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ABSTRACT

Recent advances in analog device sizing algorithms show promising
results on the automatic schematic design. However, the majority of
the sizing algorithms are based on schematic-level simulations and
layout-agnostic. The physical layout implementation brings extra
parasitics to the analog circuits, leading to discrepancies between
schematic and post-layout performance. This performance gap
raises questions about the effectiveness of automatic analog device
sizing tools. Prior work has leveraged procedural layout genera-
tion to account for layout-induced parasitics in the sizing process.
However, the need for layout templates makes such methodology
limited in application. In this paper, we propose to bridge automatic
analog sizing with post-layout performance using state-of-the-art
optimization-based analog layout generators. A quantitative study
is conducted to measure the impact of layout awareness in state-
of-the-art device sizing algorithms. Furthermore, we present our
perspectives on the future directions in layout-aware analog circuit
schematic design.
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1 INTRODUCTION

Lacking automation tools, analog integrated circuit (IC) design is
a labor-intensive process. As a crucial stage in analog circuit syn-
thesis, device sizing has lately attracted a great deal of academic
attention due to industry demands and the development of ma-
chine learning (ML)-inspired methods. The size of devices, such
as transistor width and capacitor geometry, can be critical to the
circuit performance, power consumption, and area (PPA). In manual
design, a combination of design experience and simulator feedback
often determines device sizing.

Attempts to automate analog scaling date back decades. It may be
conventionally divided into equation-based and simulation-based
techniques. Equation-based approaches quantify and direct the
search of the optimal PPA using embedded equations. It is com-
putationally efficient; however, the equation may be inaccurate,
particularly for today’s advanced technology nodes. Simulation-
based methods use simulations to explore the design space. They
utilize simulators to obtain precise PPA. Recent research trend in
analog sizing introduces machine learning (ML) to simulation-based
methodology [1]. The adoption of ML techniques has increased the
optimization efficiency and improved the capability of automatic
analog device sizing.

However, in addition to device sizing, analog circuit performance
is also sensitive to layout implementation [2]. Layout effects exac-
erbate the challenges in advanced processes due to design rule com-
plexity and large layout impacts on circuit parasitics. There have
been several attempts to enable automatic sizing to be parasitic-
or layout-aware. However, the existing methods either require ad-
ditional efforts on implementing layout templates [3] or use less
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Figure 1: Analog IC Design Flow

accurate parasitic prediction model [4]. A full-scale general-purpose
layout-aware analog sizing method is yet to be discovered.

In this paper, we present a comprehensive study on post-layout
performance-based design parameter optimization of analog ICs.
Leveraging the state-of-the-art analog sizing method [5] and au-
tomatic analog layout framework [6, 7], our framework jointly
considers sizing and layout implementation. We conduct experi-
ments on a Miller operational transconductance amplifier (OTA)
and demonstrate the importance of considering layout effects in
automatic sizing.

The rest of the paper is organized as follows. Sec. 2 introduces the
backgrounds. Sec. 3 reviews the existing parasitic-aware and layout-
aware analog sizing methods. Sec. 4 describes our joint optimization
flow and presents several case studies. Sec. 5 discusses and gives our
perspectives in the research of layout-aware analog sizing. Finally,
Sec. 6 concludes the paper.

2 BACKGROUND

Analog IC design cycle typically follows a pattern similar to the
one visualized in Figure 1. An iterative process between the human
designer and computer simulations is conducted to finalize a design
that satisfies the intended performance requirements. A large por-
tion of design time is spent on the sizing and layout phases, where
multiple iterations are possible due to potential loop-backs in the
design flow. Therefore many automation flows with accompanying
optimization algorithms are introduced to solve analog sizing and
layout generation problems. This section is dedicated to review-
ing such methods and preliminaries. We include a more elaborate
review of the analog sizing tool, DNN-Opt, and analog layout gen-
erator, MAGICAL since these tools are leveraged in developing the
joint optimization framework presented in this paper.

2.1 Problem Formulation
We formulate the analog circuit sizing task as a constrained opti-
mization problem succinctly as below.

minimize fp(x)

subject to fi(x) <0 )

fori=1,....m

where, x € R is the parameter vector and d is the number of design
variables of sizing task. Thus, R? is the design space. fy(x) is the
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objective performance metric we aim to minimize. Without loss of
generality, we denote i constraint by f;(x).

Through this paper, we will evaluate the quality of a design by
defining a Figure of Merit (FoM) in the following form:

m
FoM(x) = wo X fy(x) + Z min (1, max(0, w; X fi(x)))  (2)

i=1
where w; is the weighting factor. Note, a max(-) clipping is used
for equating designs after constraints are met, and min(-) is used
to prevent single constraint violation from dominating FoM value.

2.2 Analog Sizing

Different approaches have been adapted to solve analog sizing tasks
in the past. One adaption is to use domain expertise where designer
experience and device characteristics are translated into equations
and procedures[8],[9]. However, this approach depends highly on
accumulated experience and requires custom modifications for each
topology and technology node. Therefore, such methods are not
scalable and inefficient.

Another mainstream approach is to map the sizing problem into
an optimization problem where circuit performances are handled
as objective and constraint functions. This stream has two classes:
equation-based methods and simulation-based methods. Equation-
based methods approximate performance functions with convex
or non-convex regression models, then numerical optimization
methods are utilized as solvers to find optimal input variables. In
the past, Geometric Programming[10], [11] and Semidefinite Pro-
gramming (SDP) relaxations [12] are used to find optimal sizing of
analog circuits by employing posynomials as performance models.
However, with the advanced device technology and complex circuit
structures, regressed equations highly deviate from accurate simu-
lation values. On the contrary, simulation-based methods evaluate
iteration points via real simulations and, therefore, have become
much more popular among recent algorithms.

In the past, population-based methods are used to solve the siz-
ing problem. Among those, particle swarm optimization (PSO) [13]
and advanced differential evolution [14] were examples of popular
approaches. These methods provide proximity to the global op-
tima, but they burn a large number of expensive simulations to
achieve this. Due to their sample-inefficient nature, these meth-
ods are not applicable to designs with time-expensive simulations.
To mitigate sample inefficiency issue, model-based and learning-
based methods are becoming increasingly popular in the field. Since
these methods employ/train proxies between the solution space
and performance space, they are more efficient in exploring the
solution space. Usually, the proxy method for model-based methods
is called a surrogate model. A typical surrogate model is Gaussian
Process Regression (GPR) [15], which is a well-studied model in
Bayesian Optimization (BO) field [16] and is adapted by several ana-
log sizing algorithms. For example, GASPAD is a hybrid algorithm
using a combination of evolutionary space exploration and GPR
surrogate-based selection [17]. WEIBO method also employs GPR
as a surrogate and introduces a Bayesian Optimization framework
where a weighted acquisition function is tailored to comply with
the performance-constrained nature of sizing problem [18]. One
main drawback of GPR modeling is that it has cubic complexity in
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the number of samples, O(N 3), which brings complications when
the collected sample number gets larger.

Other model-based optimization methods utilized ANN for cir-
cuit performance modeling. In [19], ANN is used as a proxy for the
circuit simulator, and performance estimates obtained by the trained
model are used to guide an evolutionary optimization framework
efficiently. Another ANN-boosted evolutionary method is presented
in [3] where the trained ANN is employed as a performance classi-
fier. In [20], authors proposed to enhance the efficiency of a Genetic
Algorithm based optimizer where the local minimum search is con-
ducted via the help of trained ANN. Another method that utilizes
neural nets is ESSAB [21], where ANN training is combined with
a data augmentation method to reduce the need for the required
number of samples for accurate training. A different approach is
adapted for building an ANN model in [22], where circuit specifica-
tions are used at the input nodes, and design variables are taken
from the output nodes. To train and work with such a model, a
large dataset is generated for offline training of the ANN model.

Recently supervised and reinforcement learning (RL) algorithms
have been applied in the field [5, 21, 23, 24]. GCN-RL [23] is a Graph
Neural Network (GNN) algorithm where state representation is built
via device index, type, and selected electrical properties. They also
propose methods to transfer the optimization experience between
different topologies and processes. AutoCkt [24] is a discrete action
space policy gradient method. The RL agent is trained on different
optimization tasks where the task is randomly sampled from a
predefined set. The trained agent is then tested for the particular
tests during deployment. They both provide competitive results
compared to other black-box methods; however, GCN-RL requires
thousands of simulations to converge, and AutoCkt needs to be
trained before deployment, which is SPICE intensive. DNN-Opt [5]
is introduced as an RL-inspired supervised learning optimization
method that shows high sample efficiency and can be trained during
optimization.

While learning-based methods (RL, DNN, Bayesian) target sam-
ple efficiency, in practice, SPICE simulations may be very costly,
and the whole synthesis process is time budgeted, so a time-efficient
method is sought. One way to gain efficiency is to make use of com-
putationally cheap simulations. In [25], a multi-fidelity surrogate
optimization technique is proposed where it uses fast RC simula-
tions to reduce the cost of electromagnetic simulations. Another
approach is to impose custom conditions or procedures before run-
ning particular simulations. In [26], an example of this approach is
applied as a PVT exploration strategy, which is helpful for checking
pass/fail conditions of specifications across several corners. In [27],
the APOSTLE framework is introduced in the sizing problem, where
real-time efficiency is provided via an asynchronously parallel op-
timization framework and a theory-based expensive simulation
bypassing strategy.

2.3 DNN-Opt

DNN-Opt [5] is a deep neural network analog sizing framework.
Being an RL-inspired optimization algorithm, DNN-Opt searches
a continuous action space to find an optimal solution for the siz-
ing problem. In this paper, we employ DNN-Opt as a black-box
optimization algorithm. We first use it in its original form to size
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Figure 2: DNN-Opt Framework [5]

the circuit based on schematic-level simulations. Then, we modify
the circuit performance generation procedure and use DNN-Opt to
optimize design variables based on post-layout performance.

The core architecture for DNN-Opt is provided in Figure 2. It
inputs a circuit topology, a set of design variables and search bounds,
and performance criteria to optimize analog circuits. It interacts
with the circuit simulator to obtain the circuit performance through
optimization iterations, and the final output is the optimized design
parameter values.

The search algorithm of DNN-Opt consists of two neural net-
works: actor and critic networks. The actor-network conducts a
guided search in the sample space and determines the next sample
point. The critic-network serves as a proxy to the real circuit simula-
tions and is trained by the data created via pseudo-sample generation
mechanism. Since the critic-network is the regression network for
circuit performance metrics, it is trained by the mean squared error
expressions obtained by the difference between network predic-
tions and real simulation outputs. Once the critic training is done,
the actor is trained based on the fixed critic. The analogy here is
that the critic-network behaves as a surrogate model for the design
space, and the actor-network searches within this model to find
potential good designs. In that perspective, the state representation
of the environment is the vector of design variables, and actions
are the change vector for the design variables.

2.4 Analog Layout Automation

The physical layout implementation stage in the current analog IC
design is still mostly manual, labor-consuming, and error-prone,
placing constraints on turnaround time. Procedural layout genera-
tion and optimization-based layout synthesis are two paradigms
that describe AMS Layout automation techniques [2].

Utilizing pre-designed parameterized layout templates, proce-
dural layout generators migrate layouts for various manufacturing
technologies and device sizes. Berkeley Analog Generator (BAG) [28]
is a framework of procedural layout generation. This method typ-
ically requires designers to parameterize device placement and
route (such as routing topology, metal layer, and via cuts), allowing
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designers to modify device sizing. Nonetheless, it needs a large
amount of human labor to develop generic layout templates or
PCELLs, where device layouts are still manually coded to be placed
and routed.

In generating layouts, optimization-based techniques employ
place-and-route (PNR) algorithms to optimize area, power, and cer-
tain performance metrics. These methods have varying degrees
of generality and are designed for various application scenarios.
In contrast to template-based layout creation, optimization-based
methods produce fully automated layout solutions without the need
for additional effort to build layout templates. To assure layout qual-
ity, it is necessary to recognize constraints such as device symmetry,
building block symmetry, and common-centroid matching,.

Developing open-source end-to-end frameworks, such as MAG-
ICAL [6] and ALIGN [29], is an emerging trend in optimization-
based AMS circuit layout automation. MAGICAL and ALIGN both
include a complete module generator, analog placer, and detailed
router. They have demonstrated success in automating building
block-level analog circuits with minimal or no human intervention.
These general-purpose analog layout generators can generate the
layouts in automatic sizing flow and, therefore analog sizing to be
layout-aware. In this paper, we leverage the open-source MAGICAL
framework as a bridge to study the joint optimization of sizing and
layout for AMS designs.

2.5 MAGICAL

MAGICAL is an open-source end-to-end framework for AMS layout
synthesis that aims to automatically build layouts from netlists with
no-human-in-the-loop. In a few years, the MAGICAL system has
evolved from the initial version with limited capability [6] to the
silicon-proven MAGICAL 1.0 release [7].

MAGICAL automatically extracts layout constraint, generates
the device layouts, places the modules, and routes the wires. Fig-
ure 3 illustrates the flow of MAGICAL for generating the layout for
a block-level analog circuit. The automatic symmetry constraint
generation is based on heuristic algorithm for device-level con-
straints [6] and graph similarity [30] for the system-level. The place-
ment engine is based on a non-linear programming-based global
placer and a linear programming-based legalizer [31]. The MAG-
ICAL detailed router is based on an obstacle-aware path-finding
algorithm [32]. The paper [33] gives a detailed overview of the
MAGICAL algorithm.

3 RECENT DEVELOPMENTS

There have been efforts to enhance automatic sizing with parasitic
or layout awareness. The existing methods use post-layout perfor-
mance as the optimization objective of simulation-based analog
sizing algorithms so that the device sizing can take layout effect into
consideration. Their methodologies mainly fall into two categories.

(1) Layout-aware sizing with procedural layout generation. An
automatic analog sizer is combined with a procedural layout
generator. The flow generates the layouts based on a tem-
plate for a set of sizing, and the post-layout performance is
obtained from the generated results.

(2) Parasitic-aware sizing with parasitic prediction. A machine
learning model to predict layout parasitics from pre-layout
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Figure 3: The MAGICAL flow for block-level layout genera-
tion.

netlists is trained. The automatic analog sizing flow can then
use the prediction model as a vehicle to model the layout
effect.

The rest of this section gives an overview of the recent develop-
ments in academia.

3.1 With Procedural Layout Generation

A procedural analog layout generator uses a manually scripted
layout generator to enable automatic sizing to generate the layouts
for a template schematic. Both two recent methods, AutoCkt [24, 34]
and BagNet [3], leverage the BAG [28] framework as the layout
generator.

AutoCkt educates RL agents to be knowledgeable of the full
design space. It uses BAG to enable layout awareness. Consequently,
the agent is able to select the optimal course of action at a particular
moment in the design process. Multiple trajectories teach the agent
how to create a circuit. The agent either reaches the target or ends
the trajectory because the maximum number of steps has been
reached. Following training, the agent is assigned to an unseen
target. The more successful the training, the higher the success rate
agent can achieve during the deployment.

BagNet, on the other hand, is based on an evolutionary algorithm
with a deep neural network (DNN)-based oracle to boost the search
efficiency. It contains three core components: (1) an evolutionary
engine to generate offspring, (2) the BAG layout generator, and (3)
a DNN model acting as an oracle. Based on the existing population,
the evolutionary algorithm produces the following generation of
children. The DNN-based oracle evaluates the produced candidates
and eliminates those with lower scores. After the discriminating
step, the resulting offspring are implemented in layouts using BAG
and simulated to acquire the metrics. The simulated performance is
then utilized to fine-tune the oracle and direct the next generation
in the evolutionary process.

The procedural layout generator-assisted analog sizing can ob-
tain accurate post-layout performance. However, they require man-
ually scripted layout templates.
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3.2 With Parasitic Prediction

Recent advances in machine learning have enabled statistical and
data-driven techniques to predict layout parasitics directly from
circuit schematics with high accuracy. ParaGraph [35] converts
circuits into heterogeneous graphs and uses a graph neural net-
work (GNN) model to predict net parasitic capacitance. MLParest [36]
uses Random Forest models to predict resistance and lumped para-
sitic capacitance.

The work [4] leverages the Paragraph prediction model to enable
parasitic-aware sizing. It further proposes an improved performance
surrogate model using graph embeddings from the pre-trained
parasitic graph neural network as additional parasitic information.
The ParaGraph GNN model encodes the latent information of the
circuit parasitics with graph embeddings. With the performance
model, With the surrogate model, the automatic sizing framework
can therefore enable parasitic awareness and mitigate the layout
effect.

The ML-based parasitic prediction and performance prediction
provides an efficient vehicle to take layout effect into the sizing
loop. However, the accuracy of predicting layout effects is still
a challenge without layout implementation in both the parasitic
prediction [37] and performance prediction [38] tasks.

4 LAYOUT IN THE LOOP SIZING

The majority of the research to automate analog design flow (Fig 1)
focuses on individual phases and does not address the effects of
preceding and following phases on each other. As reviewed in
Section 2, analog automation literature is populated with mostly
sizing-only or layout-only efforts. This practice has three major
undesired consequences:

(1) Being agnostic of other phases damages the reliability of
automation.

(2) The total scope of optimization is restrained as certain phases
are excluded from the automated flow.

(3) Isolating these phases does not reflect the industry practice
and, therefore, discourages the adaptation of such tools by
the industry.

In this section, we quantitatively study the importance and po-
tential of the layout-aware analog sizing framework. We combine
the state-of-the-art analog sizing algorithm, DNN-Opt [5], and
the general-purpose analog layout generator, MAGICAL [6, 7, 33].
Leveraging the joint framework, the analog sizer can obtain ac-
curate post-layout circuit performance with the requirement of
manually scripted layout templates. We conduct a case study on a
representative analog circuit and evaluate the joint framework.

4.1 A Case Study

In order to demonstrate the importance of layout effects on the
final performance, we perform experiments on a Miller OTA cir-
cuit designed in 40nm technology (Fig. 4). The transistors of the
circuit are parameterized so that an automation flow to optimize
its performance can be conducted. The optimization problem has
17 independent design variables to size length, width, and number
of fingers of the transistors.
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Figure 4: Schematic of the Miller OTA

The optimization problem for the Miller OTA consists of an
objective and several performance constraints and is expressed as
below:

minimize Power

s.t. DC Gain > 45 dB
CMRR > 55 dB
PSRR > 55 dB
Out. Swing > 1 V
Static error< %2

Settling Time < 100 ns
Saturation Margins > 50 mV
Unity Gain BW. > 40 MHz
RMS Noise < 400 uVyms
Phase Margin > 60 deg.

®)

Our experimental study includes the following two steps:

(1) We first use the sizing automation tool DNN-Opt to optimize
the performance metrics. This step is based-on schematic-
level electrical simulations and is layout agnostic. We then
auto-generate the layout of the optimized design using MAG-
ICAL and run post-layout simulations to obtain performance
values, including the layout effects.

(2) We modify DNN-Opt algorithm to optimize the post-layout
performance of the circuit. To facilitate this approach, we
utilize MAGICAL as the layout generator.

4.2 Experiments with Layout Agnostic Loop

In this part of the study, we investigate how much performance
degradation is introduced to the layout agnostic flow, i.e., the
amount of suffering from completely delayed layout considerations
during sizing. To do a fair analysis, we do not use the designer’s
after-layout intent to formulate the problem, but we refine it by
using the designer’s schematic-level performance. This way, we
match the designer’s overdesign effort during sizing.
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Table 1: DNN-Opt (Schematic) vs. Designer Performance Com-
parison Based on Pre-Layout Performance

Schematic Optimized H Intent ‘DNN—Opt Designer

Power (mW) minimize 0.51 0.53
Output Swing (V) >1 0.99* 0.92
Gain (dB) > 46 48.1 467
CMRR (dB) > 55 66.1 56.2
PSRR (dB) > 55 63.7 55.8
Phase Margin (deg) > 57 62.1 57.2
RMS Noise (uV) < 400 380 390
Rise Time (ns) <50 21.3 22.2
Static Error (%) <12 1.08 1.19
UGB (MHz) > 85 85.9 85.0

We compile the experiment results in Table 1. We included the
new objective and constraint values used for the schematic-level
optimization. DNN-Opt was able to provide a design that is very
close to satisfying all design intent except for a minor miss for
output swing. We further observe that the schematic-level result
found by DNN-Opt overperforms designer-crafted design in every
metric.

After obtaining optimized results on schematic-level simulations,
we use MAGICAL to create layouts for both DNN-Opt and designer
solutions. Layout generation is followed by parasitic extraction and
post-layout simulations to obtain the post-layout performance of
Miller OTA testcase. The post-layout simulations results of DNN-
Opt optimized design and designer-created design are collected at
Table 2.

Table 2: DNN-Opt (Schematic) vs. Designer Performance Com-
parison Based on Post-Layout Performance

Schematic Opt + Layout H Intent ‘ DNN-Opt  Designer ‘

Ahmet F. Budak, Keren Zhu, Hao Chen, Souradip Poddar, Linran Zhao, Yaoyao Jia, and David Z. Pan

threshold. Overall, our analysis shows that the performance val-
ues of a circuit deviate significantly once a layout is generated.
Therefore, the layout effects must be included in the parameter
optimization phase in order to generate a robust sizing solution.

4.3 Layout in the Loop Automation Flow

To include the post-layout effects on the performance during sizing,
we tailor the classical sizing flow. Instead of optimizing the design
variables based on the schematic level simulations, we utilize the
layout automation tool MAGICAL to modify performance evalu-
ation steps. The suggested flow is shown in Fig 5. To obtain the
post-layout performance of each new design, first, an automated
layout is generated via MAGICAL. This step is followed by parasitic
extraction, and circuit simulations are run on the updated netlist
with parasitic elements.

Parasitic
Extraction

Layout
Generation

Post-layout
Simulations

Next Design Performance Values

Figure 5: Post-Layout Performance Based Optimization

We evaluate the effectiveness of the layout-in-the-loop optimiza-
tion flow by revisiting the Miller OTA case. The same optimization
algorithm DNN-Opt is used to optimize the same set of parameters
using the post-layout performance values instead of the schematic
(pre-layout) simulations. The optimized post-layout performance
values and their comparison to designer performance are included
in Table 3.

Table 3: DNN-Opt (Post-Layout) vs. Designer Performance
Comparison on Post-Layout Performance

Power (mW) minimize 0.53 0.53
Output Swing (V) S 1 0.96 0.97" ’ Post-Layout Optimized H Intent \ DNN-Opt  Designer ‘
Gain (dB) > 45 17.9% 47.8 Power (mW) minimize 0.39 0.53
CMRR (dB) > 55 25.6% 53.7* Output Swing (V) 21 1.11 0.97*
PSRR (dB) > 55 25.7* 55.6 Gain (dB) > 45 46.1 47.8
Phase Margin (deg) > 60 75.1 69.9 CMRR (dB) > 55 56.7 53.7"
RMS Noise (uV) < 400 370 370 PSRR (dB) > 55 58.9 55.6
Rise Time (ns) <100 23.0 110* Phase Margin (deg) > 60 70.7 69.9
Static Error <2 1.07 2.52% RMS Noise (uV) < 400 370 370
UGB (MHz) > 40 41.6 42.0 Rise Time (ns) <100 26.9 110*
Static Error <2 1.2 2.52*
We observe that, except for the phase margin and rms noise, UGB (MHz) z 40 31.3% 42.0

all other performance metrics degrade in value. The metrics such
as the Gain, CMRR, and PSRR are severely reduced for DNN-Opt
generated design after layout effects. Together with output swing,
these metrics can not satisfy the design intent after layout. On
the other hand, the designer’s design demonstrates much better
resilience against the layout effects. Its Gain and PSRR values meet
the constraint threshold, and CMRR is very close to meeting the

89

The tool-generated design satisfies all constraints except the
unity gain bandwidth (UGB). Considering that the designer’s design
fails to meet four metrics proves that the proposed flow is very
effective. Further, layout-in-the-loop sized solution overperforms
the designer’s solution in seven metrics and falls behind only in
two metrics (Gain, UGB).
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(a) Designer optimized design’s layout
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(b) Post-layout performance-based optimized design’s layout

(c) Schematic-level performance-based optimized design’s layout

Figure 6: Layouts for different design flows

We further elaborate our analysis by including the layouts gen-
erated by MAGICAL in Figure 6.

Analysis for Figure 6a: It is the most compact layout among
all generated layouts. The designer has used their experience to
provide a layout-friendly design. The total area is around 75um X
30um.

Analysis for Figure 6b: Despite the good performance, the layout
has some issues in terms of compactness and area consumption
compared to the designer’s layout. Compared to the designer’s lay-
out, the layout-in-the-loop DNN-Opt generated result consumes
around 60% larger area as its total area is 90um X 40um. Addi-
tionally, the lack of dummy devices for critical devices increases
the risk of performance degradation in the actual silicon due to
fabrication-related non-linearities and issues that are not modeled
in the simulation. To improve the final design quality, the flow
can be optimized to decrease area consumption and automatically
generate dummy devices to increase reliability.

Analysis for Figure 6c: The area consumed by the schematic-level
performance-optimized design is around 79um X 42um and 47%
larger than designer layout. Also, it resulted in some key devices
with abnormal sizes, such as long channel lengths and very short
widths. This can cause deviation in these devices’ transconductance
and output resistance when post-layout effects are introduced into
the simulation, leading to a significant degradation in performance
parameters such as gain, CMRR, and PSRR. The abnormal-sized de-
vices may also increase parasitic capacitance and resistance, further
degrading the UGB (Unity Gain Bandwidth).
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5 CHALLENGES AND OPPORTUNITIES

Our quantitative case study demonstrates the importance of consid-
ering layout effects in analog sizing. The need for efficient layout-
aware analog sizing calls for further research. In this section, we
give our perspectives on the challenges and opportunities in future
research in layout-aware analog sizing.

5.1 Challenges

Cost of Computation and Data Generation: The most recent
algorithms introduced in analog sizing and layout problems utilize
machine learning algorithms. The amount and quality of the data
are crucial for ML model training; therefore, the quality of the siz-
ing/layout algorithm strongly depends on the same requisites. The
complication of this requirement is that it can introduce a huge
time cost since the data generation for EDA problems is generally
subject to calling EDA simulations, where a single simulation can
take days to run. One way to mitigate this issue is to utilize paral-
lelization facilities in the computing environment. However, the
user may be subject to commercial license constraints.

Another related challenge is that analog automation lacks open-
sourced benchmarks. This introduces an entry barrier for potential
developers and prevents collaborations.

Scalability: The ability to scale to larger designs is a critical
property of analog sizing/layout algorithms. Working on smaller
designs is advantageous for the sake of agile algorithm development
and concept proving; however, the end goal of these algorithms is
to help in industrial applications, which are typically larger than
academic building blocks. Therefore, at some point, automation
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algorithms should demonstrate how to handle designs with a large
number of devices, nodes, and design parameters.

Another type of scalability concern is the scalability in time. The
time requirement for the initial dataset collection and the algorithm
run should scale well for various problems.

Reliability: Reliability is a big concern for analog design. The
designs have to maintain certain specs under varying environmen-
tal conditions. Therefore, the designs are tested against the process,
voltage, and temperature (PVT) variations. For a complete end-to-
end flow, it is expected that the automation flow also considers
these variations, and the final design is robust against variations.

Adaptability Across Technology Nodes: As the design pro-
cess for IC design changes rapidly, the automation tools need in-
struments to synchronize with that change. One current limitation
of MAGICAL is that it only supports certain technologies, and
transforming it with a developer has a time cost.

Transferability: Transferring the knowledge harvested from
one task to another is a known concern in all ML applications.
Considering the cost of data generation and time-to-market re-
quirements for analog design, transferring the learning experience
can significantly help productivity.

There are multiple ways to offer transferability in analog siz-
ing/layout problems. One is to use the knowledge obtained in one
design on a new topology. Another one is to transfer the experience
between different technology nodes.

Joint Optimization Metrics: To facilitate a joint optimization
of sizing and layout, using the post-layout circuit performance
alone may not be sufficient. It is noted in our case study that the
layout with imperfections can still result in optimized post-layout
performance. Therefore, strong feedback between the layout and
design parameter optimization algorithm should be constructed.
The sizing algorithm and layout generation should adopt a mech-
anism to process the previously generated layout and respective
performance metrics. This mechanism might require additional
metrics that assess the quality of the layout and the final perfor-
mance together. Quantifying the layout quality is challenging since
many non-systematic practices are involved.

5.2 Opportunities and Future Directions

ML for Analog Design: EDA is an important application area for
ML as there has been a massive interest in recent years [39, 40]. Also,
EDA companies have developed their own Al platforms, such as
Cadence Cerebrus [41] and Synopsys DSO.ai [42]. For analog sizing,
ML-based modeling reduced the optimization time significantly
compared to traditional randomized approaches.

Community and Hardware: Being an important ML applica-
tion area, there is an excellent opportunity to build a larger com-
munity for analog design. Analog design benefits from being a part
of a very active ML community. Academy-industry collaboration is
stronger, and there is more effort from companies to contribute to
the open-source environment by publishing their research, sharing
code, and design IPs.

Another significant development is that analog design automa-
tion benefits from the advances in hardware technology. It helps in
two aspects of analog automation. One is that the algorithms that
are computationally expensive in the past are now feasible to run.
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The second aspect is that the availability of parallel computing re-
sources and faster simulations helps significantly in making recent
algorithms scalable and practical.

Towards efficient layout-aware analog sizing: In the near
future, we expect some degree of integration between sizing and
layout automation. One drawback of integrating design phases
is that the need for simulation feedback increases. To tackle this
problem, certain blocks in the automation flow can utilize surrogate
models to reduce the need for simulation. Such surrogates can
either replace the real expensive simulations or can serve as guiding
models with lower fidelity.

The flow we presented in our case study lacks in processing the
quality of the generated layout. A simple extension is to include
the total layout area and device shapes as a part of the optimization
problem. Another approach is to avoid running certain simulations
by following a hierarchy of simulations and certain decision steps.
For example, it may become apparent after the placement that
the layout does not satisfy desired qualities and the algorithm can
decide not to run the remaining costly steps: routing, parasitic
extraction, and post-layout simulations.

________________________________ N

Schematic - Post Layout | |
Topology |—-| H Layout H Parasitic Ext. H Simulation

Simulation :
Figure 7: Design phases to obtain post-layout performance

Towards joint analog synthesis: A longer-term future direc-
tion for analog automation is to adapt such flows that integrate
topology selection, device sizing, and layout generation. As shown
in Fig 7, the joint analog synthesis requires several blocks to be
automated. The end-to-end flow can output an optimized design
based on system-level specifications.

One bottleneck for this flow is that the topology search research
is not as mature as sizing and layout automation. There have been
tree-based and machine-learning approaches for topology search
problems [43, 44], but generalizable methods are still awaited.

6 CONCLUSION

In this paper, we analyze the importance of layout-induced effects
on analog device sizing. We reviewed recent research efforts on
analog sizing and analog layout automation. Then, we provide a
case study using the Miller OTA circuit to quantify the gap be-
tween layout-agnostic and layout-in-the-loop sizing approaches.
We further discuss the challenges and opportunities in analog de-
sign automation.
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