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Complexity of the usual torus action on

Kazhdan—Lusztig varieties

Maria Donten-Bury, Laura Escobar & Irem Portakal

ABSTRACT We investigate the class of Kazhdan—Lusztig varieties, and its subclass of matrix
Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert
variety X, as X = Y x C¢ (where d is maximal possible), we show that Y, can be of
complexity-k exactly when k # 1. Also, we give a combinatorial description of the extremal
rays of the weight cone of a Kazhdan—Lusztig variety, which in particular turns out to be the
edge cone of an acyclic directed graph. As a consequence we show that given permutations v and
w, the complexity of Kazhdan—Lusztig variety indexed by (v, w) is the same as the complexity
of the Richardson variety indexed by (v,w). Finally, we use this description to compute the
complexity of certain Kazhdan—Lusztig varieties.

1. INTRODUCTION

A group action on a variety very often gives significant information about its structure
and allows one to simplify its description. A very well-known example of this phe-
nomenon is the class of toric varieties, i.e. algebraic varieties endowed with an action
of an algebraic torus (C*)™ such that there is a dense orbit. A toric variety can be
completely described using combinatorial objects: a fan of convex polyhedral cones in
R™, rational with respect to a lattice Z™ C R™. In [1] Altmann and Hausen extended
this description to the class of T-varieties, that is algebraic varieties with an algebraic
torus action which does not necessarily have a dense orbit. In general, a T-variety X
can be presented in terms of its p-divisor which is a partially combinatorial object,
consisting of a special quotient of X by the considered action (the geometric part)
and a fan of rational polyhedral cones in the lattice related to the torus (the combina-
torial part). If the complexity of the torus action, i.e. the codimension of the biggest
orbit, is small, then the combinatorial part contains a lot of information about X. In
particular, if complexity is O then X is toric and the p-divisor is purely combinatorial.

While toric varieties and their combinatorial description have been widely investi-
gated, there is still a lot to find out about T-varieties of higher complexity, even in
the case of complexity-1. Their geometric structure in general has been studied in [2],
but, in particular, there are not many non-trivial examples of p-divisors. Apart from
the ones in [1], one may look at p-divisors coming from the spectrum of the Cox ring
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structure on a variety, see [3]. An interesting general question is to find T-varieties
such that their p-divisors are not too difficult to determine, but they do not come from
a structure of a toric variety by downgrading the action. In particular, one may look
for a complexity-1 T-variety such that the quotient is a curve of higher genus. Such
examples could be later used to investigate the relation between the p-divisor descrip-
tion of a T-variety and its degenerations, see [3]. Thus, p-divisors give a motivation
for studying T-varieties of small complexity.

A related problem is to describe a given collection of varieties with a torus action
in the language of T-varieties of [1]. The goal of this paper is to begin to carry out this
program for a class of algebraic varieties, called Kazhdan—Lusztig varieties, defined by
imposing certain determinantal conditions to matrices in C"*", see Section 4.1. Such
a variety, denoted N v,w depends on two permutations v, w € S, where S,, denotes
the symmetric group of degree n. This class of varieties has been used to describe local
behavior of Schubert varieties in the flag variety, e.g. in [31], and to provide geometric
explanations for various combinatorial phenomena in algebraic combinatorics, see
e.g. [18, 32, 7, 17].

Kazhdan—Lusztig varieties are endowed with a torus action, which we call the usual
torus action and describe in Section 4.2. We investigate the complexity of this action
and present methods for finding classes of Kazhdan—Lusztig varieties of small complex-
ity using results from representation theory and cones arising from directed graphs. A
related problem is to investigate the complexity of Schubert varieties, e.g. [15, 22]. As
we will see in Sections 4 and 5, only in special cases does the complexity of a Schubert
variety X, determine the complexity of Kazhdan-Lusztig varieties Ny, 4.

We now describe the structure of the paper as well as the main results. In Section 2,
we briefly introduce T-varieties and toric ideals arising from directed graphs. We
present a formula for the dimension of the edge cone associated to this toric variety,
which is used to determine the complexity of a T-variety. In Section 3 we study a
special subclass of Kazhdan—Lusztig varieties: matriz Schubert varieties which were
introduced by Fulton in [11]. A matrix Schubert variety X,, is isomorphic to Y,, x C¢
where d is as large as possible and Y,, is an affine variety. We show in Section 3.2
that the weight cone of the usual torus action on Y, is the edge cone of an acyclic
bipartite graph. In [10] the authors give a combinatorial criterion for Y,, to be toric.
By simple arguments using graphs to investigate the dimension of the weight cone,
we hoped to classify complexity-1 matrix Schubert varieties, but surprisingly it turns
out that there are none, while all other complexities can be obtained.

THEOREM (Theorem 3.14, Theorem 3.15). There exist T-varieties Yy, of complexity-k
with respect to usual torus action only for k # 1, where X, = Y, x C? is a matriz
Schubert variety with d mazimal possible.

In Section 4, we investigate properties of the usual torus action on general
Kazhdan—Lusztig varieties. The main result of this section is the description of the
generators of the weight cone of the usual torus action on N, 4. The description is
combinatorial, it relies on the properties of permutation v, w which determine N, .
Given a permutation v denote by £(v) the length of the permutation, i.e. the number
of inversions of w.

THEOREM (Theorem 4.11). The weight cone of the usual torus action on Ny ., =
X N Q2 is spanned by weights €u(j) — €i corresponding to the coordinate z;; of the
opposite Schubert cell Q5 such that t,;) ;v < w and £(t,(,v) —L(v) = 1, where t,gy;
is the permutation transposing v(j) and i.

One observes immediately that this weight cone is also an edge cone of an acyclic
graph. This result, joined with the methods of investigating torus action via associated
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graphs, gives a tool which significantly simplifies the task of finding the complexity
of a Kazhdan—Lusztig variety with the usual torus action. As a consequence of this
theorem, we show in Corollary 4.16 that the complexity of A, ,, is the same as the
complexity of the Richardson variety indexed by (v, w).

Lastly, Section 5 is a study of special cases with interesting examples of T-varieties.
More precisely, given d € N we give a classification for the Kazhdan—Lusztig varieties
of complexity-d when v is the identity or a simple reflection. Concretely, in Theo-
rem 5.8 and Theorem 5.14 we give a formula for the complexity in terms of a reduced
word expression of w.

2. TorIC BACKGROUND

2.1. T-VARIETIES OF COMPLEXITY-d. Let us discuss some relevant background on
T-varieties. For a deeper discussion of T-varieties, we refer the reader to [1] and [2].

Given a torus T, let M(T) denote the character lattice of T and M(T)g the real
vector space spanned by M(T').

DEFINITION 2.1. An affine normal variety X is a T-variety of complexity-d if it admits
an effective T torus action with dim(X) — dim(T) = d.

Note that normal affine toric varieties are T-varieties of complexity zero.

Let us describe how to compute the complexity of a T-variety X using polyhedral
methods. The convex polyhedral cone generated by all weights of the torus action
on X in M(T)g is called the weight cone of the action. Let p be a general point in
X. The closure of the torus orbit T - p is the affine normal toric variety associated
to the weight cone of the action. Therefore, the dimension of T"-p is equal to the
dimension of the weight cone of the action. Since the action of T on T - p is effective,
dim(T) = dim(T - p) and it follows that the dimension of the weight cone is equal to
the complexity of the T-action. We conclude that the complexity of the T-variety X
is equal to dim(X) minus the dimension of the weight cone. If the T-action is not
effective then the subgroup S = ﬂpGX T, is nontrivial, where T, = {t € T' | t - p = p}.
The induced T'/S-action on X is given by ¢S -p =t-p and it is both well defined and
effective. Moreover, the weights of the T'/S-action are the same as the weights of the
T-action. It follows that the complexity of the T'/S-action is also equal to dim(X)
minus the dimension of the weight cone.

Throughout this paper, whenever we have a T-action on X that is not effective,
we will abuse notation and refer to X as a T-variety with complexity equal to that of
the T'/S-action.

2.2. TORIC IDEALS ARISING FROM DIRECTED GRAPHS. Since we work with directed
acyclic graphs throughout this paper, we restrict our attention to these graphs, despite
the fact that the following construction can be done for general directed graphs.

Let G be a connected directed acyclic graph with n vertices and ¢ edges. We denote
the edge set by E(G) and its vertex set by V(G). We choose the notation (a — b)
for the directed edge from vertex a to vertex b in order to avoid a conflict with other
notation. The kernel I of the following morphism

g Clay, ..., o) — CEE .. 5]
Te > it
where e = (i — j) € E(G), is called the edge ideal of G, see [24, 13]. The edge
ideal is prime and generated by binomials. Concretely, let ¢ = (v;,,...,v;.) be a

(not directed) cycle i.e. a closed walk in which only the first and the last vertices are
equal. Here v;, is an edge of G, for k € [r]. We split the cycle into two disjoint sets of
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edges ¢y and c_ where ¢, consists of the clockwise oriented edges in the cycle ¢ and

c— = ¢\ c4. Then we define the following binomial
fc = H T; — H xiEC[xl,...,a:q].
viECH vi€Cc_

If ey =@ or e =@, we set Hviec+ z; = lor[[, c. =i =1 Wesay that a cycle I
is primitive if it does not have any chord i.e. an edge which is not part of the cycle
but connects two vertices of the cycle.

THEOREM 2.2. [13, Cor. 4.5] The edge ideal Ig associated to G is generated by the
binomials f. where ¢ is a primitive cycle.

The affine normal toric variety associated to G is defined as
TV(G) := Spec(Clz, ..., z4)/Ic) = Spec(Clod N M(T)]),
where o, C M(T)g is called the (dual) edge cone. Let e; € RIV (@I be the ith standard
basis vector. One can describe the dual edge cone precisely as
ol = Cone(e; —¢j| (i — j) € E(Q)).
The following result is crucial while calculating the complexity of a T-variety

throughout this paper.

LEMMA 2.3. Let G be a directed acyclic graph with n vertices and k connected compo-
nents. The dimension of the edge cone o, C Mg isn — k.

Proof. The rays of o are the columns of the incidence matrix Ag of G, so the
dimension of o equals the rank of Ag. By [13, Lem 4.1] if G is connected, then
the rank of the incidence matrix Ag is n — 1. For G with connected components

G1, ..., Gy after a relabelling of the vertices and edges we obtain
Ag, 0 0 ... 0
0 Ag, 0 ... 0
Ac=1| 1 0 0

Hence the rank of Ag is n — k. O

3. TORUS ACTION ON MATRIX SCHUBERT VARIETIES
Throughout this section we choose conventions which are compatible with [21]

and [32].

3.1. BACKGROUND ON MATRIX SCHUBERT VARIETIES. Let w € S, be a permutation.
We denote its permutation matrix again by w € C"*™ with the convention

Q) g {1, if w(j) =1,

0, otherwise.

Consider the following action of B x B on C"*", where B is the group of invertible
upper triangular matrices of size n x n:

(B x B) x C"™*™ — <"
(X,Y),M)— XMY !

Given a,b € [n] = {1,2,...,n} and M € C*" let M%" € C~¢tDxb be the
submatrix of M consisting of rows a,...,n and columns 1,...,b. We denote the rank
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[ o

D(w) = Do(w) = D 7

—

F1GURE 1. The Rothe and opposite Rothe diagram of 3412.

—®

of Mé’b as rpr(a,b). We remark that M € BwB if and only if rps(a,b) = ry(a,b) for
all a,b € [n].

DEFINITION 3.1. The matriz Schubert variety associated to permutation w € Sy, is the
Zariski closure X,, = BwB C C"*",

These varieties were first investigated in [11], where their defining ideals were de-
scribed combinatorially in terms of Rothe diagrams.

DEFINITION 3.2. The Rothe diagram of w € Sy, is D(w) = {(w(j),?) | i < j, w(i) >
w(j)}-

Note that each entry in D(w) is in one-to-one correspondence with an inversion of
w and therefore £(w) = |D(w)|, where £(w) is the Coxeter length of w. Starting with
the permutation matrix w, D(w) is visualized by replacing each 1 by a e, deleting all
0s, and placing a box in each entry of the permutation matrix w that is not south or
east of a e.

DEFINITION 3.3. The opposite Rothe diagram of w € S,, is D°(w) = {(4,7) | w(j) <
i, w™(i) > j}.

In this case, D°(w) is visualized in a similar way to D(w), except that we place a
box on each entry that is not north or east of a . Note that D°(w) = {(w(i),5) | j <
i, w(j) <w(i)}, n—1)

n(n—1 R
lw) =[D(w)| = ——— — [D°(w)],
and the connected components of D°(w) are Young diagrams in French notation.

DEFINITION 3.4. The set consisting of the north-east corners of each connected com-
ponent of D°(w) is called the essential set of w and denoted Ess(w).

THEOREM 3.5 ([11, Prop. 3.3, Lem. 3.10]). The matriz Schubert variety X,, is an
affine variety of dimension n?—|D°(w)|. It is defined as a scheme by the determinants
encoding the inequalities rp(a,b) < 1y (a,b) for all (a,b) € Ess(w).

Matrix Schubert varieties are normal varieties, see e.g. [18, Thm. 2.4.3].

ExXAMPLE 3.6. Let w = 3412 € S;. We obtain the traditional and opposite Rothe

diagrams as in Figure 1. The length of w is |D(w)| = 4 = 6 — |D°(w)|. Observe

that Ess(w) = {(4,1),(2,3)} and the matrix Schubert variety X,, is defined by the

inequalities ras(4,1) < ry(4,1) = 0 and rp(2,3) < 74(2,3) = 2. Its defining ideal
221 222 %23

is then (241,det(Mé’3)) = | z41,det | 231 232 233 C Clz12, ..., 244]. Note that
241 %42 %43

dim(X,,) = 14.

Given w € S,, there exists an affine variety Y,, such that X,, = Y, x C? where d is
as large as possible. Let us describe Y, and d more precisely, following [10] with the
change of conventions we explain in Remark 3.9.
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SW(w)= L(w) = L' (w)=

FIGURE 2. SW(w), L(w) and L'(w) for w = 3412.

DEFINITION 3.7. The connected component of (n,1) in D°(w) is the dominant piece
of w and is denoted dom(w). Denoted by SW(w) the set consisting of the (i, j) which
are south-west of some entry in Ess(w). Moreover we let L(w) == SW(w) \ dom(w)
and L'(w) == L(w) \ D°(w).

We remark that since the connected components of D°(w) are Young diagrams,
then dom(w) and SW(w) also are Young diagrams. It follows that L(w) is a skew
diagram. However, as one can observe in L'(51423), L’ (w) may not be a skew diagram.

Note that (a,b) € dom(w) if and only if r,(a,b) = 0. Also, by Theorem 3.5, the
ideal defining the matrix Schubert variety depends only on the submatrices which are
in SW(w). First, consider the projection of the matrix Schubert variety X,, C C"*"
onto the entries which are not in SW(w). Since these entries are free in X,,, the
projection isomorphic to C=ISWW)l Define Y., as the projection onto the entries of
L(w). We obtain that X,, = Y, x C" ~ISW®)I anq

(2) dim(Y,) = n? - [D°(w)| — (n® — | SW(w)]) = | SW(w)| — |D*(w)] = |'(w)!.

EXAMPLE 3.8. Continuing with w = 3412 € Sy from Example 3.6, dom(w) = {(4,1)}.
Figure 2 shows SW(w), L(w), and L'(w).
We observe that X, = Y, x C7, where Y,, is the hypersurface defined by the ideal

221 222 223
det | 231 232 233 C Clza1, 222, 223, 231, 232, 233, 242, %43
0 242 243

In particular, dim(Y,,) = 7.

REMARK 3.9. The matrix Schubert varieties appearing in [10, 26] are defined using
a (B- x B)-action on C"*™ where B_ is the group of lower triangular matrices of
size n x n. This changes the conventions, e.g. one imposes north-west rank conditions
instead of south-west rank conditions. We can translate from the conventions of this
paper into theirs by reflecting the matrices horizontally, i.e. w +— wow where wq is
the longest permutation.

3.2. THE COMPLEXITY OF THE TORUS ACTION ON Y,,. We start by describing the
torus action on Y,, considered in this paper. Note that Y,, is isomorphic to the subvari-
ety of X,, obtained by setting z;; = 0 for all (i, j) ¢ SW(w). Clearly, the B x B-action
on X, fixes this subvariety and, thus, induces a B x B-action on Y. In this section,
we investigate the restriction to T' x T' of the action of B x B on Yy, called the usual
torus action.

The Y., that are toric with respect to the usual torus action are characterized in
[10, Thm. 3.4]. In this section we further study the complexity of this action. Our
main results are Theorem 3.14, which states that there exists no complexity-1 7" x T-
variety Y,,, and Theorem 3.15, which states that there exist Y,, of complexity-d for
d > 2. We use the notation “T" x T-variety” in a non-traditional way to avoid any
confusion over which torus action we consider on the variety Y.
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We begin by computing the weight cone of the T" x T-action on Y,,. Note that
T x T has character lattice M(T x T') = Z"™ x Z". The weights of the T x T-action

on C"*" = Spec Cz11, - . ., Tny| are the (m,m) € Z"™ x Z" for which there exists x;;
such that (t,7) - 2;; = t™t™x; for all (¢,1) € T x T. Since (t,) - z;; = t;t; 'z, the
weights are {e; — f; | 4,7 € [n]}, where e1,...,ep, f1,..., fn denote the standard basis

for Z™ x Z™. We conclude that the weight cone of the T' x T-action on Y, is
0 = Conele; — f; | (i,) € L(w)).

In fact, this cone is an edge cone from Section 2.2 and its generators are encoded
by the edges of an acyclic directed bipartite graph. The dimension of the weight cone
can be calculated very easily via graphs (see Lemma 2.3) and many combinatorial
aspects of the edge cone are well-understood [25, 28]. Hence, next we reformulate the
considered torus action on Y, in terms of graphs.

Note that we consider the T" x T-varieties with respect to the usual torus action
defined as before. To ease notation, given [n] IT [n] we write k for the elements of the
second [n]. Given w € S,,, let G* be the acyclic bipartite graph with F(G"¥) = {(a —
b) | (a,b) € L(w)} and V(G™) C [n] I [n] so that G™ has no isolated vertices. Note
that this assumption is not a strong one. Indeed, this does not change the edge cone,
but only its ambient dimension. By definition, we have that the weight cone of Y, is
the dual edge cone of G%, i.e. 0y, = 0. For simplicity, we refer to oy, as the edge
cone of Y,,. It follows from our discussion that Y,, is a T' x T-variety of complexity-d
with respect to the torus action T x T if and only if

(3) dim(oy) = dim(Y,) —d = |L'(w)| — d,
where the second equality follows from (2).
REMARK 3.10. The edge cone of the acyclic bipartite graph G* is isomorphic to the

edge cone of the underlying undirected graph of G*. This undirected graph is in
particular used to classify rigid toric matrix Schubert varieties in [26].

EXAMPLE 3.11. Let us consider again the matrix Schubert variety Xag12 2 Yag0 x C7
from Example 3.8. For each box (a,b) in L(w), we construct an edge (a — b). The
dimension of the associated edge cone o, is 5 and |L'(w)| = 7. Hence Y3412 is a
T x T-variety of complexity-2 with respect to the usual torus action.

9\

N\
3,1|(3,2)[(3,3) e‘

(4,2)|(4, 3) e
Gw

(2, 1)((2,2)((2,3)

The Y,, of complexity-0, i.e. toric varieties, have been classified in [10]. A hook with
corner (i, j) consists of boxes (i, ') such that j =3 and ¢/ > i ori=14¢ and j > j'.

THEOREM 3.12 ([10, Thm 3.4]). Y, is a toric variety with respect to the T x T-action
if and only if L' (w) consists of disjoint hooks not sharing a row or a column.

Some simple arguments used in the alternative proof of this result in [26, Thm
3.2] motivated us to work further with graphs to investigate the varieties Y,, of larger
complexity.

EXAMPLE 3.13. Let w = 3142 € Sy. Figure 3 illustrates D°(w), L(w), L' (w), and G*.
The dimension of the associated bipartite graph and |L/(w)| is three. Also, as seen in
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this figure, L'(w) has a hook shape. Thus, Y,, is a toric variety with respect to the
effective torus action of T' = (C*)3.

FIGURE 3. D°(w), L(w), L'(w), and G* for w = 3142.

The following natural question is to study complexity-1 T x T-varieties Y,,, however
the next theorem shows that there are none.

THEOREM 3.14. There are no complexity-1 T x T-varieties Yy,.

We now introduce some notation that will be used in the proof of this theorem.
Suppose that L(w) has connected components Ly, ..., L. Fix i and let H; be the set
of SW-border of L;, i.e.

(4) Hi={p,g)ecLi|pg—1)¢Li (p+1,9) ¢ Ls, or (p+1,¢—1) ¢ L;}.

Figure 4 gives an example of this set.

FIGURE 4. Let w = 3412756. The leftmost figure is D°(w) and the
middle one is L(w). Let Ly be the northwesternmost connected com-
ponent L(w), then H; is depicted on the right.

Proof of Theorem 3.14. Suppose that L(w) has connected components L, ..., L.
Since L(w) is a skew diagram, each L, corresponds to a connected component G; of G*
and therefore 0 = 0, x---x0o¢, . We first show that for all i, dim(o . ) < |L;NL' (w)].

Fix ¢ and let H; be as in (4); we claim that H; N D°(w) = &. Suppose, by contra-
diction, that (p,q) € H; N D°(w). Then, by the definition of H; either p =n, ¢ = 1,
or one of (p,q —1),(p+1,q9),(p+ 1,¢g — 1) is in dom(w). Note that the p = n and
q = 1 cases can’t occur since (p,q) € D°(w) with either p = n or ¢ = 1 must also be
in dom(w). If at least one of (p,g —1), (p+1,q), or (p+1,q — 1) is in dom(w), then
(p,q) € dom(w) which is also not possible. It follows that H; N D°(w) = &, which
implies that H; C L; N L' (w).

Since, the connected components of L(w) are skew diagrams, the vertices of G;
are the rows and columns containing boxes in H;. We conclude that G; has at most
|H;| + 1 vertices and, by Lemma 2.3,

(5) dim(aéi) = |H;| < |Li 0 L' (w)].

With this equation at hand we proceed to prove that there is no Y, of complexity-
1. Assume, by contradiction, that w is such that dim(c,,) = |L'(w)| — 1. Note that
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dim(o,,) = dim(og, ) +---+dim(oy, ) and |L'(w)| = [Ly VL' (w)| 4 - -+ [ L N L (w))].
By (5) it follows that there exists j such that dim(aéj) =|H,| =|L;NL'(w)|—1 and
dim(c ) = |L; N L'(w)| for i # j. In particular, we have that

(6) Ly 0 L'(w) = H; U{(a,b)}.

Since (a,b) € SW(w) there exist (p,q) € D°(w) such that p < a and ¢ > b and, using
(a,b) ¢ D°(w), it follows that either (a,b+ 1) € SW(w) or (a — 1,b) € SW(w).

Throughout this proof we assume, without loss of generality due to symmetry, that
(a,b+1) € SW(w). Suppose (a,b+ 1) ¢ D°(w). Then (a,b+ 1) € L; N L'(w) and,
by (6), (a,b+ 1) € H;. However, this is not possible since L; is a skew diagram. It
follows that (a,b+ 1) € D°(w), i.e.

(7) wb+1)<a and w'(a)>b+ 1.

We finish this proof by considering the four possible ways in which H; and {(a,b—
1), (a+1,b)} can intersect.

The first case is when (a,b — 1), (a+ 1,b) ¢ H;. From the definition of D°(w) we
can see that

(a,b—1),(a+1,b) € D°(w), (a,b) ¢ D°(w) = w(b) =a.

Since this contradicts (7), we see then that this case is not possible.

The second case is when (a,b—1), (a4 1,b) € H;. Since (a,b—1) ¢ D°(w), by (7)
it follows that w(b — 1) > a. Similarly, (a,b) ¢ D°(w) and (7) imply that w(b) > a.
We then have that a < n — 2. Let us show that (a + 2,b — 2) € dom(w). Since
H; is connected and (a,b) ¢ Hj, then (a +1,b — 1) € H;. Now, H; borders part
of dom(w), which is a Young diagram, so (a + 1,b — 1), (a + 1,b) € H; imply that
(a+2,b—2) € dom(w) and, by definition of D°(w), that w(b—1) < a + 2. We have
that w(b — 1) > a since (7) implies that w(b — 1) # a and if w(b — 1) < a then
(a,b—1) € D°(w). It follows that w(b—1) =a+ 1.

Notice that (a +2,b—2) € dom(w) also implies that either (a + 2,b) € dom(w) or
(a+2,b) € H;. If (a+2,b) € dom(w) then the 1 in column b of the permutation matrix
of w must lie in row & < a+ 1. Since w(b—1) = a+1 and by (7) this 1 must be in row
x < a — 1. However, this contradicts that (a,b) ¢ D°(w) so (a+2,b) € dom(w) is not
possible. On the other hand, suppose that (a + 2,b) € H;. Since (a,b+ 1) € D°(w),
then (a 4+ 1,b + 1) € L;. Furthermore, by (6), (a + 1,b+ 1) ¢ L'(w) so in fact
(a+1,b+1) € D°(w). However, this would imply that w=!(a+1) > b+1 contradicting
that w(b— 1) = a + 1. We conclude that this case is also impossible.

The next case is when (a,b—1) € H; and (a+1,b) ¢ H;. It follows that (a+1,b) €
D°(w) and thus w(b) < a + 1. However, since (a,b+ 1) € D°(w) we would have that
(a,b) € D°(w), a contradiction.

The last case is when (a,b—1) ¢ H; and (a + 1,b) € H;. Since (a, b) is neither in
D°(w) nor in the SW-border of L;, we have (a 4+ 1,b — 1) € H;. Now, w(b) > a+ 1
since w(b) # a, by (7), w(b) = a + 1 would imply that (a + 1,b — 1) € D°(w),
and w(b) < a would imply that (a,b) € D°(w). In particular, « + 1 < n. Since
(a+1,b—1) € Hj;, we have that (a,b—1) ¢ dom(w), so (a,b—1) € L;. By (6) it
follows that (a,b—1) € D°(w). Note that

(a,b—1) € D°(w), (a+1,b—1) ¢ D°(w) = (a+1,b+1) ¢ D°(w)

and, again by (6), we have that (a+1,0+1) € H;. Combining this with a+1 < n we
deduce that (a+2,b) € D°(w). However, this means that w(b) < a + 2, contradicting
w(b) >a+ 1.

Since none of the cases are possible, it follows that there is no Y, of complexity-
1. O
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THEOREM 3.15. There exist T' x T-varieties Yy, of complexity-d for d > 2.

Proof. Let Y, be a complexity-i¢ T' x T-variety and Y3 be a complexity-j T' x T-variety,
for « € Sy and § € Sp. Consider the opposite Rothe diagram of the permutation
Y=01...04 /81+A.../BB+AESA+B.

D(a)| -

x| D2(B)

By the construction the area labelled with * is contained in dom(7y) since there exist
no 1s of the permutation matrix of 7 in this area. Moreover, D°(w) has no boxes
in the area labelled with —. Since the area x is contained in dom(~y) we obtain the
bipartite graph G is the disjoint union of G* and G”. Hence we conclude that Y,
is a complexity-(i + j) T x T-variety, since dim(c,) = dim(o,) + dim(og). Finally,
since Y3412 has complexity-2, Yj312 has complexity-3, and every d > 2 is in the affine
semigroup spanned by 2,3 the statement follows. 0

The following is a natural question:
QUESTION 1. Given d > 2, classify the Y., of complezity-d.

One can observe in w = 3412, w = 42513 or w = 41523 that the shapes of
the (opposite) Rothe diagrams of Y, of complexity-2 will be more complex than for
complexity-0.

In this section, we observed that matrix Schubert varieties are not sources of
complexity-1 T x T-varieties. Thus, we steer our investigation in the direction of
Kazhdan-Lusztig varieties which are generalizations of matrix Schubert varieties and
provide many interesting examples of T-varieties.

4. TORUS ACTION ON KAZHDAN—LUSZTIG VARIETIES

We now investigate the usual torus action on Kazhdan—Lusztig varieties N ,,. Our
aim is to study the complexity of this action. To this end we give a combinatorial
description of its set of weights, and also of the set of extremal rays of the associated
weight cone o, ,,. We also discuss the relation between o, ., and the cone of weights
of the usual torus action on affine neighborhoods of torus fixed points in Schubert
variety X,,, i.e. v N X, studied in [21]. Finally, in Section 4.3 we interpret our
results in terms of directed graphs.

4.1. BACKGROUND ON KAZHDAN-LUSZTIG VARIETIES. Let G = GL,(C), B be the
Borel subgroup of upper triangular matrices, 7' C B the maximal torus of diagonal
matrices, and B_ the corresponding opposite Borel subgroup of lower triangular ma-
trices. The complete flag variety is G/B and G acts on G/B by left multiplication.
The fixed points of G/B under the left action of T" are wB for w € S,,. We have the
cell decomposition
G/B= | | BwB/B,
wEeSy,

known as the Bruhat decomposition. The closure of the B-orbit BwB/B is the Schu-
bert variety X,, C G/B, which is a subvariety of dimension ¢(w). The opposite Schu-
bert cell S is the B_-orbit B_vB/B.
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DEFINITION 4.1. The Kazhdan—Lusztig variety (KL variety) corresponding to v,w €
S, s
Nopw = Xy N Q3.
We remark that
(8) dim(Ny ) = l(w) — £(v),

see e.g. 31, Cor. 3.3].
The nonempty KL varieties are characterized by the Bruhat order.

DEFINITION 4.2. The Bruhat order is the partial order on S, defined by v < w if
ry(a,b) < ry(a,bd) for all a,b € [n].

By [11, Lem. 3.10], NV, 4 is non-empty if and only if v < w.
A very useful point of view on a KL variety is given by the isomorphism [16,
Lem. A.4]:

(9) Xy NN = CHO XNy

The left side of this equation is an affine neighborhood of the T-fixed point vB/B in
Xuw. Therefore, (9) tells us that the ideals defining KL varieties are the ideals defining
affine neighborhoods of the T-fixed points of Schubert varieties. As a consequence,
we have that KL varieties are normal. Indeed, since Schubert varieties are normal,
see e.g. [9, 27], and normality is a local property, it follows that KL varieties are
normal. Moreover, since KL varieties are B-invariant and 7" C B then they are also
T-invariant. We then have that KL varieties are T-varieties.

Following [31, 32] we give an explicit description of the coordinate ring C[N, ). We
remark that our conventions for labeling the variables differ from those by Woo-Yong.

DEFINITION 4.3. Given v € S, let ¥, C C™*"™ consist of the matrices Z such that

Zyiys =1 foralli € [n],
(10) Zv(v',),a =0 fora>i,
Zp; =0 for b < w(i).

The space 3, can be realized as follows. First, write down the 1s of the permutation
matrix of v € S,,. Next set all the entries that are either north or east of a 1 to zero. The
remaining entries are free. Since the free entries are precisely the entries of the opposite
Rothe diagram D°(v), we have that ¥, = CI?°) and C[¥,] = Clz; | (4,5) € D°(v)].
We will denote a generic element of 3, by Z(*), i.e. a matrix with Os and 1s at the
entries listed above and unknowns z;; at the remaining entries.

PROPOSITION 4.4 ([12, Section 10.2]). The map m : G — G/B sending a matriz Z to
its coset ZB induces a (scheme-theoretic) isomorphism between %, and the opposite
Schubert cell §23.

In [31] this isomorphism is used to describe the defining ideal of NV, ,,. Namely, the
following varieties are isomorphic

Nv,w gTme'ua

where X, is the matrix Schubert variety corresponding to w. Thus, the defining ideal
of Ny, is generated by the determinantal equations obtained by imposing the rank
conditions of Fulton’s essential set from Theorem 3.5 to the generic element in Z(®).
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4.2. WEIGHT CONE FOR A KAZHDAN—LUSZTIG VARIETY. Our aim is to investigate
the usual torus action on KL varieties, i.e. the restriction of the T-action on G/B to
Ny . In particular we would like to examine its complexity using a combinatorial ap-
proach.

The T-action on 2 induces a T-action on 3,. Given M € T and Z € X, let
M-Z = nY(MZ)B/B). We follow [32] to give a concrete description. Note that
M- Z €%, but in general MZ ¢ ¥, because the entries MZyiy,, 1 € [n], need not
be equal to 1. To obtain 7=1((MZ)B/B) € ¥, we multiply M Z on the right by the
element of T" which make these entries 1; this is accomplished by the diagonal matrix
N such that for each ¢ € [n], N;; = (Mv(i),v(i))*l, i.e. N = v~!M~1v. This action
descends to Ny 4.

We now compute the weights of the T-action on ¥,,. Let eq, ..., e, be the standard
basis for M(T)g = R™. Given M, N € T, as above, and z;; = (Z(*));; we have
Following the convention that the weights of the z;; are positive roots, as in [32], the
above equation implies that the weight of the variable z;; is e,(;) — ;.

REMARK 4.5. Matrix Schubert varieties make a special class of KL varieties [32, proof
of Cor 2.6] and the resulting T-action from this section is equivalent to that of Sec-
tion 3. Concretely, let w{ be the longest permutation in S,,. Define wgy * wy € Say, to
be the permutation such that (wo*wo)(7) = wi (i) and (wg * we) (i +n) = wi(i) +n,
for i € [n]. Consider w as a permutation of Sa,,, where w(i) =i for i € {n+1,...,2n}
and let 1 = w3™w € Sa,. Then the matrix Schubert variety X,, C C™"*" is isomorphic
to the KL variety N ygswe.m © C2*2".

In Section 3 we considered the T' x T-action on C"*™ where z;; has weight e; — f;.
On the other hand, Z(®o*®o) has its free coordinates zi; inrows {n+1,...,2n} and
columns [n]. The usual torus action on the variable z;; has weight €., ;) — € =
Cwn(j) — € = €nyi1—j — €. Since {n+1—j|j € [n}N{n+1,....,2n} = &, by
identifying e; <> f;_, we see that the weights of the two actions are equivalent.

We denote the cone of weights for the KL wvariety in the lattice M(T)g = R”
associated to the torus 17" by o, .. Our aim is to determine the weights of the T
action on the KL variety N ., = X, N E,, or more precisely the cone Opw- We
think of the T-action in terms of matrix coordinates. The idea of this section is based
on the similarity between the definition of a matrix Schubert variety as a subset
of the matrix space C™*™, the description in Definition 4.2 of the Bruhat order of
permutations and some well-known facts from representation theory. Since we work
with a non-empty KL variety A, , in what follows we always assume that v < w
under the Bruhat order.

4.2.1. Inversions and non-inversions of v. A feature of v which is very important in
understanding N, 4, is its set of inversions. Recall that {4, j} C [n], where i < j, is an
inversion of v if in the one-line notation j stands before i. Or, treating v as a function,
v 1(i) > v~1(j). A pair which is not an inversion will be called a non-inversion of v.
We want to relate (non-)inversions of v to entries of Z(*).

DEFINITION 4.6. We say that the entry (i,7) in ZW) corresponds to a non-inversion
of v ifv(j) < i and {v(j),i} is a non-inversion of v.

REMARK 4.7. Note that v(j) < ¢ is automatically satisfied for entries which are not
set to 0 or 1 by Definition 4.3. Observe that all entries of Z(*) which are not set to
0 or 1 by Definition 4.3 correspond to non-inversions of v. This is because these are
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precisely the entries lying in the opposite Rothe diagram of v, and the condition in
Definition 3.3 is the same as in Definition 4.6.

4.2.2. Unexpected zeros. The entries z;; in Z () correspond to coordinates on Q°, and
therefore to weights of the T-action on €25. We need to know which of these weights
are still present in the intersection of ¥, with X,,. Some of the weights from the
weight cone of Q2 may not lie in the weight cone of N, ,,. The simplest examples are
weights corresponding to the entries z;; of the dominant piece for w. These variables
vanish on AV, 4, so their weights are not in o, ., unless they are produced as positive
combinations of some other weights, i.e. they correspond to monomials.

However, the dominant piece for w is not the only reason for the fact that some
weights from (2 are not present in o, ,,. It may happen that the configuration of 0Os
and 1s in Z(*) together with the conditions for belonging to X,, (Fulton’s equations
coming from submatrix rank conditions, see Theorem 3.5) make some z;; vanish on
the whole N, .. The ideal of N}, , i.e. the ideal which is obtained from the ideal of
X, by substituting Os and 1s as in Definition 4.3, may thus contain some variables
2ij, not present in the ideal of X,,.

DEFINITION 4.8. By an unexpected 0 (for N, .,) we understand an entry z;; of Z("),
not constantly 0 on X,,, such that for every matriz in N, we have zi; = 0. Equiv-
alently, z;j is in the ideal of Ny ., but it does not belong to the ideal of Xo.

In particular, z;; corresponding to entries of the dominant piece of D°(w) are
unexpected 0s.

ExXAMPLE 4.9. Consider w = 47681352 and v = 32187654 in Sg. Look at defin-
ing conditions for X,. The diagram D°(w) has three parts: the dominant piece
{241, 251, 261, 271, 281, 282, 283 }, {225, 235} and {zss5, 256} The entries of the dominant
piece are unexpected 0s (marked in blue in the matrix below), but these are not the
only ones. The essential boxes of the other pieces of D°(w) are za5 and z56, and they
give conditions that the ranks of corresponding lower left corner submatrices are not
bigger than 4 and 3 respectively.

Now look at v. In the matrix below, entries in the regions above the horizontal
line and to the right of the vertical line are set to 0 or 1 by Definition 4.3, hence
the only non-constant z;; appear in the lower left rectangle. When we compute the
determinant of a 5 x 5 minor of Z(®) given by choice of columns 1,...,5 and rows
2,3,4,7,8 where ¢ = 4,5,6, we obtain z;3. The conditions given by w require this
determinant to vanish, hence z43, 253, 263 are unexpected Os (marked in red in the
matrix below). Also, the determinant of a 4 x 4 minor of columns 2,4,5 and rows
5,7,8 is z52, so it is an unexpected 0 (also marked in red).

0 0 1100000
0 1 0000060
1 0 000000
241242000001
0 0 000010
0 262 000100
02’7227301000
0 0 010000

Thus we obtain N, ,, = C5. The weight cone o, ,, is spanned by weight correspond-
ing to z;; which are not unexpected 0Os, given in the matrix above. Since the weight
corresponding to z;; is €,(j)—¢,, We have Cone(ez — eq, €9 — €4, €2 — €6, €2 — €7, €1 — €7).
It is 5-dimensional, hence the T-action on N, ,, has a dense orbit.
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The main question of the next section is how to determine unexpected Os for
given v and w without computing the ideals. We would like to show a combinatorial
characterization of such entries which leads to a direct description of the weight graph
and the weight cone of the T-action on A vw- We also explain the relation to the
description of the weight cone of the T-action on X,, Nv€)Y;, investigated in [21].

4.2.3. Weights of the usual torus action. As explained in [14], given a subvariety
X C G/B and gB € X the intersection X' N g2, is an affine open neighborhood
of gB in X. It follows that Typ(X) = T,p(X N gfk,). If we further assume that X
is a T-invariant subvariety of G/B and ¢gB is a T-fixed point, then X' N ¢gQg; is T-
invariant. Moreover, Tyg(X N g§2;) inherits a T-action and, since X' N ¢y, is affine,
the T-weights are the same as those for X' N g€y, see e.g. [30, Sec. 5.

The case X = X, is well understood and we have that the T-weights of T,,5(X) are
{evi) —€o(g) | 1> 7, tu@iyo(yv < w}, where t,),(;) is the permutation transposing v(i)
and v(j), see e.g. [4, Thm. 5.5.3]. It follows that these weights are also the T-weights
of X, NvQ2;. However, these weights come from a choice of coordinates for Clv§2;]
different from the one we use. Next, we describe how to change the weights to our
coordinates. To avoid confusion, let €1, €o, ..., €, denote the weights associated to the
coordinates from [4].

The content of the next two paragraphs can be found in [6, Sections 1.2 and 1.3]. Let
B_ C GL,(C) denote the Borel subgroup of lower triangular matrices and U_ C B_

the subgroup with diagonal entries equal to 1. Note that U_ = c(3). We have a
T-equivariant isomorphism of affine spaces

(11) U_~Q, g+ gB.

Note that the generic element Z(~) of U_ is the lower triangular matrix with 1s on
the diagonal and unknowns z;; for ¢ > j. It follows that C[U_] = Clx;; | ¢ > j]. The
T-action on U_ is M - g = MgM~*, for M € T, so that the weight corresponding to
x;; is €; — €;, under the conventions of [4].

The isomorphism (11) induces the T-equivariant isomorphism

(12) wU_ =0y, vg + vgB.

The generic element of vU_ is vZ(7) and C[vU_] 2 C[x;; | i > j]. Note that z;; is
the (v(i), j)-entry of vZ(~). The T-action on vU_ is M -vg = Mvg(v™' M~ ), for
M € T. We then have that €; — €,(;) is the weight for the variable at position (i, j),
namely ,-1(;);. In fact, (12) restricts to a T-equivariant isomorphism
(13) X NvQYy 2 oU_ N X,

By comparing the entries of vZ(~) with the entries of Z(*), we obtain the inclusion
>, — vU_ associated to the map

Claij [ i > j] = Clzij | (4,5) € D°(v)]
{Zij (4,7) € D°(v) '

Ty—1(3)7 —
(@) 0 else

Recall that the weight of z;; is e,(;) — e;. It now follows that we can obtain the
T-weights under our coordinates via the correspondence €; <> —e;.

LEMMA 4.10. The set of T-weights of Ny is {ey(jy —€i | tu),iv < w, (i,5) € D°(v)}.
That is, ty(j),iv < w if and only if z;; is not an unexpected zero.
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Proof. By the inclusion ¥, < vU_ above, we have that the T-weights of X, are
precisely the T-weights of vU_ corresponding to the variables in 3,. These are the
weights at positions (4,j) € D°(v), i.e. the weights

{ei —eugy [071(0) > 4, (,5) € D°(v)} = {ewy) — e | v 1(i) > 4, (i,7) € D°(v)}
= {ev(j) — € ‘ (17.] € DO(U)}a
where in the last equality we used that, by definition of D°(v), if (i,j) € D°(v), then
v (i) > g o
By [4, Thm. 5.5.3] and (13) we have that the T-weights of vU_ N X,, are

1

(i
)

{ei — oy | 0710 > 4, tog)iv Sw} = {eyy — € [ vTHE) > j, tog)iv < w}.
We obtain the T-weights of N, ., by using the inclusion
Nopw 22, N X, = oU- N Xy,
to restrict the preceding weights to those corresponding to the variables in 3, i.e.
{ewi) —€i | v7HE) > 4, togy,iv < w, (i,5) € D°(0)} = {ey(j) — € | tug),iv < w, (4,5) € D°(v)}.
O

Now we determine a subset of the set of T-weights for N, ,, which corresponds to
the extremal rays of o, ,. This is related to [21, Prop. 7.6] and this is explained in
more detail in Remark 4.13.

THEOREM 4.11. The extremal ray generators of the cone o, 4, of T-weights on N

are the weights corresponding to z;; from ZW) such that to),i¥ < w and £(ty;),v) —
L(v) =1.

Proof. The containment
Cone(ey(jy — €i | ty(y,iv < w, (i,7) € D°(v), £(ty(y,iv) —L(v) =1) C oy

immediately follows from Lemma 4.10.

Again by Lemma 4.10, it suffices to show that if we choose only z;; satisfying
tu(s),v < w and in addition £(t,;) ;v) — £(v) = 1, then the corresponding weights do
not span a smaller cone. The condition £(t,;);v) — £(v) = 1 means that in the one-
line notation of v there are only elements smaller than v(j) or greater than ¢ between
v(j) and ¢. In terms of matrices, this means that in the permutation matrix of v the
rectangle determined by (i,7) and (v(j),v~1(i)) contains no 1s of v apart from two
corners (v(j),5) and (i,v=1(4)).

First note that, by Remark 4.7, z;; corresponds to a non-inversion of v, hence we
have £(t,(;y,;v)—£(v) > 0. Assume that £(t,;) ;v)—£(v) > 1 and let (v(c), c) be an entry
containing a 1 of v in this rectangle. Then the entries (v(c),7) and (7, ¢) correspond
to non-inversions of v. Moreover, we have 2, () ,(¢)v < w and t,() ;v < w respectively.
Let us prove the latter statement for (v(c),j) and assume that t,.) v £ w. Then
there is (a,b) with v(j) < a < wv(c) and j < b < ¢ such that ry, , (a,b) > ry(a,b).
However, 7¢, . .v(a,b) = ry(a,b) +1 = 1y, (a,b), which contradicts t,;) ;v < w.
Thus we can build a sequence of entries containing 1s of v

(v(3),4) = (v(co), o), (v(er), 1), - - s (v(er)s er), (V(eri)s eryr) = (5,07 (D))
all inside the rectangle with corners (i,5) and (v(j),v~1(i)), such that for any p =
0,...,k we have £(ty(c,),v(c,1)v) — £(v) = 1. We construct it inductively starting from
(v(j),4) and at the p-th step we add (v(cp),cp) being the entry containing 1 of v
which is closest to (v(cp—1),cp—1) in the rectangle with corners (v(c,—1),cp—1) and
(i,071(7)). Then the T-weight e,(;) — e; corresponding to the entry z;; is the sum of
T-weights €u(cp) ~ Cu(cpin) forp=0,...,k.
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We are left with showing that these weights are indeed extremal ray generators of
Ovw- Let ze, 4, satisfy the assumptions of the theorem and the corresponding weight
be the sum of weights corresponding to zc, d,,- .-, %c,,d, With c1 < 2 < ... < ¢p.
That is, €y(dg) — €co = €u(dy) — €cr T - T Ey(dy) — Ecy-

Note that by Definition 4.3 we obtain that

v(dp) =v(dy) < e =v(da) < ...<cpo=0v(dg-1) < cg—1 = v(dg) < cx = ¢p.

Then (v(d;),d;) for all I € {2,...,k — 1} is contained in the rectangle with corners
(v(do), do) and (co,v™*(co)), which makes £(ty(qq),c,) — £(v) = 1 impossible.

Since £(ty(dy),c,) — £(v) = 1 is satisfied by the hypothesis, in the permutation
matrix of v, the rectangle determined by (co,do) and (v(dp),v~!(co)) must contain
no 1s of v other than the corners (v(dp),do) and (co,v~1(cp)). However, that is not
true, since (v(d;),d;) is contained in this rectangle for all I € {2,...,k — 1}, hence a
contradiction. O

EXAMPLE 4.12. It is possible that z;; is an unexpected 0, but the weight corresponding
to z;; belongs to 0y,,. Let v = 1324 and w = 3241 in S4. Then the entry z4; is an
unexpected 0 because it lies in the dominant piece of w. By Lemma 4.10, the entries
z43 and zo7 are not unexpected 0s. By Lemma 4.10, the weights for those entries are
€y(3) — €4 = €2 —eq and e, (1) — e2 = e1 — ez respectively and thus the T-weight for
the unexpected 0 z4; is in oy 4.

REMARK 4.13. We would like to relate the proofs above to one of the main results
of [21], namely the description of the weight cone D,,(v) for the usual torus action on
the Schubert variety X,, on an affine neighborhood of the fixed point corresponding
to the permutation v (see [21, Def. 7.1, Def. 7.4]). As in the proof of Lemma 4.10, one
may use [4, Thm. 5.5.3] to investigate D,,(v) by looking at the tangent space to X,
at v. One obtains that Dy, (v) is spanned by all weights e, ;) —e; such that ¢, ;v < w
and [£(v) — £(t,(;),v)| = 1, using methods similar to the proof of Theorem 4.11.

Note that this set of weights can be divided into ones corresponding to non-
inversions, coming from the KL part in the isomorphism (9) and having the positive
difference of lengths, and the ones corresponding to inversions, coming from the affine
part in the isomorphism (9), with the negative difference of lengths.

4.3. TORUS ACTION IN TERMS OF GRAPHS. In this section, we define the directed
acyclic graph G, ., such that its edge cone is the weight cone of the usual torus action
on N, In other words, we interpret Theorem 4.11 in terms of graphs. Moreover,
we also observe the connection to the graph associated to the usual torus action
on v}, N X,. We explain how to determine the complexity of KL varieties using
these graphs.

Let G be a directed acyclic graph. Recall that (z — y) denotes a directed edge
from vertex z to vertex y. A directed edge is called indecomposable if there exists
no other directed path connecting the vertex x to y. Note that in a directed acyclic
graph one may decompose edges into indecomposable ones, i.e. for any edge (z —
y) there is a path from z to y consisting of indecomposable edges: Either (z —
y) is indecomposable, or we have another directed path from z to y. In the latter
case, applying this argument inductively to each decomposable edge of this path will
end, since otherwise we would have a directed cycle. In particular, remark that the
indecomposable edges of G correspond to the extremal ray generators of the dual edge
cone oy, defined in Section 2.2.
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DEFINITION 4.14. Let v,w € S,, and let z;; be a coordinate of ZW) . We define the
graph Gy, with

——

V(@) =1[n] and E(Gyw) = {(v(j) —1)|zj is not an unexpected 0 of Ny .}
We define G, to be the subgraph with edge set E(Gy ) consisting of the indecom-
posable edges of E(Gyuw)-

Recall that o, denotes the cone of weights of the T-action on the KL variety
Ny . Note that 0, = 0 = 0%~ . Moreover, by Theorem 4.11, we have that

(14)  E(Gow) ={(v(j) = 1) [ i> ], to),v < wand £ty v) — £(v) =1}

Thus, we can use the following formulas for the dimension of the dual edge cone
of o, of Gy .y and relate it to the complexity of a KL variety.

v, w

COROLLARY 4.15. The dimension of 0,4, of Gy w, calculated as in Lemma 2.3, is:

(15) dim(oy ) = [V(Gyw)| — #(connected components of Gy ).
Moreover, N, ., is a KL variety of complexity-k if and only if
(16) dim(oy ) = dim(N ) — k = L(w) — £(v) — k.

We now compare the complexity of KL varieties with the complexity of a Richard-
son variety. Given v,w € Sy, the Richardson variety Xy, is defined to be the inter-
section of the Schubert variety X, and the opposite Schubert variety XV := Q¢ =
B_vB/B. Since Richardson varieties are invariant under the T-action, they are T-
varieties.

COROLLARY 4.16. The complezity of the Kazhdan—Lusztig variety Ny, is the same
as that of the Richardson variety X,

Proof. The Bruhat interval polytope Qy ., introduced by Kodama—Williams in [20],
is the moment map image of X with respect to the T-action. Because of this, the
complexity of X is given by

dim(X}) — dim(Qyw) = l(w) — £(v) — dim(Qy w)-
In [29, Thm. 4.6] a formula for dim(Q, ) is given and using [29, Def. 4.9 and
Prop. 4.10] it can be phrased as counting the number of connected components of
the graph with vertex set [n] and edge set

T(v,w)={(i —j)|i<j, vtij <w, L(vt;;) —L(v) =1}
One can see from (14) that this graph is isomorphic to G, ,,. It follows from (15) that
dim(Qy,w) = dim(oy ),
and thus both varieties have the same complexity. O
As a consequence of this corollary and [23, Prop. 6.4], we immediately have that

for every k there is a KL variety of complexity-k. We will also verify this in the next
section, when we compute the complexity of N, ,, for v of small length.

REMARK 4.17. Corollary 4.16 also has a geometric explanation. Fix v < w. In [19,
proof of Lemma 2.1] it is shown that for each u such that v < u < w there is a
T-equivariant isomorphism

udy N X, — (X NQ) X (XU NAQY),
where QY is the B-orbit BuB/B. The case u = v gives a T-equivariant isomorphism

'UQ;Jd n X,}:} — NU,’U} X{'UB} = Nv,w .
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As a consequence, the cone spanned by the T-weights of T, 5(X7,) is linearly isomor-
phic to the cone spanned by the T-weights of NV, ,,. Since the variety on the left is an
affine open neighborhood of vB in X7, [30, Sec. 5] implies that the cone spanned by
the T-weights of T, 5(X7) is equal to the cone spanned by the edges of the moment
polytope Qu  incident to the vertex v. Now, the dimension of this cone is dim(Qyp,w)
and Corollary 4.16 follows.

Although we work with G, ,, for the torus action on N, ,, it is worth discussing
another graph which is used to understand the torus action on v, N X,, in [21]. It
is the graph related to the cone D, (v) of T-weights as in Remark 4.13. This graph
coincides with G, ., when v = id and we observe that in general G, ,, can be obtained
by deleting some edges from this graph as explained in Example 4.22.

DEFINITION 4.18. [21, Def. 7.1] We define the edge set

Ew(v) ={(v(i) = v(j) |1 <i<j<n, tye)ugv < w and [L(v)—L(ty)w;)v)|] = 1}
and denote the set of indecomposable edges of E(v) by Ey(v). We associate graphs
Ty (v) and Ty (v) to Ey(v) and E,,(v), respectively.

EXAMPLE 4.19. Let w = 245163 € Sg and v = id = 123456 € Sg. The dimension of
the KL variety N, ,, = id Qg N X, is {(w) — £(v) = 6 — 0 = 6. The essential set of
De°(w) consists of the boxes labeled by (3,1), (6,4), (5,2) and (3,4). Therefore after
imposing the Fulton conditions on Z(*), we obtain the second matrix

1 0 0 0 0O 1 0 0 0 0O
221 1 0 0 00 z21 1 0 0 00
Z31 232 1 0 00 0 Z32 1 0 00
z41 242 243 1 0 0 0 240243 1 00
251 752 253 254 1 0 0 0 253254 10
261 262 263 264 265 1 0 0 0 0 z51

where 240254 + 232253 — 254243232 = 0. The graphs G, ,, and I'y,(v) are the same,
since id has no inversions. The dimension of o, is 5 and N, is a T-variety of
complexity-1.

O DO DO DO
G

Gow =Tw()

v,w

REMARK 4.20. Our method of drawing the graph associated to the weight cone is to
place the vertices, corresponding to coordinates on 7', on a line, numbered 1,...,n
from left to right. A useful observation is that a weight corresponding to a non-
inversion, i.e. coming from the KL variety N, is a right pointing arrow, and a
weight corresponding to an inversion, i.e. coming from the affine part C™) in the
isomorphism (9), is a left pointing arrow. Thus, to obtain G, ,, from I',,(v), we delete
all left pointing arrows, however this does not work if one deletes edges from T, (v)
to obtain G, ,,. Example 4.22 explains why one should be careful with this operation.

The following is an interesting fact which motivated us to define G, ., with the

result of Theorem 4.11 instead of deleting edges from I'y(v) or I'y(v), where one
needs to be careful not to lose the edges corresponding to G .

PROPOSITION 4.21. Fvery decomposition of an edge of Ew(v) contains at least one
edge from E(G, ) and at least one edge from E,(v) \ E(Gy.v)-
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Proof. Suppose that there exists a decomposable edge (v(a) — v(c)) € Ey(v) where
(a,c) is an inversion of v, i.e. a < ¢, v(a) > v(c). Without loss of generality assume
that (v(a) — v(c)) = (v(a) = v(b)) + (v(b) — v(c)). If both edges (v(a) — v(b))
and (v(b) — v(c)) in E,(v) correspond to the torus action on C!®) then v(b) €
[v(c),v(a)] which contradicts with the condition [£(v) —£(t,(;),u(jyv)| = 1. For the case
where (v(a) — v(c)) € E,(v) corresponds to the torus action on Ay, the same
argument follows. O

EXAMPLE 4.22. Consider the KL variety Nv’w with v = s4 = 12354 and w = 13542.
By Definition 4.14, one obtains E(Gy ) = E(Gy.w) as in the figure.

O OG0 O

In particular, this can be also achieved by deleting the edge (5 — 4) from the edge set
E,(v), which is the edge corresponding to the torus action on C*. However, working
with T',,(v) causes losing the edge (3 — 4) which corresponds to z43 of Z(V).

® O—F-B O - -0

Fw(’U) Fw (U)

To summarize, the aim of this section is to develop combinatorial methods which
can be used to compute the complexity of the usual torus action on a KL variety
N v,w- This is realized in particular in Lemma 4.10 and Theorem 4.11, which describe
the weight cone o, ,,, and Corollary 4.15, which relates the complexity of considered
action to the structure of the weight cone. In Section 5, we approach the problem
of finding and studying low-complexity KL varieties using the results of this section
and also different methods related to the properties of permutations. An application
of results of Section 4 to determining the complexity of KL varieties and producing
interesting sets of low-complexity examples will also be presented in a forthcoming
paper of the authors.

5. THE COMPLEXITY OF KL VARIETIES FOR v OF SMALL LENGTH

In this section, we investigate certain low complexity T-variety examples for A, ,,
with respect to the usual torus action. Throughout this section, a different approach
with reduced word expressions of permutations is introduced. First, we describe some
cases where NV, ,, is toric. After that, we consider the cases in which v has length 0
or 1, and study the complexity in terms of the shape of a reduced word expression of
w in Theorems 5.8 and 5.14. This section ends with motivating observations for other
forms of v, in particular we explain why studying the complexity for a general v and
w using reduced word expressions is challenging.

5.1. Toric KL VARIETIES. We begin with a condition on @ that guarantees that
Nv,w is toric.

PROPOSITION 5.1. The KL variety Ny, is toric, if é;z, is a forest. In this case,
Ny is an affine space.

Proof. If @ is a forest, then the dimension of o, ,, is the number of edges of é:/,w,
which is equal to the number of entries in Z(*) that are not unexpected zeros. It
follows that dim(o, ) = dim(X,) > dim(N, ) and hence these have to be equal
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and J\/v,w is the toric variety of o, .. By Theorem 2.2, the ideal defining this toric
variety is the zero ideal. We conclude that A, ,, is an affine space. O

EXAMPLE 5.2. Consider the KL variety N, ,, = C° from Example 4.9 with w =
47681352 € Sg and v = 32187654 € Ss. The graph G, ,,=G, . is a tree with five edges.

® qe

The dimension of the edge cone of G, ,, is five and therefore N, is a toric variety.
Note that the other direction of Proposition 5.1 is not true.

EXAMPLE 5.3.Let v = 2143 € S4 and w = 4231 € S4. The defining ideal of the
KL variety N v,w 18 generated by 231242 — 232241 and the dimension of the variety is 3.
On the other hand, the associated graph G, ., is Ks 2 with directed edges. Hence J\/’U,w

. . . - .
is a toric variety but G, ,, is not a forest.

We remark that [29, Prop. 4.12] gives necessary and sufficient conditions for a
Richardson variety to be toric in terms of a different graph. By Corollary 4.16, these
conditions can be applied to characterize toric KL varieties. This graph, defined in
[29, Def. 4.5], is more complicated than é_;/w since it requires giving a maximal chain
To<- - <Tp, in the interval [v, w] and computing x; 'z, for all 4. Also, [23, Thm. 1.1]
gives a different criterion for a Richardson variety to be toric in terms of the face
structure of the Bruhat interval polytope Qq .

For the remainder of this section, we look at the weight cone oy, ., of Ny, ,, from a
different point of view. Namely, in terms of reduced word expressions, by using some
classical results on Bruhat order.

DEFINITION 5.4. A simple reflection s; € S, is the adjacent transposition t; ;1. Each
permutation in S, can be written as a product of simple reflections. If the length of
this product i.e. £(w) is minimum among all such expressions, this product is called a
reduced word expression.

PRrROPOSITION 5.5. If w € S, is a product of distinct simple reflections, then the
KL variety N, 4, is toric for all v < w.

Proof. By [15, Thm. 2 and Thm. 4], X,, is a toric variety and hence vQ$, N X, =
Ny w xC!®) is the affine toric variety corresponding an affine neighborhood of T-fixed
point vB in X,,. This also corresponds to a maximal cone (edge cone of T'y,(v)) of the
normal fan of X, for all v < w. By Proposition 4.21, since every decomposition of an
edge of E,(v) contains at least one edge from E(@) and at least one edge from

~ —

Ey(v) N E(Gy,u), the torus action T' on v$23, N X,, factors through two torus actions
on N, and C*"), This concludes the proof. O

Note that N, ., being toric does not always imply that X,, is also toric.

EXAMPLE 5.6. Consider the KL variety Nv,w with v = s4 = 12354 and w = 13542. In

this case we have that C/}:q/ﬂ is a tree and thus NV, ,, is toric. On the other hand, X, is
not toric because w = s9548384, i.e. it is not the product of distinct simple reflections,
see [15].

Our next approach is to fix v € S, and change w € S5, according to its length. The
main method for our proofs is motivated by the following theorem, called the subword

property.
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THEOREM 5.7. [5, Thm. 2.2.2] Let w = s;, ...s;, be a reduced word expression of w.
Then, u < w if and only if there exists a reduced word expression of u = s, Sy
such that 1 < j1 < ... < jr <gq.

5.2. CASE v = id. Let us start with the easiest case £(v) = 0, i.e. v = id. As we
observed in Example 4.19, even in this case one can obtain interesting cases. Moreover,
studying X,, locally at the fixed point id B can be accomplished by studying the
KL variety N4 .. Notice that for v = id the condition v < w holds for any w € S,,.

THEOREM 5.8. The usual torus action on the KL variety Niq ., is of complexity-k if
and only if
[{s;] i <w}| =4L(w)—k.

Proof. The KL variety Niq., has dimension £(w). By (14), the graph for the usual
torus action on Niq, has edges E(Giaw) = {(a¢ = a+1) | tget1id < w} and
Gia,w is a forest. It follows that dim(cy ) = |E(Gid,w)|- By the subword property,
(a = a+1) € E(Giq,v) if and only if there exists a reduced expression for w containing
Sq. Therefore, dim(oy ) equals the number of distinct simple reflections in a reduced
expression of w. Since the dimension of the KL variety is £(w), this gives a complexity-
k usual torus action if and only if this number is ¢(w) — k. O

EXAMPLE 5.9. Consider Example 4.19, where v = id and w = 245163. A reduced
expression of w is $18352548385. It consists of all simple reflections with sz repeated
once. Hence NV, ,, admits a complexity-1 torus action. Moreover, Giq,,, is a tree with
6 vertices and thus N v,w 18 an affine space.

As a corollary of this result, we can characterize the w for which Niq ,, is toric.

COROLLARY 5.10. Niq 4 s toric if and only if w is a product of distinct simple re-
flections. Moreover, in this case J\/’id,w is an affine space.

Proof. Proposition 5.5 shows that Mg, is toric if w is a product of distinct simple
reflections. Now suppose that Niq ., is toric. The fact that w is a product of distinct
simple reflections immediately follows from Theorem 5.8, since

[{si | si <w}| = Ll(w).

Note that this implies also that Giq,., is a forest. It follows from Theorem 2.2 that
Nid,w is an affine space. O

This corollary is recovering a known result. The Richardson variety X4 is precisely
the Schubert variety X,, so by [15, Thm. 2 and Thm. 4] X,, = X4 is a toric variety
if and only if w is a product of simple reflections. Applying Corollary 4.16 this is
equivalent to the corollary above. We remark that [22, Thm. 1.1] has other equivalent
conditions characterizing toric Schubert varieties. Also, [22, Thm. 1.2 and Thm. 1.3]
give equivalent conditions characterizing complexity-1 Schubert varieties.

The permutation w = 245163 in Example 5.9 is a so-called irreducible permutation
and it turns out to be interesting to study this class of permutations.

A permutation w € S, is called reducible if there is j < n such that

(17) {w@),...,w()}={1,....5}
that is, the one-line notation for w starts with a permutation of {1,...,j}. Otherwise

w is called irreducible. These permutations were introduced by Comtet in [8] and
sometimes called indecomposable as well.

PROPOSITION 5.11. Let v = id. Then w is irreducible if and only if G 4, s connected,
i.e. the dimension of 0,4, i n — 1, as large as possible.
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Proof. Suppose that w is irreducible. It suffices to show that for ¢ = 2,...,n the
variable z;;,_1 is not an unexpected 0; equivalently, each (i —1 — ) is an edge
of Gy. We check the conditions of (14). We have ¢;,_1 v = t;_1,; = s;—1. Since
rs;(a,b) = 0 for all a > b such that (a,b) # (4,7 — 1), it follows from Definition 4.2
that s;_1 < w if and only if r,(¢,4 — 1) > 1. Note that if r,(i,7 — 1) = 0, then w
would not map any element of {1,...,i—1} to an element of {i,...,n}, contradicting
that w is irreducible. We conclude that (i — 1 — ) is an edge of G, ..

Next, assume that w is reducible and let j be as in (17). Consider the descent set
of w

des(w) :={i € [n] | w() > w(i+1)}.

Every reduced word expression of w is found by pulling out s; for i € des(w) and
replacing w with s;w to perform the same step until obtaining id. Since w is reducible
as described, w(j) < w(j +j') for all j* € [n — j] and this property is preserved while
constructing a reduced word expression for w. Thus s; is not a factor of a reduced
word expression of w. This means that (j — j + 1) ¢ E(Gy,) and s; £ w. Assume
that there exists an edge (k — k') € E(Gyw) with k € [j] and ¥’ € {j +1,...,n}.
This means that s; < ¢ < w, which is a contradiction. O

REMARK 5.12. The proof of Proposition 5.11 implies that w is irreducible if and only
if s; appears in a reduced word expression of w for all ¢ € [n — 1].

We end the case v = id with the following remark which gives an equivariant
decomposition of Niq,, whenever w € S, x --+ xS, .

REMARK 5.13. Let wy € Spy, ..., Wy € Sy, Given w = wy X -+ - X Wy, € Spy X -+ X
Sh,., the structure of D°(w) tells us that if z;; is not an unexpected zero of Nig u,

then
m a—1 a 2
(Zaj) € U [an + 172”1}] .
a=1 | p=1 b=1
That is, the permutation matrix of w contains permutation matrices of wq, ..., Wy,
placed at the diagonal, and (7,j) lies in one of these matrices. This leads to a T-

invariant decomposition of Nig. = Niduw, X -+ X Nidw,,, and to the decomposition
T =T x -+ x T, such that the action of T' on Nid,w_,» factors through ;.

5.3. CASE v = s,. In this section we investigate the complexity of the torus action
when v is a permutation of length one. Note that in this setting, N, ., slightly differs
from 5,82 N Xy, by an affine part, which is a line. We can see in the next theo-
rem that by increasing the dimension of v by one, the difficulty of computing the
complexity increases.

We look at the graph G, ., which has a simple structure. Note that the condition
U(ty(jy,i8q) — £(sq) = 1 in (14) is only satisfied by s; # s, and the transpositions
to—1,a+1,ta,a+2- It follows that

EGs,w)C{la=1—a+1),(a—=a+2)}U{(i »i+1)]|iF#a}.

Moreover, for @ ¢ {a — 1,a + 1} note that s;s, < w if and only if s; < w. By (14)
it follows that for i ¢ {a — 1,a,a 4+ 1} we have (i — i + 1) € E(Gj, ) if and only
if s; < w. While the following result is not formulated in terms of graphs, its proof
relies on the above description of G, -

THEOREM 5.14. The usual torus action on the KL variety N
and only if one of the following holds

w 8 of complexity-k if

Sa;

(1) Hsil|si Sw}| =4(w)—1—k and either $4-154Sa—1 < W OT Sq418aSq+1 < W.
(2) {si|si Sw} =L(w)—k, sa—18aSa—1 L W, and Sg+154Sa+1 L W.
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Proof. Consider the following cases:

(1) Suppose that exactly one of {(a—1 — a), (a—1 — a+1)} C E(Gy ) or {(a —
a+2),(a+1—a+2)} C E(Gy,y) holds. Then, by Lemma 4.10, sq_15, < w
and tq—1,a+150 = SaSa—1 S W Or Sq415¢ < W and tg q425¢ = SaSa+1 < w. By
the subword property, this holds if and only if s484_15¢ = Sq—1SaSq—1 < W Or
545a+15a = Sa+15aSa+1 < w. Since in both cases G, ,, is a forest and exactly
one of s4_1, 5441 < w holds,

dim(oy,w) = [E(ovw)| =1+ [{s; [ si Sw, i # a}| = [{s; | si <w}
We conclude that in this case, N, ,, has complexity-k if and only if [{s; |
si<wl =L(w)—1—k.

(2) Suppose that {(a —1 —=a),(a—1—a+1),(a >a+2),(a+1—=a+2)}C
E(Gy,w). Arguing as above, this holds if and only if s,_15,5,—1 < w and
Sa+15aSq+1 < w. In this case, G, has exactly one undirected cycle and
the number of connected components is n + 1 — |E(Gy )|, i-e. dim(oy ) =
|E(Gyw)| — 1. Moreover, since sq—1, Sq+1 < w we have

E(Guw)| =2+ [{si | 55 <w, i £ all = 1+ {5 | 5 < w}].
We conclude that in this case, N, ., has complexity-k if and only if [{s; |
si Sw}l =4l(w)—1—k.

(3) Suppose that at most one edge of each set {(a — 1 — a),(a —1 = a+ 1)}
and {(a > a+2),(a+1—a+2)}isin E(Gy,w). By the previous two cases,
this holds if and only if 5,_1545,—1 % w and Sq415¢54+1 L w. Since G, is
a forest we have that

dim(oy,w) = |E(Gyw)| = |{s: | s <w}| —1.

It follows that N, ., has complexity-k if and only if |{s; | s; < w}| = l(w) —
k. O

COROLLARY 5.15. If the KL variety Ns, ., is toric, then it is an affine space.

Proof. By Theorem 5.14, the only case in which we do not obtain a forest for G,
is when s,-1545¢—1 < w and Sg4+18454+1 < w. In this case, w admits at most £(w) —2
distinct simple reflections in a reduced word expression. However, this contradicts
that N, . is toric, since we would need |{s; | s; < w}| = ¢(w) — 1. We conclude by
Proposition 5.1 that N, , is an affine space. O

The next result, which follows from Theorem 5.14 (1), gives a certain family of
complexity-1 T-varieties which are not always affine spaces. The approach with re-
duced word expressions simplifies producing examples and describing large classes of
examples in a compact way.

COROLLARY 5.16. Let w € S,,. The KL variety N, . s a complexity-1 T-variety
if and only if either

(1) spn—28n—15n—2 < w and |{s; | s; < w}| = L(w) — 2, or

(2) Sn—28n-15n—2 L w and |{s; | s; <w}| = L(w) — 1.
Moreover, the weight cone of Ns, | . is smooth.

Note that the weight cone of Ny, , . is smooth if and only if G, |, is a forest
(Theorem 2.2).

EXAMPLE 5.17. Let v = s5 = 123465 and w = $1538284535554 = 245613 in Sg. The
permutation w is irreducible and admits ¢(w) — 2 distinct simple reflections in its
reduced form where s3 has a repetition. This is Case 1 in Theorem 5.14 and thus
Ny is complexity-1.

Algebraic Combinatorics, Vol. 6 #3 (2023) 857



M. DONTEN-BURY, L. ESCOBAR & I. PORTAKAL

O—D—O—TF® O

After imposing the Fulton conditions from D°(w) on Z(*), we obtain the second matrix

1 0 0 000 1 0 0 000
Z21 1 0 000 Z21 1 0 000
Z31 232 1 000 0 Z32 1 000
Z41 242 243 1 00 0 242 243 1 00
251 252 253 254 01 0 0 25325401
261 262 263 264 1 0 0 0 0 26410

with 232243254 — 253232 — 254242 = 0.

In Proposition 5.11, we observed that the dimension of weight cone of Niqg 4, i.€. the
dimension of 04 ,, is maximal possible, if w is irreducible. It turns out that this does
not hold for o5, ,, but it does for the dimension of the weight cone of v, N X, for
all v < w.

PROPOSITION 5.18. Let w € S, be an irreducible permutation. Then Ty (v) is con-
nected for allv < w. In particular, vQNX,, is a T-variety of complexity {(w) —n+1
with respect to the (n — 1)-dimensional usual torus action, i.e. as large as possible.

Proof. The complexity does not change for the T-invariant open neighborhoods in X,
i.e. for vQ2; N X, with v < w. Since w is irreducible, by Proposition 5.11, id 2, N X,
is a complexity-d T-variety with connected T'y,(id), where d = ¢(w) — n + 1. Thus for
any v < w, v N X, is also a complexity-d T-variety with respect to the (n — 1)-
dimensional usual torus action. 0

EXAMPLE 5.19. For v = s3 and w = 515352835554 = 243615, one obtains that while
I'y(v) is connected, G, has 2 connected components.

5.4. OBSERVATIONS FOR THE REMAINING CASES. Let us examine some easy cases
first:
(1) The KL variety Ny, is the point wB and the graph G, ,, is empty so it is a
toric variety.
(2) If v = wo, then we have only one possible permutation v = w and hence we
are in the preceding case.
(3) If w = wo, then we obtain that N, ,,, = CIP°() and E(@) corresponds to
all non-inversions of v.
(4) Let v,w € S, with v < w and ¢(w) — £(v) = 1. Then by [6, Prop. 1.3.5],
Ny = CL From (14) it follows that dim(oy ) = |[E(Gyw)| = 1 and thus
J\fv,w is toric.

REMARK 5.20. One may think more generally about investigating the complexity of
the torus action on a KL variety in the following way. Fix w € S,, and consider a
chain of permutations vy =id < v1 < ... < vy = w where ¢(v;) =i and v;11 = s, v;
for some s;,. That means that the pair (j;,j; + 1) is a non-inversion of v; and an
inversion of v; 1. Suppose that we aim to determine how the complexity of the torus
action on N, ,, changes as we go up on the chain. In the following example, we will
see that the change seems difficult to describe.
Let w = 3412 and consider the chain vg = id < v1 = 89 < V9 = 8389 < V3 =
518382 < 82818382 = Vg4 = W.
o Ny,.w is the hypersurface defined by zo1230243 — za2221 — 243231. It is a
complexity-1 T-variety by Theorem 5.8.

Algebraic Combinatorics, Vol. 6 #3 (2023) 858



Complexity of Kazhdan—Lusztig varieties

e By Theorem 5.14, NUIJ»U is a toric variety and it is given by 221243 + 231242-
Note that (2 = 3) € E(Gyy.w) ™ E(Gy, w) because to 3 is the only inversion
of S9.
o Ny, w = C? is toric. The edge (3 — 2) € E,(v1) becomes an edge of G, 4
and (2 — 4) € E(Gy, w) becomes an edge of I'y,(v2). The reason for that is
243 from Z(1) vanishes in Z("2) and zs3 is a coordinate of Z(¥2) respectively.
Moreover, after imposing Fulton’s conditions from D°(w), we obtain that z3;
is an unexpected 0, corresponding to the edge (1 — 3).
o Ny, =2 Clis toric. The edge (1 — 2) ¢ G, .4 since z2; is not a coordinate
of Z(*s) In particular z33 is an unexpected zero corresponding to the edge
(1 —3).
On the other hand, we can say more about the complexity of each v;{}; N X,,. By
Proposition 5.18, I',, (v;) is connected, thus v;Q29; N X, is a complexity-1 T-variety for
all i € {0,1,2,3,4}.

OO OO0 O
G G

Gvo#w vy,w Vo, W

@t/éi‘@* ®

G’Ug,w

FIGURE 5. E,(v)\E(G, ) is represented by red and the edges cor-
responding to unexpected Os by blue.

Finally we introduce families of complexity-1 T-varieties in terms of reduced word
expressions.

COROLLARY 5.21. Suppose that w € S, is irreducible. Assume that a reduced word
expression of w contains

(1) $it18:Si42Si+1 as a factor and has no other repetitions. Then for any v < w,
v N Xy, is a complexity-1 T-variety of dimension n.

(2) sisi+18; as a factor and has no other repetitions. Then for any v < w, v, N
X 18 a smooth complexity-1 T-variety of dimension n.

Proof. In (1), X,, is singular and of complexity-1 by [22, Thm. 1.3]. Thus its open
invariant subset vQ)7; N X, also has complexity-1. Since its complexity is 1, by Propo-
sition 5.18 we have [(w) = n, hence it is n-dimensional. The argument for (2) is
analogous, based on [22, Thm. 1.2]. In this case X,, is smooth, hence its open subset
also. g

ExAMPLE 5.22. Note that in Corollary 5.21(1) the non-smoothness of X,, does not
imply that v§27; N X,, has a singular point. For example, for v = w = 3412 = 53515352,
we obtain a smooth variety vQg, N X, ~ C*.

Although we may define a family of T-varieties of fixed dimensional torus action
on vQg N X, the dimension of weight cone of N, ,, decreases by one or stays the
same with this approach, see Remark 5.20. However, our results are sufficient to
generate series of KL varieties of small complexity, which is an object of further
investigation. Moreover, it is also promising to investigate D°(v) by changing its shape
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under certain restrictions to obtain another D°(v’) while preserving the complexity
of the T-varieties. This is an ongoing work of the authors.
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