
Vincent: Green Hot Methods in the JVM

Kenan Liu Khaled Mahmoud Joonhwan Yoo Yu David Liu

SUNY Binghamton, USA

{kliu20, kmahmou1, jyoo45, davidl} @binghamton.edu

Abstract

In this paper, we show the energy efficiency of Java applications can
be improved by applying Dynamic Voltage and Frequency Scaling (DVFS)
inside the Java Virtual Machine (JVM). We augment the JVM to record
the energy consumption of hot methods as the underlying CPU is run at
different clock frequencies; after all the frequency possibilities for a method
have been explored, the execution of the method in an optimized run is set to
the CPU frequency that leads to the most energy-efficient execution for that
method. We introduce a new sampling methodology to overcome the dual
challenges in our design: both the underlying measurement mechanism for
energy profiling and the DVFS for energy optimization are overhead-prone.
We extend JikesRVM with our approach and benchmark it over the DaCapo
suite on a server-class Linux machine. Experiments show we are able to use
14.9% less energy than built-in power management in Linux, and improve
energy efficiency by 21.1% w.r.t. the metric of Energy-Delay Product (EDP).

Keywords: energy efficiency, JVM, just-in-time compilation

1. Introduction

The carbon footprint of data centers has recently received significant
scrutiny [42]. After mobile workloads, server-class workloads once again place
energy-efficient computing in the spotlight. This design goal is addressed at
many layers of the computing stack. Among them, a less explored approach
is to study the energy impact of managed runtimes, a middle layer between
high-level applications and low-level systems. Relative to lower-layer tech-
niques on hardware design (e.g., [18]) and OS design (e.g., [61]), a runtime
approach has the benefit of guiding energy optimization with runtime-specific
information. Relative to higher-layer techniques e.g., energy-aware program-
ming languages [56, 11, 50, 27, 20, 12, 35, 26, 41, 62, 16], a runtime approach
can work with programs written in existing languages, arguably easier for
adoption. In a nutshell, the runtime — strategically positioned between the

Preprint submitted to Science of Computer Programming September 5, 2023



lower layers and the higher layers — can often combine the benefits of both
sides of its neighbors on the computing stack.

At their essence, all runtime-based approaches are motivated by the same
question: what information uniquely available in the runtime can be har-
vested to guide energy optimization? As examples, existing efforts have relied
on thread and synchronization states (e.g., [2]), just-in-time (JIT) compila-
tion strategies (e.g., [57]), and garbage collector (GC) designs (e.g., [30]) to
inform energy optimization.

1.1. Our Approach: JVM-Level Method-Grained DVFS

We introduce a novel energy optimization at the level of the JVM. It
relies on two basic facts of the JVM: (i) the JVM is aware of the boundary
of programming abstractions such as methods; (ii) the JVM is aware of how
often a method is used. Both pieces of information are readily available
among existing JVMs, good news for the adoption of our approach.

Our key idea is method-grained energy optimization: it demarcates the
boundary of DVFS [28, 14] adjustment with the boundary of methods. Our
premise is that each method as a logical unit of the program behavior can
serve as an ideal granularity for energy optimization. For example, the
method Matrix4.transformP in a ray-tracing benchmark sunflow [13] may
carve out the boundary of a CPU-intensive computation, and the method
PSStream.write in a file processing benchmark fop [13] may demarcate
an I/O-intensive computation. It is well known that energy optimization
based on DVFS can be effectively performed based on program phased be-
haviors [53, 54, 33], i.e., an application may go through phases of different
levels of CPU intensity. For example, running an I/O-intensive program
fragment at a lower CPU frequency can often save energy without hamper-
ing performance (see § 2.2 for details).

Operationally, our approach relies on profiling to assign desirable CPU
frequencies to hot methods, the methods identified by the JIT for their fre-
quent execution. This design decision is rooted in the fact that hot methods
are frequently executed, and any improvement to their energy behavior may
have an amplified effect. A fundamental challenge in design is that the gain
resulted from DVFS is often eclipsed by the time/energy overhead intro-
duced by DVFS itself. We address this challenge with two solutions. First,
we come up with an automated energy profiling process to identify the most
energy-consuming hot methods, so that the optimizer can focus more on
how “energy hotspot” code regions respond to DVFS. Second, we introduce
a form of counter-based sampling to DVFS instrumentation, so that the over-
head introduced by DVFS is negligible given a reasonable range of sampling
rates.

2



In contrast, the state-of-the-art approach for DVFS-based energy manage-
ment relies on dynamically monitoring system states, e.g., the rate of cache
or TLB misses. A classic example of this approach is the ONDEMAND governor,
the default power governor in many Linux versions. This governor continu-
ously predicts the level of CPU activities, and adjusts the CPU frequency to
meet the demand. This approach is oblivious to the logical structure of the
running application, and is fundamentally reactive: it uses the level of CPU
intensity at the current time interval to set the CPU frequency for the next
time interval. Whereas the reactive approach is effective when the applica-
tion is stable within a phase, it loses its effectiveness when there is a phase
change. In philosophy, our approach is more aligned with a small body of
work that relies on compilers or runtimes to guide DVFS [51, 29, 60, 25, 59].
The relationship between these approaches and ours will be discussed in § 7.

1.2. Contributions

We introduce Vincent 1, the incarnation of JVM-level method-grained
DVFS as an extension to JikesRVM [4, 3]. This paper makes the following
contributions:

• the design of a profile-directed energy optimizer, an end-to-end solu-
tion that can automatically identify the most energy-consuming hot
methods, determine the judicious frequency settings for executing hot
methods, and apply DVFS for optimization;

• the specification of method-grained energy optimization at the level of
JVM, including the low-overhead sampling algorithm for energy profil-
ing and optimization;

• the implementation and evaluation of method-grained DVFS, which
demonstrates its effectiveness relative to existing power governors.

Vincent is an open-source project. Its source code and all raw exper-
imental data can be found online 2. A preliminary version of this work
appeared at the European Conference on Object-Oriented Programming
(ECOOP 2022). In this journal version, we have expanded our experiments
to include a design space exploration on parameter settings (§ 5.2), and a
discussion on design choices (§ 6).

1“I have tried to express the terrible passions of humanity by means of red and green.”
— Letter from Vincent van Gogh to Theo van Gogh, Arles, 8 September 1888

2https://bitbucket.org/vincent-paper/vinccent

3



2. Background

Vincent lies at the intersection of two active yet largely independent
research directions, energy-efficient computing and managed language run-
times, which we briefly review now.

2.1. Energy Optimization and Metrics

In physics, energy (in the unit of joules) is the multiplication of power (in
the unit of watts) and time (in the unit of seconds). Not to lose generality,
energy optimization techniques fall into 3 categories: (1) reducing power
only; (2) reducing time only; (3) balancing the trade-off between power and
time. The first route is an established area of research in hardware design,
such as low-power VLSI design [18]. The second route is also mundane: any
compiler or runtime optimization that can reduce the execution time of a
program can be broadly viewed as an energy optimization. As these first two
routes should be more properly named power optimization and performance
optimization respectively, most existing energy optimization techniques de
facto refer to the third route above, which Vincent also belongs to.

The obvious metric for evaluating energy efficiency is the energy con-
sumption itself. In practice however, as most energy optimization techniques
are a balancing act between power and time, the effect of these techniques
on power and time should not be ignored. This is particularly true for time,
as maintaining performance is an implicit and universal goal. As a result, a
prevalent metric for evaluating energy efficiency is the Energy-Delay Product
(EDP), the multiplication of energy and time. A lower EDP is aligned with
our intuition that the energy consumption is reduced while the application
remains performant.

2.2. DVFS

DVFS [28, 14] is a classic CPU hardware feature that enables the trade-
off exploration between power and time. Except for specialized embedded
CPUs, DVFS is supported in nearly all commodity CPUs available today.
With DVFS, the operational frequency of a CPU can be dynamically ad-
justed, such as from 2Ghz to 1Ghz. Strictly speaking, DVFS is a power
optimization design: the power consumption of a CPU has a near cubic re-
lationship with its operational frequency; as a result, when the operational
frequency is reduced (or scaled down), the power reduction can be dramatic.
What makes DVFS a challenging energy optimization solution is that, when
the CPU frequency is lowered, the execution time of a program typically
becomes longer. Recall our earlier discussion that energy consumption is the
multiplication of power and time, so the energy consumption effect of DVFS

4



is complex. With EDP as a metric placing more emphasis on time (i.e., not
energy consumption alone), the EDP effect of DVFS is even less obvious.

Empirically, downscaling is most effective when the program execution
is less dependent on the CPU clock speed. The well known example is the
I/O-intensive workload: the program may be waiting for an I/O to complete,
and a wait will cause CPU pipeline stalls no matter what frequency is used.

Informally, DVFS is also known as throttling. This widely used informal
term has an undertone to emphasize the effect of downscaling. Note that
DVFS as an approach subsumes both downscaling and upscaling. The latter
refers to the scenario when the operational frequency of the CPU is increased.
Upscaling increases power, but may serve as a performance optimization (i.e.,
reducing execution time).

DVFS, when implemented, takes the form of a system call, where a special
system file is written. Each DVFS call generally takes tens of microseconds
to complete in modern CPUs [32].

2.3. OS Governors

DVFS provides the hardware capability on adjusting CPU frequencies,
but in itself, no algorithm is defined on when scaling should happen, and
what frequency the CPU should be scaled to. The latter is provided through
OS-level algorithms called governors. The implementation of governors is
platform-dependent: the algorithm used by the OS depends on what hard-
ware features are available for power management (beyond DVFS itself).

For generality reasons, Linux provides a set of generic governors that do
not require additional hardware support [6]. The ONDEMAND governor adjusts
the underlying CPU frequency based on monitoring the status reported by
the performance counters, and a higher CPU frequency is applied when a
higher workload is encountered, and vice versa. Relative to the middle-of-
the-road ONDEMAND governor, the PERFORMANCE governor on one side of the
spectrum is a time-biased DVFS regulation algorithm; it lays emphasis on
preserving execution time by setting the CPU frequency to be as high as
possible. On the other side of the spectrum, the POWERSAVE governor is a
power-biased DVFS regulator, laying more emphasis on reducing power con-
sumption by setting the CPU frequency to be as low as possible. To facilitate
customized energy optimization, Linux also comes with a USERSPACE gover-
nor, deferring all decisions of when and what decisions of DVFS to the layers
of the software stack above the OS.

With additional hardware support for power management, the OS gover-
nor can delegate some regulation tasks to the hardware. One example is the
Intel P-State [32, 31] support, where the CPU can be set to different power

5



state levels. Instead of operating at a per-core level, the P-State power man-
agement operates at the level of a CPU package shared by all cores. When
a particular P-State is set, the hardware is able to balance off the individual
CPU frequencies of different cores to achieve a particular power budget. More
recently, the question of when power state transitioning should happen can
also be managed by the hardware itself, a feature called hardware-managed
P-states (HWP).

On Intel architectures with P-State support, Linux power management
can operate in either the passive mode or the active mode for power manage-
ment [5]. For architectures without HWP, Linux defaults its behavior to the
passive mode, where the Linux generic governors — ONDEMAND, PERFORMANCE,
POWERSAVE, and USERSPACE — remain in use, except that setting the high-
est/lowest CPU frequencies in the generic governors are now supported as
setting the highest/lowest power states. On Intel architectures with HWP
support, Linux defaults its behavior to an active mode of P-state use, essen-
tially deferring all its “govenoring” ability to the HWP hardware itself. In
the active mode, there is no longer a USERSPACE governor; in other words,
application-specific or user-specific DVFS is not allowed.

2.4. Energy Measurement and RAPL

A relatively independent design and evaluation question is how the energy
consumption can be measured. For example, a traditional approach is to
rely on the external power/current meters. With the progress of energy-
aware computing, newer architectures come with hardware interfaces that
can directly query the energy consumption of a computer system “live.”, i.e.,
during the execution of its hosted application.

The most widely known hardware feature is Intel’s Running Average
Power Limit (RAPL) [21], available on all Sandybridge or newer Intel CPUs
since 2011 and AMD’s RAPL-compatible CPUs. RAPL can dynamically re-
port the hardware energy consumption and incrementally store it in Machine-
Specific Registers (MSRs). The reported energy consumption includes (i)
CPU core energy consumption; (ii) CPU uncore energy consumption, i.e.,
those of on-chip caches, bus controllers, etc; (iii) DRAM energy consump-
tion. RAPL has other features, such as capping the power consumption of a
CPU, beyond the scope of this paper.

When implemented, each RAPL reading can be obtained through a num-
ber of reads to MSR registers, taking tens of microseconds in modern CPUs.
To determine the energy consumption of an execution, a user may take one
RAPL reading at the beginning of the execution and the other at the end,
and compute the difference of the two.

6







• Frequency Selection: For each top energy-consuming method, Vin-
cent observes the energy consumption and execution time of the ap-
plication when the execution of this method is scaled to each CPU fre-
quency, which we call a configuration. For each top energy-consuming
method, Vincent ranks the efficiency of its different configurations
according to energy metrics, and selects the most efficient one.

• Energy Optimization: Vincent runs the application when the ex-
ecution of each top energy-consuming method is scaled to the CPU
frequency determined in the Frequency Selection phase.

The core design elements are the algorithms for energy profiling (the sec-
ond pass) and method-based scaling (the third/fourth passes), which we will
detail in § 3.2. Conceptually, one may view each pass as a separate run of
the application, in the same spirit as a profile-guided optimizer. Therefore,
the “energy profiling” pass and the “frequency selection” pass are two sep-
arate runs, which we informally call the profiling run and the scaling run,
respectively.

The key observation over this workflow is that Vincent places the spot-
light on methods : in each of the workflow tasks, the unit of processing — be
it selection, profiling, or optimization — is at the granularity of methods.

A High-Level Implementation Overview. From the implementation perspec-
tive, Vincent builds on top of JikesRVM, and we resort to existing support
in JikesRVM for the first pass, Hot Method Selection. JikesRVM’s built-in
process—from how to sample methods to what heuristics are introduced to
determine hotness—is not altered. Conceptually, hot method selection can
be a separate run of the application itself, outputing a list of methods that
JikesRVM deems “hot.” In our implementation, the hot method selection
and profiling is combined in one run: i.e., whenever a hot method is identi-
fied during the execution of an application, the energy profiling component
of Vincent will start profiling its energy consumption. In this regard, the
Vincent development interfaces with existing JikesRVM logic through a
common data structure where hot methods are kept: whenever such a data
structure is updated by JikesRVM, Vincent under the profiling run will
start profiling for the newly added entry. We also follow a similar implemen-
tation for the scaling run.

In addition, Vincent does not alter the dynamic compilation process of
JikesRVM, except that the additional logic for profiling (or scaling) is in-
serted through instrumentation at the beginning of the dynamic compilation
process. Take the profiling run for instance. Whenever a hot method is

9



Algorithm 1 Thread Bookkeeping and Timer Thread Loop

1: typedef T {
2: vtimer : int // timer
3: skipCount : int // # calls to skip
4: sampleCount : int // # samples to collect

5: edata: EDATA // energy profiling data

6: gov : Governor // saved governor

7: freq: Freq // saved CPU frequency

8: }
9: const EPOCH // time unit
10: const SKIPNUM // skipped samples between
11: const SAMPLENUM // samples per interval

1: ts: T[THREADNUM] // running threads
2: procedure Timer
3: while TRUE do

4: Sleep(EPOCH)
5: for each t ∈ ts do

6: t.vtimer++
7: end for

8: end while

9: end procedure

identified, we dynamically instrument that method with the Vincent pro-
filing logic in the profiling run, which will be subsequently compiled by JIT
dynamic compilation.

Combining the hot method selection and profiling in one run has one
additional benefit: our profiling is fundamentally adaptive to the dynamic
hot method selection process. For long-running applications with phased
behaviors, what methods are deemed hot may dynamically change. Recall
that Vincent shares the same common data structure where the list of
hot method are maintained by JikesRVM. In the scenario of dynamic hot
method change, JikesRVM will dynamically place the newly identified hot
method(s) in the common data structure. Upon the addition of each hot
method entry in the data structure, dynamic compilation for that method
will be triggered, in this case, with the profiling logic of Vincent. As a
result, the energy consumption of that method will be hereafter profiled by
Vincent.

3.2. Vincent Specification

We now specify the algorithm implemented by Vincent. We first de-
scribe the top-level thread bookkeeping (§ 3.2.1), and then the profiling al-
gorithm (§ 3.2.2) and the scaling algorithm (§ 3.2.3).

3.2.1. Thread Bookkeeping

Algorithm 1 overviews the bookkeeping in a multi-threading environment.
Here, all threads visible to the JVM (other than the timer thread itself) are
maintained in a global structure ts, a collection of threads of type T. Each
thread contains thread-local bookkeeping information; in particular, note
that vtimer manages the elapse of time, incremented by the unit EPOCH. As
profiling and scaling belong to different passes of Vincent and do not share

10



Algorithm 2 Profiling Algorithm

1: typedef LOG {
2: mn: MNAME // method name
3: edata: EDATA // data
4: }
5: typedef CVAL enum { TAKE, SKIP, LAST }
6: typedef EDATA float

7: const PN // profiling timer factor
8: l : LOG[LOGNUM]

9: procedure prologueProfile()
10: t← currentThread()
11: if Counter(t, PN) == TAKE then

12: t.edata ← readEnergy()
13: end if

14: if Counter(t, PN) == LAST then

15: t.edata ← ⊥
16: end if

17: end procedure

18: procedure epilogueProfile()
19: t← currentThread()
20: if Counter(t, PN) == TAKE or LAST then

21: e ← readEnergy()
22: if t.edata ̸= ⊥ then

23: l
+
← LOG(THISM,diff(e, t.edata))

24: else

25: t.edata← e

26: end if

27: end if

28: if Counter(t, PN) == LAST then

29: t.edata← ⊥
30: end if

31: end procedure

32: function Counter(t : T, factor : int): CVAL
33: if t.vtimer >= factor then

34: t.skipCount← t.skipCount− 1
35: if t.skipCount == 0 then

36: t.skipCount ← SKIPNUM

37: t.sampleCount← t.sampleCount− 1
38: if t.sampleCount == 0 then

39: t.vtimer ← 0
40: t.sampleCount ← SAMPLENUM

41: return LAST

42: end if

43: return TAKE

44: end if

45: end if

46: return SKIP

47: end function

the same runtime, vtimer is used for both runs. The thread-local fields used
only for profiling and those only for scaling are illustrated with GREEN box
and LIME box respectively. The specific meanings of the constants and the
fields in T other than vtimer will be detailed in the rest of this section.

The timer thread is defined as an infinite loop. When the JVM timer
interrupt happens at the rate of EPOCH, the vtimer associated with each
thread is incremented.

In the rest of this section, we specify our algorithm design for energy
profiling and DVFS-based energy optimization. Both passes are unified by
one fundamental hurdle: if naive instrumentation is used, the overhead for
obtaining raw energy samples (in energy profiling) and the overhead for per-
forming DVFS (in energy optimization) are too high. We now detail our
solution in § 3.2.2, i.e., how we overcome the overhead challenge of obtaining
raw energy samples in energy profiling through a sampling-based approach.
Note that in § 3.2.3, the same sampling-based solution is also used for DVFS-
based energy optimization to overcome the challenge posed by the overhead
for performing DVFS.

11



3.2.2. Profiling Instrumentation

Recall that the goal of profiling is to identify the top energy-consuming
methods. The raw energy consumption maintained by the underlying hard-
ware (see § 4) is accumulative, i.e., reported as monotonically increasing
values. To determine the energy consumption of a method, we conceptu-
ally need to “diff” the raw energy reading obtained at the beginning of the
method execution, and one obtained at the end of the method execution.

Challenges and Strawman Solutions. Obtaining a raw energy reading from
the underlying hardware incurs a non-trivial overhead, often taking tens of
microseconds to complete. As a result, standard solutions known to be effec-
tive for execution time profiling may not be ideal for energy profiling, which
we now briefly review.

A strawman solution naively adapted from execution time profiling is to
instrument the begin (i.e., prologue) and the end (i.e., epilogue) of every
hot method, where a raw energy reading is taken each time the prologue and
epilogue is encountered. The energy consumption of a method can thus be the
difference between the two readings. Unfortunately, thanks to the non-trivial
overhead with RAPL energy readings, this approach may incur prohibitively
high overhead (10x-200x in our preliminary experiments), severely altering
the program behavior. In other words, the instrumented run may produce the
result no longer representative of the original benchmark’s energy behavior.
Observe that even instrumenting each hot method “one at a time” does
not solve the problem. The hot methods are “hot” for a reason: they are
frequently called, and the per-call overhead may rapidly accumulate.

A second strawman solution is to perform sampling at fixed time inter-
vals. For example, assume the JVM has just taken an energy sample of 90J
at the beginning of its 100th time interval. After one time interval elapses,
it takes another energy sample of 90.25J , and the epilogue of a method is
encountered. The approach can thus attribute 0.25J to that method. This
approach however may lead to over-attribution: 0.25J is attributed to one
method encountered at the end of the time interval, but many other meth-
ods may have contributed to the energy consumption during the interval.
This sampling approach is widely used for execution time sampling, because
precision can be improved by shortening the time interval. For energy profil-
ing however, the room for shortening the time interval is limited due to the
overhead of raw energy readings.

Delimited and Counter-Based Sampling with Vincent. To address these
challenges, the solution adopted by Vincent consists of two ideas: delimited
sampling and counter-based sampling. Overall, the former is an overhead-

12



reducing approximation that combines the strawman solutions above, and
the latter is a precision-increasing optimization over the general sampling-
based approach.

Delimited Sampling The energy profiler of Vincent is a hybrid of the two
strawman solutions above, which we call delimited sampling. Similar to the
first strawman approach, Vincent takes energy readings when the method
prologue and the method epilogue are encountered, and computes the differ-
ence of the two. Vincent however does not take energy readings at every
encounter of the prologue or the epilogue. Instead, the number of energy
readings at the method prologue/epilogue are bounded for each interval, sim-
ilar to the second strawman approach.

As seen in Algorithm 2, each hot method is instrumented with a pair
of methods, with prologueProfile inserted before the entry point of the
method body, and epilogueProfile inserted after each exit point of the
method body. Auxiliary function ReadEnergy obtains a raw energy sam-
ple from the underlying hardware (a value of EDATA type). Binary func-
tion Diff computes the difference of two raw energy samples, and function
CurrentThread returns the current thread of the execution, of type T.
Constant THISM is the name of the instrumented method, an implementation
detail we clarify in § 4. Sampling happens within the function of Counter,
which we will describe shortly.

The key observation here is that we are not attempting to replicate the
first strawman approach, but to avoid the overattribution problem in the
second strawman approach. The philosophy here is refutation: if a pro-
logue or epilogue (of any method) is encountered before the epilogue of the
method m of our interest, we know the energy consumption incurred before
the prologue encounter must not be due to m, thanks to how call stacks
are structured. This can be concretely observed in the specification of Epi-
logueProfile in Algorithm 2. At Line 23, the energy difference between a
prior energy sample and the current energy sample is computed. Now that
the method has reached its epilogue, the “current energy sample” intuitively
keeps the accumulated energy value until the method reaches its end. The
intriguing question however is when the “prior energy sample” is collected.
Delimited sampling introduces an approximation: it is collected during the
last time in the sampling trace when a method is called (i.e., a prologue is
executed) or a method is returned (i.e., an epilogue is executed). They can
be seen at Line 12 and Line 21 respectively in Algorithm 2. In other words,
the refutation-based algorithm says that any prior encountered prologue or
epilogue “delimits” where the method could start: any energy consumption

13



before the last method is called or returned must not belong to the current
method we encounter in the epilogue.

On a more technical level, treating the prior encounter of an epilogue as
a “limit” of the method start (as well as the prior encounter of a prologue) is
also friendly for accounting for the energy consumption of a recursive/nested
method. For some applications, the hot method happens to be a recursive
call. When a sample is ready to be taken, it is possible that the activation
record of the recursive call is popping. Without Line 21, the sampling algo-
rithm would only take the next energy sample when a prologue is executed
(i.e., a push), and hence would miss a round of sampling in this pop-only
phase of recursive execution. With Line 21, the energy consumption between
2 pops can be recorded and attributed to the recursive method.

Finally, note that the energy accounting specified here is conceptually
“flat”: in the presence of a call chain where both the caller method and
the callee method are hot, the callee’s energy consumption is not accounted
as a part of the caller’s energy consumption. This is implied in the delim-
ited approach itself: when the epilogue of the caller method is encountered,
the epilogue of the callee method is already encountered. As a result, only
the energy consumption after the callee method is completed is attributed
to the caller method. Indeed, due to sampling, our implementation is an
approximation of this conceptually flat view.

Counter-based Sampling Our description so far can be conceptually viewed
as taking two energy readings — one at the prologue and the other at the
epilogue — for each time interval. Vincent extends from this conceptual
view by adopting counter-based sampling (see § 2), allowing multiple (but
still bounded) pairs of energy readings to be collected within a time interval.
In general, counter-based sampling is a precision-improving strategy known
to strike a balance for accounting both long methods and short methods.
Specific to energy optimization, this means that Vincent cares about both
longer but slightly less frequently invoked (but still hot) methods and shorter
but more frequently invoked methods, as long as they incur high energy
consumption.

In Algorithm 2, counter-based sampling is captured by functionCounter,
at Lines 32-47. Here, the profiling time interval is set as PN × EPOCH; recall
that vtimer is incremented at each VM EPOCH, so PN is the “slowdown” fac-
tor of profiling relative to the top-level timer loop. Constants SAMPLENUM

and SKIPNUM represent the number of samples to take and skip, respectively,
within each profiling time interval.

The Counter function may return one of the 3 values: TAKE (indicating

14



Algorithm 3 Scaling Algorithm

1: enum Governor {USERSPACE, ONDEMAND, ...}
2: const SN // scaling timer factor

3: procedure prologueScale(f : Freq)
4: t← currentThread()
5: if Counter(t, SN) == TAKE then

6: t.gov ← GetGovernor()
7: if t.gov == USERSPACE then

8: t.freq ← GetFreq()
9: else

10: setGovernor(USERSPACE)
11: end if

12: SetFreq(f)
13: end if

14: if Counter(t, SN) == LAST then

15: SetGovernor(ONDEMAND)
16: end if

17: end procedure

18: procedure epilogueScale()
19: t← currentThread()
20: if Counter(t, SN) == TAKE then

21: if t.gov ̸= ⊥ then

22: SetGovernor(t.gov)
23: if t.gov == USERSPACE then

24: SetFreq(t.freq)
25: end if

26: end if

27: end if

28: if Counter(t, SN) == LAST then

29: SetGovernor(ONDEMAND)
30: end if

31: end procedure

a sample should be taken), SKIP (indicating a sample should not be taken),
and LAST (indicating one last sample should be taken for each time interval).
The LAST value plays a role of re-initializing the environment for the next
time interval. For profiling, this means to reset the edata field.

Finally, observe that the Counter function only accesses data that
records the state of the current thread. This can be observed that every
access in this function is prefixed with variable t. In other words, it is not
possible for two application threads to access the same fields in a race con-
dition.

3.2.3. Scaling Instrumentation

Algorithm 3 defines the instrumentation-based algorithm for CPU scal-
ing. Convenience function GetGovernor retrieves the current governor
(power manager) from the underlying system, which can either be USERSPACE
(i.e., with frequencies manually set by the user) or ONDEMAND. Function
SetGovernor sets the governor to its argument value. FunctionGetFreq
retrieves the current CPU frequency, whereas SetFreq sets the CPU fre-
quency to its argument value.

Recall that the scaling instrumentation is used for Vincent’s passes of
frequency selection or energy optimization. The instrumentation is only ap-
plied to the hot top-energy consuming methods. When the application is
bootstrapped, Vincent sets the governor to ONDEMAND. When a top energy-
consuming method is encountered at its prologueScale, the governor and
the CPU frequency are set according to the need of frequency selection or
energy optimization. At this point, the governor to be used is USERSPACE,

15



a la the convention of Linux. Vincent in addition preserves the gover-
nor/frequency context, i.e., the settings of governor/frequency before the
prologueScale is encountered. The epilogueScale recovers the pre-
served context.

Just as profiling, counter-based sampling is also at work during scaling.
Note that profiling and scaling do not have to follow the same rate. Constant
SN adjusts the rate for scaling. In addition, note that when we reach the LAST
sample in each time interval, the governor is reset to ONDEMAND.

The scaling instrumentation is used in two passes of Vincent. In the
Frequency Selection pass (§ 3.1), the program is run for FN × MN number of
times, where FN is the number of CPU frequencies supported by the hard-
ware and MN is the number of top energy-consuming hot methods. Each
run scales a particular top energy-consuming method to a particular CPU
frequency when the former is encountered, according to the scaling instru-
mentation algorithm. The FN×MN runs will allow Vincent to iterate over all
configurations. For each top energy-consuming method, Vincent identifies
the best CPU frequency among FN runs, i.e., the one that leads to the most
energy efficiency. In the Energy Optimization pass (§ 3.1), only the optimal
CPU frequency is scaled to when the aforementioned top energy-consuming
method is encountered, again, according to the scaling instrumentation al-
gorithm specified here. This process will be concretized in Section 4, where
the FN× MN runs will be represented as a heatmap.

4. Implementation and Experimental Settings

4.1. Hardware/OS/VM Setup

We evaluated Vincent on a dual socket Intel E5-2630 v4 2.20 GHz CPU
server, with 10 cores in each socket and 64 DDR4 RAM. Hyperthreading
is enabled. In total, we have 20 physical cores and 40 virtual cores. The
machine runs Debian 9.11 (stretch), Linux kernel 4.9. For profiling based on
individual CPU frequencies and the DVFS-based optimization, we explored
all CPU frequencies that can be stably supported by our hardware, ranging
from 2.2GHz to 1.2GHz, with the decrement of 0.1Ghz. For the rest of the
paper, we use F1 to refer to 2.2Ghz, F2 for 2.1Ghz, F3 for 2.0Ghz, . . . , F11
for 1.2Ghz. In other words, the constant FN = 11 in our experiments. The
CPU frequencies are switched through the scaling setspeed file, under the
directory of /sys/devices/system/cpu/cpu*/cpufreq for CPU cores.

Intel E5-2630 v4 is an instance of the Intel Broadwell architecture. It sup-
ports P-states but does not have HWP support. The P-states operate in the
passive mode (see § 2), and the Linux governors of ONDEMAND, PERFORMANCE,
POWERSAVE, USERSPACE remain available. The governors are switched through

16





of profiling based on them. Whenever a new method is identified as hot,
Vincent’s profiler will instrument it dynamically and perform its profiling
upon identification. For each experiment, we consider the top-5 energy-
consuming methods for optimization. In other words, MN = 5.

One design consideration was whether we should exclude very short meth-
ods such as getters and setters from the hot methods. Intuitively, if such
methods were subjected to scaling, the scaling overhead might well offset
the benefit of setting the method to the desired frequency. Fortunately, the
top energy-consuming methods identified by Vincent’s energy profiler (as
seen in § 5) appear to rarely include them. In other words, these very short
methods, even though hot from the perspective of invocation counts, rarely
accumulate enough energy consumption to become top energy-consuming
methods. As a result, we choose to keep our design simple, and do not alter
the hot method selection logic in JikesRVM.

4.3. Algorithm Implementation

The prologue and epilogue program fragments for profiling and optimiza-
tion we specified in the previous section are inserted as IR instrumentation
through hir2lir. Recall that we need to obtain the “this method” informa-
tion (THISM in Algorithm 2). This is implemented through instrumentation:
as the method signature is carried with the IR, Vincent stores the method
information when instrumentation is added. Other than this instrumenta-
tion, we preserve the original JikesRVM logic for dynamic compilation.

In the top-level timer loop, the interval EPOCH is identical to the default
time interval of AOS, 4ms. Unless otherwise noted, we set the time interval
for both profiling and scaling at 8ms, i.e., PN = 2 and SN = 2. Within
each time interval, counter-based sampling is at work for both profiling and
scaling. Unless otherwise noted, parameter SAMPLENUM is set at 16. In both
scenarios, SKIPNUM = 7. The fact the skipped number of samples should be
an odd number is well known in counter-based sampling [7].

All energy readings are stored as a C array and printed after the experi-
ments end for posterior analysis.

4.4. Benchmarking and Experimental Setup

We evaluate Vincent with benchmarks in the Dacapo suite [13], ar-
guably the most widely used benchmark suite for multithreaded Java appli-
cations. Our benchmarks by default come from the last version of Dacapo
known to work with JikesRVM, Dacapo MR2. Dacapo has a more recent
release, Dacapo 9.12-bach, and we successfully ported some benchmarks in
this version — sunflow, luindex, and avrora specifically — to work with
JikesRVM. The rest of porting was unsuccessful because JikesRVM cannot

18



support some advanced Java features that appeared in the later versions of
benchmarks.

4.5. Baselines

To evaluate the effectiveness of Vincent, we choose 3 baselines. They
are the three application execution scenarios where DVFS is guided by the
ONDEMAND, POWERSAVE, and PERFORMANCE OS governors respectively (see § 2).
They are representative scenarios of running Java applications on commodity
software/hardware stack today. As variants of DVFS approaches guided by
dynamic monitoring, they set a contrast with the core idea of Vincent’s
approach, method -based DVFS.

The baseline execution time and energy consumption of each benchmark
while running with the 3 Linux governors can be found in Fig. 3. In addition
to serving as experimental baselines, this figure may also help gain intuition
on the characteristics of DVFS guided by the 3 governors. For example, the
PERFORMANCE governor often leads to the shortest execution time, as shown
in the left sub-figure; it however generally increases the energy consump-
tion, as shown in As shown in the right sub-figure. Overall, the ONDEMAND

governor strikes a good balance between maximizing energy savings while
delivering competitive performance. As a result, we will conduct a more de-
tailed comparative analysis between Vincent and the ONDEMAND baseline in
the following section.

Unless otherwise noted, all experiment results throughout the paper (in-
cluding both baseline runs and Vincent runs) are collected by running each
benchmark 20 times in a hot run, and reporting the average of the last 15
runs.

5. Vincent Evaluation

In this section, we evaluate the effectiveness of Vincent. We aim at an-
swering the following questions: (Q1) Do method-frequency configurations
exist that can lead to energy savings and favorable EDPs, compared with
existing Linux power governors? (Q2) How does the choice of sampling set-
tings impact the effectiveness of Vincent? (Q3) How isVincent compared
against different existing power management strategies? We answer each of
these questions in each subsection below.

5.1. Method-Grained Energy Optimization

5.1.1. Energy Profiling

The Vincent lifecycle starts with energy profiling. Fig. 4 shows the top-
5 energy-consuming methods for selected benchmarks. Thanks to sampling,

19



sunflow

Rank Method Name Percentage(%)

1 org.sunflow.core.light.TriangleMeshLight.getRadiance 9.36
2 org.sunflow.core.primitive.TriangleMesh.init 4.60
3 org.sunflow.math.Matrix4.transformP 2.19
4 org.sunflow.core.shader.MirrorShader.getRadiance 0.45
5 org.sunflow.core.accel.KDTree.BuildTask.<init> 0.005

pmd

Rank Method Name Percentage(%)

1 org.jaxen.expr.DefaultAllNodeStep.matches 15.52
2 org.jaxen.expr.iter.IterableChildAxis.supportsNamedAccess 8.21
3 org.jaxen.QualifiedName.hashCode 7.01
4 net.sourceforge.pmd.jaxen.DocumentNavigator.getAttributeName 4.78
5 org.jaxen.util.SingleObjectIterator.hasNext 4.18

antlr

Rank Method Name Percentage(%)

1 antlr.CodeGenerator. println 5.56
2 antlr.SimpleTokenManager.getTokenSymbol 5.23
3 antlr.LLkAnalyzer.look 3.92
4 antlr.CSharpCharFormatter.escapeChar 2.61
5 antlr.Grammar.getSymbol 2.61

Figure 4: Top Energy-Consuming Methods According to Vincent Energy Profiling
(The first column is the rank; the second column is the name of the method; the third
column is its normalized energy consumption relative to the overall energy consumption
of the benchmark.)

the reported percentage of energy consumption for each listed method is
likely to be lower than its actual normalized energy consumption, but what
matters here is the relative standing of the methods: we are able to identify
the most-energy consuming methods so that the methods that DVFS should
be applied upon are identified.

Very short methods rarely appear in the top energy-consuming methods.
One example is pmd’s top-consuming method, DefaultAllNodeStep.matches,
which only contains a simple boolean return as its method body. As we shall
see soon, these methods are indeed unfriendly for DVFS (see § 4). That being

20









ration within the benchmark whose normalized energy consumption is less
than 1. For example, when Vincent runs antlr at the third highest
CPU frequency (2.0Ghz) for its second most energy-consuming method,
SimpleTokenManager.getTokenSymbol, the normalized EDP is 0.87, indi-
cating that Vincent can save energy by 13% than running antlr with the
ONDEMAND governor. As each green cell in the heatmap indicates a configu-
ration with energy savings relative to ONDEMAND, energy optimization oppor-
tunities widely exist across benchmarks.

Indeed, not every benchmark can benefit from method-grained energy
optimization. Benchmark sunflow has all normalized energy consumption
values greater than 1 for allVincent configurations, indicating the ONDEMAND
execution indeed consumes less energy than Vincent. The same applies to
nearly all jython configurations. Both benchmarks are consistently CPU-
intensive, meaning that the ONDEMAND governor is likely to operate the CPUs
at the highest frequencies at most times. In this case, DVFS has limited
choices: if it scales the CPU down, the CPU-intensive application may run
significantly slower, negatively impacting energy consumption because the
latter is the accumulated power consumption over time; if it scales the CPU
up, the power consumption may increase, ultimately impacting the energy
consumption as well.

In contrast, memory-intensive or I/O-intensive benchmarks respond well
with Vincent. This is consistent with our general understanding of DVFS:
these benchmarks often have latency due to memory round-trips or I/O re-
quests, and scaling down the CPU frequency may have limited impact on
execution time while reducing the power consumption significantly. For ex-
ample, there are benefits for reducing energy consumption for many con-
figurations of pmd (AST-based program analysis), avrora (simulation), fop
(file transformation), and luindex (data indexing). All are centric to data
processing, and most benchmarks have I/Os.

Finally, relatively short methods (such as the top-consuming method of
pmd and bloat) indeed respond to DVFS poorly: the overhead of DVFS
significantly outweighs its benefit. As we can see, energy consumption may
deteriorate significantly for them, sometimes near 10x.

5.1.3. The Impact on EDP

Fig. 6 shows Vincent’s impact on energy consumption. One interest-
ing observation is that DVFS may play different roles for different bench-
marks in balancing the trade-off between energy consumption and execution
time: sometimes the reduction of EDP is due to reduced energy consumption,
whereas at other times, EDP may reduce due to reduced execution time.

Take sunflow for instance. Recall earlier that its energy heatmap re-

24



vealed that reducing the energy consumption of sunflow is challenging (all
cells in the energy consumption heatmap are red), but observe that Vin-
cent may in fact improve the energy efficiency of sunflow in terms of EDP:
by scaling the CPU frequency to the highest while executing its method
TriangleMesh.init, the normalized EDP may reach 0.90, i.e., a 10% re-
duction than that of ONDEMAND. Here, Vincent primarily plays the role
of improving the performance: as sunflow is a CPU-intensive benchmark,
DVFS plays the role of speeding up its execution; the shortened execution
time contributes to the reduced EDP.

Overall, we find Vincent an effective solution to reducing EDP as well
as energy consumption. Occasionally, it is even more effective for the former
than the latter: when we correlate Fig. 5 and Fig. 6, the best configuration
for a benchmark often exhibits a lower normalized value in Fig. 6 than in
Fig. 5. As energy optimization is a known trade-off between maximizing
energy savings and minimizing performance loss, an EDP-friendly solution
is of practical importance.

5.1.4. The Impact on Execution Time

In Fig. 7, we show the impact of Vincent on execution time. Observe
that every benchmark consists of at least one configuration that may speed
up the benchmark relative to its ONDEMAND run. At the first glance, the fact
that Vincent may serve as a performance optimizer may come as a surprise,
but this is indeed natural for two reasons.

First, even though DVFS is better known for its effect on energy savings
with downscaling, the opposite is also true: it can speed up the program exe-
cution with upscaling. What this figure shows is that Vincent may select a
performance-sensitive method and execute it on a higher CPU frequency than
an ONDEMAND governor baseline would, potentially speeding up the program.

Second, note that ONDEMAND governor is a “middle-of-the-road” governor
(see § 2) in terms of how aggressive/conservative it scales up CPU frequen-
cies in the presence of workload increase. As we shall see in § 5.3, the
PERFORMANCE governor is a more challenging baseline to overcome in terms
of viewing Vincent as a performance optimization.

5.2. Sampling Settings

All experimental results we have shown so far are based on the set-
ting where each optimization sampling interval is set at 8ms, and within
each interval, 16 samples are taken. In other words, EPOCH × PN = 8 and
SAMPLENUM = 16. We now evaluate Vincent under different settings of
sampling, with the energy consumption results shown in Fig. 8, and EDP
results shown in Fig. 9.

25









On the other hand, these figures reveal that tuning sampling settings may
indeed have small but noticeable impact on the effectiveness of Vincent. As
different choices of sampling settings represent different trade-offs between
overhead and accuracy, the variation is not surprising; indeed, tuning has
been a classic component in JVM optimization. For some settings – e.g.,
8ms/8 and 8ms/16 for avrora — the difference in effectiveness may be as
much as 10–12%. There appears to be no generalizable trend in terms of
the selection of the sampling interval and the number of samples within each
sample. For example, jython optimization appears to more effective with
4ms-interval settings, while antlr optimization appears to be more effective
with 8ms-interval settings. In principle, the shorter the interval is and the
more the samples are, the more likely Vincent would be able to accurately
perform DVFS at the boundary of methods. However, shorter intervals and
more samples also imply more DVFS overhead.

5.3. Alternative Baselines

We have so far compared our results with the ONDEMAND governor, ar-
guably the most widely used DVFS-enabled energy optimization based on
dynamic monitoring. In this section, we now look at other important gover-
nors as baselines.

In Fig. 10, we show the relative effectiveness of Vincent against alter-
native governors. For example, the height of sunflow EDP bar against the
ONDEMAND governor is 0.86, meaning that among all CPU frequencies, all se-
lected methods, and all sampling rate settings, the Vincent configuration
with the least EDP is 14% less than that of the ONDEMAND run for sunflow.
For the same benchmark, its EDP bar against the POWERSAVE governor is
0.52, meaning that the Vincent configuration with the least EDP is 48%
less than that of the POWERSAVE run. In other words, POWERSAVE is a rela-
tively less effective power governor for sunflow than ONDEMAND in terms of
EDP, and neither is as effective as Vincent.

Across the benchmarks, a trend is that the POWERSAVE baseline fares
poorly relative to ONDEMAND, and much worse than Vincent. Relatively,
POWERSAVE is slightly worse than the ONDEMAND governor in terms of energy
consumption, but it may significantly increase the execution time of bench-
marks, ultimately leading to poor EDPs.

Vincent is also more energy-efficient than the PERFORMANCE governor.
Note that in the last row of Fig. 10, all normalized energy results are signifi-
cantly less than 1. All but one (sunflow) benchmarks also have EDP results
less than 1. The most revealing fact about the PERFORMANCE governor is
that it may reduce the execution time of CPU-intensive benchmarks. Recall
that when Vincent is compared against the ONDEMAND governor in terms

29



of the execution time (the last figure in the first row), the Vincent runs
of sunflow and jython can lead to shorter execution time than the runs
with the ONDEMAND governor. This however is not true when Vincent is
compared against the PERFORMANCE governor: the Vincent runs of sunflow
and jython are slightly slower than the runs with the PERFORMANCE governor
(the last figure in the last row). The PERFORMANCE governor however is not
as effective for memory-intensive or I/O-intensive benchmarks.

The surprising fact is that the Vincent runs for some benchmarks can
in fact lead to a small but noticeable reduction in the execution time than
their counterpart PERFORMANCE runs. When the PERFORMANCE governor is
used to regulate DVFS on Intel architectures where P-States are available,
the highest power state is used. Note however the highest power state is
not tantamount to the highest CPU frequency [32, 1]. Recall that (§ 2)
P-States are managed at the level of the CPU package, not at the level of
individual cores. How the supply voltage and the CPU frequencies of indi-
vidual cores are assigned given a power state subjects to a variety of design
constraints, such as area power and thermal considerations. The DVFS of
Vincent however is targeted at the core level: when a method is deter-
mined to run with the highest CPU frequency, the CPU core hosting the
thread in which the method runs is set at the highest CPU frequency. This
interesting phenomenon may indicate a potential for performance optimiza-
tion, but there are caveats. First, the average performance improvement is
small: only a subset of benchmarks can benefit, while there is degradation
in others (Fig. 10). Second, as P-State maintenance is a platform-dependent
black-box hardware feature, the phenomenon may be restricted to specific
architectures (Broadwell in our case), and may no longer presents itself in
other architectures.

5.4. The Impact during the Warm-Up Phase

The data we have shown so far result from the last 15 runs in a 20-run
execution for each benchmark (see § 4), i.e., the post-warmup runs. This
evaluation choice is in sync with the general focus of energy optimization on
long-running applications, where energy consumption matters the most. In
those server-class settings, a sunflow application will continuously process
images (instead of a fixed number necessitated by the benchmark), and an
xalan application will continuously process XML documents (instead of a
fixed number of documents).

For completeness, we now describe the result of the first 5 runs in a 20-
run execution, with the per-benchmark results shown in Fig. 11. Overall,
Vincent remains an effective optimizer relative to the 3 baselines. Nearly
all benchmarks retain the similar trend as post-warmup runs in Fig. 10.

30





process in JVMs is incremental: some hot methods may be identified during
the first run, whereas others may be deferred to the later runs. As a result,
the effectiveness of Vincent relative to the 3 baselines is only incrementally
more pronounced, leading to larger deviation across the 5 runs.

5.5. Multi-Method Optimization

As a part of the design space optimization, we further constructed ex-
periments where multiple methods are subject to DVFS at the same time.
Concretely, for benchmarks that have at least two methods that show favor-
able EDP configurations (normalized EDP < 1), we pick two methods whose
least EDPs among all configurations are the smallest. We perform DVFS of
both methods at the same time, adjusting the frequencies according to their
respective “least EDP” configurations.

Unfortunately, the results do not show improvement. In fact, the 3 most
promising benchmarks (i.e., with multiple EDP<1 configurations spanning
different methods as shown in Fig. 6), pmd, avrora, and fop produced nor-
malized EDP as 2.01, 1.77, and 1.60, respectively. The root cause is that
when multiple methods are subjected to DVFS at the same time, the chance
of concurrent DVFS requests increases significantly. As CPU hardware must
serialize DVFS requests — DVFS is implemented as blocking I/O writes —
an extensive increase in execution time ensues, bad news for energy efficiency.
The multi-method result is a reminder that an overdesign may hamper ef-
fectiveness. Vincent, as it turns out, is most effective when we keep it
simple: method-grained energy optimization with a focus on the most im-
pactful method in an application.

5.6. Overhead

Finally, we quantify the overhead introduced by DVFS in Vincent. Sim-
ilar to all DVFS-based approaches, this is a scenario where DVFS calls them-
selves may come with a small cost of energy consumption, but in return, the
overall system can (often) save energy. The purpose of this discussion is to il-
luminate the optimization space: if an application under Vincent saves X%
energy compared against a baseline but the DVFS calls for that run come
with a Y% energy overhead, then Vincent could theoretically save X+Y%
of energy if the DVFS calls were further optimized at the hardware/system
level.

We compute the energy overhead as EUNIT × DVFSNUMb, where EUNIT is
the energy overhead of each DVFS call, and DVFSNUMb is the number of DVFS
calls in the optimized run for benchmark b. To measure EUNIT, we created a
simple multi-threaded program where the number of threads is the number of
CPU cores (CNUM), and each thread is in a continuous loop performing LNUM

32







that is encountered once every U microseconds, this design would imply that
RAPL/DVFS call is performed once per U ×C microseconds. If C = 10, the
overhead due to RAPL/DVFS may be too large for a method where U = 10,
while RAPL/DVFS may be performed too infrequently for a method where
U = 10000. In other words, there is no universal C that can fit the need of
all methods.

As a next step, we further considered a variant where the value U is
profiled for each method, so that the C value may also be method-specific.
This optimization did not lead to acceptable results either, because the value
of U indeed took on phased behaviors : during the execution of an application,
it may change during each phase.

Vincent currently adopts timer-based sampling. Here, the number of
samples taken is managed by the sampling rate and the counter value we
choose. The overhead is no longer correlated to method-specific characteris-
tics (such as U above). Given the influence of this general approach in JIT
design, it may be self-evident — in hindsight — that we should have explored
it in the first place.

The Occam’s Razor. The main reason behind our initial hesitation with the
timer-based sampling approach is its approximate nature. Given that energy
values in RAPL registers are accumulative, we need to correlate two samples
to compute the difference. This is a unique problem unseen in the sampling-
based design of e.g., JIT.

We spent a large amount of time implementing features to correlate sam-
ples. As one example, we attempted to record the name of methods when a
sample is taken. To further account for recursion, we instrumented a counter
in the prologue/epilogue, so that each taken sample can also record the level
of recursion. Finally, a difference is only taken when the method names and
recursion levels match. These implementations led to poor experimental re-
sults, for two reasons. First, the requirement of matching method names
and/or recursion levels significantly reduces the number of energy readings
we could collect: given the sampling nature of the approach, many tem-
porally adjacent samples do not have matching method names or recursion
levels. Second, and more importantly, the overhead of bookkeeping — query-
ing/recording method names and/or tracking recursion levels — quickly adds
up. As energy is the multiplication of power and time, any modification that
significantly slows down the execution leads to poor energy efficiency. When
the metric of EDP is considered, the time overhead becomes even less desir-
able.

In retrospect, we converged on the refutation-based delimited approach
(see § 3.2) through “elimination”: we removed a number of features that

35



we thought would improve precision, one by one, and the effectiveness of
our approach continued to improve. A similar path of exploration happened
when we looked into the potential of multi-method optimization.

Overall, we believe it remains an interesting future direction to further
improve the precision in our sampling approach, if such improvement does
not introduce overhead.

7. Related Work

Compiler-Directed or Runtime-Directed DVFS. The underlying philosophy
of our work — programs matter for DVFS-based energy optimization — is
shared among a number of compiler-directed energy optimization approaches.
Saputra et al. [51] describes a DVFS-based approach at the level of compiler
optimization. Their algorithm first observes the potential speed-up of loop
transformation (e.g., tiling and loop fusion) over the unoptimized program,
and then scales the CPU voltage and frequency down over the optimized
program to a desirable level that matches the original execution time of
the unoptimized program, through integer linear programming. Hsu and
Kremer [29] defines a compiler-directed DVFS algorithm where a desirable
CPU frequency is selected for running a code region; the selection is based
on solving a minimization problem where the need for limited performance
loss is encoded as constraints. Xie et al. [60] defines an analytical model —
built in the compilation process — where energy minimization is reduced
to a mixed-integer linear programming problem. Overall, the previous work
focused on building analytical models in the presence of DVFS. This general
direction, building analytical models to identify slacks in programs, can be
traced back to a classic analysis for energy-efficient OS scheduling [58].

A small body of work further extends analytical models to virtual ma-
chines and dynamic compilation. In Haldar et al. [25], methods are instru-
mented with DVFS calls, and the frequency of choice when a method executes
is based on the comparison among the projected energy consumption of the
method at different frequencies. To make this decision, it was necessary for
their analytical algorithm to introduce heuristics (that may no longer hold
for state-of-the-art application workloads), such as the projected future exe-
cution time is the same as the execution time so far, and the execution time
increases linearly with the CPU frequency slowdown. Wu et al. [59] proposed
a dynamic compilation framework for C programs, where important code re-
gions such as loops are manually identified and instrumented, and the CPU
frequency for DVFS is selected based on an analytical model. Relative to Hal-
dar et al., their model addressed the non-linear effect of DVFS on execution
time: through analyzing the memory-related instructions in the code region,

36



their algorithm projects smaller performance loss for memory-intensive code
regions when the CPU frequency is scaled down.

As both Haldar et al. and Wu et al. are runtime-level efforts, a more
in-depth comparison is warranted. First, Vincent does not rely on an ana-
lytical model to estimate or extrapolate the execution time or energy effect of
DVFS, and does not need to instantiate the often unknown parameters in the
analytical model through heuristics. Second, Vincent identifies the most
energy-consuming methods in an automated process. In contrast, the code
region for DVFS in Wu et al. is manually identified, Third, both existing
efforts centrally relied on instrumenting method boundaries for DVFS calls.
Acceptable performance may be achievable at the era of these developments
— e.g., Haldar et al. was evaluated against the Java Grande benchmark
suite [55] and Wu et al. against SPEC 95 and SPEC2K — but modern
Java applications are significantly more complex than e.g., heapsort in Java
Grande. In § 3.2.2, we described the high overhead of that approach for
Dacapo benchmarks.

In the context of related work, Vincent can be understood as a revisit to
a historically significant research direction — compiler/runtime-based DVFS
— which has unfortunately been overtaken by black-box approaches e.g.,
DVFS based on dynamic performance counters. Vincent defines an end-
to-end approach that is simple (no analytical model), automated (no manual
efforts in code region identification), and scalable in overhead (no instrumen-
tation for DVFS). It is our hope thatVincent is a new beginning to re-study
this largely overlooked direction in the presence of modern applications in
managed runtimes.

Energy-Aware Languages. Another direction of energy optimization at the
boundary of programming abstractions is energy-aware programming lan-
guages [56, 11, 50, 27, 40, 20, 12, 35, 26, 41, 62, 16]. For example, Energy
Types [20] introduces DVFS at the boundary of methods based on phase in-
formation declared by programmers or inferred by the compiler. Green [11]
and LAB [35] select alternative algorithm-specific parameters based on en-
ergy and QoS need. Ent [15] relies on hybrid type checking to select alterna-
tive programming abstractions (methods and objects) for message dispatch.
Vincent works with the existing programming model of Java; it is an effort
on runtime design instead of programming model design.

Runtime-Level Energy Efficiency. Chen et al. [19] relies on garbage collection
tuning to save memory system energy consumption in JVMs. Cao et al. [17]
improves the energy efficiency of JVM by assigning JVM services to small
cores on asymmetric hardware. DEP+BURST [2] is a performance predictor

37



and energy management system where JVM features such as synchroniza-
tion, inter-thread dependencies, and store bursts, are taken into account for
performance/energy prediction. Hussein et al. [30] investigates the energy
impact of garbage collector design in the Android runtime. They proposed
some extensions to improve the energy efficiency of asynchronous GC in
Android. Overall, a common theme in existing work is to focus on JVM
services (such as GC and thread management), but none considers energy
optimization at the granularity of programming abstractions. Our work com-
plements existing work with a fine-grained method-based approach for energy
optimization. For unmanaged language runtimes, Hermes [48, 39] and Ae-
quitus [49] are energy-efficient solutions built on top of Cilk. They perform
DVFS based on the dependencies between thief threads and victim threads
in work stealing runtimes.

Empirical studies often illuminate the energy consumption (and perfor-
mance) of managed language runtimes. An early study by Vijaykrishnan et
al. [57] focuses on the energy consumption impact on the memory hierarchy
(cache and main memory) by JIT-enabled Java applications. Esmaeilzadeh
et al. [22] studies energy efficiency with a focus on diverse configurations
of workload and hardware. Sartor and Eeckhout [52] illuminates the per-
formance of Java applications, with a focus on mapping Java application
threads and JVM threads to multi-core hardware. Despite that their focus is
on performance, DVFS is extensively used in their design space exploration,
such as running GC threads at different CPU frequencies. Pinto et al. [46]
studies the impact of energy consumption when alternative thread manage-
ment designs in Java are used, such as different settings of the thread pool.
Specific to ForkJoin [36], previous studies [45] also explored the impact of
work stealing on the performance and energy trade-off in Java runtimes. The
energy impact of different choices of Java collection classes were also a sub-
ject of studies [24, 47]. Kambadur et al. [34] takes a cross-layer approach
to surveying the energy management solutions, studying the interface and
interaction of different hardware/OS/compiler configurations.

Energy Profiling. Energy profiling is more commonly conducted at the sys-
tem level (e.g., [44, 23]), rather than at the boundary of programming ab-
stractions such as methods. Jalen [43] is an energy profiler relying on program-
level bytecode instrumentation and static compilation. To rein in on over-
head, Jalen also relies on sampling. For each method of interest identified by
the user, Jalen produces its energy consumption, one run for each method.
Instead of relying on RAPL to query energy consumption, Jalen is endowed
with an analytical power model that takes into account of a wide range of
system states, such as CPU frequencies and network status. Thanks to the

38



sophisticated power modeling, Jalen can profile the energy consumption of
networks, which Vincent does not consider. Chappie [10] also supports
method-grained energy profiling. Chappie runs as a separate thread to the
monitored application, and continuously samples the method at the top of
the call stack at fixed time intervals. Like Vincent, Chappie does not re-
quire users to identify the method to be profiled. Vincent is fundamentally
a JVM-centric approach. It takes advantage of the JVM support such as dy-
namic compilation and instrumentation to enable delimited sampling. In one
profile run, it produces the energy consumption values of all hot methods.
Broadly, the relationship between existing energy profilers and Vincent is
complementary. On the one hand, energy profiling is an intermediate step for
energy optimization in Vincent, which Jalen or Chappie does not support.
It demonstrates that profiling and optimization can be unified in one frame-
work, in a coherent JVM-based approach. On the other hand, Vincent can
indeed further borrow ideas from existing energy profilers (such as network
energy profiling in Jalen, or multi-application support in Eflect [9]) to obtain
comprehensive energy profiles in the complex systems.

8. Threats to Validity

While we believe leveraging hot methods in the JVM for DVFS-guided
energy optimization is a generalizable idea, Vincent as an experimental
system is implemented and evaluated within specific software/hardware en-
vironments. The validity of our experimental data is restricted to these
environments.

First, Vincent is an extension to the JikesRVM, so the validity of our
results can only be safely confirmed in that JVM. We are hopeful that the
ideas behind Vincent can translate to alternative JVMs, for several reasons.
(1) Vincent does not rely on unique JikesRVM features; hot method selec-
tion, dynamic instrumentation and compilation, and counter-based sampling
are available in many JVMs; (2) To the best of our knowledge, alternative
JVMs widely in use today do not perform DVFS-specific optimizations, so
the likelihood of feature intervention is small if the idea behind Vincent
is adopted on them. (3) JikesRVM has incubated other influential JVM
ideas (e.g., JIT, garbage collection), whose effectiveness has been confirmed
in alternative JVMs.

Second, Vincent relies on CPU architectures where DVFS is enabled.
Fortunately, DVFS is a standard feature whose support is the rule not the
exception in commodity CPUs, including the vast majority of chips from
Intel, AMD, ARM, and others. RAPL is used for Vincent energy measure-
ment, a hardware feature also widely available in Intel after 2011, and more

39



recently, AMD CPUs.
Third, the experimental results are limited to the benchmark suite we

used, Dacapo. Dacapo is commonly used for Java evaluating the performance
of JVMs and Java applications. The benchmarks we used are multi-threaded,
and they have diverse workload characteristics (CPU-bound vs. I/O-bound)
that matter to energy optimization.

As for the OS governor support, note that the ONDEMAND, PERFORMANCE
and POWERSAVE governors are used for the purpose of evaluation. The only OS
requirement for Vincent is that the OS can expose the capability of DVFS
regulation to the application. This is the USERSPACE governor in Linux. Such
support is also available in other OS such as Windows [37].

9. Conclusion

Vincent is a method-grained energy optimizer residing inside the JVM.
It identifies the top energy-consuming methods in the Java runtime, and per-
forms profile-directed optimization guided by DVFS. Our experiments show
Vincent can reduce the energy consumption and improve the energy ef-
ficiency of Java applications. Vincent is a novel instance among a small
number of energy optimization approaches that take advantage of the infor-
mation available to the managed runtime. It requires no modification to the
underlying OS/hardware, and requires no programmer effort.

Acknowledgments

This project is supported by the US NSF award CNS-1910532.

References

[1] Kristen Accardi. Balancing power and performance in the linux kernel,
https://events.static.linuxfound.org/sites/events/files/

slides/LinuxConEurope_2015.pdf. In The 2015 Linux Conference,
2015.

[2] S. Akram, J. B. Sartor, and L. Eeckhout. Dep+burst: On-
line dvfs performance prediction for energy-efficient managed lan-
guage execution. IEEE Transactions on Computers, 66(4):601–
615, 2017. https://doi.org/10.1109/TC.2016.2609903 doi:10.1109/TC.
2016.2609903.

40



[3] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen
Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Shep-
erd, and Mark Mergen. Implementing jalapeño in java. SIGPLAN Not.,
34(10):314–324, October 1999. https://doi.org/10.1145/320385.320418
doi:10.1145/320385.320418.

[4] Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G.
Burke, Perry Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen J.
Fink, David Grove, Michael Hind, Susan Flynn Hummel, Derek
Lieber, Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Rus-
sell, Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E.
Smith, Vugranam C. Sreedhar, Harini Srinivasan, and John Whaley.
The jalapeño virtual machine. IBM Syst. J., 39(1):211–238, 2000.
https://doi.org/10.1147/sj.391.0211 doi:10.1147/sj.391.0211.

[5] The Linux Kernel Archives. Intel p-state driver, https://www.kernel.
org/doc/Documentation/cpu-freq/intel-pstate.txt.

[6] The Linux Kernel Archives. Linux cpufreq governors, https://www.
kernel.org/doc/Documentation/cpu-freq/governors.txt.

[7] M. Arnold and D. Grove. Collecting and exploiting high-accuracy call
graph profiles in virtual machines. In International Symposium on Code
Generation and Optimization, pages 51–62, 2005.

[8] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. Adaptive optimization in the jalapeño jvm. In Proceed-
ings of the 15th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA ’00, page
47–65, New York, NY, USA, 2000. Association for Computing Ma-
chinery. https://doi.org/10.1145/353171.353175 doi:10.1145/353171.

353175.

[9] Timur Babakol, Anthony Canino, and Yu David Liu. Eflect: Port-
ing energy-aware applications to shared environments. In Proceed-
ings of the 44th International Conference on Software Engineering,
ICSE ’22, page 823–834, New York, NY, USA, 2022. Association for
Computing Machinery. https://doi.org/10.1145/3510003.3510145 doi:

10.1145/3510003.3510145.

[10] Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena,
and Yu David Liu. Calm energy accounting for multithreaded java ap-
plications. In Proceedings of the 28th ACM Joint Meeting on European

41



Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 976–988, 2020.

[11] Woongki Baek and Trishul M. Chilimbi. Green: a framework for sup-
porting energy-conscious programming using controlled approximation.
In PLDI’10, pages 198–209, 2010.

[12] Thomas Bartenstein and Yu David Liu. Green streams for data-intensive
software. In Proceedings of the 35th International Conference on Soft-
ware Engineering (ICSE 2013), May 2013.

[13] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. The dacapo benchmarks: Java benchmark-
ing development and analysis. In Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’06, page 169–190,
New York, NY, USA, 2006. Association for Computing Machin-
ery. https://doi.org/10.1145/1167473.1167488 doi:10.1145/1167473.

1167488.

[14] T.D. Burd and R.W. Brodersen. Energy efficient cmos microprocessor
design. In HICSS’95, pages 288–297 vol.1, 1995.

[15] Anthony Canino and Yu David Liu. Proactive and adaptive energy-
aware programming with mixed typechecking. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
217–232, 2017.

[16] Anthony Canino, Yu David Liu, and Hidehiko Masuhara. Stochastic
energy optimization for mobile GPS applications. In Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, pages 703–713, 2018.

[17] Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley.
The yin and yang of power and performance for asymmetric hardware
and managed software. In Proceedings of the 39th Annual International

42



Symposium on Computer Architecture, ISCA ’12, page 225–236, USA,
2012. IEEE Computer Society.

[18] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen.
Low power cmos digital design. IEEE JOURNAL OF SOLID STATE
CIRCUITS, 27:473–484, 1995.

[19] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko. Tuning garbage collection for reducing memory system
energy in an embedded java environment. ACM Trans. Embed. Comput.
Syst., page 27–55, November 2002.

[20] Michael Cohen, Haitao Steve Zhu, Senem Ezgi Emgin, and Yu David
Liu. Energy types. In OOPSLA ’12, 2012.

[21] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,
and Christian Le. Rapl: Memory power estimation and capping.
In Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design, ISLPED ’10, pages 189–194, New
York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/
1840845.1840883, https://doi.org/10.1145/1840845.1840883 doi:10.

1145/1840845.1840883.

[22] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and
Kathryn S. McKinley. Looking back on the language and hardware rev-
olutions: Measured power, performance, and scaling. In Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, page
319–332, New York, NY, USA, 2011. Association for Computing Machin-
ery. https://doi.org/10.1145/1950365.1950402 doi:10.1145/1950365.

1950402.

[23] X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. E-android: A new
energy profiling tool for smartphones. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 492–502,
June 2017.

[24] Irene Lizeth Manotas Gutiérrez, Lori L. Pollock, and James Clause.
SEEDS: a software engineer’s energy-optimization decision support
framework. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 503–514,
2014.

43



[25] Vivek Haldar, Christian W. Probst, Vasanth Venkatachalam, and
Michael Franz. Virtual-machine driven dynamic voltage scaling. Tech-
nical report, In Technical Report No.03-21, SICS, 2003.

[26] Henry Hoffmann. Jouleguard: Energy guarantees for approximate ap-
plications. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 198–214, 2015.

[27] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS ’11, 2011.

[28] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital de-
sign. In Low Power Electronics, 1994. Digest of Technical Papers., IEEE
Symposium, pages 8–11, 1994.

[29] Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and
evaluation of a compiler algorithm for cpu energy reduction. In PLDI’03,
pages 38–48, 2003.

[30] Ahmed Hussein, Mathias Payer, Antony L. Hosking, and Christopher A.
Vick. Impact of GC design on power and performance for android.
In Dalit Naor, Gernot Heiser, and Idit Keidar, editors, Proceedings of
the 8th ACM International Systems and Storage Conference, SYSTOR
2015, Haifa, Israel, May 26-28, 2015, pages 13:1–13:12. ACM, 2015.

[31] Intel. Energy analysis user guide, available at https:

//www.intel.com/content/www/us/en/develop/documentation/

energy-analysis-user-guide/.

[32] Intel. Intel 64 and ia-32 architectures software developer’s manual: Vol-
ume 3.

[33] Canturk Isci and Margaret Martonosi. Identifying program power phase
behavior using power vectors. In In Workshop on Workload Character-
ization, 2003.

[34] Melanie Kambadur and Martha A. Kim. An experimental sur-
vey of energy management across the stack. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’14, page 329–344,
New York, NY, USA, 2014. Association for Computing Machin-
ery. https://doi.org/10.1145/2660193.2660196 doi:10.1145/2660193.

2660196.

44



[35] Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKin-
ley, Todd Mytkowicz, and Ryder Ziola. The latency, accuracy, and bat-
tery (lab) abstraction: Programmer productivity and energy efficiency
for continuous mobile context sensing. In OOPSLA ’13, pages 661–676,
2013.

[36] Doug Lea. A java fork/join framework. In Proceedings of the
ACM 2000 Conference on Java Grande, JAVA ’00, page 36–43,
New York, NY, USA, 2000. Association for Computing Machinery.
https://doi.org/10.1145/337449.337465 doi:10.1145/337449.337465.

[37] Bin Lin, Arindam Mallik, Peter Dinda, Gokhan Memik, and
Robert Dick. User- and process-driven dynamic voltage and fre-
quency scaling. In 2009 IEEE International Symposium on Per-
formance Analysis of Systems and Software, pages 11–22, 2009.
https://doi.org/10.1109/ISPASS.2009.4919634 doi:10.1109/ISPASS.

2009.4919634.

[38] Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-oriented character-
ization of application-level energy optimization. In FASE 2015, April
2015.

[39] Yu David Liu. Green thieves in work stealing. In Proceedings of ASP-
LOS’12 (Provactive Ideas session), 2012.

[40] Yu David Liu. Variant-frequency semantics for green futures. In Proceed-
ings of the Workshop on Programming Language Approaches to Concur-
rency and Communication-cEntric Software (PLACES’12), 2012.

[41] Brandon Lucia and Benjamin Ransford. A simpler, safer programming
and execution model for intermittent systems. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, pages 575–585, 2015.

[42] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. Recalibrating global data center energy-use estimates. Science,
367(6481):984–986, 2020.

[43] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Monitoring
energy hotspots in software. Automated Software Engg., 22(3):291–332,
sep 2015. https://doi.org/10.1007/s10515-014-0171-1 doi:10.1007/

s10515-014-0171-1.

45



[44] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy
spent inside my app?: Fine grained energy accounting on smartphones
with eprof. In Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 29–42, 2012.

[45] Gustavo Pinto, Anthony Canino, Fernando Castor, Guoqing (Harry)
Xu, and Yu David Liu. Understanding and overcoming parallelism bot-
tlenecks in forkjoin applications. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, pages 765–
775, 2017.

[46] Gustavo Pinto, Fernando Castor, and Yu David Liu. Understanding
energy behaviors of thread management constructs. In OOPSLA ’14,
2014.

[47] Gustavo Pinto, Kenan Liu, Fernando Castor, and Yu David Liu. A
comprehensive study on the energy efficiency of java thread-safe collec-
tions. In International Conference on Software Maintenance and Evo-
lution (ICSME 2016), 2016.

[48] Haris Ribic and Yu David Liu. Energy-efficient work-stealing language
runtimes. In Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5,
2014, pages 513–528, 2014.

[49] Haris Ribic and Yu David Liu. AEQUITAS: coordinated energy man-
agement across parallel applications. In Proceedings of the 2016 Interna-
tional Conference on Supercomputing, ICS 2016, Istanbul, Turkey, June
1-3, 2016, pages 4:1–4:12, 2016.

[50] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general low-
power computation. In PLDI’11, 2011.

[51] H. Saputra, M. Kandemir, N. vijaykrishan, M Irwin, J. Hu, and U. Kre-
mer. Energy-conscious compilation based on voltage scaling. In In Proc.
ACM SIGPLAN Joint Conference on Languages, Compilers, and Tools
for Embedded Systems and Software and Compilers for Embedded Sys-
tems, pages 2–11. ACM Press, 2002.

[52] Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded java
application performance on multicore hardware. In OOPSLA’12, OOP-
SLA ’12, page 281–296, 2012.

46



[53] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation points in ap-
plications. In PACT ’01: Proceedings of the 2001 International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 3–14,
Washington, DC, USA, 2001. IEEE Computer Society.

[54] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In ASPLOS-
X: Proceedings of the 10th international conference on Architectural sup-
port for programming languages and operating systems, pages 45–57,
2002.

[55] L.A. Smith, J.M. Bull, and J. Obdrizalek. A parallel java
grande benchmark suite. In SC ’01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, pages 6–6, 2001.
https://doi.org/10.1145/582034.582042 doi:10.1145/582034.582042.

[56] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D. Corner, and Emery D. Berger. Eon: a language and
runtime system for perpetual systems. In SenSys ’07, pages 161–174,
2007.

[57] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubrama-
niam, and M. J. Irwin. Energy behavior of java applications from the
memory perspective. In Proceedings of the 1st Java Virtual Machine
Research and Technology Symposium, JVM 2001, Proceedings of the
1st Java Virtual Machine Research and Technology Symposium, JVM
2001. USENIX Association, 2001. Funding Information: This research is
supported in part by grants from NSF CCR-0073419, Pittsburgh Digital
Greenhouse and Sun Microsystems.; 1st Java Virtual Machine Research
and Technology Symposium, JVM 2001 ; Conference date: 23-04-2001
Through 24-04-2001.

[58] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling
for reduced cpu energy. In OSDI ’94: Proceedings of the 1st USENIX
conference on Operating Systems Design and Implementation, page 2,
Berkeley, CA, USA, 1994. USENIX Association.

[59] Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, D. Connors,
D. Brooks, M. Martonosi, and D.W. Clark. A dynamic com-
pilation framework for controlling microprocessor energy and per-
formance. In 38th Annual IEEE/ACM International Sympo-

47



sium on Microarchitecture (MICRO’05), pages 12 pp.–282, 2005.
https://doi.org/10.1109/MICRO.2005.7 doi:10.1109/MICRO.2005.7.

[60] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic
voltage scaling settings: opportunities and limits. In PLDI’03, pages
49–62, 2003.

[61] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Cur-
rentcy: A unifying abstraction for expressing energy management poli-
cies. In In Proceedings of the USENIX Annual Technical Conference,
pages 43–56, 2003.

[62] Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. A programming
model for sustainable software. In ICSE’15, pages 767–777, 2015.

48


