
Joint Optimization of Sizing and Layout for AMS Designs:
Challenges and Opportunities

Ahmet F. Budak

The University of Texas at Austin,

Austin, TX, USA

ahmetfarukbudak@utexas.edu

Keren Zhu

The University of Texas at Austin,

Austin, TX, USA

keren.zhu@utexas.edu

Hao Chen

The University of Texas at Austin,

Austin, TX, USA

haoc@utexas.edu

Souradip Poddar

The University of Texas at Austin,

Austin, TX, USA

souradippddr1@utexas.edu

Linran Zhao

The University of Texas at Austin,

Austin, TX, USA

lrzhao@utexas.edu

Yaoyao Jia

The University of Texas at Austin,

Austin, TX, USA

yjia@austin.utexas.edu

David Z. Pan

The University of Texas at Austin,

Austin, TX, USA

dpan@ece.utexas.edu

ABSTRACT
Recent advances in analog device sizing algorithms show promising

results on the automatic schematic design. However, the majority of

the sizing algorithms are based on schematic-level simulations and

layout-agnostic. The physical layout implementation brings extra

parasitics to the analog circuits, leading to discrepancies between

schematic and post-layout performance. This performance gap

raises questions about the effectiveness of automatic analog device

sizing tools. Prior work has leveraged procedural layout genera-

tion to account for layout-induced parasitics in the sizing process.

However, the need for layout templates makes such methodology

limited in application. In this paper, we propose to bridge automatic

analog sizing with post-layout performance using state-of-the-art

optimization-based analog layout generators. A quantitative study

is conducted to measure the impact of layout awareness in state-

of-the-art device sizing algorithms. Furthermore, we present our

perspectives on the future directions in layout-aware analog circuit

schematic design.
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1 INTRODUCTION
Lacking automation tools, analog integrated circuit (IC) design is

a labor-intensive process. As a crucial stage in analog circuit syn-

thesis, device sizing has lately attracted a great deal of academic

attention due to industry demands and the development of ma-

chine learning (ML)-inspired methods. The size of devices, such

as transistor width and capacitor geometry, can be critical to the

circuit performance, power consumption, and area (PPA). In manual

design, a combination of design experience and simulator feedback

often determines device sizing.

Attempts to automate analog scaling date back decades. It may be

conventionally divided into equation-based and simulation-based

techniques. Equation-based approaches quantify and direct the

search of the optimal PPA using embedded equations. It is com-

putationally efficient; however, the equation may be inaccurate,

particularly for today’s advanced technology nodes. Simulation-

based methods use simulations to explore the design space. They

utilize simulators to obtain precise PPA. Recent research trend in

analog sizing introduces machine learning (ML) to simulation-based

methodology [1]. The adoption of ML techniques has increased the

optimization efficiency and improved the capability of automatic

analog device sizing.

However, in addition to device sizing, analog circuit performance

is also sensitive to layout implementation [2]. Layout effects exac-

erbate the challenges in advanced processes due to design rule com-

plexity and large layout impacts on circuit parasitics. There have

been several attempts to enable automatic sizing to be parasitic-

or layout-aware. However, the existing methods either require ad-

ditional efforts on implementing layout templates [3] or use less
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Figure 1: Analog IC Design Flow

accurate parasitic predictionmodel [4]. A full-scale general-purpose

layout-aware analog sizing method is yet to be discovered.

In this paper, we present a comprehensive study on post-layout

performance-based design parameter optimization of analog ICs.

Leveraging the state-of-the-art analog sizing method [5] and au-

tomatic analog layout framework [6, 7], our framework jointly

considers sizing and layout implementation. We conduct experi-

ments on a Miller operational transconductance amplifier (OTA)

and demonstrate the importance of considering layout effects in

automatic sizing.

The rest of the paper is organized as follows. Sec. 2 introduces the

backgrounds. Sec. 3 reviews the existing parasitic-aware and layout-

aware analog sizing methods. Sec. 4 describes our joint optimization

flow and presents several case studies. Sec. 5 discusses and gives our

perspectives in the research of layout-aware analog sizing. Finally,

Sec. 6 concludes the paper.

2 BACKGROUND
Analog IC design cycle typically follows a pattern similar to the

one visualized in Figure 1. An iterative process between the human

designer and computer simulations is conducted to finalize a design

that satisfies the intended performance requirements. A large por-

tion of design time is spent on the sizing and layout phases, where

multiple iterations are possible due to potential loop-backs in the

design flow. Therefore many automation flows with accompanying

optimization algorithms are introduced to solve analog sizing and

layout generation problems. This section is dedicated to review-

ing such methods and preliminaries. We include a more elaborate

review of the analog sizing tool, DNN-Opt, and analog layout gen-

erator, MAGICAL since these tools are leveraged in developing the

joint optimization framework presented in this paper.

2.1 Problem Formulation
We formulate the analog circuit sizing task as a constrained opti-

mization problem succinctly as below.

minimize 𝑓0 (x)
subject to 𝑓𝑖 (x) ≤ 0 for 𝑖 = 1, . . . ,𝑚

(1)

where, x ∈ R𝑑 is the parameter vector and𝑑 is the number of design

variables of sizing task. Thus, R𝑑 is the design space. 𝑓0 (x) is the

objective performance metric we aim to minimize. Without loss of

generality, we denote 𝑖th constraint by 𝑓𝑖 (x).
Through this paper, we will evaluate the quality of a design by

defining a Figure of Merit (FoM) in the following form:

FoM(x) = 𝑤0 × 𝑓0 (x) +
𝑚∑︁
𝑖=1

min (1,max(0,𝑤𝑖 × 𝑓𝑖 (x))) (2)

where 𝑤𝑖 is the weighting factor. Note, a max(·) clipping is used

for equating designs after constraints are met, and min(·) is used
to prevent single constraint violation from dominating FoM value.

2.2 Analog Sizing
Different approaches have been adapted to solve analog sizing tasks

in the past. One adaption is to use domain expertise where designer

experience and device characteristics are translated into equations

and procedures[8],[9]. However, this approach depends highly on

accumulated experience and requires custommodifications for each

topology and technology node. Therefore, such methods are not

scalable and inefficient.

Another mainstream approach is to map the sizing problem into

an optimization problem where circuit performances are handled

as objective and constraint functions. This stream has two classes:

equation-based methods and simulation-based methods. Equation-

based methods approximate performance functions with convex

or non-convex regression models, then numerical optimization

methods are utilized as solvers to find optimal input variables. In

the past, Geometric Programming[10], [11] and Semidefinite Pro-

gramming (SDP) relaxations [12] are used to find optimal sizing of

analog circuits by employing posynomials as performance models.

However, with the advanced device technology and complex circuit

structures, regressed equations highly deviate from accurate simu-

lation values. On the contrary, simulation-based methods evaluate

iteration points via real simulations and, therefore, have become

much more popular among recent algorithms.

In the past, population-based methods are used to solve the siz-

ing problem. Among those, particle swarm optimization (PSO) [13]

and advanced differential evolution [14] were examples of popular

approaches. These methods provide proximity to the global op-

tima, but they burn a large number of expensive simulations to

achieve this. Due to their sample-inefficient nature, these meth-

ods are not applicable to designs with time-expensive simulations.

To mitigate sample inefficiency issue, model-based and learning-

based methods are becoming increasingly popular in the field. Since

these methods employ/train proxies between the solution space

and performance space, they are more efficient in exploring the

solution space. Usually, the proxy method for model-based methods

is called a surrogate model. A typical surrogate model is Gaussian

Process Regression (GPR) [15], which is a well-studied model in

Bayesian Optimization (BO) field [16] and is adapted by several ana-

log sizing algorithms. For example, GASPAD is a hybrid algorithm

using a combination of evolutionary space exploration and GPR

surrogate-based selection [17]. WEIBO method also employs GPR

as a surrogate and introduces a Bayesian Optimization framework

where a weighted acquisition function is tailored to comply with

the performance-constrained nature of sizing problem [18]. One

main drawback of GPR modeling is that it has cubic complexity in
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the number of samples, O(𝑁 3), which brings complications when

the collected sample number gets larger.

Other model-based optimization methods utilized ANN for cir-

cuit performance modeling. In [19], ANN is used as a proxy for the

circuit simulator, and performance estimates obtained by the trained

model are used to guide an evolutionary optimization framework

efficiently. Another ANN-boosted evolutionarymethod is presented

in [3] where the trained ANN is employed as a performance classi-

fier. In [20], authors proposed to enhance the efficiency of a Genetic

Algorithm based optimizer where the local minimum search is con-

ducted via the help of trained ANN. Another method that utilizes

neural nets is ESSAB [21], where ANN training is combined with

a data augmentation method to reduce the need for the required

number of samples for accurate training. A different approach is

adapted for building an ANN model in [22], where circuit specifica-

tions are used at the input nodes, and design variables are taken

from the output nodes. To train and work with such a model, a

large dataset is generated for offline training of the ANN model.

Recently supervised and reinforcement learning (RL) algorithms

have been applied in the field [5, 21, 23, 24]. GCN-RL [23] is a Graph

Neural Network (GNN) algorithmwhere state representation is built

via device index, type, and selected electrical properties. They also

propose methods to transfer the optimization experience between

different topologies and processes. AutoCkt [24] is a discrete action

space policy gradient method. The RL agent is trained on different

optimization tasks where the task is randomly sampled from a

predefined set. The trained agent is then tested for the particular

tests during deployment. They both provide competitive results

compared to other black-box methods; however, GCN-RL requires

thousands of simulations to converge, and AutoCkt needs to be

trained before deployment, which is SPICE intensive. DNN-Opt [5]

is introduced as an RL-inspired supervised learning optimization

method that shows high sample efficiency and can be trained during

optimization.

While learning-based methods (RL, DNN, Bayesian) target sam-

ple efficiency, in practice, SPICE simulations may be very costly,

and the whole synthesis process is time budgeted, so a time-efficient

method is sought. One way to gain efficiency is to make use of com-

putationally cheap simulations. In [25], a multi-fidelity surrogate

optimization technique is proposed where it uses fast RC simula-

tions to reduce the cost of electromagnetic simulations. Another

approach is to impose custom conditions or procedures before run-

ning particular simulations. In [26], an example of this approach is

applied as a PVT exploration strategy, which is helpful for checking

pass/fail conditions of specifications across several corners. In [27],

the APOSTLE framework is introduced in the sizing problem, where

real-time efficiency is provided via an asynchronously parallel op-

timization framework and a theory-based expensive simulation

bypassing strategy.

2.3 DNN-Opt
DNN-Opt [5] is a deep neural network analog sizing framework.

Being an RL-inspired optimization algorithm, DNN-Opt searches

a continuous action space to find an optimal solution for the siz-

ing problem. In this paper, we employ DNN-Opt as a black-box

optimization algorithm. We first use it in its original form to size
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Figure 2: DNN-Opt Framework [5]

the circuit based on schematic-level simulations. Then, we modify

the circuit performance generation procedure and use DNN-Opt to

optimize design variables based on post-layout performance.

The core architecture for DNN-Opt is provided in Figure 2. It

inputs a circuit topology, a set of design variables and search bounds,

and performance criteria to optimize analog circuits. It interacts

with the circuit simulator to obtain the circuit performance through

optimization iterations, and the final output is the optimized design

parameter values.

The search algorithm of DNN-Opt consists of two neural net-

works: actor and critic networks. The actor-network conducts a

guided search in the sample space and determines the next sample

point. The critic-network serves as a proxy to the real circuit simula-

tions and is trained by the data created via pseudo-sample generation
mechanism. Since the critic-network is the regression network for

circuit performance metrics, it is trained by the mean squared error

expressions obtained by the difference between network predic-

tions and real simulation outputs. Once the critic training is done,

the actor is trained based on the fixed critic. The analogy here is

that the critic-network behaves as a surrogate model for the design

space, and the actor-network searches within this model to find

potential good designs. In that perspective, the state representation

of the environment is the vector of design variables, and actions

are the change vector for the design variables.

2.4 Analog Layout Automation
The physical layout implementation stage in the current analog IC

design is still mostly manual, labor-consuming, and error-prone,

placing constraints on turnaround time. Procedural layout genera-

tion and optimization-based layout synthesis are two paradigms

that describe AMS Layout automation techniques [2].

Utilizing pre-designed parameterized layout templates, proce-

dural layout generators migrate layouts for various manufacturing

technologies and device sizes. BerkeleyAnalogGenerator (BAG) [28]

is a framework of procedural layout generation. This method typ-

ically requires designers to parameterize device placement and

route (such as routing topology, metal layer, and via cuts), allowing
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designers to modify device sizing. Nonetheless, it needs a large

amount of human labor to develop generic layout templates or

PCELLs, where device layouts are still manually coded to be placed

and routed.

In generating layouts, optimization-based techniques employ

place-and-route (PNR) algorithms to optimize area, power, and cer-

tain performance metrics. These methods have varying degrees

of generality and are designed for various application scenarios.

In contrast to template-based layout creation, optimization-based

methods produce fully automated layout solutions without the need

for additional effort to build layout templates. To assure layout qual-

ity, it is necessary to recognize constraints such as device symmetry,

building block symmetry, and common-centroid matching.

Developing open-source end-to-end frameworks, such as MAG-

ICAL [6] and ALIGN [29], is an emerging trend in optimization-

based AMS circuit layout automation. MAGICAL and ALIGN both

include a complete module generator, analog placer, and detailed

router. They have demonstrated success in automating building

block-level analog circuits with minimal or no human intervention.

These general-purpose analog layout generators can generate the

layouts in automatic sizing flow and, therefore analog sizing to be

layout-aware. In this paper, we leverage the open-source MAGICAL

framework as a bridge to study the joint optimization of sizing and

layout for AMS designs.

2.5 MAGICAL
MAGICAL is an open-source end-to-end framework for AMS layout

synthesis that aims to automatically build layouts from netlists with

no-human-in-the-loop. In a few years, the MAGICAL system has

evolved from the initial version with limited capability [6] to the

silicon-proven MAGICAL 1.0 release [7].

MAGICAL automatically extracts layout constraint, generates

the device layouts, places the modules, and routes the wires. Fig-

ure 3 illustrates the flow of MAGICAL for generating the layout for

a block-level analog circuit. The automatic symmetry constraint

generation is based on heuristic algorithm for device-level con-

straints [6] and graph similarity [30] for the system-level. The place-

ment engine is based on a non-linear programming-based global

placer and a linear programming-based legalizer [31]. The MAG-

ICAL detailed router is based on an obstacle-aware path-finding

algorithm [32]. The paper [33] gives a detailed overview of the

MAGICAL algorithm.

3 RECENT DEVELOPMENTS
There have been efforts to enhance automatic sizing with parasitic

or layout awareness. The existing methods use post-layout perfor-

mance as the optimization objective of simulation-based analog

sizing algorithms so that the device sizing can take layout effect into

consideration. Their methodologies mainly fall into two categories.

(1) Layout-aware sizing with procedural layout generation. An
automatic analog sizer is combined with a procedural layout

generator. The flow generates the layouts based on a tem-

plate for a set of sizing, and the post-layout performance is

obtained from the generated results.

(2) Parasitic-aware sizing with parasitic prediction. A machine

learning model to predict layout parasitics from pre-layout

MAGICAL
Block-level Synthesis

Symmetry Constraints
Extraction

Placement

Device Layout
Generation

Routed Layout

Routing

Circuit Netlist

Figure 3: The MAGICAL flow for block-level layout genera-
tion.

netlists is trained. The automatic analog sizing flow can then

use the prediction model as a vehicle to model the layout

effect.

The rest of this section gives an overview of the recent develop-

ments in academia.

3.1 With Procedural Layout Generation
A procedural analog layout generator uses a manually scripted

layout generator to enable automatic sizing to generate the layouts

for a template schematic. Both two recentmethods, AutoCkt [24, 34]

and BagNet [3], leverage the BAG [28] framework as the layout

generator.

AutoCkt educates RL agents to be knowledgeable of the full

design space. It uses BAG to enable layout awareness. Consequently,

the agent is able to select the optimal course of action at a particular

moment in the design process. Multiple trajectories teach the agent

how to create a circuit. The agent either reaches the target or ends

the trajectory because the maximum number of steps has been

reached. Following training, the agent is assigned to an unseen

target. The more successful the training, the higher the success rate

agent can achieve during the deployment.

BagNet, on the other hand, is based on an evolutionary algorithm

with a deep neural network (DNN)-based oracle to boost the search

efficiency. It contains three core components: (1) an evolutionary

engine to generate offspring, (2) the BAG layout generator, and (3)

a DNN model acting as an oracle. Based on the existing population,

the evolutionary algorithm produces the following generation of

children. The DNN-based oracle evaluates the produced candidates

and eliminates those with lower scores. After the discriminating

step, the resulting offspring are implemented in layouts using BAG

and simulated to acquire the metrics. The simulated performance is

then utilized to fine-tune the oracle and direct the next generation

in the evolutionary process.

The procedural layout generator-assisted analog sizing can ob-

tain accurate post-layout performance. However, they require man-

ually scripted layout templates.
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3.2 With Parasitic Prediction
Recent advances in machine learning have enabled statistical and

data-driven techniques to predict layout parasitics directly from

circuit schematics with high accuracy. ParaGraph [35] converts

circuits into heterogeneous graphs and uses a graph neural net-

work (GNN)model to predict net parasitic capacitance.MLParest [36]

uses Random Forest models to predict resistance and lumped para-

sitic capacitance.

The work [4] leverages the Paragraph prediction model to enable

parasitic-aware sizing. It further proposes an improved performance

surrogate model using graph embeddings from the pre-trained

parasitic graph neural network as additional parasitic information.

The ParaGraph GNN model encodes the latent information of the

circuit parasitics with graph embeddings. With the performance

model, With the surrogate model, the automatic sizing framework

can therefore enable parasitic awareness and mitigate the layout

effect.

The ML-based parasitic prediction and performance prediction

provides an efficient vehicle to take layout effect into the sizing

loop. However, the accuracy of predicting layout effects is still

a challenge without layout implementation in both the parasitic

prediction [37] and performance prediction [38] tasks.

4 LAYOUT IN THE LOOP SIZING
The majority of the research to automate analog design flow (Fig 1)

focuses on individual phases and does not address the effects of

preceding and following phases on each other. As reviewed in

Section 2, analog automation literature is populated with mostly

sizing-only or layout-only efforts. This practice has three major

undesired consequences:

(1) Being agnostic of other phases damages the reliability of

automation.

(2) The total scope of optimization is restrained as certain phases

are excluded from the automated flow.

(3) Isolating these phases does not reflect the industry practice

and, therefore, discourages the adaptation of such tools by

the industry.

In this section, we quantitatively study the importance and po-

tential of the layout-aware analog sizing framework. We combine

the state-of-the-art analog sizing algorithm, DNN-Opt [5], and

the general-purpose analog layout generator, MAGICAL [6, 7, 33].

Leveraging the joint framework, the analog sizer can obtain ac-

curate post-layout circuit performance with the requirement of

manually scripted layout templates. We conduct a case study on a

representative analog circuit and evaluate the joint framework.

4.1 A Case Study
In order to demonstrate the importance of layout effects on the

final performance, we perform experiments on a Miller OTA cir-

cuit designed in 40nm technology (Fig. 4). The transistors of the

circuit are parameterized so that an automation flow to optimize

its performance can be conducted. The optimization problem has

17 independent design variables to size length, width, and number

of fingers of the transistors.

Figure 4: Schematic of the Miller OTA

The optimization problem for the Miller OTA consists of an

objective and several performance constraints and is expressed as

below:

minimize Power

s.t. DC Gain > 45 dB Settling Time < 100 ns

CMRR > 55 dB Saturation Margins > 50 mV

PSRR > 55 dB Unity Gain BW. > 40 MHz

Out. Swing > 1 V RMS Noise < 400 uVrms

Static error< %2 Phase Margin > 60 deg.

(3)

Our experimental study includes the following two steps:

(1) We first use the sizing automation tool DNN-Opt to optimize

the performance metrics. This step is based-on schematic-

level electrical simulations and is layout agnostic. We then

auto-generate the layout of the optimized design using MAG-

ICAL and run post-layout simulations to obtain performance

values, including the layout effects.

(2) We modify DNN-Opt algorithm to optimize the post-layout

performance of the circuit. To facilitate this approach, we

utilize MAGICAL as the layout generator.

4.2 Experiments with Layout Agnostic Loop
In this part of the study, we investigate how much performance

degradation is introduced to the layout agnostic flow, i.e., the

amount of suffering from completely delayed layout considerations

during sizing. To do a fair analysis, we do not use the designer’s

after-layout intent to formulate the problem, but we refine it by

using the designer’s schematic-level performance. This way, we

match the designer’s overdesign effort during sizing.
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Table 1: DNN-Opt (Schematic) vs. Designer PerformanceCom-
parison Based on Pre-Layout Performance

Schematic Optimized Intent DNN-Opt Designer

Power (mW) minimize 0.51 0.53

Output Swing (V) ≥ 1 0.99∗ 0.92

Gain (dB) ≥ 46 48.1 46.7

CMRR (dB) ≥ 55 66.1 56.2

PSRR (dB) ≥ 55 63.7 55.8

Phase Margin (deg) ≥ 57 62.1 57.2

RMS Noise (uV) ≤ 400 380 390

Rise Time (ns) ≤ 50 21.3 22.2

Static Error (%) ≤ 1.2 1.08 1.19

UGB (MHz) ≥ 85 85.9 85.0

We compile the experiment results in Table 1. We included the

new objective and constraint values used for the schematic-level

optimization. DNN-Opt was able to provide a design that is very

close to satisfying all design intent except for a minor miss for

output swing. We further observe that the schematic-level result

found by DNN-Opt overperforms designer-crafted design in every

metric.

After obtaining optimized results on schematic-level simulations,

we use MAGICAL to create layouts for both DNN-Opt and designer

solutions. Layout generation is followed by parasitic extraction and

post-layout simulations to obtain the post-layout performance of

Miller OTA testcase. The post-layout simulations results of DNN-

Opt optimized design and designer-created design are collected at

Table 2.

Table 2: DNN-Opt (Schematic) vs. Designer PerformanceCom-
parison Based on Post-Layout Performance

Schematic Opt + Layout Intent DNN-Opt Designer

Power (mW) minimize 0.53 0.53

Output Swing (V) ≥ 1 0.96∗ 0.97∗

Gain (dB) ≥ 45 17.9
∗ 47.8

CMRR (dB) ≥ 55 25.6
∗ 53.7∗

PSRR (dB) ≥ 55 25.7
∗ 55.6

Phase Margin (deg) ≥ 60 75.1 69.9

RMS Noise (uV) ≤ 400 370 370

Rise Time (ns) ≤ 100 23.0 110
∗

Static Error ≤ 2 1.07 2.52
∗

UGB (MHz) ≥ 40 41.6 42.0

We observe that, except for the phase margin and rms noise,

all other performance metrics degrade in value. The metrics such

as the Gain, CMRR, and PSRR are severely reduced for DNN-Opt

generated design after layout effects. Together with output swing,

these metrics can not satisfy the design intent after layout. On

the other hand, the designer’s design demonstrates much better

resilience against the layout effects. Its Gain and PSRR values meet

the constraint threshold, and CMRR is very close to meeting the

threshold. Overall, our analysis shows that the performance val-

ues of a circuit deviate significantly once a layout is generated.

Therefore, the layout effects must be included in the parameter

optimization phase in order to generate a robust sizing solution.

4.3 Layout in the Loop Automation Flow
To include the post-layout effects on the performance during sizing,

we tailor the classical sizing flow. Instead of optimizing the design

variables based on the schematic level simulations, we utilize the

layout automation tool MAGICAL to modify performance evalu-

ation steps. The suggested flow is shown in Fig 5. To obtain the

post-layout performance of each new design, first, an automated

layout is generated via MAGICAL. This step is followed by parasitic

extraction, and circuit simulations are run on the updated netlist

with parasitic elements.

Layout 
Generation

Parasitic 
Extraction

Post-layout 
Simulations

Optimization Algorithm
Next Design Performance Values

Figure 5: Post-Layout Performance Based Optimization

We evaluate the effectiveness of the layout-in-the-loop optimiza-

tion flow by revisiting the Miller OTA case. The same optimization

algorithm DNN-Opt is used to optimize the same set of parameters

using the post-layout performance values instead of the schematic

(pre-layout) simulations. The optimized post-layout performance

values and their comparison to designer performance are included

in Table 3.

Table 3: DNN-Opt (Post-Layout) vs. Designer Performance
Comparison on Post-Layout Performance

Post-Layout Optimized Intent DNN-Opt Designer

Power (mW) minimize 0.39 0.53

Output Swing (V) ≥ 1 1.11 0.97
∗

Gain (dB) ≥ 45 46.1 47.8
CMRR (dB) ≥ 55 56.7 53.7

∗

PSRR (dB) ≥ 55 58.9 55.6

Phase Margin (deg) ≥ 60 70.7 69.9

RMS Noise (uV) ≤ 400 370 370

Rise Time (ns) ≤ 100 26.9 110
∗

Static Error ≤ 2 1.2 2.52
∗

UGB (MHz) ≥ 40 31.3
∗ 42.0

The tool-generated design satisfies all constraints except the

unity gain bandwidth (UGB). Considering that the designer’s design

fails to meet four metrics proves that the proposed flow is very

effective. Further, layout-in-the-loop sized solution overperforms

the designer’s solution in seven metrics and falls behind only in

two metrics (Gain, UGB).
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(a) Designer optimized design’s layout (b) Post-layout performance-based optimized design’s layout

(c) Schematic-level performance-based optimized design’s layout

Figure 6: Layouts for different design flows

We further elaborate our analysis by including the layouts gen-

erated by MAGICAL in Figure 6.

Analysis for Figure 6a: It is the most compact layout among

all generated layouts. The designer has used their experience to

provide a layout-friendly design. The total area is around 75𝜇𝑚 ×
30𝜇𝑚.

Analysis for Figure 6b: Despite the good performance, the layout

has some issues in terms of compactness and area consumption

compared to the designer’s layout. Compared to the designer’s lay-

out, the layout-in-the-loop DNN-Opt generated result consumes

around 60% larger area as its total area is 90𝜇𝑚 × 40𝜇𝑚. Addi-

tionally, the lack of dummy devices for critical devices increases

the risk of performance degradation in the actual silicon due to

fabrication-related non-linearities and issues that are not modeled

in the simulation. To improve the final design quality, the flow

can be optimized to decrease area consumption and automatically

generate dummy devices to increase reliability.

Analysis for Figure 6c: The area consumed by the schematic-level

performance-optimized design is around 79𝜇𝑚 × 42𝜇𝑚 and 47%

larger than designer layout. Also, it resulted in some key devices

with abnormal sizes, such as long channel lengths and very short

widths. This can cause deviation in these devices’ transconductance

and output resistance when post-layout effects are introduced into

the simulation, leading to a significant degradation in performance

parameters such as gain, CMRR, and PSRR. The abnormal-sized de-

vices may also increase parasitic capacitance and resistance, further

degrading the UGB (Unity Gain Bandwidth).

5 CHALLENGES AND OPPORTUNITIES
Our quantitative case study demonstrates the importance of consid-

ering layout effects in analog sizing. The need for efficient layout-

aware analog sizing calls for further research. In this section, we

give our perspectives on the challenges and opportunities in future

research in layout-aware analog sizing.

5.1 Challenges
Cost of Computation and Data Generation: The most recent

algorithms introduced in analog sizing and layout problems utilize

machine learning algorithms. The amount and quality of the data

are crucial for ML model training; therefore, the quality of the siz-

ing/layout algorithm strongly depends on the same requisites. The

complication of this requirement is that it can introduce a huge

time cost since the data generation for EDA problems is generally

subject to calling EDA simulations, where a single simulation can

take days to run. One way to mitigate this issue is to utilize paral-

lelization facilities in the computing environment. However, the

user may be subject to commercial license constraints.

Another related challenge is that analog automation lacks open-

sourced benchmarks. This introduces an entry barrier for potential

developers and prevents collaborations.

Scalability: The ability to scale to larger designs is a critical

property of analog sizing/layout algorithms. Working on smaller

designs is advantageous for the sake of agile algorithm development

and concept proving; however, the end goal of these algorithms is

to help in industrial applications, which are typically larger than

academic building blocks. Therefore, at some point, automation
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algorithms should demonstrate how to handle designs with a large

number of devices, nodes, and design parameters.

Another type of scalability concern is the scalability in time. The

time requirement for the initial dataset collection and the algorithm

run should scale well for various problems.

Reliability: Reliability is a big concern for analog design. The

designs have to maintain certain specs under varying environmen-

tal conditions. Therefore, the designs are tested against the process,

voltage, and temperature (PVT) variations. For a complete end-to-

end flow, it is expected that the automation flow also considers

these variations, and the final design is robust against variations.

Adaptability Across Technology Nodes: As the design pro-

cess for IC design changes rapidly, the automation tools need in-

struments to synchronize with that change. One current limitation

of MAGICAL is that it only supports certain technologies, and

transforming it with a developer has a time cost.

Transferability: Transferring the knowledge harvested from

one task to another is a known concern in all ML applications.

Considering the cost of data generation and time-to-market re-

quirements for analog design, transferring the learning experience

can significantly help productivity.

There are multiple ways to offer transferability in analog siz-

ing/layout problems. One is to use the knowledge obtained in one

design on a new topology. Another one is to transfer the experience

between different technology nodes.

Joint Optimization Metrics: To facilitate a joint optimization

of sizing and layout, using the post-layout circuit performance

alone may not be sufficient. It is noted in our case study that the

layout with imperfections can still result in optimized post-layout

performance. Therefore, strong feedback between the layout and

design parameter optimization algorithm should be constructed.

The sizing algorithm and layout generation should adopt a mech-

anism to process the previously generated layout and respective

performance metrics. This mechanism might require additional

metrics that assess the quality of the layout and the final perfor-

mance together. Quantifying the layout quality is challenging since

many non-systematic practices are involved.

5.2 Opportunities and Future Directions
ML for Analog Design: EDA is an important application area for

ML as there has been amassive interest in recent years [39, 40]. Also,

EDA companies have developed their own AI platforms, such as

Cadence Cerebrus [41] and Synopsys DSO.ai [42]. For analog sizing,

ML-based modeling reduced the optimization time significantly

compared to traditional randomized approaches.

Community and Hardware: Being an important ML applica-

tion area, there is an excellent opportunity to build a larger com-

munity for analog design. Analog design benefits from being a part

of a very active ML community. Academy-industry collaboration is

stronger, and there is more effort from companies to contribute to

the open-source environment by publishing their research, sharing

code, and design IPs.

Another significant development is that analog design automa-

tion benefits from the advances in hardware technology. It helps in

two aspects of analog automation. One is that the algorithms that

are computationally expensive in the past are now feasible to run.

The second aspect is that the availability of parallel computing re-

sources and faster simulations helps significantly in making recent

algorithms scalable and practical.

Towards efficient layout-aware analog sizing: In the near

future, we expect some degree of integration between sizing and

layout automation. One drawback of integrating design phases

is that the need for simulation feedback increases. To tackle this

problem, certain blocks in the automation flow can utilize surrogate

models to reduce the need for simulation. Such surrogates can

either replace the real expensive simulations or can serve as guiding

models with lower fidelity.

The flow we presented in our case study lacks in processing the

quality of the generated layout. A simple extension is to include

the total layout area and device shapes as a part of the optimization

problem. Another approach is to avoid running certain simulations

by following a hierarchy of simulations and certain decision steps.

For example, it may become apparent after the placement that

the layout does not satisfy desired qualities and the algorithm can

decide not to run the remaining costly steps: routing, parasitic

extraction, and post-layout simulations.

Figure 7: Design phases to obtain post-layout performance

Towards joint analog synthesis: A longer-term future direc-

tion for analog automation is to adapt such flows that integrate

topology selection, device sizing, and layout generation. As shown

in Fig 7, the joint analog synthesis requires several blocks to be

automated. The end-to-end flow can output an optimized design

based on system-level specifications.

One bottleneck for this flow is that the topology search research

is not as mature as sizing and layout automation. There have been

tree-based and machine-learning approaches for topology search

problems [43, 44], but generalizable methods are still awaited.

6 CONCLUSION
In this paper, we analyze the importance of layout-induced effects

on analog device sizing. We reviewed recent research efforts on

analog sizing and analog layout automation. Then, we provide a

case study using the Miller OTA circuit to quantify the gap be-

tween layout-agnostic and layout-in-the-loop sizing approaches.

We further discuss the challenges and opportunities in analog de-

sign automation.
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