for the tangent spaces of BEY0,Q are the same as
those for BEMY0,Q . ⇤
Corollary 6.6. The point 8(p(uB,J )) is a vertex of PY+···+�···�,Q if and only if

8(p(B,J )) is a vertex of PY+···+�···�,Q.

Proof. 8(p(wB,J )) is a vertex whenever there is not a line in the cone spanned by
the T-weights of the tangent space Tp(wB,J ) (BEM

Y+···+�···�,Q). By Theorem 6.4,

T-weights of Tp(uB,J ) (BEM
Y+···+�···�,Q)=u·(T-weights of Tp(B,J ) (BEM

Y+···+�···�,Q)).

The claim follows since a cone contains a line if and only any reflection contains a
line. ⇤
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Example 6.7. Consider the BEM polytope PY0,Q of Example 6.1 and Figure 5.
The vertices of PY0,Q adjacent to 8(p(B,(3,2))) are

8(p(B,(�,2))), 8(p([1,2,4,3]B,(3,2))), and 8(p([2,1,3,4]B,(3,2))).

The cone spanned by the edges of PY0,Q incident to 8(p(B,(3,2))) is

pos{8(p(B,(�,2))) �8(p(B,(3,2))),8(p(s3B,(3,2))) �8(p(B,(3,2))),

8(p([s1B,(3,2))) �8(p(B,(3,2)))}

= pos{(0, 0, �1, 1), (0, 1, 0, �1), (�1, 1, 0, 0)}.

Let us compute the T-weights for the tangent space of BEMY0,Q at p(B,(3,2)). We
have that w = [2, 1, 4, 3] = s1s3 so

inv(w) = {↵1, s1(↵3)} = {↵1,↵3} = {(1, �1, 0, 0), (0, 0, 1, �1)}.

Since J = (3, 2), then by Theorem 6.4 the T-weights are

{�↵1, �↵3} [ {s2(�↵2), s2s3(�↵3)}

= {�↵1, �↵3,↵2,↵2 +↵3}

= {(�1, 1, 0, 0), (0, 0, �1, 1), (0, 1, �1, 0), (0, 1, 0, �1)}.

The cone spanned by the T-weights coincides with the cone spanned by the edges
incident to 8(p(B,(3,2)). Since this cone does not contain a line it follows that
8(p(B,(3,2)) is a vertex of PY0,Q .

Now consider the T-fixed point p(B,(3,�)). The T-weights for the tangent space
of BEMY0,Q at p(B,(3,�)) are

{�↵1, �↵3} [ {s�(�↵2), s�s3(�↵3)}

= {�↵1, �↵3, �↵2,↵3}

= {(�1, 1, 0, 0), (0, 0, �1, 1, ), (0, �1, 1, 0), (0, 0, 1, �1)}.

By Theorem 6.4 the cone spanned by these vectors is the cone spanned by the edges
incident to �(p(B,(3,�))). Since this cone contains the line spanned by ↵3 then this
point is not a vertex of PY0,Q . ⇤

Although we have not done so here, it should be possible to give a combinatorial
description of the vertices of PY0,Q . Doing so is equivalent to classifying the T-fixed
points for which the cone spanned by the T-weights does not contain a line.

We conclude this paper with:

Theorem 6.8 (dimension of PY0,Q). For (G,K) = (GLp+q ,GLp ⇥GLq),

dim(PY0,Q) =

⇢
p + q � 1 if p is in Q,

p + q � 2 if p is not in Q.
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Proof. A T -action on a space X is effective if each element of T , other than the
identity, moves at least one point of X . In the proof of [39, Corollary 27.2] it is
shown that for an effective Hamiltonian T -action the dimension of the corresponding
moment polytope equals the dimension of the torus. If the T -action is not effective
it is known that it can be reduced it to an effective action with the same moment
polytope. The stabilizer of the T -action is the normal subgroup

ST (X) := {t 2 T | t · x = x for all x 2 X}.

The T -action on X reduces to the effective action of T/ST (X) given by t ST (X)·x :=

t · x . To prove the theorem we will consider the cases in which p is in Q and when
it isn’t separately. In each case we will explicitly compute the stabilizer of the
T-action on BEM

Y0,Q . First, note that T1 = {t 2 T | t1 = · · · = tn} acts trivially on
BEM

Y0,Q and therefore it is a subgroup of ST(BEMY0,Q).
In view of Theorem 6.2, we assume without loss of generality, that Y0 =

Y+···+�···�, i.e.,

Y0 = {(F1, F2, . . . , Fn�1) 2 G/B | Fp = E p}.

Consider the projection '0 : BEMY0,Q ! Y0 that maps a point in the configuration
space to the leftmost flag (corresponding to the leftmost border) in the diagram.
Since the projection is T-equivariant, ST(BEMY0,Q) is a subgroup of ST(Y0). Let
us first describe ST(Y0). Note that

T2 = {t 2 T | t1 = · · · = tp, tp+1 = · · · = tn}

acts trivially on Y0. Furthermore, since Y0 is isomorphic to GLp/B⇥GLq/B then
ST(Y0) is isomorphic to ST(GLp/B)⇥ ST(GLq/B). It follows that ST(Y0) = T2 and
therefore ST(BEMY0,Q) is either equal to T1 or T2.

First suppose that p is in Q and let k be such that jk = p, where Q = ( j1, . . . , jN ).
It is straightforward from Section 5 that if we set

Vk = span{Ee1, . . . , Eep�1, Eep + Eep+1},

then the following holds:

(E1, E2, . . . , En�1, E j1, E j2, . . . , E jk�1, Vk, E jk+1, . . . , E jN
) 2 BEM

Y0,Q .

Furthermore, for t 2 T2

t · Vk = span{Ee1, Ee2, . . . , Eep�1, Eep + tnEep+1} 6= Vk,

so T2 does not act trivially on BEM
Y0,Q and ST(BEMY0,Q) = T1. From this and

the first paragraph it follows that

dim(PY0,Q) = p + q � 1.
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Now suppose that p is not in Q. This implies that every vector space in

(F1, F2, . . . , Fn�1, V1, V2, . . . , VN ) 2 BEM
Y0,Q

must either be a subspace of E p or contain E p. So T2 acts trivially on BEM
Y0,Q

and ST(BEMY0,Q) = T2. We conclude that dim(PY0,Q) = p + q � 2. ⇤
Example 6.9. The data of Table 1 is consistent with Theorem 6.8. Furthermore,
note that the dimension characterization only depends on p and not q. Indeed, if
p = 2 and q = 3, one can check PY++���,(3) has dimension 3, also in agreement
with the theorem. ⇤

Acknowledgements

We thank D. Barbasch, B. Elek, S. Evens, W. Graham, A. Knutson, E. Lerman,
L. Li, J. Pascaleff, and A. Woo for helpful conversations. We thank S. Evens for
clarifying and correcting our understanding of the hypotheses of [3, Proposition 6.4].
We also thank referees for suggestions. Escobar was supported by an AMS-Simons
travel grant, NSF grant DMS 1855598 and NSF CAREER grant DMS 2142656.
Yong was supported by NSF grant DMS 1500691, an NSF RTG in combinatorics
DMS 1937241, and Simons Collaboration Grant 582242.

References

[1] H. Abe and S. Billey, “Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of
permutation patterns in Schubert calculus and related geometry”, pp. 1–52 in Schubert calculus

(Osaka, 2012), Adv. Stud. Pure Math. 71, Math. Soc. Japan, Tokyo, 2016. MR Zbl

[2] M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc. 14:1 (1982),
1–15. MR Zbl

[3] D. Barbasch and S. Evens, “K -orbits on Grassmannians and a PRV conjecture for real groups”,
J. Algebra 167:2 (1994), 258–283. MR Zbl

[4] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics 182,
Birkhäuser, Boston, MA, 2000. MR Zbl

[5] S. C. Billey and G. S. Warrington, “Maximal singular loci of Schubert varieties in SL(n)/B”,
Trans. Amer. Math. Soc. 355:10 (2003), 3915–3945. MR Zbl

[6] R. Bott and H. Samelson, “Applications of the theory of Morse to symmetric spaces”, Amer. J.

Math. 80 (1958), 964–1029. MR Zbl

[7] M. Brion, “Rational smoothness and fixed points of torus actions”, Transform. Groups 4:2-3
(1999), 127–156. MR Zbl

[8] M. Brion, “Lectures on the geometry of flag varieties”, pp. 33–85 in Topics in cohomological

studies of algebraic varieties, Birkhäuser, Basel, 2005. MR Zbl

[9] A. Caviedes Castro, “Upper bound for the Gromov width of coadjoint orbits of compact Lie
groups”, J. Lie Theory 26:3 (2016), 821–860. MR

[10] A. Cortez, “Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe
linéaire”, Adv. Math. 178:2 (2003), 396–445. MR Zbl

http://dx.doi.org/10.2969/aspm/07110001
http://dx.doi.org/10.2969/aspm/07110001
http://msp.org/idx/mr/3644818
http://msp.org/idx/zbl/1378.14053
http://dx.doi.org/10.1112/blms/14.1.1
http://msp.org/idx/mr/642416
http://msp.org/idx/zbl/0482.58013
http://dx.doi.org/10.1006/jabr.1994.1184
http://msp.org/idx/mr/1283286
http://msp.org/idx/zbl/0823.14037
http://dx.doi.org/10.1007/978-1-4612-1324-6
http://msp.org/idx/mr/1782635
http://msp.org/idx/zbl/0959.14032
http://dx.doi.org/10.1090/S0002-9947-03-03019-8
http://msp.org/idx/mr/1990570
http://msp.org/idx/zbl/1037.14020
http://dx.doi.org/10.2307/2372843
http://msp.org/idx/mr/105694
http://msp.org/idx/zbl/0101.39702
http://dx.doi.org/10.1007/BF01237356
http://msp.org/idx/mr/1712861
http://msp.org/idx/zbl/0953.14004
http://dx.doi.org/10.1007/3-7643-7342-3_2
http://msp.org/idx/mr/2143072
http://msp.org/idx/zbl/1487.14105
http://msp.org/idx/mr/3459912
http://dx.doi.org/10.1016/S0001-8708(02)00081-6
http://dx.doi.org/10.1016/S0001-8708(02)00081-6
http://msp.org/idx/mr/1994224
http://msp.org/idx/zbl/1044.14026


130 LAURA ESCOBAR, BENJAMIN J. WYSER AND ALEXANDER YONG

[11] M. Demazure, “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm.

Sup. (4) 7 (1974), 53–88. MR Zbl

[12] S. Elnitsky, “Rhombic tilings of polygons and classes of reduced words in Coxeter groups”, J.

Combin. Theory Ser. A 77:2 (1997), 193–221. MR Zbl

[13] L. Escobar, “Brick manifolds and toric varieties of brick polytopes”, Electron. J. Combin. 23:2
(2016), art. id. 2.25. MR Zbl

[14] L. Escobar, O. Pechenik, B. E. Tenner, and A. Yong, “Rhombic tilings and Bott–Samelson
varieties”, Proc. Amer. Math. Soc. 146:5 (2018), 1921–1935. MR

[15] A. Fink and L. Moci, “Polyhedra and parameter spaces for matroids over valuation rings”, Adv.

Math. 343 (2019), 448–494. MR Zbl

[16] W. Graham and R. Zierau, “Smooth components of Springer fibers”, Ann. Inst. Fourier (Grenoble)

61:5 (2011), 2139–2182. MR Zbl

[17] V. Guillemin and S. Sternberg, “Convexity properties of the moment mapping”, Invent. Math.

67:3 (1982), 491–513. MR Zbl

[18] M. Haerterich, “The T -equivariant cohomology of Bott–Samelson varieties”, preprint, 2004.
arXiv 0412337

[19] H. C. Hansen, “On cycles in flag manifolds”, Math. Scand. 33 (1973), 269–274. MR

[20] M. Harada and J. J. Yang, “Newton–Okounkov bodies of Bott–Samelson varieties and Grossberg–
Karshon twisted cubes”, Michigan Math. J. 65:2 (2016), 413–440. MR Zbl

[21] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York,
1977. MR Zbl

[22] B. Jones and A. Woo, “Mask formulas for cograssmannian Kazhdan–Lusztig polynomials”, Ann.

Comb. 17:1 (2013), 151–203. MR Zbl

[23] C. Kassel, A. Lascoux, and C. Reutenauer, “The singular locus of a Schubert variety”, J. Algebra

269:1 (2003), 74–108. MR Zbl

[24] F. Kirwan, “Convexity properties of the moment mapping, III”, Invent. Math. 77:3 (1984),
547–552. MR Zbl

[25] A. Knutson, “The symplectic and algebraic geometry of Horn’s problem”, Linear Algebra Appl.

319:1-3 (2000), 61–81. MR Zbl

[26] A. Knutson, “Frobenius splitting, point-counting, and degeneration”, preprint, 2009. arXiv
0911.4941

[27] A. Knutson, “K-orbits on G/B”, 2012, http://www.math.cornell.edu/~allenk/courses/12fall/
KGBcourse.pdf.

[28] V. Lakshmibai, P. Littelmann, and P. Magyar, “Standard monomial theory for Bott–Samelson
varieties”, Compositio Math. 130:3 (2002), 293–318. MR Zbl

[29] P. Magyar, “Schubert polynomials and Bott–Samelson varieties”, Comment. Math. Helv. 73:4
(1998), 603–636. MR Zbl

[30] L. Manivel, “Le lieu singulier des variétés de Schubert”, Internat. Math. Res. Notices 2001:16
(2001), 849–871. MR Zbl
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