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A recurring feature of oceanic archipelagos is the presence of adaptive radia-
tions that generate endemic, species-rich clades that can offer outstanding
insight into the links between ecology and evolution. Recent developments in
evolutionary genomics have contributed towards solving long-standing questions
at this interface. Using a comprehensive literature search, we identify studies
spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find
that most of these radiations have not yet been investigated from an evolutionary
genomics perspective. Our review reveals different gaps in knowledge related
to the lack of implementation of genomic approaches, as well as undersampled
taxonomic and geographic areas. Filling those gaps with the required data will
help to deepen our understandingof adaptation, speciation, andother evolutionary
processes.

Island adaptive radiations as windows into ecological and evolutionary processes
Oceanic islands and archipelagos have played a pivotal role in our understanding of evolutionary
and ecological processes [1–9]. This is due to several characteristics of oceanic islands, including
(i) their isolation, which limits the dispersal of terrestrial organisms and often results in dishar-
monic communities (see Glossary); (ii) specific ecological conditions, including geomorpholog-
ical features, strong climatic variation across small geographic areas, discrete patches of
habitats, and irregular cycles of disturbances, which play a role in the creation of ecological
opportunity for diversification; (iii) the possibility to estimate their geological age, which offers a
well-defined temporal framework for studying and modeling evolutionary processes; and
(iv) their frequent occurrence in fragmented, spatial groups (archipelagos) which provide natural
evolutionary 'experiments' with replicates [10–16].

Island evolutionary biologists have generally focused on two adaptive phenomena: the island
syndrome and adaptive radiation [17,18]. The island syndrome describes the repeated and
often extreme phenotypic changes which frequently involve predictable changes, such as
cases of gigantism (e.g., Birgus coconut crabs) or miniaturization (e.g., Stegodon dwarf ele-
phants), that might result from ecological release [19–21]. Adaptive radiation [22] broadly refers
to the rapid diversification of a single evolutionary lineage into multiple descendant species that are
notably ecologically differentiated [7,23]. Theory predicts a fundamental role of trait utility in adaptive
radiation as well as a clear correlation between phenotypic traits and ecological niche space
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occupation [24–26]. Adaptive radiations tend to occur on oceanic islands because they are located
at the outer limit of the dispersal range of a given taxon [27]. Indeed, some of the most iconic ex-
amples of adaptive radiation are present on oceanic islands, such as the Hawaiian silversword ra-
diation, which resulted in lianas, rosette plants, shrubs, cushion plants, and trees [28]. During the
past ~3.5 million years they evolved outstanding variation in reproductive traits, floral architecture
[28,29], and leaf morphology [29,30]. Equally prominent are the Galápagos finches, which collec-
tively exploit many terrestrial habitats spanning from extremely arid, sun-exposed, coastal lava rock
habitats to moist high-land Scalesia forests [31,32], and are renowned as a textbook example of
adaptive radiation [33].

Advances in evolutionary genomics
The advent and development of high-throughput sequencing has transformed biology by open-
ing new avenues of research that in turn provide new ways to tackle long-standing questions in
evolution. These include resolving branches across the tree of life [34], uncovering the genetic
basis of adaptation [35], and determining the evolution of genes and genomes across clades
[36] (Box 1). In the context of adaptive radiation research, genomics has already contributed to
the understanding of the genetic basis of adaptation and speciation [37], the role of hybridization
in driving diversification [38,39], the genes underlying trait utility [40], and the genetic architecture
of traits [41], among others.

Because some of the most celebrated adaptive radiations have occurred on oceanic islands,
we set out to review evolutionary genomics on oceanic island adaptive radiations (Box 2) by
asking what new insights have been gained by applying genomic sequencing to the study of
speciation and diversification on oceanic islands. We found that there is currently both insufficient
depth and diversity of genomic studies in the genomic studies of adaptive radiations on oceanic
islands (Box 2 and Table S1 in the supplemental information online). Specifically, relatively few
genomic studies have focused on understanding the fundamental factors that both promote
and constrain adaptive radiations. We thus highlight the most substantial knowledge gaps
regarding evolutionary genomics of adaptive radiations on islands through a set of outstanding
questions (Box 3).

What is the basis of genetic variation underlying adaptive radiations on oceanic
islands?
The extent of ecological and phenotypic diversity on oceanic island radiations represents an
apparent evolutionary paradox. A high level of genetic variation is usually necessary to diversify
eco-morphologically to a great extent [42], but a species colonizing an oceanic archipelago will
typically suffer from founder effects (Figure 1) and, in many taxa, also inbreeding, ultimately leading
to low levels of genetic variation. For example, it has been estimated that the original colonizing
population of Galápagos finches comprised only 30 to 100 individuals [43]. In addition, recurrent
local population extinctions driven by small area and environmental change can lead to further re-
ductions in genetic variation (population genetic diversity debt [44]).

Our survey uncovered that hybridization and introgression are prevalent denominators on
oceanic island adaptive radiations, and often drastically increase the levels of standing genetic
variation in a species or population upon which natural selection acts [10,45,46]. Hybridization
could lead to an increase in genetic variation in recently established island populations that
would otherwise have little variation [10,45,47], thus counteracting the common negative effects
of small population sizes and inbreeding depression [16]. Through hybridization, new phenotypes
(intermediate or transgressive) may be formed. An example of transgressive phenotypes is the
emergence of leaf phenotypes outside the range of variation across the parental species through
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hybridization in the silverswords alliance, which enabled the exploitation of unoccupied ecological
niches [48]. Hybridization can also lead to the evolution of intermediates, as shown in the
Argyranthemum daisy radiation (Asteraceae, Canary Islands) in which two homoploid hybrid
species occupy separate but intermediate geographic ranges of the parent species, with segre-
gated ecological niches [49–51]. Two other examples are homoploid hybrids in the Hawaiian
Scaevola naupaka radiation that occupy habitats intermediate relative to the dry and wet habitats
of the parental species [52,53]. Finally, a direct consequence of hybridization might be introgres-
sion of a particular trait from one lineage to another, as was the case with muricate flowers in
Hawaiian lobeliads (genera Brighamia, Clermontia, Cyanea, Delissea, Lobelia sect. Galeatella,
Lobelia sect. Revolutella, and Trematolobelia) [54]. In this scenario, the introgression of functional
alleles that facilitate the occupation of a vacant niche could result in phenotypic diversification and
speciation.

What is the genetic basis of repeated evolution within adaptive radiations?
The repeated evolution of phenotypes or traits associated with the occupation of ecological
niches offers a powerful approach for studying recurrent and potentially deterministic outcomes.

Ambientales, Universidad San Francisco
de Quito (USFQ), Calle Diego de Robles
y Avenida Pampite, Cumbayá, Quito,
Ecuador
21Galapagos Science Center,
Universidad San Francisco de Quito
(USFQ) and University of North Carolina
(UNC) at Chapel Hill, San Cristobal,
Galapagos, Ecuador
22Herbarium of Economic Botany of
Ecuador (Herabario QUSF), Colegio de
Ciencias Biológicas y Ambientales,
Universidad San Francisco de Quito
(USFQ), Calle Diego de Robles y Avenida
Pampite, Cumbayá, Quito, Ecuador
23Departamento de Ciencias Biológicas,
Universidad ICESI, Cali 760031,
Colombia
24Department of Biology, San Francisco
State University, San Francisco,
CA 94132, USA
25Estación Científica Charles Darwin,
Fundación Charles Darwin, Santa Cruz,
Galápagos, Ecuador
26Department of Botany and Plant
Physiology, University of Málaga,
Málaga, Spain
27Department of Biology, University of
Hawaiʻi at Hilo, 200 West Kawili Street,
Hilo, 96720, HI, USA
28Department of Botany and Biodiversity
Research Centre, University of British
Columbia, Vancouver, BC, Canada
29Jepson Herbarium and Department of
Integrative Biology, 1001 Valley Life
Sciences Building 2465, University of
California, Berkeley, CA 94720-2465,
USA
30Island Ecology and Evolution Research
Group, Instituto de Productos Naturales
y Agrobiología (IPNA-CSIC), La Laguna,
Spain
31Estación de Biodiversidad Tiputini,
Colegio de Ciencias Biológicas y
Ambientales, Universidad San Francisco
de Quito (USFQ), Quito, Ecuador
32Department of Environmental Science,
Policy and Management, University of
California, Berkeley, Berkeley, CA, USA
33Universidad San Francisco de Quito
(USFQ), Calle Diego de Robles y Avenida
Pampite, Cumbayá, Quito, Ecuador

*Correspondence:
jose.cerca@gmail.com (J. Cerca).

Box 1. Recent technical and methodological advances in genomics
As the field of genomics continues to change, progress is beingmade in terms of improving data quality and increasing the
amount of data that can be obtained. These advances are made possible through improvements in sequencing machine
chemistry, bioinformatic tools, and new theoretical models. Some recent and noteworthy advances in the field of genomics
are given below.

Chromosome-resolved reference genomes

High-quality reference genomes are now becoming the standard of the field, and are obtained by combining long reads
and contiguity-ligation sequencing. This has enabled the study of synteny, haplotype blocks, and rearrangements such
as inversions and chromosomal fusions and fissions.

Detection and renewed interest in transposable elements (TEs)

TEs were previously difficult to study because they exist in high numbers along the genome and may comprise highly re-
peated regions. In practice, this meant that traditional sequencing approaches were unable to capture and reconstruct
their extensive diversity, and early genomic methods would typically collapse TEs as high-coverage regions. The advent
of high-quality long reads has allowed the identification andmapping of TEs, permitting reconstruction of their evolutionary
history and impact on genome size and genes.

Determination of haplotype blocks and supergenes

Recent sequencing approaches and the development of methods to determine linkage between regions allow longer
portions of the genome to be reconstructed, thus enabling detection of long portions of the genome that are inherited
as a single block (supergene), which may have important evolutionary consequences.

Advances in the understanding of population genetics

The acquisition of a tremendous amount of genomic data has had an outstanding impact on population genomics because it
has enabled the detection of runs of homozygosity along the genome, the inference of ancestral recombination
graphics, the discovery of barrier loci, and distinction between introgression and incomplete lineage sorting.

Increased power to reconstruct phylogenies and the coalescence

Access to genomic data has spurred the development of newmodels to fully reconstruct relationships among species and
populations. This includes genome-wide phylogenies and phylogenomic concordance factors [103].

Demographic histories

The use of genomic data to reconstruct demographic histories has enabled researchers to gain insight into population
dynamics [104]. Recent advances in simulation models, which involves generating simulated data and comparing it to
observed data, provide a powerful tool for understanding which factors may have played a significant role in shaping
the evolutionary history of a lineage. These simulations can be intricate, and, by comparing them to empirical data,
researchers are able to infer the probability of various demographic scenarios such as hybridization, population size
fluctuations, and time of coalescence.
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An important feature of oceanic island adaptive radiations is that species are, by definition, closely
related, such that a common genomic and phenotypic background is likely, thus elevating
prospects for the basis of repeated evolution. In addition, the diverse, discrete, and mosaic dis-
tribution of ecosystems on some islands can foster instances of repeated evolution of phenotypic
traits and ecological occupation [55], thereby providing natural experiments to understand the
genomic and ecological basis of traits associated with niche usage. Several studies identified in
our literature search provided evidence of repeated evolution, including the Galápagos Scalesia
radiation in which lobed-leaf morphologies evolved at least three times on different islands as a
putative adaptive trait to arid conditions, whereas the tree habit evolved twice [56]. Similarly, evo-
lutionary shifts to arid (xerophytes), humid (hygrophytes), and transition habitats (mesophytes)

Box 2. Adaptive radiations on oceanic islands
To evaluate the existence of broad patterns across studies of adaptive radiations on oceanic islands, we conducted a
literature survey of >300 scientific articles (see supplemental information online). This search uncovered studies spanning
109 putative oceanic island adaptive radiations (see Figure 1 in main text and Table S1; a comprehensive set of criteria on
how we classified the radiations is given in the supplemental information online). Across the oceanic island adaptive
radiations identified, we found that specific taxonomic groups were substantially overrepresented, encompassing 55
different plant and 39 arthropod radiations. From these, Asteraceae/Compositae (asters, 17 radiations), Carabidae
(ground beetles, six radiations), and Lamiaceae (mints, five radiations) had the highest reported number of oceanic island
adaptive radiations (see Figure 2 in main text). Although some of these are among the most diverse lineages on continents,
these organism groups are also particularly successful on islands. In terms of geography (Figure I), the largest number of
radiations are reported for Hawaiʻi (38 radiations), Canary Islands (21), and Galápagos (10).

Notably, most of the studied radiations have received little attention, and 51 of 109 radiations were investigated in a single
paper, 38 in two to four papers, 12 in five to nine papers, and only eight in ≥ten papers. With 48 articles, the Galápagos
finches were the most studied oceanic island adaptive radiation and accounted for ~15% of the literature surveyed (see
Table S1 in the supplemental information online). The majority of the studies used DNA sequence data of single markers
(131 articles), some form ofmorphological data (99 articles), or ecological data (81 articles). Only 48 (~15%of the entire set)
studies employed some form of genomic-level data (e.g., RADseq, whole-genome resequencing, transcriptome, genome
assemblies; see Table S1 in the supplemental information online).

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. A global view of the number and distribution of adaptive radiations on islands. Numbers in
parentheses give the number of articles studying adaptive radiation (left) and the number of adaptive radiations studied
(right). The full dataset and criteria for establishing archipelagos are found in Table S1 in the supplemental information
online. We retained New Caledonia because this continental island has been submerged, and therefore evolutionary
and ecological processes occurred in a similar way to oceanic islands.
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Glossary
Adaptive radiation: the process in
which multiple lineages diversify rapidly
from a single ancestral lineage into a
multitude of ecologically distinct forms.
Allopolyploid species: species with
more than two haploid sets of
chromosomes that are dissimilar and
derived from different species.
Ancestral recombination graph:
model used to represent coalescence
and recombination events on a genome.
Barrier loci: loci that resist
homogenization when gene flow occurs.
Convergent evolution: the evolution
of similar and derived phenotypes from
dissimilar ancestral phenotypes.
Diploidization: the process in which a
polyploid genome reverts to a diploid
condition.
Disharmonic communities:
communities that have an uneven
composition and distribution of
taxonomic groups compared to a
mainland source.
Ecological release: population-level
niche expansions and shifts when a
constraining interspecific interaction is
reduced or removed.
Ecological versatility: the ability to
occupy a set of disparate environments.
Homoploid hybrid speciation: when
two species of the same ploidy level give
rise to a hybrid species with the same
ploidy level.
Parallel evolution: the evolution of
similar and derived phenotypes from
similar ancestral phenotypes.
Population genetic diversity debt:
the genetic variation that will be lost
following drift and/or natural selection.
Runs of homozygosity: contiguous
regions of the genome in which an
individual is homozygous across all sites.
Shared ancestral polymorphism: the
ancestral genetic variation available in
the genome.
Supergene: a group of genes that are
inherited as a single genomic region and
which jointly encode complex
phenotypes.
Synteny: physical colocalization of
genetic loci on the same chromosome
within an individual or species.
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have occurred repeatedly in Cape Verdean wall-rockets (Diplotaxis) [57,58]. In animals, several
lineages of Hawaiian spiders show independent and repeated evolutionary origins of ecomorphs,
notably stick spiders (genus Ariamnes) [59] and long-jawed spiders (genus Tetragnatha) [60]; in

Box 3. Study design for investigating the genomics of oceanic island adaptive radiations
One of the biggest advances brought by the 'genomics revolution' has been the convergence and integration of fields that
relied on genetic data but have been traditionally distant, including phylogenetic systematics, population genetics, and
functional genetics. Below we describe the ideal design for each of the questions identified.

What is the basis of genetic variation underlying adaptive radiations on oceanic islands?

To fully understand the origins, maintenance, and evolution of genetic variation, an ideal study design will include closely
related outgroups such that phylogenetic reconstructions can be rooted and alleles can be polarized to find their ancestral
state. The design will also benefit from a broad and geographically representative sampling of insular populations to fully
identify and understand divergence and differentiation among populations. The characterization and quantification of
unique genetic variation can be achieved by decomposing genetic variation, studying population structure, exploring
changes of allelic frequencies along the genome, scans of selection, selective sweeps, and reconstructing the ancestral
recombination graphic. Introgression can be determined by establishing excess allele-sharing (e.g., Paterson's D or
ABBA-BABA) and by demographic simulations that explicitly take hybridization into account.

What is the genetic basis of repeated evolution within adaptive radiations?

Lee and Coop [105] put together a comprehensive set of recommendations to distinguish the contribution of the three
sources of repeated variation, namely de novo mutation, standing genetic variation, and introgression. Their recommen-
dations involve the determination of long haplotypes and patterns of coalescence [105], and an experimental design will
benefit from high-coverage data so that linkage can be estimated with confidence.

What is the genetic basis of repeated evolution across adaptive radiations?

The advent of chromosome-resolved genomes allows mapping of conserved (syntenic) and non-conserved regions of the
genomes. By sequencing multiple genomes, and aligning and comparing them, one is able to understand which areas of
the genome encompass broad genetic variation. Specifically, comparative genomic approaches permit the identification of
general trends across large taxonomic lineages such as gene-family expansions (e.g., gene duplications) and contractions
(gene losses), evidence of selection (dN/dS ratios), and mapping of gene features (synteny of genes, and TE locations). By
functionally annotating genes using databases and model organism inferences, we are able to develop clear hypotheses
about the causal links between features of the genome and their functions. These links should ideally be experimentally
validated with functional genetic tools such as CRISPR and transcriptomic experiments. By determining sets of closely re-
lated genes inmultiple genomes ('gene families') and studying their relatedness (the phylogeny of the gene family), one is able
to understand expansions and contractions, and to determine the divergence of subgroups within the family.

When did the alleles underlying trait utility in adaptive radiations evolve?

Time-calibrated phylogenetic reconstructions allow an estimate of the divergence between lineages (species) to be ob-
tained. If the allele of interest is present in a pair of species, it can be generally inferred that it pre-dates the divergence (spe-
ciation) event. The design benefits from including multiple outgroups to exclude scenarios of loss of a particular allele in a
single outgroup. Determination of mutation rates, and simulations of the coalescent accounting for selective pressures and
hybridization, can be used to obtain estimates for given alleles and haplotypes (Box 1).

What is the role of broad-scale genetic variation on oceanic island adaptive radiations?

Large-scale variation can be studied by comparing genomes from outgroups and radiations and by comparing lineages
within radiations. Large-scale variation can also be putatively linked to ecological changes in some designs, although
experiments such as CRISPR functional validation should be employed. Among-taxon comparisons can provide a
window to conserved versus non-conserved genomic regions, whereas population-level whole-genome sequencing will
complement this by informing on non-recombining blocks and on areas of the genome with excessive genomic
divergence or differentiation. Novel techniques such as haplotagging hold great promise in determining large blocks under
linkage at an affordable cost [106].

What is the prevalence of combinatorial effects on oceanic island adaptive radiations?

Combinatorial effects involve understanding whether hybridization and population divergence has catalyzed speciation
and adaptation. The experimental design involves sequencing multiple individuals from different populations, testing for
excess allele-sharing and genomic divergence, and performing demographic simulations with scenarios of where
hybridization occurs.
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both lineages, taxa with similar niche and phenotype have evolved from different ancestors within
the radiation.

Three mechanisms have been suggested to underlie repeated evolution, parallel evolution, or
convergent evolution during radiations of oceanic island biota: hybridization (introgression),
shared ancestral polymorphism, and de novomutation [61,62]. Vizueta et al. [63] found identical
amino acid shifts in different lineages of Dysdera spiders (Canary Islands), suggesting de novo
evolution of dietal phenotypes. In Galápagos Hogna wolf spiders, introgression underlies parallel
evolution [64,65]. In the woody Hawaiian Metrosideros, a rich pool of ancestral genetic variation
and the reassortment of this variation have likely fueled the radiation [66]. Despite these important
insights, the prevalence and relative importance of these mechanisms remain mostly unexplored.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. Evolutionary history,
observable genomic patterns,
and mechanisms of an adaptive
radiation. The top panel shows
a graphical representation of one
possible trajectory of an adaptive
radiation involving colonization,
establishment, in situ speciation
and ecological diversification, and
subsequent dispersal. The middle
panel displays some possible
types of genetic patterns that can
be observed and quantified to
disentangle the contributions and
impacts of the different processes
(SNPs, haplotype diversity and size,
chromosomal variation, distribution
and number of gene duplicates and
transposable elements). The bottom
panel highlights possible genomic
mechanisms that can be inferred
from the genomic patterns from
the intermediate box (mutation,
hybridization, ancestral polymorphism,
rearrangements, polyploidization,
transposable element insertions).
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What is the genetic basis of repeated evolution across adaptive radiations?
Our literature review revealed that particular taxonomic groups have repeatedly and extensively
radiated across multiple archipelagos, but that not much research has been done to compare
the genetic basis of repeated phenotypic evolution across radiations (Figure 2). The repeated oc-
currence of adaptive radiations in taxa from the same higher taxonomic group offers a powerful
approach for understanding to what extent intrinsic factors facilitate radiations. Among intrinsic
factors, we consider both the underlying genomic basis and the phenotypic traits themselves.
Noticeably, the groups radiating frequently on islands are not always from taxa that are the
most globally diverse. For example, Orchidaceae is one of the most species-rich plant families,
but orchids are underrepresented as adaptive radiations on remote islands, likely because their
dependence on mycorrhiza and specialized floral biology limits establishment [67,68]. The ten-
dency of some groups to adaptively radiate on islands could indicate that particular families
have an appropriate set of traits to disperse, establish, and speciate in relatively isolated environ-
ments [7,10,62], and that members of these families have capabilities to quickly adapt and fill eco-
logical niches. As an example, the basis of ecological versatility for Curculionidae (snout
weevils) is associated with their capacity to feed on different plant hosts [69–72], whereas a
'weedy' life history might benefit radiation in the Asteraceae. The high potential for particular traits

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Overall number of hypothetical adaptive radiations presented by taxon. The 109 adaptive radiations identified in our review of the literature (bar to the
left) are organized by major taxa (bars in the middle). On the right we display families in which two or more adaptive radiations were found. The size of the bar indicates the
number of radiations within each. The supplemental information online provides details of how we scored the hypothetical radiations. Specifically, the dataset collected is
found in Table S1 and a thorough description on scoring the adaptive radiations is provided in the supplemental information.
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to repeatedly evolve [55], such as variation in beak morphology in birds, seems to be common-
place in multiple radiations.

The tendency to radiate may involve a combination of ecological, phenotypic, and genomic
factors. For now, the paucity of comparative genomic studies (Box 2) revealed by our literature
search makes it difficult to identify the underlying genetic basis that is responsible for the diversi-
fication, although this remains a central aspect of understanding the process of radiation. The
combination of high-quality genomes and comparative genomics will likely provide answers to
this question and open new avenues of research.

When did the alleles underlying trait utility in adaptive radiations evolve?
Trait utility, together with common ancestry, rapid speciation, and phenotype–environment
correlation, is one of the four criteria outlined to diagnose the adaptive nature of a radiation,
and it characterizes trait performance or fitness in different environments [22]. Some phenotypic
variation of particular traits, such as leaves in plants and beaks in birds, seem to underlie repeated
changes across oceanic island adaptive radiations, and this may be facilitated by particular geno-
mic architectures [41]. Genomic data allow the age of genetic variants to be estimated, and there
is accumulating evidence for the role of 'ancestral genetic variation' in producing new phenotypes
[38,66,73]. For instance, there is a 240 000 bp long haplotype encompassing the ALX1 homeo-
box gene in Galápagos finches. This gene is associatedwith beakmorphology, which finches use
to feed on different seeds (trait utility), and the variation within the haplotype pre-dates the origin of
the radiation [40,73–75].

What is the role of broad-scale genetic variation on oceanic island adaptive
radiations?
Because of its convenience and power, the field of population genomics has traditionally focused
on understanding how the frequencies of SNPs vary between populations and over time. How-
ever, our understanding of phenotypic traits and local adaptation remains incomplete until we
are able to make sense of the broad-scale variation thatis increasingly being uncovered as
novel technologies emerge (Box 1). We found evidence that the following five types of broad-
scale genetic variation have contributed to oceanic adaptive radiations.

(i) Transposable elements (TEs): these are DNA sequences that proliferate along the genome,
thus having an impact on genome size and cell economy, and can directly interfere with
genes [76,77]. When TEs jump within a genic region they can lead to frameshifts, to the cre-
ation of a pseudogene, or to the movement of genes. Instability caused by founder events,
inbreeding, and environmental stresses typical of oceanic island adaptive radiations could
suppress TE regulation (i.e., the genome shock hypothesis) [78]. This could lead to an upsurge
of TE insertions, especially when combined with low effective population sizes which decrease
the efficacy of selection in purging deleterious mutations [78]. The adaptive radiation of Carib-
bean Anolis lizards (in a mixture of continental and oceanic islands) has an unusual accumulation
of TEs within HOX clusters [79,80], which is hypothesized to be associated with increased phe-
notypic variation [80]. However, compared to closely related lineages, the Hawaiian Tetragnatha
kauaiensis [81], the Macaronesian Dysdera silvatica [82,83], and the Galápagos Scalesia
atractyloides [84] show no evidence of TE proliferation.

(ii) Gene duplication: this can lead to the formation of new phenotypes – one of the copies could
acquire novel functions (neofunctionalization) or both copies can become specialized, result-
ing in two separate genes contributing to the function of the original ancestral gene
(subfunctionalization) [79]. All these phenomena also take place in the continent, although
they appear to act faster on islands. As an example, evidence from the silverswords shows
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that the floral genes ASAP1 and ASAP3 are duplicates, likely resulting from allopolyploidization
(allopolyploid species) [85]. In addition, the genomes of the spiders T. kauaiensis (Hawaiʻi)
and D. silvatica (Macaronesia) contain evidence for gene-family expansions associated with
sensory perception of taste, chemosensory ability, and metabolism [81,82].

(iii) Haplotype blocks: these are non-recombining portions of the genome that are inherited
together [86,87] and function as blueprints for complex phenotypes [86]. They are being
identified in an increasing number of organisms with the help of genomic data, which enable
reconstruction of linkage along the genome. The only evidence of haplotype blocks we are
aware of on oceanic adaptive radiations comes from the Galápagos finches, in which beak
development genes are suggested to be overrepresented in these blocks [75].

(iv) Chromosomal rearrangements: these include translocations, fusions, agmatoploidy, dysploidy,
inversions, and fissions that might result in new genetic combinations by changing linkage
patterns or by separating genes from their regulatory elements [86,88], and often underlie
haplotype blocks. In animals, the most studied group comprises >100 species of subgenus
Drosophila from Hawaiʻi and displays a strong pattern of inversion polymorphism. Syntenic
analyses of the S. atractyloides genome revealed strong associations between gene-rich re-
gions and inversions [84].

(v) Polyploidy: this phenomenon has been suggested as an important mechanism for ecological
versatility and phenotypic evolution in plants [89]. We detected a high incidence of polyploidy
in radiating plant lineages, in line with previous more comprehensive research showing that
many endemic plants on islands are polyploids (80% of Hawaiian endemics [90] and >60%
of Juan Fernández endemics [91]). It has been suggested that the colonizing ancestors of
many of these lineages may already have been ancestral polyploids [92] and that elevated
ploidy might act as a catalyst of ecological versatility through the 'two heads think better
than one' analogy. Empowered by two (sub)genomes, the colonizing lineage has more
genes and more alleles, which can translate into a potentially more efficient response to
novel ecological conditions [85,92]. Although this is plausible, polyploidization could also
have the opposite effect by inhibiting responses to selection if an advantageous allele is reces-
sive and masked by the remaining alleles [93]. S. atractyloides is a tetraploid species, and it
has been speculated that diploidization in this lineage slowed down as a result of insular ad-
aptation [84].

What is the prevalence of combinatorial effects on oceanic island adaptive
radiations?
The combinatorial synthesis postulates that when ancient genetic variation is brought together
by hybridization, it might catalyze speciation processes [38]. This synthesis emerged from the
growing recognition of the role of hybridization in increasing the genetic variability of lineages
[38,73,94], which opposes the long-standing view that hybridization has a negative effect on
biodiversity [4] and that hybrids are 'evolutionary noise' [95]. An important consideration of the
combinatorial synthesis is the time-window wherein hybridization occurs: if the hybridizing
species have diverged only minimally, hybridization might have no effect [96] or even lead to
lineage fusion, as reported for the Galápagos tortoises [97], whereas with higher levels of species
divergence introgression may not be possible or could result in sterile progeny owing to the build-
up of reproductive barriers. Combinatorial events occur between these two periods, and it is likely
that the temporal duration of this window is taxon- or lineage-specific.

Combinatorial effects may occur on oceanic islands through a combination of introgression and
changes of allelic frequencies owing to genetic drift. Genetic drift has a potentially important role
because the possibility of inter-island allopatric establishment and the regular cycles of distur-
bance and change within islands (e.g., volcanic, erosional, topographic) lead to population
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fragmentation with random changes in allelic frequencies. Fragmented and to some degree
genetically diverged populations could become locally adapted, and secondary contact between
these may catalyze combinatorial processes [10,98]. For example, in Hawaiʻi, ecosystems are
fragmented by lava flows, creating mosaic ecosystem patches (kīpuka). Because ecological
succession may take place across decades or centuries, kīpuka remain semi-isolated, and
organisms with low dispersal abilities, such as arthropods or some plants, might be confined to par-
ticular kīpuka and undergo divergence [96,98]. On the island of Lanzarote in theCanary Islands, these
same volcanically isolated patches are referred to as 'islotes'. In this same group of islands, climatic
oscillations may change the ratio and the source of colonizing species, and thereby lead to cycles of
secondary contact with continental species [44,99,100]. Some of the features and patterns recog-
nized in the combinatorial synthesis are shared with the 'surfing syngameon hypothesis' [44,99],
which postulates that secondary contact from the mainland or other islands followed by gene flow
has generated genetic diversity in some regions in the Canary Islands. An integration of the combina-
torial synthesis and the surfing syngameon may be warranted [101].

Concluding remarks: the future of genomic research on oceanic island adaptive
radiations
The study of evolutionary genomics on oceanic island adaptive radiations is in its infancy, but has
tremendous potential to inform us about ecology and evolution. The diversity and variation ob-
served in these radiations can provide complementary insights to the outstanding body of work
of adaptive radiation research, but which has been limited to a handful of biological systems.
However, before this is possible, the gap between evolutionary genomics and island biology
needs to be addressed. To this end, we have postulated a set of genomic questions that are
connected to the evolution of island radiations (see Outstanding questions).

Considering the threats to island biotas, such as tourism, habitat loss, habitat fragmentation,
introduced diseases, and invasive species [102], among many others, opportunities to study
biodiversity on islands are likely to diminish rapidly unless current trends are reversed through
accelerated conservation efforts.
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