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ABSTRACT

Analog and mixed-signal (AMS) circuit designs still rely on human

design expertise. Machine learning has been assisting circuit design

automation by replacing human experience with artificial intelli-

gence. This paper presents TAG, a new paradigm of learning the

circuit representation from layouts leveraging Text, self Attention

and Graph. The embedding network model learns spatial informa-

tion without manual labeling. We introduce text embedding and

a self-attention mechanism to AMS circuit learning. Experimental

results demonstrate the ability to predict layout distances between

instances with industrial FinFET technology benchmarks. The ef-

fectiveness of the circuit representation is verified by showing the

transferability to three other learning tasks with limited data in the

case studies: layout matching prediction, wirelength estimation,

and net parasitic capacitance prediction.

1 INTRODUCTION

The performance of analog and mixed-signal (AMS) integrated cir-

cuit designs are sensitive to parasitics, process variation, and layout-

dependent effects. Today, AMS circuit design, from schematic to

layout, is still mainly a manual, time-consuming, and error-prone

task.

AMS circuits often impose specific parasitics and mismatch re-

quirements on their layout implementation, where designers lever-

age their prior experience to place devices in specific patterns and

configurations to reduce parasitics, the effects of local variation

gradients, and layout-dependent effects. Lacking the techniques to

mimic such an experience automatically is one of the main bottle-

necks in automating AMS design flow [1].

Researchers have attempted to apply machine learning (ML) to

AMS IC designs [2]. Several studies use graph neural network (GNN)

on circuit graphs to learn the symmetry constraints in layouts [3, 4].

The work [5] uses GNN to identify the type of AMS circuits, such

as amplifiers and filters, to select layout templates for each circuit.

Researchers also represent schematics with graphs and use GNN

for the analog device sizing problem [6, 7]. Wang et al. [8] and Li et

al. [9] uses GNN to learn netlist representations based on their logic

functionality. The GNN-based ML frameworks decide transistors’

width and length parameters based on the feedback from pre-layout

simulations. Netlists are essentially hyper-graphs, making GNN
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Figure 1: An illustration of the proposed circuit representa-

tion learning paradigm.

a solution candidate that many prior studies have adopted. The

underlying GNNs, in some sense, are expected to learn to capture

the circuit representation. Outside the AMS circuit domain, there

are also attempts to learn the graph-structured circuit representa-

tion. Wu et al. [10] investigated learning on high-level synthesis

codes with GNN. Several studies apply ML to learn source code

representation [11, 12]. However, despite its wide adoption, circuit

representation learning is seldom studied as an individual problem.

The underlying neural network models are trained with different

targets in the individual applications. In this work, we propose a

new paradigm to learn AMS circuit representation without addi-

tional manual labeling by leveraging the layout/placement data

directly.

Circuits are commonly represented as graphs, and existing learn-

ing algorithms apply GNN on the circuit graph. Nonetheless, the

knowledge of the graph representation is limited to device con-

nectivity only. However, detailed information is readily available

in the circuit netlist in the form of the device, instance, and net

names, where designers often use specific naming conventions to

detail and organize the netlist to be more human readable. To lever-

age this information, We adopt the natural language model in the

representation learning process. On the other hand, the graph con-

volution mechanism is usually limited in capturing a global view

of the entire circuits. To address this, we also adopt a sub-circuit-

wise self-attention mechanism to integrate the whole picture of the

sub-circuit into the resulting embedding.

In this paper, we propose TAG (Text, Self-Attention and Graph),

a framework that learns the AMS circuit representation from lay-

out positions. Inspired by the success of the pre-trained model in

natural language models (e.g., BERT [13]), the TAG framework pre-

trains a learning model on a larger layout dataset first. Then the

pre-trained circuit instance embeddings can be used for other learn-

ing tasks with limited data. Figure 1 shows our proposed circuit

learning paradigm. A design database of netlists and corresponding

manual layouts are used to pre-train a TAG model. The pre-trained

TAGmodels are then transferable to multiple applications in analog
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CAD. This work attempts to establish a common learning repre-

sentation for analog circuits. The main contribution of this work is

summarized as follows.

• A framework, TAG, to learn and embed the circuit instance

representation from layout data without additional manual

labeling is presented. It learns the spatial relations of in-

stances in the embedding and assists in transferring to other

learning tasks.

• A novel methodology of incorporating the circuit netlist

text information, such as the instance and type names, from

netlists into the learning task is proposed.

• A circuit embedding network combining a multi-head self-

attention layer with GNN is presented. The proposed usage

of the self-attention mechanism allows the resulting instance

embedding to reflect a better global view of the circuits.

• Experimental results show TAG significantly outperforms

the existing methods in the accuracy of predicting relative

layout distance. TAG also demonstrates great effectiveness

in transferring to three other learning tasks: layout matching

prediction, wirelength estimation, and net parasitic capaci-

tance prediction.

The remainder of this paper is organized as follows. Section 2

gives the preliminaries. Section 3 details the proposed TAG frame-

work. Section 4 presents the experimental results, and Section 5

concludes the paper.

2 PRELIMINARIES

In this section, we introduce the convolutional graph neural net-

work (Section 2.1). Then we describe the circuit hierarchical struc-

ture and formulate our learning target: the relative instance dis-

tance (Section 2.2). In the end, we overview three applications that

are used for case studies in the experiments (Section 2.3).

2.1 Convolutional Graph Neural Network

Convolutional graph neural networks (ConvGNN) are widely used

for graph-structured data. ConvGNNs perform convolution on graph

structures to obtain new node embeddings. For a node 𝑛𝑖 , a graph
convolution operation aggregates the current embedding or feature

of 𝑛𝑖 ’s neighboring nodes as shown in the Equation (1),

a𝑙+1𝑖 = AGGREGATE𝑙
({
h𝑙𝑗 : 𝑢 ∈ N𝑖

})
,

h𝑙+1𝑖 = COMBINE𝑙 (h𝑙𝑖 , a
𝑙+1
𝑖 ),

(1)

where h𝑙𝑖 is the 𝑙
th layer output embedding for 𝑛𝑖 , N𝑖 indicates the

neighbors of node𝑛𝑖 . The choice of AGGREGATE(·) andCOMBINE(·)

functions vary in ConvGNN layer designs. A typical practice is to

use pooling functions, such as max and mean, and linear trans-

formations. After passing through the graph convolution layers,

the node embedding can be used for some downstream prediction

tasks.

While ConvGNNs have demonstrated success in many appli-

cations, there are several limitations in representative ConvGNN

architectures. First, the knowledge learned from ConvGNNs tends

to have a strong locality. ConvGNNs usually work by aggregat-

ing neighboring information, which results in similar behavior to

low-pass filters on the graph spectral domain [14]. Therefore, Con-

vGNNs sometimes may lack a global view of the graph. Second,

ConvGNNs can hardly distinguish locally isomorphic structures. It
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Figure 2: An example of the layout distance.

becomes an issue as AMS designs frequently contain symmetric or

parallel local structures.

2.2 Sub-Circuits and Relative Layout Distance

AMS circuit designs are intrinsically hierarchical. Both the schematic

and the layout design are usually implemented hierarchically. A

sub-circuit, such as a current mirror and an OTA, can function in-

dividually and be used as the building blocks for different top-level

circuits. On the other hand, normalizing the learning task to the

sub-circuit scale allows a more general inductive basis in the learn-

ing model. It benefits the transferability of the ML model to circuits

with different scales. Therefore we focus on the sub-circuit-level in

our unsupervised training scheme.

AMS layout requires careful considerations of parasitics, match-

ing, area, power, etc. Specifically, layout constraints are commonly

employed to ensure proper matching, device interdigitation, sym-

metry placement, and distances to critical signal paths. We propose

learning distance between instances as it is a crucial measurement

from layout implementation and containing the design expertise.

Depending on the hierarchy level and the design, the instances can

be either a primitive device (e.g., transistor) or a sub-circuit (e.g.,

OTA). To allow the learning model to work for arbitrary circuits,

we normalize the distance by its parent circuit bounding box so

that its value is between 0 and 1. Figure 2 shows an example of

the layout distance. The distance 𝑑 between every instance pair

is normalized to 𝑑 = 𝑑/
√
𝐷2
𝑥 + 𝐷2

𝑦 , where 𝐷𝑥 and 𝐷𝑦 denotes the

width and height of its parent sub-circuit layout bounding box. The

normalized distance is used as our training target. Such practice also

motivates our ML model to homogeneously learn the knowledge

between different hierarchy levels.

The relative layout distance prediction learning task is formu-

lated as follows.

Problem 1 (Relative Layout Distance Prediction). Given a circuit

design 𝐷 with hierarchy tree structure with a set of sub-circuits 𝐶 ,

predict the relative distance𝑑 in themanual layout implementations

between all instance pairs ({𝐼𝑖 , 𝐼 𝑗 } ∈ 𝐼 ) in the same sub-circuit

𝐶𝑖 ∈ 𝐶 .

2.3 Applications in Analog CAD

In this paper, we introduce three downstream applications as case

studies to evaluate our proposed circuit embedding.

2.3.1 LayoutMatching Detection. Identifyingmatching constraints

in sub-circuits is crucial for fully-automated layout syntheses [15].

Thematched instances are placed in certain matching patterns, such

as symmetry and common-centroid. The identification problem can

be formulated as a binary classification problem, for which GNN is

recently leveraged to solve [3, 4, 16].

In the case study, we formulate the layout matching detection

problem as follows.
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Problem 2 (Layout Matching Detection). Given a circuit design

𝐷 with a hierarchy tree structure with a set of sub-circuits 𝐶 , for
every instance pairs ({𝐼𝑖 , 𝐼 𝑗 } ∈ 𝐼 ) that in the same sub-circuit𝐶𝑖 ∈ 𝐶 ,
predict whether it is forming a symmetry, common centroid, or

interdigitation patterns in the human layout implementation.

2.3.2 Wirelength Estimation. A priori wirelength estimation is a

classical problem in VLSI design automation [17]. It guides the

early design stages. Modern algorithms leverage ML techniques to

increase the accuracy of the estimator [18].

In the current analog layout synthesis framework, the weights

of nets and the proximity of instances are usually treated as human-

specified parameters. Finding a suitable set of parameters requires

design expertise and trial and error [19]. A wirelength estimator

can assist this process.

In the case study, we formulate the wirelength estimation prob-

lem as follows.

Problem 3 (Wirelength Estimation). Given a circuit design 𝐷 with

a hierarchy tree structure with a set of sub-circuits 𝐶 , for every
net 𝑛𝑖 in the same sub-circuit 𝐶𝑖 ∈ 𝐶 , predict its half-perimeter

wirelength (HPWL) in the human layout implementation.

2.3.3 Net Parasitic Capacitance Prediction. Predicting post-layout

parasitics from the schematic is an important problem in advanced

technology nodes where the mismatch of pre-layout simulation and

post-layout performance is significant. Researchers have introduced

ML methods to tackle the problem [20, 21]. By predicting the post-

layout parasitics from schematics, those methods reduce the error

of pre-layout simulation and accelerate the design cycle.

The state-of-the-art algorithm, ParaGraph [21], introduces GNN

to the problem. For each parasitic type, such as net capacitance, it

trains multiple models for a different range of values. Each model is

specified with a maximum prediction value (𝑚𝑎𝑥𝑣 ). The models are

then merged using the ensemble modeling technique to produce the

final prediction. Such methodology benefits the overall accuracy

by allowing the models to focus on a small range of magnitude of

regression targets.

We apply our TAG embedding in our experiments to the most

representative parasitics prediction task: the net capacitance pre-

diction problem. We formulate the problem as follows.

Problem 4 (Net Parasitic Capacitance Prediction). Given a circuit

design 𝐷 with a hierarchy tree structure with a set of sub-circuits

𝐶 , for every net 𝑛𝑖 in the flatten netlist 𝐶 , predict its post-layout
total parasitic capacitance in human layout implementation.

3 TAG ALGORITHMS

TAG’s circuit embedding network architecture comprises a GNN

and a multi-head self-attention layer (MSA). The GNNmodel works

on the entire hierarchical circuit to obtain the initial embeddings. To

mitigate the locality of the GNNmodel, we use theMSA layer on the

sub-circuit instances to allow the resulting embeddings to consider

the entire sub-circuit. We add instance text embeddings during the

MSA step to provide an additional dimension of knowledge. We

train the embeddings by regressing to relative layout distance.

In the rest of this section, we present the details of the algorithms.

The graph structure for GNN learning is shown in Section 3.1. The

instance input features are described in Section 3.2. The embedding
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Figure 3: An example of the graph representation for an AMS

circuit.

network architecture is presented in Section 3.3. Finally, we intro-

duce the learning algorithm for relative layout distance regression

in Section 3.4.

3.1 Heterogeneous Hierarchical Graph
Construction

Wepropose to use a heterogeneous hierarchical Graph𝐺 = (𝑉 , 𝐸) to
represent a circuit. At the device level, we adopt a similar approach

to the work [3]. Each device is represented as a node, and the nets

are decomposed into two-pin pairs. A directed edge 𝑒 = (𝑢, 𝑣, 𝜏𝑣) ∈
𝐸 indicates the interconnection from vertex 𝑢 to 𝑣 with edge type

𝜏𝑣 . The edge type denotes the type of the connected port of 𝑣 in 𝑒 .
The port type can be the gate, drain, source, passive device, and

sub-circuit. The power and ground nets are not extracted into the

graph as they trivialize the graph by connecting most of the nodes.

We exclude the dummy and decap devices in the graph and learning

process as they are mainly used to compensate for layout effects

instead of functioning in circuits.

Different from the work [3], the circuit hierarchy is incorporated

in the graph. Each sub-circuit is also represented as a node in the

graph. A directed edge 𝑒 = (𝑢, 𝑣, 𝜏ℎ𝑖𝑒𝑟 ) is added from the child node

𝑢 to its parent parent(𝑣). The backward parent-children edges are

not added with the assumption that the circuit implementations

are bottom-up.

Figure 3 illustrates an example of the proposed graph representa-

tion. The example includes three hierarchy levels. Nodes𝑚0, . . . ,𝑚4

represent the transistors composing 𝑂𝑇𝐴1. One hierarchy edge

directs from every transistor node to the 𝑂𝑇𝐴1 sub-circuit node
denoting the hierarchy. On a higher level, the interconnections

between 𝑂𝑇𝐴1 and 𝑂𝑇𝐴2 are represented with the two-pin pair

model similar to the leaf nodes. The proposed graph representation

maintains a homogeneous structure between different hierarchy

levels and enables our learning model to apply to device-level and

circuit-level prediction.

3.2 Instance Feature Initialization

In TAG, each instance has two sets of features. The first feature set

includes the conventional features such as node type, sizing, and

area. We use this set of features in the GNN operation and name

it graph node features. The other set is the text embeddings of

instance names and instance types. We pre-train a word embedding
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Table 1: List of Instance Parameters.

Type Feature Definition

Transistors

L Gate poly length

NF Number of fingers

NFIN Number of fins

Resistors
L Length of resistors

W Width of resistors

Capacitors M Multipliers

VOUT,NVIN,N

IBIAS
VCM

M1B

M3BM2B

M4BM0

VIN,PVOUT,P

VCM

M1A

M3A M2A

M4A

(a)

1A 1B 1B 1A

1B 1A 1A 1B

2A 2A 2B 2B

3A 3A 3B 3B

3B 3B 3A 3A

2B 2B 2A 2A

0 0 0 0

4A 4B 4B 4A

4B 4A 4A 4B

Bias
Current

Input
Diff Pair

PMOS
Current
Mirror

NMOS
CMFB

Layout

(b)

Figure 4: An OTA design with symmetric structure. (a) The

schematic. (b) Manual layout abstraction.
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SEG2<1>

SEG2<0>SEG3<4>

Layout

DUMMY

(b)

Figure 5: A line driver design with array structure. (a) The

schematic. (b) Manual layout abstraction.

model and use the learned text embeddings to provide additional

information to the graph node features.

3.2.1 Device Parameter Features. We initialize the graph’s first fea-

ture set for device and sub-circuit nodes. The first part of the node

feature is a one-hot vector of node types. In this work, the node

types include regular NMOS, regular PMOS, thick gate NMOS, thick

gate PMOS, resistor, capacitor, and sub-circuit. The second part is

an instance’s width, height, and area. For sub-circuits, we sum up

the area of children instances to approximate the sub-circuit areas.

The widths and heights are then calculated, assuming the aspect

ratio is 1. The third part of the feature is the sizing parameters.

They define the device geometries and influence the circuit func-

tionalities. Table 1 lists the parameters included. All the parameters

are normalized. We average their children’s instances to obtain the

sizing feature fields for sub-circuit nodes.

3.2.2 Texts Features. In addition to the graph node feature, we

also incorporate the word embedding of the instance name and

device/sub-circuit type name in our framework.

Circuit netlists describe instances using an associated instance

name and a device type, where the use of this information has

been usually overlooked so far. In typical AMS circuit netlists, an

instance is associated with an instance name from the circuit netlist

and an instance type.

The instance names empirically incorporate the purpose and

the position of the instances. Intuitively, the designers select the

names to help them understand the circuit design, e.g., NMOS0,

INV0, and NDIFF. Although not always deliberately planned, the

name of an instance usually provides prior knowledge from design

expertise. We observe in real-world designs that there is a correla-

tion between the naming similarity and placement proximity. The

instance names can be utilized as supplementary knowledge in

circuit representation learning.

We also find that the instance names are beneficial for offset-

ting some of the limitations of ConvGNNs. The instance names

help distinguish locally isomorphic structures while retaining an

inductive basis across different circuits. Figure 4 shows an example

of an operational transconductance amplifier (OTA). Its schematic

has a highly symmetric structure. As a result, typical ConvGNNs

usually are challenged in distinguishing the A branch nodes from

the B branch in the embedding space, such as M4A and M4B. On
the other hand, by examining the instance names, a human can

quickly identify the circuit structures. Because those names con-

tain prior knowledge of pair-wise symmetry relations and instance

positions in the circuit, the naming convention plays an even more

critical role in mixed-signal designs where parallel structures are

common. Figure 5 shows a line driver design. The driver consists of

unit-sized driver segments configured for binary-weighted digital

control of drive strength. The only difference between the segments

is the connection to different control signals (e.g., en_pu<3:0>
and en_pd<3:0>), which are also coming from control circuits

with similar structures. Such differences are challenging for Con-

vGNNs to learn, while humans can easily understand by observing

the instance naming.

Device/sub-circuit type names are also often neglected in exist-

ing AMS circuit learning schemes. A common approach (e.g., [21])

is to group the devices into several groups, such as PMOS, NMOS,

and capacitors. However, such a paradigm omits the detailed differ-

ence between device types, such as low and high threshold voltage

transistors. On the other hand, the work [22] separates every device

type with a one-hot encoding scheme. However, it adds additional

complexity for the network to learn the behavior of every single

device. Besides, there are few considerations of sub-circuit names

in circuit learning models. Although circuit type identification tech-

niques exist [5], a principal method to vectorize sub-circuit type for

learning tasks is yet to be explored. On the other hand, the device

types and circuit types are usually well described in their naming

for circuit designers to understand. Similar device types also have

parasitics that are correlated.

In TAG, we consider the texts in the circuit representation learn-

ing tasks. In [23], names of module hierarchies are encoded with

trie (suffix graph) to assist placement. The modules with common

ancestors in the hierarchy tree have similar hierarchical encoding.

The similarity of hierarchies benefits the ML-assisted placement

to find better clustering of the modules. However, the trie-based

encoding method does not leverage the semantic information of

the texts and is hard to be extended to new designs. A new para-

digm is proposed to vectorize instances and type names using word

embeddings.

We adopt the fastText framework [24] to vectorize the texts. It ex-

tracts the subword information to enable learning from words hav-

ing similar subwords (e.g., nch_ulvt_mac and nch_lvt_mac).
It uses a hashing function to store the dictionary that allows produc-

ing word embedding for unseen words. We extract the sentences

from the netlists of 1490 industrial AMS circuit designs. The follow-

ing words are treated as one sentence: (1) the current circuit name
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Figure 6: Illustration of the proposed instance representation

embedding network.

Algorithm 1 Instance Embedding Algorithm in TAG

Input: A heterogeneous hierarchical graph representation 𝐺 =
(𝑉 , 𝐸), node features H𝑁 , text embedding features H𝑇 ,∀𝑖 ∈ 𝑉
and a set of sub-circuits 𝐶 .

Output: The instance embeddings Z.

1: GNN forward operation H𝐺 = GNN(𝐺,H𝑁 ).

2: Concatenate with text embeddings H𝐺𝑇 = concat(H𝐺 ,H𝑇 )

3: Transform to embedding dimension H𝐺𝑇 = WH𝐺𝑇

4: Initialize an empty matrix Z = zeros( |𝑉 |, 𝑑)
5: for each Sub-circuit 𝐶𝑖 ∈ 𝐶 do

6: Extract the instances embeddings H𝐶𝑖 = {H𝐺𝑇
𝑘
,∀𝑘 ∈ 𝐶𝑖 }

7: MSA forward operation Z𝐶𝑖 = MSA(H𝐶𝑖 )
return Z

and the device/sub-circuit type names of its children instances, and

(2) the instance name, its device/sub-circuit type names, and the

net names connecting to this instance. We then combine the ex-

tracted sentences with the first 1 billion bytes of English Wikipedia

corpus [25]. We train the word embedding model using the fast-

Text framework with a word embedding dimension of 64, a context

window size of 10, and a maximum length of character N-gram of

15.

3.3 Instance Representation Embedding
Network

The embedding network in TAG contains two stages: the GNN and

the multi-headMSA stage. Algorithm 1 sketches the procedures. We

first compute the graph embeddingsH𝐺 using a GNNmodel (Line 1).

Then we concatenate the graph embedding H𝐺 with the instance

text embedding H𝑇 and apply linear transform on it to form a

combined embedding H𝐺𝑇 (Line 2). We then treat the combined

embeddings H𝐺𝑇 from the same sub-circuit as a collection (Line 6).

This collection of embedding vectors is sent to anMSA layer (Line 7).

The MSA layer enables all the instances in their sub-circuit to be

considered together, adding a global context to the final instance

embeddings. Figure 6 shows an illustration of the proposed TAG

network. After the MSA layer, the TAG embedding vectors Z are

then fed to the distance prediction network or the other downstream

tasks.

The GNN network in TAG has two convolution layers. The first

layer uses different linear transform matrices for different edge

types to distinguish different edge connections. The convolution

operation on this layer is shown in Equation (2)

h𝑙+1𝑖 = ReLU
��	W

𝑙
𝑠𝑒𝑙 𝑓 h

𝑙
𝑖 +mean

��	
∑
𝑗 ∈N𝑖

W𝑙
𝑒𝑖 𝑗 h

𝑙
𝑗
��

��
 , (2)

where h
(𝑙)
𝑖 is the 𝑙 th layer output for node 𝑛𝑖 , N𝑖 indicates the

neighbors of node 𝑛𝑖 , W
𝑙
𝑠𝑒𝑙 𝑓

is the weight for transform on the

node 𝑛𝑖 itself and W𝑙
𝑒𝑖 𝑗 is the weight for edge type 𝑒𝑖 𝑗 . The second

layer is a graph isomorphism network (GIN) layer [26]. It is provably

as powerful as the Weisfeiler-Lehman graph isomorphism test and

is shown in Equation (3).

h
(𝑙+1)
𝑖 = W

��	(1 + 𝜖)h
𝑙
𝑖 +

∑
𝑗 ∈N𝑖

{
h𝑙𝑗

}��
 , (3)

whereW is a weight matrix, and we use 𝜖 = 0 in the experiments.

In our implementation, we set the hidden layer dimension and

the output embedding dimension in the GNN to be 64 and 32,

respectively. We also experiment with the variants of GNN with

popular ConvGNN layers and change the number of layers. The

impact of GNN architecture choice is relatively minor compared to

our other proposed techniques.

The graph embedding and pre-trained text embedding of the

same node are concatenated together and sent to an MSA layer. We

embed instances within a sub-circuit as an unordered sequence, on

whichwe apply the self-attentionmechanism. Self-attention (SA) [27]

is a popular building block for machine learning on sequences.

Equation (4) shows its computation equations,

[q, k, v] = zU, U ∈ R𝐷×3𝐷ℎ ,

𝐴 = softmax(𝑞𝑘𝑇 /
√
𝐷ℎ), 𝐴 ∈ R𝑁×𝑁 ,

SA(z) = 𝐴v,

(4)

where 𝑞, 𝑘 , and 𝑣 are query, key, and value matrices of each embed-

ding, 𝑁 is the sequence length,𝐴 is the attention of each query-key

pair, and SA(z) is the final embedding of each node based on the

attention over the value matrices of other nodes. The SA mecha-

nism can be applied to an arbitrary input sequence length. MSA

extends the SA mechanism to run 𝑘 SA operations, called “head”,

in parallel. The MSA operation is shown in Equation (5).

MSA(z) = [SA1 (z); SA2 (z); ...; SA𝑘 (z)]U, U ∈ R𝑘 ·𝐷ℎ×𝐷 . (5)

We use 𝑘 = 4, 𝐷 = 64, and 𝐷ℎ = 16 in the experiments.

3.4 Layout Instance Distance Prediction Loss

After obtaining the embeddings, we iterate through all instance

pairs in the same sub-circuit and predict their relative distances in

the manual layout implementation. This learning task allows the

embedding network to extract the knowledge from human layout

implementation without additional manual labeling.

An ad-hoc approach to predict distance based on two embed-

ding vectors is to concatenate them and feed-forward using a fully

connected network (FC) as shown in Equation (6).

𝑦𝑖 𝑗 = FC( [z𝑖 ; z𝑗 ]) (6)

We also propose a more direct approach for predicting the rel-

ative distance in TAG. We assume an instance embedding vector

space exists where the distance in this space is proportional to the
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Figure 7: Example of the spatial embeddings and their cor-

responding layout locations. Above: The two dimensional

principal component analysis of the embeddings. Bottom:

The layout locations.

expected placement distance in manual layout. Equation (7) shows

our proposed method.

NORM(𝑖, 𝑗,𝐶,H) =
‖h𝑖 − h𝑗 ‖

max𝑘,𝑙 (‖h𝑘 − h𝑙 ‖)
, ∀𝑘, 𝑙 ∈ 𝐶, 𝑘 ≠ 𝑙, (7)

where H denotes the embedding space, h𝑖 indicates the embed-

ding of instance 𝐼𝑖 and 𝐶 is a collection of instances, which is the

sub-circuits in our scenario. The denominator term finds the max-

imum distance between the instance pair in this sub-circuit, ap-

proximating the sub-circuit diameters. Intuitively, we measure the

relative layout distance of two instances by computing their dis-

tance normalized by the sub-circuit diameters. Figure 7 shows an

illustration of our learned H and the corresponding instance rela-

tive positions in a sub-circuit. In the implementation, we use the

LogSumExp(𝑥𝑖 , . . . , 𝑥𝑛) = log(exp(𝑥𝑖 ) + · · · + exp(𝑥𝑛)) function
to smooth and approximate the max(·) function for more robust

and efficient training. TAG adopts the scheme and adds a layer

normalization step and an FC network before the distance norm

computation, as shown in Equation (8).

DIST(𝑖, 𝑗,𝐶,Z) = NORM(𝑖, 𝑗,𝐶, FC(LayerNorm(Z))), (8)

where 𝑍 is the embedding after MSA layer. We choose to add an ad-

ditional fully connected (FC) layer before the NORM layer because

we empirically find doing so leads to better transferability to the

downstream tasks. 𝐿2 norm and FC networks with 1 hidden layer

of dimension 128 in our experiments are used. The mean squared

error loss is used to train the model.

4 EXPERIMENTAL RESULTS

We implement the framework in Python with the PyTorch library.

All models are trained on a single NVIDIA Tesla V100 GPU with

32GB memory. All models are trained with an ADAM optimizer.

The proposed method is evaluated on a dataset of 447 industrial

AMS circuits in sub-10nm technology. The size of the circuits ranges

from 20 to 2000 instances. We exclude the sub-circuits under four

instances to avoid the results being dominated by naïve cases and

sample 20 instances from one sub-circuit for large sub-circuits. To

extract the placement coordinates of each device in the layout view,

we use the StarRC extraction tool.

The circuits in the dataset are randomly shuffled and split into

training, validation, and test sets with 60%, 20%, and 20% allocation,

respectively. Because different circuits sometimes share common

sub-circuits, to avoid data leakage, we exclude all the sub-circuits

that appear in the training set when doing the validation and testing.

Table 2: Comparisons of 𝑅2, MAE and MAPE for directly

predicting instance relative distance with text embedding

distance norm.

Method 𝑅2 MAE sMAPE

NLP Pre-trained Model [28] -0.783 0.291 0.565

Our model 0.205 0.186 0.452

We report the test set results in the experiments at the epoch with

the lowest validation loss.

The training time takes about 10 hours on the dataset. The infer-

ence time for each circuit takes an average of 0.09 seconds and a

max of 0.8 seconds. Most of the inference time is spent reading the

files instead of model inference. As the training is a one-time job,

the runtime for TAG is considered negligible in usual applications.

To evaluate the solution quality, we adopt two sets of statis-

tical measurements. For regression tasks, we use R-squared (𝑅2),
Mean Absolute Error (MAE), and symmetric Mean Absolute Per-

centage Error (sMAPE) as the metrics. For binary classification

tasks, we adopt accuracy (ACC), true positive rate (TPR), false posi-

tive rate (FPR), positive predictive value (PPV), and 𝐹1-score over
the valid pairs. Higher 𝑅2, ACC, TPR, PPV, and 𝐹1 scores are better,
while lower MAE, sMAPE, and FPR scores are better.

To evaluate the effectiveness of our learned circuit representation

in applications, we obtained the source codes of the AncstrGNN [3]

and Paragraph [21] from the authors. We train these frameworks

on our dataset and compare our circuit representation in the case

studies.

In the rest of this section, we evaluate our text embedding qual-

ity and the circuit representation learning scheme and conduct

two case studies for using our model in other two learning tasks:

detecting matching in layouts and predicting the wirelength.

4.1 Circuit Text Embedding

We first evaluate the quality of the word embedding model. The

word embedding ideally shall provide a meaningful similarity mea-

surement between the instances. We verify this property by directly

applying the distance norm method (Equation (7)) on the word em-

bedding to predict the relative placement distances. As shown in

Table 2, our model yields an 𝑅2 of 0.205. This result is already better
than the vanilla GNN-only approach, even without layout data or

additional trainable parameters. It shows the proposed text embed-

ding contains valuable information for learning. In comparison, the

same model pre-trained with natural language corpus (Common

Crawl) alone can only result in a 𝑅2 of -0.783. The improvement

of our word embedding model shows the benefits of training the

word embedding model with sentences extracted from netlists.

To investigate the meaning of the embeddings, we visualize the

high-dimensional embedding vector with the t-SNE algorithm [29].

Figure 8 shows the t-SNE plots for the words in 30 circuits. It is

observed that two PMOS (pch_ulvt_mac and pch_lvt_mac)
device types are close and well separated from the NMOS device

type (nch_ulvt_mac). The t-SNE plot illustration shows that

our word embedding model captures the similarities in texts and

provides a new dimension of information and the conventional

graph representation.

Within our benchmark circuits, many instance names are, in

fact, not explicitly named, e.g., M_I1 and XI0. However, from
our experience, the important instances are usually well named.
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Figure 8: t-SNE plots of embeddings of the word embeddings.

Our experimental results demonstrate the overall effectiveness of

the text embeddings even with the existence of arbitrary naming

conventions in some netlists.

4.2 Instance Relative Distance Prediction

We evaluate ourmodel accuracy on instance relative distance predic-

tion. We predict the distances between all the instance pairs within

the same sub-circuit. The distance is normalized to the sub-circuit

placement bounding box. Table 3 shows the regression results com-

pared with different variants of the models and training methods.

The model types are denoted before the dash in the method names.

“T”, “A” and “G” indicate the model contains text embedding, self-

attention layers, and a graph neural network, respectively. The

prediction method is labeled after the dash. “CAT” denotes concate-

nating the instance pair embeddings and predicting the distance

with an FC network (Equation (6)). “NORM” indicates to use our

proposed distance measuring method (Equation (8)). For example,

TG-CAT denotes the model using GNN and text embedding and

predicts the distance with the concatenation method. T-NORM de-

notes using only text embedding without graph with distance norm

method.

Our proposed TAG framework outperforms the other methods

in all metrics and achieves 𝑅2 of 0.64. Meanwhile, the conventional

GNN-only structure can hardly produce meaningful predictions

above 0 𝑅2. Because layout instance distances are intrinsically noisy
due to the manual implementation, our proposed model demon-

strates a strong capability to learn the circuit representation. From

the ablation study with different model variants, we also observe

that each component of our proposed framework benefits the learn-

ing task. These observations demonstrate the effectiveness of our

proposed techniques.

We also compare with the AncstrGNN [3]. “AncstrGNN-A” de-

notes using the AncstrGNN. AncstrGNN uses a Gated-GNN layer

to generate node embeddings based on a contrastive loss between

nodes.We adopt the "CAT" approach for relative distance prediction

to predict pair-wise distance from pair embeddings. The sub-circuit

embeddings are obtained by mean aggregating their children’s em-

beddings. “AncstrGNN-B”, on the other hand, uses the AncstrGNN

network architecture but with our proposed hierarchical graph

representation. In both cases, AncstrGNN can not learn the relative

distance effectively. The results are similar to our G-only model.

Note that the “G-NORM” and “AG-NORM” options both fail

in training. The reason is rooted in the graph formulation and

the ConvGNN mechanism. As discussed in Section 2, the local

isomorphic structure will make nodes indistinguishable. As a result,

the distance between two node embeddings might be close or equal

Table 3: Comparisons of 𝑅2, MAE and sMAPE for instance

relative distance prediction.

Method 𝑅2 MAE sMAPE

AncstrGNN [3]-A -0.091 0.225 0.508

AncstrGNN [3]-B 0.068 0.191 0.502

G-CAT 0.075 0.134 0.502

T-CAT 0.194 0.187 0.489

TA-CAT 0.452 0.164 0.453

TG-CAT 0.335 0.177 0.542

AG-CAT 0.367 0.184 0.508

TAG-CAT 0.585 0.134 0.404

G-NORM FAIL FAIL FAIL

T-NORM 0.321 0.177 0.458

TA-NORM 0.530 0.140 0.409

TG-NORM 0.470 0.154 0.442

AG-NORM FAIL FAIL FAIL

TAG-NORM 0.640 0.122 0.364

to zero. When we use the distance norm method, the backward

gradient in such a case will be very large and cause the training

process to diverge. This observation also shows the importance of

text embedding.

4.3 Application Case Study 1: Layout Matching
Prediction

The effectiveness of our learned circuit representation is evaluated

for predicting the matching patterns in the layout. We use the same

dataset in the pre-training process. Instructed by the designers, the

labels of matched instances are extracted based on layout coor-

dinates. The matching conditions include interdigitation pattern,

common-centroid pattern, and symmetry pattern. The methods are

evaluated to detect those matching pairs. This task is similar to the

symmetry constraint detection problem.

We randomly selected 10% of the entire dataset from the training

set to train the models. Another 10% of circuits from the validation

set in the previous stage are used to validate the task. The entire test

set (20% of circuits) is used for testing. The task is treated as a binary

classification task by concatenating two instance embeddings and

forwarding with a two-layer FC network and is trained with the

cross-entropy loss.

We compare the proposed pre-trained circuit representation with

training from scratch and the state-of-the-art symmetry detection

framework AncstrGNN [3]. Table 4 shows comparisons of evalu-

ation metrics. “AncstrGNN-A-CAT” concatenates the pre-trained

AncstrGNN embedding and trains an FC network to do binary clas-

sification. “AncstrGNN-A-COS” uses the cosine similarity criteria

to predict the symmetry constraint as proposed in the original pa-

per. “AncstrGNN-B-CAT” and “AncstrGNN-B-COS”, on the other

hand, are using our proposed hierarchical graph representation.

“G trained from scratch” and ‘TAG trained from scratch” train the

network without pre-trained weights. “TAG” is with our proposed

pre-trained embeddings. The embedding network weights in this

configuration are fixed in the training so that its results measure the

generality of our pre-trained embeddings. Our proposed method

outperforms training from scratch and AncstrGNNwith an 𝐹1 score
of 0.842. This observation shows the effectiveness of applying the

proposed pre-trained circuit representation in other tasks.
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Table 4: Comparisons of ACC, TPR, FPR, PPV and 𝐹1 for

layout matching prediction.

Method ACC TPR FPR PPV 𝐹1

AncstrGNN [3]-A-CAT 0.677 0.802 0.434 0.621 0.706

AncstrGNN [3]-A-COS 0.805 0.724 0.086 0.919 0.810

AncstrGNN [3]-B-CAT 0.750 0.701 0.203 0.765 0.731

AncstrGNN [3]-B-COS 0.720 0.740 0.305 0.738 0.739

G Trained from scratch 0.731 0.706 0.246 0.730 0.718

TAG Trained from scratch 0.730 0.666 0.208 0.751 0.706

TAG Pre-trained 0.833 0.915 0.244 0.780 0.842

Table 5: Comparisons of 𝑅2, MAE and sMAPE for relative

HPWL prediction.

Method 𝑅2 MAE sMAPE

AncstrGNN [3]-A -0.177 0.146 0.550

AncstrGNN [3]-B 0.203 0.198 0.520

G Trained from scratch 0.027 0.219 0.566

TAG Trained from scratch 0.153 0.212 0.543

TAG Pre-trained 0.570 0.139 0.469

4.4 Application Case Study 2: Wirelength
Estimation

Another case study is to estimate the net HPWL. We also use the

same dataset in the pre-training process. Like the instance distance

prediction task, we normalize HPWL with respect to the sub-circuit

layout bounding box to allow inductive learning. The 10%/10%/20%

data splitting is used for training, validation, and test sets similar

to the matching prediction task.

We use a self-attention layer with four heads and mean aggre-

gation on the instance embeddings and predict the HPWL using a

two-layer FC network, as shown in Equation (9).

𝑊𝐿 = FC (mean (MSA (Z𝑁 ))) , (9)

where Z𝑁 denotes a collection of instance embeddings connected

by net 𝑁 .
Table 5 shows the comparisons of HPWL prediction results.

“AncstrGNN-A” denotes using the AncstrGNN embedding with the

original flatten graph, while “AncstrGNN-B” uses the TAG configu-

rations. The pre-trained TAG model achieves the best result in all

evaluation metrics. The observation in this case study aligns with

the results from the matching prediction task that TAG outperforms

the baselines. It is observed that there is a performance gap between

“AncstrGNN-A” and “AncstrGNN-B”. We believe that adding hierar-

chy knowledge with our proposed graph representation benefits

the learning task.

4.5 Application Case Study 3: Net Parasitic
Capacitance Prediction

We also evaluate the effectiveness of our pre-trained embeddings in

the net parasitic capacitance prediction task. This task uses a dataset

of 385 industrial AMS circuits in sub-10nm technology. Based on

the recommendation from the designers, we use 17 designs in the

dataset as the testing set and the rest as the training set. We verify

that there is no overlap between this testing set and the training

set in the model pre-training.

The TAG embeddings are integrated with the state-of-the-art par-

asitics prediction algorithm, ParaGraph [21]. The TAG embedding

vectors for all the instances are first generated with a pre-trained

Table 6: Comparisons of 𝑅2 and MAE of different𝑚𝑎𝑥𝑣 for
the net parasitic capacitance prediction task.

Metrics 𝑚𝑎𝑥𝑣 ParaGraph [21] TAG

𝑅2

0.5fF 0.495 0.678

1fF 0.830 0.876

10fF 0.854 0.856

100fF 0.872 0.870

1pF 0.308 0.411

MAE

0.5fF 2.71𝑒 − 17 2.25𝒆 − 17

1fF 5.14𝑒 − 17 3.41𝒆 − 17

10fF 2.01𝑒 − 16 1.83𝒆 − 16

100fF 3.23𝒆 − 16 3.39𝑒 − 16

1pF 9.93𝑒 − 16 9.07𝒆 − 16

Table 7: Comparisons of mean and geometric mean of the

errors in simulated performance with predicted net parasitic

capacitance.

Method Mean Geometric Mean

ParaGraph [21] 18.6% 4.97%

TAG 11.8% 4.17%

TAG model. Then we augment the ParaGraph input features with

these TAG embeddings. Five models are trained at one time with dif-

ferent maximum prediction values (𝑚𝑎𝑥𝑣 ) of 0.5fF, 1fF, 10fF, 100fF
and 1pF. The final prediction is obtained with the ensemble model-

ing technique as suggested in the original paper.

Table 6 shows the comparisons of the prediction accuracy. With

the augmented TAG embedding, the net parasitic capacitance pre-

diction achieves significant improvement in accuracy for the 0.5fF

and 1pF models. It also produces similar accuracy for the 1fF, 10fF,

and 100fF models. We believe that it is because the pre-trained TAG

embedding incorporates valuable spatial information of the circuits.

The additional spatial information allows the model to make more

accurate predictions considering layout effects. Table 7 shows the

corresponding errors on simulated performance. With the more

accurate net capacitance predictions, the TAG embedding helps

to reduce the mean performance error from 18.6% to 11.8%. The

results demonstrate the effectiveness of our proposed TAG model.

5 CONCLUSION

This paper has presented TAG, a new paradigm and framework to

learn and pre-train circuit instance representations. Using relative

layout distance for the training target, TAG embeds the high-level

knowledge into the representation by fitting the spatial informa-

tion. It leverages the netlists and introduces sub-circuit-wise MSA

to assist the training. A comprehensive algorithm set has been

presented, including feature extraction, network architecture, and

learning algorithm. Experimental results have demonstrated the

efficiency and effectiveness of TAG on learning spatial knowledge

and the ability to transfer the learned embeddings to other learning

tasks.
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