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Abstract
The development of machine learning methods that are both accurate and interpretable is of paramount importance in health-
care and many other fields. The Highly Adaptive Lasso (HAL) has been shown to have predictive performance on par with 
state-of-the art algorithms. HAL involves performing regularized regression of the outcome on a tensor product of indicator 
basis functions. In this paper we show that this basis can be represented as a non-recursive partitioning of the feature space 
and propose a method for mapping this partitioning implied by HAL to a recursive partitioning. Such a mapping then allows 
for the representation of HAL as a decision tree, thereby providing interpretability of predictions made by the algorithm. We 
refer to this post-hoc method for interpretability as Highly Adaptive Regression Trees (HART). We provide a set of algo-
rithms to construct this mapping and conveniently visualize the resulting tree. Using real data, we show that HAL’s predic-
tive performance is on par with state-of-the-art methods, and we demonstrate the construction and interpretation of HARTs.

Keywords  Machine learning · Interpretability · Decision trees · Recursive partitioning · Highly adaptive lasso

1  Introduction

Recent advances in theoretical statistics and computer 
science have led to the development of machine learn-
ing algorithms that can improve professionals’ abilities to 
accomplish tasks in a myriad of fields. For example, such 
algorithms have been used to assess risks of future adverse 
health outcomes [1–4], estimate consumer demand [5], 
forecast currency exchange rates [6], predict student aca-
demic success [7], and improve communication systems 
[8]. Machine learning may be used by professionals in these 
fields to appropriately guide decision making. However, use 
of machine learning in these contexts often involves weigh-
ing the choice of accuracy versus interpretability of a pre-
diction algorithm. Simple algorithms (e.g., based on logis-
tic regression) are easy-to-interpret, but rely on relatively 
inflexible statistical models and so may not make accurate 
predictions. More complex algorithms (e.g., based on deep 

learning) may predict more accurately, but are often difficult 
to interpret.

The need for accuracy in these settings is manifest. For 
example, before machine learning-based technology can be 
deployed in healthcare settings, providers and patients must 
have faith in the fidelity of the predictions. Interpretability 
is also crucial from an ethical standpoint [9]. Consider an 
algorithm to triage intensive care unit patients based on pre-
dicted risk of death. In this case, it is important to carefully 
scrutinize the triage decision making process to ensure that 
care is being delivered in an equitable manner.

Decision trees have long been a popular tool for creating 
interpretable prediction functions and are particularly popu-
lar in clinical research [10–13]. However, traditional tech-
niques for learning these trees generally fail to yield predic-
tions that are as accurate as competitor algorithms [14]. The 
poor performance may be due to the greedy approach used 
to fit the trees, which can quickly spread data thin even in 
relatively data rich settings. This has led to the abandonment 
of regression trees in settings where accuracy is a primary 
consideration, in favor of other, more difficult-to-interpret 
algorithms.

Here we describe a method for constructing classification 
and regression trees that delivers predictive accuracy com-
parable to that of random forests and boosting. Our proposal 
centers around the highly adaptive lasso (HAL) algorithm 

 *	 Sohail Nizam 
	 sohail.nizam@emory.edu

	 David Benkeser 
	 benkeser@emory.edu

1	 Department of Biostatistics and Bioinformatics, Rollins 
School of Public Health, Emory University, 1518 Clifton 
Road, Atlanta, Georgia 30322, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-023-00836-0&domain=pdf


	 Evolutionary Intelligence

1 3

[15], which has been previously established to have competi-
tive predictive performance compared with state-of-the-art 
algorithms. Here, we show that HAL can be represented as 
a decision tree and provide an algorithm for building such 
a tree from a trained HAL model. We verify that HAL can 
indeed perform prediction tasks as well as state-of-the-art 
algorithms, and we demonstrate the interpretability of trees 
built using real data.

2 � Highly adaptive lasso

We consider a prediction problem where the observed data 
consist of n independent copies of the random variable 
O = (X, Y) ∼ P0 , where X ∈ X  is a vector of features, Y ∈ Y 
is the outcome of interest, and P0 represents the probability 
distribution of the observed data. Here, Y could be {0, 1} (as 
in binary classification), {�1,… ,�k} (multi-class classifica-
tion), or ℝ (regression). For simplicity, we take Y = {0, 1}.

For a given function � ∈ Ψ , the space of func-
tions mapping from X  to the unit interval, we 
define the negative log-likelihood loss function, 
L(� , o) = − log [�(x)y{1 − �(x)}1−y] . The risk of � is the 
expected value of L(� ,O) , R0(�) = ∫ L(� , o)dP0(o) . It is 
straightforward to show that the minimizer of this risk over 
Ψ is �0 , the conditional probability that Y = 1 given X. The 
theory of HAL is built around two key assumptions about 
�0 : (i) �0 is right-continuous with left-hand limits (i.e., is 
a cadlag function) and (ii) �0 has finite variation norm. To 
precisely define variation norm, we note that any cadlag 
function � generates a signed measure, which allows us to 
write integrals with respect to � . The variation norm of � 
is ‖�‖v = ∫ �d�(u)�.

Previous works [15, 16] demonstrated how to find the 
minimum loss-based estimator (MLE) in the class of func-
tions with variation norm smaller than a fixed number M. 
This MLE estimates 𝜓0,M = argmin𝜓∶‖𝜓‖v<MR0(𝜓) and may 
be computed using the fact that any cadlag function with 
finite variation norm can be arbitrarily well-approximated 
by a tensor product of indicator basis functions. In the uni-
variate case, we observe X1,… ,Xn , independent copies of a 
scalar-valued variable X. The linear combination of basis 
functions is of the form 𝜓n,𝛽(x) = 𝛽0 + 𝛽⊤

X
b(x), where b(x) is 

an n-length vector with i-th entry equal to 1[Xi,∞)(x) . Here, 
we use the indicator notation: for (c, d) ∈ ℝ

2 , 1[c,d)(x) = 1 if 
x ∈ [c, d) and equals 0 otherwise. As the dimension of X 
increases, we include tensor product basis functions. For 
example, if we observe (X1i,X2i), i = 1,… , n, independent 
copies of X = (X1,X2) ,  where X1,X2 ∈ ℝ

2  ,  then 
𝜓n,𝛽(x) = 𝛽0 + 𝛽⊤

X1
b1(x) + 𝛽⊤

X2
b2(x) + 𝛽⊤

X1,X2
b1(x)b2(x) , where 

for j = 1, 2 , the i-th entry of bi(x) is equal to 1[Xji,∞)(xj) . The 

idea generalizes to arbitrary p with at most n(2p − 1) basis 
functions included.

Because the L1-norm of � equals the variation norm 
of �n,� , the MLE in the class of functions with varia-
tion norm smaller than M may be computed by regress-
ing Y onto this set of basis functions, and ensuring that 
the 

∑n

i=1
�𝛽i� < M . This can be achieved by making use 

of software for the popular lasso algorithm [17]. We note 
that with a univariate feature, this approach is well estab-
lished in the signal de-noising literature under the name 
of (zero-order) trend filtering. Benkeser and van der Laan 
(2016) [15] generalized to multiple dimensions and proved 
that HAL converges to �0 in terms of regret at a fast rate, 
R0(�n,M) − R0(�0,M) = op(n

−[1∕4+1∕{8p+1}]) .  This theory 
establishes HAL as a strong candidate for accurate machine 
learning. In Sect. 4, we establish that HAL is also a good 
candidate for performing interpretable machine learning.

3 � Notation

The remainder of the paper includes a large set of notation 
that is necessary for describing the process of building tree 
representations of HAL models. For this reason, we include 
Table 1 which contains descriptions of all new notation and 
vocabulary introduced. Each piece of notation is defined in 
the text, but readers my find it convenient to refer to all 
definitions in one place.

4 � From HAL to HART​

Classification and Regression Tree (CART) [18] is a predic-
tion algorithm that has long been employed across many 
diverse fields [10]. Decision trees built using this approach 
typically start with a fully un-partitioned feature space and, 
through a greedy algorithm, recursively partition the (sub)
space into smaller units until a specified stopping criterion 
is met. By nature of the partitioning process, CART yields 
a histogram approximation of �0 . Furthermore, because of 
the recursive process employed in training, decision trees 
are naturally created. However, CARTs rarely achieve high 
predictive performance and can be prone to overfitting [14].

HAL provides an alternative approach to learning a his-
togram approximation of a function, though its training pro-
cess is in stark contrast to CART. HAL starts with a dense 
partitioning of the feature space (implied by the tensor prod-
uct basis expansion), that is subsequently shrunk to achieve 
the best global fit to the data. Because HAL is optimizing a 
global smoothness criteria, it is able to partition the feature 
space more efficiently than CART and generally provides a 
much more accurate representation of �0 . However, the his-
togram approximation created by HAL partitions will not in 
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general represent a recursive partitioning of the feature space 
and thus will not be immediately amenable to representation 
as a decision tree. The goal of this paper is to present an 
algorithm that maps a trained HAL model into a decision 
tree. We call the resulting trees Highly Adaptive Regression 
Trees (HART).

To illustrate the significant challenges associated with 
this goal, we consider an immensely simplified example in 
which we observe (X1i,X2i), i = 1, 2, n = 2 observations of 
the two-dimensional feature-vector X = (X1,X2) . Further 
assume that X1i < X2i for i = 1, 2 . Define bji(x) = 1[Xji,∞)(xj) . 
The HAL basis expansion is

(1)

�n,�(x) = �0 + �X11
b11(x1) + �X12

b12(x1) + �X21
b21(x2) + �X22

b22(x2)

+ �X11,X21
b11(x1)b12(x2) + �X12,X22

b12(x1)b22(x2)

The left panel of Fig. 1 illustrates the partitioning of the 
feature space implied by this basis expansion. For example, 
given 𝛽 ∈ ℝ

7 , the HAL prediction for observations falling 
in the lowest left portion of the feature space is 𝛽0 , for the 
upper left portion the prediction is 𝛽0 + 𝛽X21

+ 𝛽X22
 , and so 

on. Note that the full partitioning implied by the basis expan-
sion (equivalent to the partitioning implied if all coefficient 
estimates are nonzero) is naturally recursive and thus can 
immediately be represented by the decision tree in Fig. 2. In 
this and subsequent trees, each node contains an observed 
value; moving to the left (right) of the node implies a value 
less (equal to or greater) than the node value.

Because HAL uses L1-penalization of the coefficient 
vector, many coefficients are shrunk to zero when the 
model is trained; this causes some partitions of the fea-
ture space to collapse. For example, suppose we find that 

Table 1   Notation used 
throughout the paper to describe 
aspects of feature space 
partitioning and tree creation

Term Description

� Candidate split data structure to be recursively pruned
R A feature space region
bji(xj) Indicator basis function set to 1 if Xj ≥ xji

subscript G A label applied to indicate right-hand sub-region
subscript L A label applied to indicate left-hand sub-region
Φji Set of basis expansion terms involving value Xji

Φ Set of all Φji (represents the whole HAL model fit)
� Policy for choosing tree split
Tree A HART tree object
Tree.label Text displayed in the rood node of Tree
Tree.preds Set of predictions given by terminal nodes in Tree
Node(label) Indicates creation of a non-terminal node displaying label
TerminalNode Indicates creation of a terminal node displaying label
Tree.left-child Left child node of the root node of Tree
Tree.right-child Right child node of the root node of Tree
subtree.parent = node Indicates assignment of node as parent of object subtree

Fig. 1   Left: Illustration of partitioning of the feature space according 
to the HAL basis expansion. The sets of 𝛽  (excluding the intercept) 
correspond to those in equation (1) that fall in each region. Right: An 
illustrative HAL partitioning, when 𝛽X11

= 𝛽X21
= 𝛽X22

= 𝛽X12,X22
= 0 , 

which results in a non-recursive partitioning of the feature space. To 
represent this partitioning as a decision tree, we must determine a 
parsimonious recursive structure for the L-shaped left-most region
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𝛽X11
= 𝛽X21

= 𝛽X22
= 𝛽X12,X22

= 0 . In this case, the partition-
ing collapses (right panel, Fig. 1) and does not have a 
recursive structure. In this case, any decision tree rep-
resenting this partitioned space will have at least some 
redundancy in the terminal nodes. Figure 3 illustrates two 
possible recursive partitions that could be used to approxi-
mate the non-recursive partitioning implied by HAL. Note 
that these are both valid representations in that they would 
yield predictions identical to those generated by the HAL 
model. However, each has one redundant partition. This 
can be observed by noting that each has separate regions 
with identical predictions.

In higher dimensions, the partitions cannot be visu-
alized, and some recursive partitions may have a large 
amount of redundancy. In the next sections we motivate 
and describe our algorithm for mapping an arbitrary set 
of non-zero basis functions into a recursive partitioning 
of the feature space.

Throughout this  work,  we consider the set 
� = {Xji ∶ j = 1,… , p i = 1,… , n} which contains the 
values of our data. The elements of � act as candidates 
for describing partitions implied by HAL. At each stage 
in the proposed process, a single value is chosen from � to 
describe a partition, and other values are pruned if they are 
not needed to describe the remaining partitions implied by 
HAL. The crux of our problem is then identifying which 

values from our data should be candidates for describing 
partitions and the order in which we should choose them. 
As we will see, both of these factors impact the amount of 
redundancy contained in our final recursive partitioning.

5 � Examples

To motivate our approach for reducing redundancy in the 
HAL tree growing process, we consider three scenarios: 
(i) a set of basis functions that naturally yields a recursive 
structure; (ii) a set of basis functions that yields a non-recur-
sive structure for which there are many minimally redun-
dant recursive approximations; (iii) a set of basis functions 
that yields a non-recursive partitioning for which there are 
both minimally redundant and highly redundant recursive 
representations. With each increase in complexity, we will 
highlight necessary algorithmic changes to the tree growing 
process.

5.1 � Scenario (i): naturally recursive partitioning

Consider a situation where estimates of the coefficients in 
the basis expansion in equation (1) are all nonzero. The par-
titioning implied by that model is the full partitioning of the 
feature space (left panel of Fig. 1). The data structure in our 
recursive process is � = {X11,X12,X21,X22} , the elements 

Fig. 2   Decision tree representa-
tion of the full feature space 
partitioning implied by the HAL 
basis expansion

Fig. 3   Two possible recursive 
partitions to represent the 
non-recursive partition implied 
by the HAL model when 
𝛽X11

= 𝛽X21
= 𝛽X22

= 𝛽X12,X22
= 0



Evolutionary Intelligence	

1 3

of which represent potential splits in our feature space and 
potential nodes in our tree. We can select values from � 
to describe feature space partitions in any order. Suppose 
we begin with value X11 . A line is then drawn dividing the 
feature space a region RL where x1 < X11 and a region RG 
where x1 ≥ X11 (Fig. 4).

In each of the two new sub-regions of the feature space, 
we can begin the process again, now with a reduced data 
structure. In both sub-regions, we set � = ��{X11} since 
X11 has just been partitioned on. Recall now that we speci-
fied X11 < X12 . In sub-region RL where x1 < X11 , it must 
be true that x1 < X12 . Thus, it is clearly not necessary to 
further partition RL using the value X22 , and we can set 
�L = ��{X12} = {X21,X22} . By contrast, in RG , x1 ≥ X11 , 
but it may or may not be true that x1 ≥ X12 . Thus, we set 
�G = {X12,X21,X22}.

Suppose we carry out this recursive process until � is 
empty in every sub-region. Predictions are then constructed 
by summing the appropriate coefficient estimates for that 
region. The resulting partitioned feature space and the cor-
responding decision tree perfectly represent the fully parti-
tioned feature space in the left panel of Fig. 1 and its deci-
sion tree in Fig. 2 respectively.

5.2 � Scenario (ii): non‑recursive partitioning, 
minimal redundancy

Suppose we estimate 𝛽X11
= 𝛽X21

= 𝛽X22
= 𝛽X12,X22

= 0 and 
the remaining parameters in 1 to be nonzero. The partition-
ing implied by this model is pictured in the right panel of 
Fig. 1. It is worth noting that the full partitioning in the left 
panel of Fig. 1 is a valid representation of this non-recursive 
partitioning. However, the associated decision tree would 
have considerable redundancy. Consider two examples of 
redundancy in that partition under this HAL fit.

First we can see that, X22 is not needed to describe any 
of the partitions implied by the HAL fit. This suggests that 
our initial data structure � need not contain X22 ; we could 
set � = {X11,X12,X21} . Suppose again that we choose X11 

to describe the first partition. Two sub-regions RL and 
RG are created where x1 < X11 and x1 ≥ X11 respectively. 
As in Scenario (i), in RG we can simply prune X11 and set 
� = ��{X11} . However, in RL , there are no remaining parti-
tions suggesting that in this region X11,X12 , and, X21 should 
be pruned from � . This example highlights the necessity for 
a more comprehensive rule for pruning values from � in a 
certain region, given a HAL model fit.

In particular, a value Xji is unnecessary for describing 
partitions in a given region R if it meets one of two criteria. 
First, Xji is unnecessary if all coefficient estimate-basis func-
tion product terms involving Xji in the HAL basis expansion 
evaluate to zero. For example, consider the region where 
x1 < X11 . There, X21 is unnecessary because 𝛽X21

b21(x2) = 0 
and 𝛽X11,X21

b11(x1)b21(x2) = 0 . The second criterion is that 
bji(xj) = 1 for all xj . For example, X11 is unnecessary in the 
region where x1 ≥ X11 because it is known that b11(x1) = 1 . 
Following these criteria, and assuming we select values for 
partitioning in the order that they appear in � , we obtain the 
partitioning shown in the left panel of Fig. 3. As we showed 
in Sect. 4, this is just one possible minimally redundant 
recursive approximation of the non-recursive partitioning 
implied by the HAL model. In fact, after initially pruning 
X22 , we could order the elements of � in six different ways 
and therefore obtain six different, minimally redundant trees.

5.3 � Scenario (iii): non‑recursive partitioning, 
minimal and non‑minimal redundancy

Now assume that we estimate 𝛽X11
= 𝛽X12

= 𝛽X22
= 𝛽X11,X21

= 0 
and the remaining coefficients as nonzero. The feature 
space partitioning implied by this model is shown in Fig. 5. 
According to our criteria from Sect. 5.2, we begin by prun-
ing X11 from � . The left and right panels of Fig. 6 show 
partitionings resulting from proceeding with orderings 
{X12,X21,X22} and {X21,X22,X12} respectively. Choosing the 
first ordering results in an unnecessary partition.

This motivates the introduction of some policy � that 
dictates which value should be chosen to describe the next 

Fig. 4   Left: The feature space 
partitioned according to the 
HAL fit with all 𝛽 ≠ 0 . These 
partitions will be described by 
values from X. Right: Feature 
space with X11 describing the 
first partition
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partition given the data � , the current region R , and the 
model fit information. The problem of finding the most par-
simonious recursive partitioning then reduces to finding an 
optimal policy �∗ . Potential policies are discussed in Sect. 6.2.

6 � Highly adaptive regression trees

6.1 � Growing trees

Algorithm 1 presents a formal algorithm for finding parsi-
monious recursive representations of feature space partition-
ings implied by HAL models. The algorithm is presented 
for a design matrix involving n observations of p elements, 

� = {Xji ∶ j = 1,… , p, i = 1,… , n} . Let Φji be the set of 
all coefficient estimate-basis function product terms involv-
ing the value Xji in the HAL basis expansion, and define 
Φ = {Φji ∶ j = 1,… , p, i = 1,… , n} , a set of sets that rep-
resents the whole HAL model fit. A given region of the fea-
ture space can be represented by the tuple R = (Δ,Γ) where 
Δ(x) = {Xji ∶ xj < Xji} and Γ(x) = {Xji ∶ xj ≥ Xji} . At the 
beginning of the process, we initialize Δ = Γ = {�} and let 
R = ({�}, {�}) represent the entire feature space.

Once a partition is described using a value Xji , it natu-
rally implies two new regions within the feature space. RL 
describes the region in which xj < Xji and RG describes 
the region in which xj ≥ Xji . These new regions can be 
formalized by updating the components of the tuple Δ 
and Γ to include relevant values. As values are added to 
these sets, basis functions from the HAL basis expansion 
take on realizations of one or zero thus changing values 
in Φ . We use the notation Φji ∣ R to refer to the specific 
realization of a set of product terms Φji within a specific 
region R . Together, the information in the HAL fit and 
the current region inform which values should be pruned 
from � before further partitions are described. We use � 
to denote a general policy that dictates which value in � 

should be chosen to describe the next partition. � is a map-
ping from the current state of the partitioning, described 
by (�,Φ,R) , to the value that will describe the next parti-
tion Xj∗i∗.

Finally, in Algorithm 1 we make the connection between 
feature space partitions and nodes in a decision tree. Each 
time we describe a partition using a value Xji , we indicate 
the creation of a tree node with Node(Xji) . The two children 
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of that node will correspond to the partitions in the resulting 
sub-regions where xj < Xji and xj ≥ Xji respectively.

6.2 � Policies

As stated in Sect. 4, the two sources of redundancy in our 
tree representations are the identification of candidates for 
partitioning and the order in which we should choose them. 
Algorithm 1 fully accounts for the former and ensures that 
no unnecessary feature values are identified as candidates in 
a given stage of the growing process. The ordering of those 
candidates and the resulting redundancy is dictated solely by 
the policy � . Ideally we would choose � to achieve an opti-
mally parsimonious representation of 𝜓̂ . However, ordering 
binary variables to achieve optimally parsimonious represen-
tations of functions is known to be an NP-complete problem 
[19]. We instead rely on heuristics to reduce redundancy.

We propose a heuristic that orders split candidates Xji 
based on the number of non-zero coefficient estimate-basis 
function product terms involving Xji . Intuitively, this is the 
number of times Xji appears in the basis expansion for a 

given region and can be thought of as a measure of impor-
tance. Formally, for split candidates � and HAL fit Φ in 
region R of the feature space, the next split is chosen as

As an alternative, we propose to take advantage of popular 
existing decision tree algorithms and define � based on their 
splitting criteria. This strategy has the benefit of imbuing 
HART splits with the same interpretation as those of the 
chosen algorithm as well as acting as a heuristic way of 
achieving parsimony. For example, in the classification set-
ting, CART chooses splits to minimize Gini Impurity. Heu-
ristically, minimizing Gini Impurity is akin to achieving the 
‘best separation’ of the classes in that region. We can build 
a HART carrying this same interpretation by employing 
Algorithm 1 and letting � choose the the minimizer of the 
Gini Impurity. Formally, if we let Pn,R represent the empiri-
cal measure based on data falling in region R , then a Gini 
Impurity based policy can be defined in the following way. 
For split candidates � and HAL fit Φ in region R of the 
feature space, the next split is chosen as

We could similarly define � based on the splitting criteria of 
C4.5 [20], CHAID [21], Minimum Message Length based 
Decision Graphs [22], or any other algorithm. We can also 
adapt any of these policies to the needs of the problem set-
ting. Say we are predicting some disease outcome based on 
treatment status and other features. We could enforce that 
treatment status is always the final split in the tree and oth-
erwise use �gini . This would allow us to examine how the 
predicted outcome differs by treatment status for any given 
subgroup.

(2)
�h(�,Φ,R) ∶= Xj∗i∗ where (j

∗, i∗) = argmaxj,i|� ∈ �ji ∣ R ∶ � ≠ 0|

�gini(�,Φ,)

: = argmin
xji∈�

{2Pn,(Xj < xji)Pn,L
(Y = 1)Pn,L

(Y = 0)

+ 2Pn,(Xj ≥ xji)Pn,G
(Y = 1)Pn,G

(Y = 0)}

Fig. 5   An illustrative HAL partitioning, when 
𝛽X11

= 𝛽X12
= 𝛽X22

= 𝛽X11,X21
= 0 , which results in a non-recursive par-

titioning of the feature space

Fig. 6   Two recursive par-
titionings to represent the 
non-recursive partition-
ing implied by HAL when 
𝛽X11

= 𝛽X12
= 𝛽X22

= 𝛽X11,X21
= 0 . 

The left partitioning is not 
minimally redundant. The 
right partitioning is minimally 
redundant
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6.3 � Sub‑HARTs and prediction smoothing

Even with a well chosen policy, the full HART may be large 
and difficult to interpret globally. We can use two simple 
strategies to mitigate the resultant complexity. First, we can 
restrict the region of the feature space in which to visualize 
the model. In Eq. 1, if we restrict X1 < X11 , then bX11

= 0 , 
and we have a simplified function. This simplified func-
tion still follows the structure of a HAL model. Therefore 
Algorithm 1 can be applied to build a Sub-HART that rep-
resents the model only in the region where X1 < X11 . The 

Sub-HART will necessarily be smaller and easier to inter-
pret. The choice of how to restrict the feature space can be 
motivated by the specific problem setting. For example, con-
sider fitting HAL to predict the recurrence of breast cancer 
based on demographic features and features related to the 
original tumors. If we are mainly interested in how the esti-
mated function classifies older subjects, we could restrict 
Age ≥ 65 . If we are interested in how the function differs 
between older and younger subjects, we could compare Sub-
HARTs restricting Age < 20 and Age ≥ 65 respectively.
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A second strategy is to smooth the predicted outcomes 
so that there are fewer unique predictions to display. We can 
then collapse regions of the tree that no longer show any 
heterogeneity. HART may display many adjacent terminal 
nodes with predictions that differ by small, clinically insig-
nificant amounts. This level of granularity might unneces-
sarily add to the size of the tree. One method for smoothing 
predictions is to break the prediction space into a set number 
of intervals and only display the correct interval in each 
terminal node (Algorithm 2). For example, in the binary 
classification setting, we may bin the predictions into low 
([0, .333)), medium ([0.333, 0.667)), and high ([0.667, 1.0)) 
probability of success. A second method is to choose some 
minimum amount of prediction heterogeneity required to 
introduce new splits (Algorithm 3). In the binary classifica-
tion setting, we may enforce that splits only occur if they 
separate predicted probabilities having a difference higher 
than, say, 0.20. If a region of the tree has many terminal 
nodes and yet the predicted probabilities range only from .05 
to 0.25, we can group that region into a single terminal node 
and display the prediction range. Even if one is still inter-
ested in viewing the predictions at the most granular level, a 
HART with smoothed predictions could be a convenient first 
step to identify interesting sub-regions to investigate further.

7 � Algorithm complexity

Here we examine the theoretical time complexities of Algo-
rithms 1, 2, and 3.

7.1 � HART complexity

The exact time complexity of Algorithm 1 is difficult to 
specify as it depends on the proportion of candidate splits 
pruned after each node creation in the tree. That number is 
entirely dependent on the chosen splitting policy � and the 
fitted HAL model. Our analysis here is therefore limited to 
a range of worst-case and more optimistic scenarios.

We begin by considering the per-node computation in 
terms of the number of initial split candidates, which we 
will refer to as c. Given a split value, a node is created first 
by updating the set R to pinpoint the feature space region 
being considered. That involves comparing the split value 
to a set of values on the order of O(n) within the same fea-
ture as the split value. Once the region is updated we shrink 
the candidate set which, involves looking at all candidates. 
This is a computation on the order of O(c). We then take the 
remaining list of candidates, and compute a score for each 
based on the model fit information. In the case of �gini that 
score is the gini impurity induced by splitting the data on 
that candidate. In the case of �h that is the number of times 
the given candidate appears in the HAL basis expansion. 

Since we must examine each candidate once, this compu-
tation is on the order of O(c). Once the best candidate is 
identified, we create a new node in the tree which is done in 
constant time, O(1). We perform this set of operations for 
each non-terminal node in tree. In the absolute worse case in 
which only the chosen split is pruned at each stage, we have 
2c−1 non-terminal nodes. In the case of a balanced, binary 
tree in which half of the candidates are pruned after each 
split, there are 2log2(c)−1 = c non-terminal nodes. Depending 
on the splitting policy � and the fitted model, there may be 
cases in which more or fewer than half of the candidates are 
pruned after each split. Thus, we estimate that the overall 
time complexity of Algorithm 1 is between the worst case of 
O(nc2 ⋅ 2c−1) and a more optimistic case of O(nc3).

7.2 � Bin and aggregate predictions complexity

Next we discuss the complexity of Algorithms 3 and 2. In 
both of these algorithms, a constant amount of work is done 
for each non-terminal node examined. In the worst case 
scenario, all non-terminal nodes in the tree are examined, 
although in practice it will be fewer if there is any binning or 
aggregation to be done. Therefore, the worst case time com-
plexity is O(t) where t is the total number of non-terminal 
nodes.

8 � Data analysis

We examined the predictive performance of HAL, CART, 
Random Forest (Breiman, 2001), and XGBoost (Chen and 
Guestrin, 2016) using four publicly available data sets from 
the UCI Machine Learning Repository (Table 2) all of which 
have binary outcomes. Next, we focus on one data set and 
compare the decision tree produced by CART to those pro-
duced by HART using the heuristic policy shown in Eq. (2).

8.1 � Performance

For each dataset in Table 2, HAL, CART, Random Forest, 
and XGBoost were evaluated by calculating several 10-fold 
cross-validated performance metrics. For each of CART, 
Random Forest, and XGBoost, models were built under a 

Table 2   UCI dataset characteristics. N is sample size, p is number of 
features

Name Citation N p PN(Y = 1)

Breast Cancer Zwitter et al. [23] 285 9 0.298
Cardio Ayres-de Campos et al. [24] 2126 21 0.139
Drugs Fehrman et al. [25] 1885 12 0.186
Wine Aeberhard et al. [26] 6497 12 0.197
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grid of 10 possible tuning parameter settings. We only report 
the results corresponding to models built with the param-
eter settings that resulted in the highest CV-AUCs for each 
learner. We found that HAL, Random Forest, and XGBoost 
typically provided large improvement over CART in all 

metrics (Table 3). Moreover, we found that the performance 
of HAL is comparable to Random Forest and XGBoost, 
which are considered state-of-the-art. For a more extensive 
examination of HAL’s performance, see Benkeser and van 
der Laan (2016) [15].

Table 3   10-fold cross-validated 
metrics are reported for Breast 
Cancer, Cardio, and Drugs

3-fold cross validated metrics are reported for Wine. For CART, Random Forest, and XGBoost, we car-
ried out grid searches over 10 tuning parameter settings. Results correspond to models with the highest 
performing tuning parameters. Computations were carried out on a High Performance Computing cluster

Data Learner AUC​ Accuracy Precision Recall Time

Breast cancer HAL 0.710 0.751 0.709 0.307 13.415 sec
CART​ 0.669 0.702 0.500 0.366 0.297 sec
XGboost 0.712 0.737 0.593 0.376 13.43 min
Random forest 0.696 0.722 0.588 0.235 32.882 sec

Cardio HAL 0.973 0.953 0.886 0.763 1.73 min
CART​ 0.933 0.935 0.798 0.712 0.611 sec
XGboost 0.981 0.961 0.898 0.810 46.89 min
Random forest 0.979 0.950 0.879 0.739 3.594 min

Drugs HAL 0.748 0.814 0.604 0.057 28.58 min
CART​ 0.662 0.762 0.306 0.220 0.635 sec
XGboost 0.746 0.814 0.486 0.051 39.453 min
Random forest 0.741 0.816 0.615 0.023 3.472 mins

Wine HAL 0.973 0.953 0.886 0.763 1.76 h
CART​ 0.813 0.817 0.537 0.482 0.380 sec
XGboost 0.904 0.874 0.741 0.554 30.380 min
Random forest 0.921 0.888 0.862 0.510 3.563 min

Table 4   Breast Cancer dataset 
feature names and descriptions

Feature Description

Age Discretized subject age in years
Early meno Whether the subject reach menopause early
Pre-meno Whether the subject is pre-menopausal
Tumor size Size of breast cancer tumor in mm
Aux-nodes # auxiliary lymph nodes containing metastatic cancer
In node cap Whether metastatic tumors are encased in lymph node capsule
Deg-malig Histological degree of the tumor malignancy (range 1-3)
Breast Which breast cancer resides in
Breast quadrant Quadrant of breast cancer resides in
Rad therapy Whether the subject received radiation therapy

Fig. 7   Left: CART fit to Breast 
Cancer dataset. Right: HART 
built from HAL fit to Breast 
Cancer dataset. Feature space 
is restricted to subjects aged 
20–29 having tumors greater 
than 5 mm in diameter. Algo-
rithm 2 was applied with Q = 3
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8.2 � Trees

Here we focus on the Breast Cancer dataset to demonstrate 
the interpretability of HART. We aim to predict the recur-
rence of breast cancer with nine features, descriptions for 
which can be found in Table 4. Feature names and descrip-
tions for the other three datasets can be found in the Sup-
plement. The left panel of Fig. 7 shows the tree built using 
CART with tuning parameters selected using 10-fold cross-
validation. Here, the fitted CART model implies that, of 
the 9 available features, only the degree of malignancy and 
the number of auxiliary lymph nodes containing metastatic 
breast cancer are needed to make a prediction about risk 
for breast cancer recurrence. However, the HART built 
using the same data shows a much more complex func-
tion and has much higher performance. The right panel 
of Fig. 7 shows a Sub-HART visualized for subjects aged 
20 − 29 having tumors greater than 5 mm in diameter. We 
have binned the predicted probabilities into three intervals: 

[0, 0.333), [0.333, .667),  and [0.667, 1]. This model implies 
a higher degree of heterogeneity in the predicted probability 
that relies on more features and values. We could investigate 
any of the terminal regions in Fig. 7 further without binning 
the predictions. Alternatively, we could restrict to subjects 
older than 29 to see how the function changes with age.

If we are interested in using HART to make binary deci-
sions based on a probability threshold, we can simplify the 
overall tree and visualize it without restricting the feature 
space. Figure 8 visualizes the full HART with 1 displayed 
in regions where predicted probabilities are above 0.5 and 0 
displayed otherwise. Again, we see that increased performance 
is associated with a much more complex function. However, 
we can gain insights into HART’s structure that could motivate 
different visualizations or even further study. Consider the role 
of menopause status in the prediction. Figure 8 suggests that 
having reached menopause before age 40 is associated with 
lower risk for breast cancer recurrence versus having reached it 
after 40 or being pre-menopause. This association is consistent 
with breast cancer research [27].

Fig. 8   HART representing HAL fit to Breast Cancer data. Algorithm 2 has been applied with Q = 2 bins, equivalent to thresholding the pre-
dicted probability of recurrence at 0.5
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8.3 � Complexity

We examined the time it took to apply Algorithms 1, 2, and 
3 to both the Breast Cancer and Drugs datasets. After fitting 
HAL to the Breast Cancer data, there were 15 split candidates. 
The full HART constructed from the model fit was constructed 
in 0.752 s. Binning and Aggregating the predictions in the 
resulting tree took 0.015 s each. Applying the algorithms to 
the Cardio dataset took significantly longer. After fitting HAL 
to the Cardio data, there were 104 candidate splits. Construct-
ing the full HART took 20.210 min. Binning and Aggregating 
the predictions in the resulting tree took 1.103 and 1.215 min 
respectively. All computations were carried out on an Apple 
Macbook Air containing an ARM processor with 8GB of 
RAM.

9 � Discussion

In this paper we have presented a tool for post-hoc inter-
pretation of the Highly Adaptive Lasso. HAL has the 
potential to learn more complex functions than CART 
without overfitting the data. HART, via Algorithms 1, 
2, and 3, provides methodology for understanding these 
complex functions. An additional advantage of HART is 
that it allows one to tailor visualizations to the needs of 
the problem via the splitting policy � and Algorithms 2. In 
general, we recommend that HART be used less as a static 
tool for visualizing simple decision making processes and 
more as a dynamic way to visualize and understand a com-
plex decision making process. In the future, it would be of 
interest to apply HART to problems that require transpar-
ent decision making such as medical treatment assignment 
and fair social policy design.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12065-​023-​00836-0.
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