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Abstract

The development of machine learning methods that are both accurate and interpretable is of paramount importance in health-
care and many other fields. The Highly Adaptive Lasso (HAL) has been shown to have predictive performance on par with
state-of-the art algorithms. HAL involves performing regularized regression of the outcome on a tensor product of indicator
basis functions. In this paper we show that this basis can be represented as a non-recursive partitioning of the feature space
and propose a method for mapping this partitioning implied by HAL to a recursive partitioning. Such a mapping then allows
for the representation of HAL as a decision tree, thereby providing interpretability of predictions made by the algorithm. We
refer to this post-hoc method for interpretability as Highly Adaptive Regression Trees (HART). We provide a set of algo-
rithms to construct this mapping and conveniently visualize the resulting tree. Using real data, we show that HAL'’s predic-
tive performance is on par with state-of-the-art methods, and we demonstrate the construction and interpretation of HARTS.

Keywords Machine learning - Interpretability - Decision trees - Recursive partitioning - Highly adaptive lasso

1 Introduction

Recent advances in theoretical statistics and computer
science have led to the development of machine learn-
ing algorithms that can improve professionals’ abilities to
accomplish tasks in a myriad of fields. For example, such
algorithms have been used to assess risks of future adverse
health outcomes [1-4], estimate consumer demand [5],
forecast currency exchange rates [6], predict student aca-
demic success [7], and improve communication systems
[8]. Machine learning may be used by professionals in these
fields to appropriately guide decision making. However, use
of machine learning in these contexts often involves weigh-
ing the choice of accuracy versus interpretability of a pre-
diction algorithm. Simple algorithms (e.g., based on logis-
tic regression) are easy-to-interpret, but rely on relatively
inflexible statistical models and so may not make accurate
predictions. More complex algorithms (e.g., based on deep
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learning) may predict more accurately, but are often difficult
to interpret.

The need for accuracy in these settings is manifest. For
example, before machine learning-based technology can be
deployed in healthcare settings, providers and patients must
have faith in the fidelity of the predictions. Interpretability
is also crucial from an ethical standpoint [9]. Consider an
algorithm to triage intensive care unit patients based on pre-
dicted risk of death. In this case, it is important to carefully
scrutinize the triage decision making process to ensure that
care is being delivered in an equitable manner.

Decision trees have long been a popular tool for creating
interpretable prediction functions and are particularly popu-
lar in clinical research [10—13]. However, traditional tech-
niques for learning these trees generally fail to yield predic-
tions that are as accurate as competitor algorithms [14]. The
poor performance may be due to the greedy approach used
to fit the trees, which can quickly spread data thin even in
relatively data rich settings. This has led to the abandonment
of regression trees in settings where accuracy is a primary
consideration, in favor of other, more difficult-to-interpret
algorithms.

Here we describe a method for constructing classification
and regression trees that delivers predictive accuracy com-
parable to that of random forests and boosting. Our proposal
centers around the highly adaptive lasso (HAL) algorithm
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[15], which has been previously established to have competi-
tive predictive performance compared with state-of-the-art
algorithms. Here, we show that HAL can be represented as
a decision tree and provide an algorithm for building such
a tree from a trained HAL model. We verify that HAL can
indeed perform prediction tasks as well as state-of-the-art
algorithms, and we demonstrate the interpretability of trees
built using real data.

2 Highly adaptive lasso

We consider a prediction problem where the observed data
consist of n independent copies of the random variable
O0=(X,Y)~ Py, where X € X is a vector of features,Y € )
is the outcome of interest, and P, represents the probability
distribution of the observed data. Here, ) could be {0, 1} (as
in binary classification), { Y}, ..., Y, } (multi-class classifica-
tion), or R (regression). For simplicity, we take )V = {0, 1}.

For a given function y € ¥, the space of func-
tions mapping from X to the unit interval, we
define the negative log-likelihood loss function,
L(y,0) = —log [w(x)’{1 — w(x)}']. The risk of y is the
expected value of L(y, O), Ry(y) = f L(y,0)dPy(0). It is
straightforward to show that the minimizer of this risk over
¥ is y, the conditional probability that ¥ = 1 given X. The
theory of HAL is built around two key assumptions about
Yy (1) y is right-continuous with left-hand limits (i.e., is
a cadlag function) and (ii) yy has finite variation norm. To
precisely define variation norm, we note that any cadlag
function y generates a signed measure, which allows us to
write integrals with respect to y. The variation norm of y
islyll, = / ldw@)).

Previous works [15, 16] demonstrated how to find the
minimum loss-based estimator (MLE) in the class of func-
tions with variation norm smaller than a fixed number M.
This MLE estimates y ,, = argmin,,. . <»Ro(y)and may
be computed using the fact that any cadlag function with
finite variation norm can be arbitrarily well-approximated
by a tensor product of indicator basis functions. In the uni-
variate case, we observe X|, ..., X, independent copies of a
scalar-valued variable X. The linear combination of basis
functions is of the form y,, 4(x) = f, + ﬂ; b(x), where b(x) is
an n-length vector with i-th entry equal to Iy ,(x). Here,
we use the indicator notation: for (c, d) € R?, L. g0 = 1if
X € [c,d) and equals 0 otherwise. As the dimension of X
increases, we include tensor product basis functions. For
example, if we observe (X,;,X,,),i =1, ..., n, independent
copies of X=(X,,X,), where X;,X, €R?, then
W p(x) = By + ﬂ;lbl(x) + ﬂ;2b2(x) + ﬁ;l ’Xzbl(x)bz(x), where
for j = 1,2, the i-th entry of b;(x) is equal to ]l[Xﬂ’oo)(xj). The
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idea generalizes to arbitrary p with at most n(2” — 1) basis
functions included.

Because the L;-norm of f equals the variation norm
of y, 5, the MLE in the class of functions with varia-
tion norm smaller than M may be computed by regress-
ing Y onto this set of basis functions, and ensuring that
the Y77 |f;| <M. This can be achieved by making use
of software for the popular lasso algorithm [17]. We note
that with a univariate feature, this approach is well estab-
lished in the signal de-noising literature under the name
of (zero-order) trend filtering. Benkeser and van der Laan
(2016) [15] generalized to multiple dimensions and proved
that HAL converges to yy in terms of regret at a fast rate,
RoW,p) — Rowou) = op(n‘[1/4+'/{8”+'”). This theory
establishes HAL as a strong candidate for accurate machine
learning. In Sect. 4, we establish that HAL is also a good
candidate for performing interpretable machine learning.

3 Notation

The remainder of the paper includes a large set of notation
that is necessary for describing the process of building tree
representations of HAL models. For this reason, we include
Table 1 which contains descriptions of all new notation and
vocabulary introduced. Each piece of notation is defined in
the text, but readers my find it convenient to refer to all
definitions in one place.

4 From HAL to HART

Classification and Regression Tree (CART) [18] is a predic-
tion algorithm that has long been employed across many
diverse fields [10]. Decision trees built using this approach
typically start with a fully un-partitioned feature space and,
through a greedy algorithm, recursively partition the (sub)
space into smaller units until a specified stopping criterion
is met. By nature of the partitioning process, CART yields
a histogram approximation of y,. Furthermore, because of
the recursive process employed in training, decision trees
are naturally created. However, CARTs rarely achieve high
predictive performance and can be prone to overfitting [14].

HAL provides an alternative approach to learning a his-
togram approximation of a function, though its training pro-
cess is in stark contrast to CART. HAL starts with a dense
partitioning of the feature space (implied by the tensor prod-
uct basis expansion), that is subsequently shrunk to achieve
the best global fit to the data. Because HAL is optimizing a
global smoothness criteria, it is able to partition the feature
space more efficiently than CART and generally provides a
much more accurate representation of y;. However, the his-
togram approximation created by HAL partitions will not in
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Table 1 Notation used

X Term
throughout the paper to describe

Description

aspects of feature space X
partitioning and tree creation R

bji(x;)

subscript G
subscript L

@

[}

T

Tree

Tree.label
Tree.preds
Node(label)
TerminalNode
Tree.left-child
Tree.right-child
subtree.parent = node

Candidate split data structure to be recursively pruned
A feature space region

Indicator basis function set to 1 if X; > x;;

A label applied to indicate right-hand sub-region

A label applied to indicate left-hand sub-region

Set of basis expansion terms involving value X;

Set of all @;; (represents the whole HAL model fit)
Policy for choosing tree split

A HART tree object

Text displayed in the rood node of Tree

Set of predictions given by terminal nodes in Tree
Indicates creation of a non-terminal node displaying label
Indicates creation of a terminal node displaying label
Left child node of the root node of Tree

Right child node of the root node of Tree

Indicates assignment of node as parent of object subtree

general represent a recursive partitioning of the feature space
and thus will not be immediately amenable to representation
as a decision tree. The goal of this paper is to present an
algorithm that maps a trained HAL model into a decision
tree. We call the resulting trees Highly Adaptive Regression
Trees (HART).

To illustrate the significant challenges associated with
this goal, we consider an immensely simplified example in
which we observe (X};, X,;),i = 1,2,n = 2 observations of
the two-dimensional feature-vector X = (X;, X,). Further
assume that X;; < X, fori = 1,2. Define b;;(x) = H[Xﬁ,w)(xj).
The HAL basis expansion is

W g ) = Po + Bx, b1 (X)) + P, bia(x)) + By, by (x) + Py, by (xy)
+ By, x, P11G)b 1 (0) + By, x,, 012(x1)bpr ()

ey

Xo
A - 5 3 5
Bx 115 Bxoy|PX11BX12>
Bxoys [PX21PXao
Bx11,X21| Bx11, X0,
BX12,X29

8515 Bxq9

Xa2

5 5x11,Bx9q|Px1118x19>
X P ~

21 Bx11,X21 | . Bxgys
Bx11, X1

X21

0} Bxyy  PBxars Bxia

> X1
X11 X12

Fig. 1 Left: Illustration of partitioning of the feature space according
to the HAL basis expansion. The sets of ﬁ (excluding the intercept)
correspond to those in equation (1) that fall in each region. Right: An
illustrative HAL partitioning, when /ix,, = ﬁxz, = ﬁxzz = ﬁx,,,xz, =0,

The left panel of Fig. 1 illustrates the partitioning of the
feature space implied by this basis expansion. For example,
given f € R7, the HAL prediction for observations falling
in the lowest left portion of the feature space is f,, for the
upper left portion the prediction is ﬁo + ﬂAqu + ﬁAXzz’ and so
on. Note that the full partitioning implied by the basis expan-
sion (equivalent to the partitioning implied if all coefficient
estimates are nonzero) is naturally recursive and thus can
immediately be represented by the decision tree in Fig. 2. In
this and subsequent trees, each node contains an observed
value; moving to the left (right) of the node implies a value
less (equal to or greater) than the node value.

Because HAL uses L;-penalization of the coefficient
vector, many coefficients are shrunk to zero when the
model is trained; this causes some partitions of the fea-
ture space to collapse. For example, suppose we find that

Xo
IN
X22 BX11,X21 Bx1a>
Bx11,X01
{0}
X271
Bx1g
> X1
X11 Xi12

which results in a non-recursive partitioning of the feature space. To
represent this partitioning as a decision tree, we must determine a
parsimonious recursive structure for the L-shaped left-most region
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Fig.2 Decision tree representa-
tion of the full feature space
partitioning implied by the HAL
basis expansion

ﬁX” = ﬁX2] = ﬁXzz = [?XIZ,XZZ = 0. In this case, the partition-
ing collapses (right panel, Fig. 1) and does not have a
recursive structure. In this case, any decision tree rep-
resenting this partitioned space will have at least some
redundancy in the terminal nodes. Figure 3 illustrates two
possible recursive partitions that could be used to approxi-
mate the non-recursive partitioning implied by HAL. Note
that these are both valid representations in that they would
yield predictions identical to those generated by the HAL
model. However, each has one redundant partition. This
can be observed by noting that each has separate regions
with identical predictions.

In higher dimensions, the partitions cannot be visu-
alized, and some recursive partitions may have a large
amount of redundancy. In the next sections we motivate
and describe our algorithm for mapping an arbitrary set
of non-zero basis functions into a recursive partitioning
of the feature space.

Throughout this work, we consider the set
X = {Xﬁ :j=1,...,pi=1,...,n} which contains the
values of our data. The elements of X act as candidates
for describing partitions implied by HAL. At each stage
in the proposed process, a single value is chosen from X to
describe a partition, and other values are pruned if they are
not needed to describe the remaining partitions implied by
HAL. The crux of our problem is then identifying which

ﬁle @XQl? ﬁXn Xog @Xuv X2
ﬂxzz ﬂxlz
@Xnvﬂlev @Xnvﬁxzu BAXnvﬂAXm’ @Xnv @va
6)(11«,/\'21 ﬂXu,Xm + BXas B BXll,le BAXZI'/ BX22A7
/BXllyX21 ’ ﬁXu,Xm

values from our data should be candidates for describing
partitions and the order in which we should choose them.
As we will see, both of these factors impact the amount of
redundancy contained in our final recursive partitioning.

5 Examples

To motivate our approach for reducing redundancy in the
HAL tree growing process, we consider three scenarios:
(1) a set of basis functions that naturally yields a recursive
structure; (ii) a set of basis functions that yields a non-recur-
sive structure for which there are many minimally redun-
dant recursive approximations; (iii) a set of basis functions
that yields a non-recursive partitioning for which there are
both minimally redundant and highly redundant recursive
representations. With each increase in complexity, we will
highlight necessary algorithmic changes to the tree growing
process.

5.1 Scenario (i): naturally recursive partitioning

Consider a situation where estimates of the coefficients in
the basis expansion in equation (1) are all nonzero. The par-
titioning implied by that model is the full partitioning of the
feature space (left panel of Fig. 1). The data structure in our
recursive process is X = {X,;,X},,X;;, X5, }, the elements

Fig.3 Two possible recursive X2 X2
partitions to represent the 4 4
non-recursive partition implied
by the HAL model when
7] = 3 = 3 = . = O N ~ ~ “
ﬂX“ ﬂXZ' ﬂXZZ ﬁX“'XZ? Xa2 {0} Bx11,X01 Bxia) Xao Bx11,X01 Bxyas
Bx11,X21 Bx11,X21
{0}
Xo21 Xo21
{0} Bx1q {0} Bx1s
> X, > X
X11 X12 X11 X12
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of which represent potential splits in our feature space and
potential nodes in our tree. We can select values from X
to describe feature space partitions in any order. Suppose
we begin with value X,;. A line is then drawn dividing the
feature space a region R; where x; < X;; and a region R
where x; > X;, (Fig. 4).

In each of the two new sub-regions of the feature space,
we can begin the process again, now with a reduced data
structure. In both sub-regions, we set X = X\ {X;, } since
X, has just been partitioned on. Recall now that we speci-
fied X;; < X;,. In sub-region R, where x; < X;,, it must
be true that x; < X,,. Thus, it is clearly not necessary to
further partition R, using the value X,,, and we can set
Xp = X\{X},} = {X;, Xy, }. By contrast, in Rg, x; > X,
but it may or may not be true that x; > X;,. Thus, we set
Xg = {X12, X5, X0 }-

Suppose we carry out this recursive process until X is
empty in every sub-region. Predictions are then constructed
by summing the appropriate coefficient estimates for that
region. The resulting partitioned feature space and the cor-
responding decision tree perfectly represent the fully parti-
tioned feature space in the left panel of Fig. 1 and its deci-
sion tree in Fig. 2 respectively.

5.2 Scenario (ii): non-recursive partitioning,
minimal redundancy

Suppose we estimate fy = fy, = Py, = bx,,x,, =0 and
the remaining parameters in 1 to be nonzero. The partition-
ing implied by this model is pictured in the right panel of
Fig. 1. It is worth noting that the full partitioning in the left
panel of Fig. 1 is a valid representation of this non-recursive
partitioning. However, the associated decision tree would
have considerable redundancy. Consider two examples of
redundancy in that partition under this HAL fit.

First we can see that, X,, is not needed to describe any
of the partitions implied by the HAL fit. This suggests that
our initial data structure X need not contain X,,; we could
set X = {X|,,X),,X,,}. Suppose again that we choose X,

Fig.4 Left: The feature space X2
partitioned according to the 4
HAL fit with all § # 0. These
partitions will be described by
values from X. Right: Feature
space with X, describing the

first partition

to describe the first partition. Two sub-regions R; and
R are created where x; < X;, and x; > X, respectively.
As in Scenario (i), in R we can simply prune X;, and set
X = X\{X;, }. However, in R , there are no remaining parti-
tions suggesting that in this region X,,, X,,, and, X,, should
be pruned from X. This example highlights the necessity for
a more comprehensive rule for pruning values from X in a
certain region, given a HAL model fit.

In particular, a value X, is unnecessary for describing
partitions in a given region R if it meets one of two criteria.
First, X;; is unnecessary if all coefficient estimate-basis func-
tion product terms involving X; in the HAL basis expansion
evaluate to zero. For example, consider the region where
x; < AXH. There, X,, is unnecessary because ﬁX21b21(x2) =0
and fy x, by1(x))by(x,) = 0. The second criterion is that
b;i(x;) = 1for all x;. For example, X}, is unnecessary in the
region where x; > X, because it is known that b,,(x,) = 1.
Following these criteria, and assuming we select values for
partitioning in the order that they appear in X, we obtain the
partitioning shown in the left panel of Fig. 3. As we showed
in Sect. 4, this is just one possible minimally redundant
recursive approximation of the non-recursive partitioning
implied by the HAL model. In fact, after initially pruning
X,,, we could order the elements of X in six different ways
and therefore obtain six different, minimally redundant trees.

5.3 Scenario (iii): non-recursive partitioning,
minimal and non-minimal redundancy

Now assume that we estimate fy = fy = bx,, = By, x,, =0
and the remaining coefficients as nonzero. The feature
space partitioning implied by this model is shown in Fig. 5.
According to our criteria from Sect. 5.2, we begin by prun-
ing X;, from X. The left and right panels of Fig. 6 show
partitionings resulting from proceeding with orderings
{X12, X5, X5, } and { X5, X,,, X, } respectively. Choosing the
first ordering results in an unnecessary partition.

This motivates the introduction of some policy x that
dictates which value should be chosen to describe the next

Xo

z1 < X11 z1 > X11

RL Ra

X11
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partition given the data X, the current region R, and the
model fit information. The problem of finding the most par-
simonious recursive partitioning then reduces to finding an
optimal policy z*. Potential policies are discussed in Sect. 6.2.

6 Highly adaptive regression trees

6.1 Growing trees

Algorithm 1 presents a formal algorithm for finding parsi-
monious recursive representations of feature space partition-
ings implied by HAL models. The algorithm is presented
for a design matrix involving n observations of p elements,

Once a partition is described using a value X, it natu-
rally implies two new regions within the feature space. R
describes the region in which x; < X;; and R describes
the region in which x; > X;;. These new regions can be
formalized by updating the components of the tuple A
and I' to include relevant values. As values are added to
these sets, basis functions from the HAL basis expansion
take on realizations of one or zero thus changing values
in ®@. We use the notation ®;; | R to refer to the specific
realization of a set of product terms ®@;; within a specific
region R. Together, the information in the HAL fit and
the current region inform which values should be pruned
from X before further partitions are described. We use z
to denote a general policy that dictates which value in X

Algorithm 1 HART

1:X:{in:j:1,...,p,izl,...,n}
2:<I>:{<I>ji:j:1,...,p,izl,...,n}
3: A = F = {@}

4: R= (A,F)
5X:X\{XJ1(I)]1:{O,,O}‘R}
6: def Grow(X, ®,R)

7. if X = {0} then

8: w = ZSCF ﬂs

9: return TerminalNode(1))

10: else

11: Xj*i* = W(X,@,R)

12: node = Node(X«;~)

13: AL:AU{Xj*i 2 Xy ZXg*z*}
14: RL = (AL,F)

15: XL = X\{Xﬂ : (I)ji = {0, . ,0} | RL}

16: node.child = Grow (X, ®, Ry,)
17: FG:FU{XJM IXj*Z' SXJ*Z*}

18: RG = (A,Fg)
19: XG = X\{Xﬂ : bji =1 | RG}

20: node.child = Grow(X¢g, ®, R¢)

21: return node
22: end if
23: call Grow (X, ®,R)

X = {Xﬁ cj=1,...,p,i=1,...,n}. Let 0, be the set of
all coefficient estimate-basis function product terms involv-
ing the value Xj,- in the HAL basis expansion, and define
o = {<I>ji j=1,...,p, i=1,...,n}, a set of sets that rep-
resents the whole HAL model fit. A given region of the fea-
ture space can be represented by the tuple R = (A,I') where
A ={X; 1 x; < X;} and I'(x) = {X); : x; 2 X;}. At the
beginning of the process, we initialize A = T" = {@} and let
R = ({@}, {@}) represent the entire feature space.

@ Springer

should be chosen to describe the next partition. z is a map-
ping from the current state of the partitioning, described
by (X, @, R), to the value that will describe the next parti-
tion X .

Finally, in Algorithm 1 we make the connection between
feature space partitions and nodes in a decision tree. Each
time we describe a partition using a value Xj;, we indicate
the creation of a tree node with Node(X;). The two children
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Xo
N
BXleX22
X22
BX21
Xo21
{0}
X1 X12 e
Fig.5 An illustrative HAL partitioning, when

ﬁ.X.n = Bx,, = Px,, = Px, x,, = 0, which results in a non-recursive par-
titioning of the feature space

of that node will correspond to the partitions in the resulting
sub-regions where x; < X;; and x; > X, respectively.

6.2 Policies

As stated in Sect. 4, the two sources of redundancy in our
tree representations are the identification of candidates for
partitioning and the order in which we should choose them.
Algorithm 1 fully accounts for the former and ensures that
no unnecessary feature values are identified as candidates in
a given stage of the growing process. The ordering of those
candidates and the resulting redundancy is dictated solely by
the policy z. Ideally we would choose 7 to achieve an opti-
mally parsimonious representation of . However, ordering
binary variables to achieve optimally parsimonious represen-
tations of functions is known to be an NP-complete problem
[19]. We instead rely on heuristics to reduce redundancy.
We propose a heuristic that orders split candidates X,
based on the number of non-zero coefficient estimate-basis
function product terms involving Xj;. Intuitively, this is the
number of times X; appears in the basis expansion for a

Fig.6 Two recursive par- X2
titionings to represent the 4
non-recursive partition-

ipg imp}ied byAHAL \Yhen

ﬁX” = ﬂXlZ = ﬂXzz = ﬁXIIvXZI =0.
The left partitioning is not
minimally redundant. The

right partitioning is minimally
redundant

Xo2

Bxgq

given region and can be thought of as a measure of impor-
tance. Formally, for split candidates X and HAL fit ® in
region R of the feature space, the next split is chosen as

(X, @, R) 1= X;.;. where (*,i%) = argmax;;|v € ¢;; | R 1 v # 0]

@
As an alternative, we propose to take advantage of popular
existing decision tree algorithms and define z based on their
splitting criteria. This strategy has the benefit of imbuing
HART splits with the same interpretation as those of the
chosen algorithm as well as acting as a heuristic way of
achieving parsimony. For example, in the classification set-
ting, CART chooses splits to minimize Gini Impurity. Heu-
ristically, minimizing Gini Impurity is akin to achieving the
‘best separation’ of the classes in that region. We can build
a HART carrying this same interpretation by employing
Algorithm 1 and letting 7 choose the the minimizer of the
Gini Impurity. Formally, if we let P, 5 represent the empiri-
cal measure based on data falling in region R, then a Gini
Impurity based policy can be defined in the following way.
For split candidates X and HAL fit @ in region R of the
feature space, the next split is chosen as

Taini (X, @, R)
t = argmin{2P, r (X; < x;)P, r, (Y = DP, » (Y = 0)
x;€X

+2P, 2 (X; 2 x;)P, (Y = DP, 5 (Y =0)}

We could similarly define z based on the splitting criteria of
C4.5 [20], CHAID [21], Minimum Message Length based
Decision Graphs [22], or any other algorithm. We can also
adapt any of these policies to the needs of the problem set-
ting. Say we are predicting some disease outcome based on
treatment status and other features. We could enforce that
treatment status is always the final split in the tree and oth-
erwise use 7y,;. This would allow us to examine how the
predicted outcome differs by treatment status for any given
subgroup.

Xo

BX12,X22 Bxa Bx13,X22

Xo2

Bxqy Bxoq

{0}

{0} {0}

X11

X11
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6.3 Sub-HARTs and prediction smoothing

Even with a well chosen policy, the full HART may be large
and difficult to interpret globally. We can use two simple
strategies to mitigate the resultant complexity. First, we can
restrict the region of the feature space in which to visualize
the model. In Eq. 1, if we restrict X; < X;,, then by =0,
and we have a simplified function. This simplified func-
tion still follows the structure of a HAL model. Therefore
Algorithm 1 can be applied to build a Sub-HART that rep-
resents the model only in the region where X; < X;,. The

Sub-HART will necessarily be smaller and easier to inter-
pret. The choice of how to restrict the feature space can be
motivated by the specific problem setting. For example, con-
sider fitting HAL to predict the recurrence of breast cancer
based on demographic features and features related to the
original tumors. If we are mainly interested in how the esti-
mated function classifies older subjects, we could restrict
Age > 65. If we are interested in how the function differs
between older and younger subjects, we could compare Sub-
HARTS: restricting Age < 20 and Age > 65 respectively.

Algorithm 2 Bin Predictions

1: def Bin(Tree, Q):

2: intervals = {[0,5), (5, 3),--» %411

3: if Tree is TerminalNode then

4: max = é : ceiling(“%pred)

5: min = max — %

6: return TerminalNode([min, max))

7. else if All Tree.preds in i for i in intervals then
8: return TerminalNode(i)

9: else

10: node = Node(Tree.label)

11: left-subtree = Bin(Tree.left-child, Q)

12: right-subtree = Bin(Tree.right-child, Q)
13: left-subtree.parent = node

14: right-subtree.parent = node

15: return(node)

16: end if

Algorithm 3 Aggregate Predictions

1: if Tree is TerminalNode then

else
node = Node(Tree.label)

© ©® 3 > w

-
e

left-subtree.parent = node
right-subtree.parent = node
12: return(node)

13: end if

=
=

return TerminalNode(Tree.pred)

else if max(Tree.preds) — min(Tree.preds) < K then
interval = [min(Tree.preds), max(Tree.preds)]
return TerminalNode(interval)

left-subtree = Agg(Tree.left-child, Q)
right-subtree = Agg(Tree.right-child, Q)
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A second strategy is to smooth the predicted outcomes
so that there are fewer unique predictions to display. We can
then collapse regions of the tree that no longer show any
heterogeneity. HART may display many adjacent terminal
nodes with predictions that differ by small, clinically insig-
nificant amounts. This level of granularity might unneces-
sarily add to the size of the tree. One method for smoothing
predictions is to break the prediction space into a set number
of intervals and only display the correct interval in each
terminal node (Algorithm 2). For example, in the binary
classification setting, we may bin the predictions into low
([0, .333)), medium ([0.333, 0.667)), and high ([0.667, 1.0))
probability of success. A second method is to choose some
minimum amount of prediction heterogeneity required to
introduce new splits (Algorithm 3). In the binary classifica-
tion setting, we may enforce that splits only occur if they
separate predicted probabilities having a difference higher
than, say, 0.20. If a region of the tree has many terminal
nodes and yet the predicted probabilities range only from .05
to 0.25, we can group that region into a single terminal node
and display the prediction range. Even if one is still inter-
ested in viewing the predictions at the most granular level, a
HART with smoothed predictions could be a convenient first
step to identify interesting sub-regions to investigate further.

7 Algorithm complexity

Here we examine the theoretical time complexities of Algo-
rithms 1, 2, and 3.

7.1 HART complexity

The exact time complexity of Algorithm 1 is difficult to
specify as it depends on the proportion of candidate splits
pruned after each node creation in the tree. That number is
entirely dependent on the chosen splitting policy z and the
fitted HAL model. Our analysis here is therefore limited to
a range of worst-case and more optimistic scenarios.

We begin by considering the per-node computation in
terms of the number of initial split candidates, which we
will refer to as c. Given a split value, a node is created first
by updating the set R to pinpoint the feature space region
being considered. That involves comparing the split value
to a set of values on the order of O(n) within the same fea-
ture as the split value. Once the region is updated we shrink
the candidate set which, involves looking at all candidates.
This is a computation on the order of O(c). We then take the
remaining list of candidates, and compute a score for each
based on the model fit information. In the case of 7, that
score is the gini impurity induced by splitting the data on
that candidate. In the case of 7, that is the number of times
the given candidate appears in the HAL basis expansion.

Table 2 UCI dataset characteristics. N is sample size, p is number of
features

Name Citation N p Py¥=1
Breast Cancer Zwitter et al. [23] 285 9 0.298
Cardio Ayres-de Campos et al. [24] 2126 21 0.139
Drugs Fehrman et al. [25] 1885 12 0.186
Wine Aeberhard et al. [26] 6497 12 0.197

Since we must examine each candidate once, this compu-
tation is on the order of O(c). Once the best candidate is
identified, we create a new node in the tree which is done in
constant time, O(1). We perform this set of operations for
each non-terminal node in tree. In the absolute worse case in
which only the chosen split is pruned at each stage, we have
2¢~! non-terminal nodes. In the case of a balanced, binary
tree in which half of the candidates are pruned after each
split, there are 2!°22(9-1 = ¢ non-terminal nodes. Depending
on the splitting policy # and the fitted model, there may be
cases in which more or fewer than half of the candidates are
pruned after each split. Thus, we estimate that the overall
time complexity of Algorithm 1 is between the worst case of
O(nc? - 2¢71) and a more optimistic case of O(nc?).

7.2 Bin and aggregate predictions complexity

Next we discuss the complexity of Algorithms 3 and 2. In
both of these algorithms, a constant amount of work is done
for each non-terminal node examined. In the worst case
scenario, all non-terminal nodes in the tree are examined,
although in practice it will be fewer if there is any binning or
aggregation to be done. Therefore, the worst case time com-
plexity is O(f) where t is the total number of non-terminal
nodes.

8 Data analysis

We examined the predictive performance of HAL, CART,
Random Forest (Breiman, 2001), and XGBoost (Chen and
Guestrin, 2016) using four publicly available data sets from
the UCI Machine Learning Repository (Table 2) all of which
have binary outcomes. Next, we focus on one data set and
compare the decision tree produced by CART to those pro-
duced by HART using the heuristic policy shown in Eq. (2).

8.1 Performance
For each dataset in Table 2, HAL, CART, Random Forest,
and XGBoost were evaluated by calculating several 10-fold

cross-validated performance metrics. For each of CART,
Random Forest, and XGBoost, models were built under a
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Table 3 10-fold cross-validated
metrics are reported for Breast
Cancer, Cardio, and Drugs

Table 4 Breast Cancer dataset
feature names and descriptions

Fig.7 Left: CART fit to Breast
Cancer dataset. Right: HART
built from HAL fit to Breast
Cancer dataset. Feature space
is restricted to subjects aged
20-29 having tumors greater
than 5 mm in diameter. Algo-
rithm 2 was applied with Q = 3

Data Learner AUC Accuracy Precision Recall Time
Breast cancer HAL 0.710 0.751 0.709 0.307 13.415 sec
CART 0.669 0.702 0.500 0.366 0.297 sec
XGboost 0.712 0.737 0.593 0.376 13.43 min
Random forest 0.696 0.722 0.588 0.235 32.882 sec
Cardio HAL 0.973 0.953 0.886 0.763 1.73 min
CART 0.933 0.935 0.798 0.712 0.611 sec
XGboost 0.981 0.961 0.898 0.810 46.89 min
Random forest 0.979 0.950 0.879 0.739 3.594 min
Drugs HAL 0.748 0.814 0.604 0.057 28.58 min
CART 0.662 0.762 0.306 0.220 0.635 sec
XGboost 0.746 0.814 0.486 0.051 39.453 min
Random forest 0.741 0.816 0.615 0.023 3.472 mins
Wine HAL 0.973 0.953 0.886 0.763 1.76 h
CART 0.813 0.817 0.537 0.482 0.380 sec
XGboost 0.904 0.874 0.741 0.554 30.380 min
Random forest 0.921 0.888 0.862 0.510 3.563 min

3-fold cross validated metrics are reported for Wine. For CART, Random Forest, and XGBoost, we car-
ried out grid searches over 10 tuning parameter settings. Results correspond to models with the highest
performing tuning parameters. Computations were carried out on a High Performance Computing cluster

Feature Description

Age Discretized subject age in years

Early meno Whether the subject reach menopause early

Pre-meno Whether the subject is pre-menopausal

Tumor size Size of breast cancer tumor in mm

Aux-nodes # auxiliary lymph nodes containing metastatic cancer

In node cap Whether metastatic tumors are encased in lymph node capsule
Deg-malig Histological degree of the tumor malignancy (range 1-3)
Breast Which breast cancer resides in

Breast quadrant
Rad therapy

Quadrant of breast cancer resides in

Whether the subject received radiation therapy

deg-malig< 2

Yes,

\No

grid of 10 possible tuning parameter settings. We only report
the results corresponding to models built with the param-
eter settings that resulted in the highest CV-AUCs for each
learner. We found that HAL, Random Forest, and XGBoost
typically provided large improvement over CART in all

@ Springer

aux-nodes< 2

deg-malig< 3

e

aux- nodcb< 2

o

aux-nodes< 2

AN

0 0.333) dcg malig< 2 |[0.333,0.667) | in node cap

AN

‘ [0,0.333) ‘ ‘[o 333,0.667) ‘ ‘[0 333,0.667) ‘ aux-nodes< 3

‘ [0.333,0.667) ‘ ‘ [0.667, 1]

metrics (Table 3). Moreover, we found that the performance
of HAL is comparable to Random Forest and XGBoost,
which are considered state-of-the-art. For a more extensive
examination of HAL’s performance, see Benkeser and van
der Laan (2016) [15].
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Fig.8 HART representing HAL fit to Breast Cancer data. Algorithm 2 has been applied with Q = 2 bins, equivalent to thresholding the pre-

dicted probability of recurrence at 0.5

8.2 Trees

Here we focus on the Breast Cancer dataset to demonstrate
the interpretability of HART. We aim to predict the recur-
rence of breast cancer with nine features, descriptions for
which can be found in Table 4. Feature names and descrip-
tions for the other three datasets can be found in the Sup-
plement. The left panel of Fig. 7 shows the tree built using
CART with tuning parameters selected using 10-fold cross-
validation. Here, the fitted CART model implies that, of
the 9 available features, only the degree of malignancy and
the number of auxiliary lymph nodes containing metastatic
breast cancer are needed to make a prediction about risk
for breast cancer recurrence. However, the HART built
using the same data shows a much more complex func-
tion and has much higher performance. The right panel
of Fig. 7 shows a Sub-HART visualized for subjects aged
20 — 29 having tumors greater than 5 mm in diameter. We
have binned the predicted probabilities into three intervals:

[0, 0.333), [0.333, .667), and [0.667, 1]. This model implies
a higher degree of heterogeneity in the predicted probability
that relies on more features and values. We could investigate
any of the terminal regions in Fig. 7 further without binning
the predictions. Alternatively, we could restrict to subjects
older than 29 to see how the function changes with age.

If we are interested in using HART to make binary deci-
sions based on a probability threshold, we can simplify the
overall tree and visualize it without restricting the feature
space. Figure 8 visualizes the full HART with 1 displayed
in regions where predicted probabilities are above 0.5 and 0
displayed otherwise. Again, we see that increased performance
is associated with a much more complex function. However,
we can gain insights into HART’s structure that could motivate
different visualizations or even further study. Consider the role
of menopause status in the prediction. Figure 8 suggests that
having reached menopause before age 40 is associated with
lower risk for breast cancer recurrence versus having reached it
after 40 or being pre-menopause. This association is consistent
with breast cancer research [27].
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8.3 Complexity

We examined the time it took to apply Algorithms 1, 2, and
3 to both the Breast Cancer and Drugs datasets. After fitting
HAL to the Breast Cancer data, there were 15 split candidates.
The full HART constructed from the model fit was constructed
in 0.752 s. Binning and Aggregating the predictions in the
resulting tree took 0.015 s each. Applying the algorithms to
the Cardio dataset took significantly longer. After fitting HAL
to the Cardio data, there were 104 candidate splits. Construct-
ing the full HART took 20.210 min. Binning and Aggregating
the predictions in the resulting tree took 1.103 and 1.215 min
respectively. All computations were carried out on an Apple
Macbook Air containing an ARM processor with 8GB of
RAM.

9 Discussion

In this paper we have presented a tool for post-hoc inter-
pretation of the Highly Adaptive Lasso. HAL has the
potential to learn more complex functions than CART
without overfitting the data. HART, via Algorithms 1,
2, and 3, provides methodology for understanding these
complex functions. An additional advantage of HART is
that it allows one to tailor visualizations to the needs of
the problem via the splitting policy z and Algorithms 2. In
general, we recommend that HART be used less as a static
tool for visualizing simple decision making processes and
more as a dynamic way to visualize and understand a com-
plex decision making process. In the future, it would be of
interest to apply HART to problems that require transpar-
ent decision making such as medical treatment assignment
and fair social policy design.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12065-023-00836-0.
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