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ABSTRACT

We present the complete mitochondrial genome of Chilabothrus argentum, which is 17,345bp in
length, has 22 transfer ribonucleic acids (tRNAs), 2 ribosomal subunits (rRNAs), 13 protein-coding genes,
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an origin of the light-strand replication (O,), and two control regions (CR1, CR2). A maximum likelihood

phylogenetic estimate using nine other snake mitochondrial genomes yields agreement with previous

investigations into the evolutionary relationships of snakes.

The Silver Boa (Chilabothrus argentum Reynolds 2016) is
endemic to the Conception Island Bank in the Bahamas
(Reynolds et al. 2016). With a population size of only 135+ 35
individuals occurring in an area of habitat <0.5km? (Reynolds
et al. in review), this species is listed as Critically Endangered
on the International Union for the Conservation of Nature
(IUCN) Red List (Reynolds 2017) and is close to extinction.
Consequently, rapidly developing genomic resources to char-
acterize genetic diversity within the sole population of this
species is crucial to aiding ongoing conservation efforts. Here
we describe the complete mitochondrial genome of C. argen-
tum using mitochondrial bycatch from ultraconserved ele-
ments sequencing and whole genome sequencing.

We obtained a tissue sample from an individual captured
by hand (23°50.3'N, 75°6.9’W), which was given voucher
number RGRCB047 and stored in the vertebrate collection of
The University of North Carolina, USA (The person in charge
of the collection: RG Reynolds; email: greynold@unca.edu).
We followed methods detailed by Miller et al. (2019) to
extract, sequence, and assemble the partial mitochondrial
genome (GenBank ID MW176073). The resulting assembly
included all protein coding genes but lacked portions of the
control region. To generate a complete, circular assembly, we
then selected a single individual for whole genome sequenc-
ing (WGS). Using the Wizard SV® Kit (Promega, Madison, WI,
USA), we extracted whole genomic DNA and generated a
next generation sequencing library using a KAPA HyperPlus
prep kit (Roche, Basel, Switzerland). We sequenced the library
on an lIllumina NovaSeq 6000 instrument at the Genomic
Center, Rutgers New Jersey Medical School using paired end
2 x 150bp chemistry. We trimmed raw WGS reads using
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Trimmomatic v0.39 (Bolger et al. 2014) and used
ILLUMINACLIP to remove sequencing adapters. We removed
nucleotides with quality scores below 20 from the leading
and trailing ends of each read. We truncated reads from the
ends if sliding windows of 13bp had an average quality
score less than 20. Then, for reads less than 23bp, we
removed that read and its paired read. We used NOVOPIlasty
4.3.1 (Dierckxsens et al. 2017), a seed-extend based assembler
optimized for circular plastid genomes, to perform a circular-
ized assembly. We used our initial partial genome assembly
as the seed and the reference, and the trimmed reads as
input in NOVOPIlasty. We used the MITOS and MITOS2 (Bernt
et al. 2013) webservers (http://mitos.bioinf.uni-leipzig.de/
index.py; http://mitos2.bioinf.uni-leipzig.de/index.py) to anno-
tate the mitogenome, then manually verified and adjusted
the annotations as needed with comparison to a reference
sequence of B. constrictor (GenBank ID AB177354; Dong and
Kumazawa 2005) in Geneious Prime 2022.0.2 (https://www.gene-
ious.com).

We aligned the final C. argentum mitogenome with all
available boid mitogenomes from GenBank using the
MUSCLE v3 algorithm (Edgar 2004) in Geneious Prive. We per-
formed a maximum likelihood analysis on the 13 concaten-
ated protein coding regions (11,340bp total) using the
RaxML v8.2.9 (Stamatakis 2014) plugin in Geneious PrivE with a
GTR GAMMA model and rapid bootstrap inferences (1000
replicates) followed by a thorough ML search. We rooted the
tree with Acrochordus granulatus (GenBank ID AB177879;
Dong and Kumazawa 2005) in FigTree v1.4.4.

The assembled mitochondrial genome for C. argentum
(GenBank ID ONO015858) is 17,345bp in length, comparably
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Figure 1. Maximum likelihood phylogeny of aligned concatenated protein-coding loci (11,340 bp) with 10 serpent species. GenBank accession numbers are indi-

cated on tip labels. Numbers at nodes represent bootstrap support.

shorter than a previously published B. constrictor mitoge-
nome (18,905 bp; Dong and Kumazawa 2005). Nucleotide
composition in the C. argentum assembly is 36.4% A’'s
(6,308 bp), 249% C's (4,327 bp), 12.3% G's (2,127 bp), and
26.4% T's (4,583). GC content in the mitogenome of C. argen-
tum (37.2%) is nearly identical to that of B. constrictor
(38.5%). We recovered no deviations from mitogenome gene
composition or order compared to that of B. constrictor, with
22 transfer ribonucleic acids (tRNAs), 2 ribosomal subunits
(rRNAs), 13 protein-coding genes, an origin of the light-strand
replication (O), and two control regions (CR1, CR2). The O is
33 bp in length and located within the WANCY tRNA cluster,
between tRNA™" and tRNA®*. CR2 is a 1,079bp segment
between tRNA"® and tRNA, and includes several identical
stretches shared with the longer CR1 (982 bp).

Maximum likelihood phylogenetic analysis (Figure 1)
yielded a phylogeny congruent with previous studies investi-
gating the evolutionary relationships of Alethinophidian
snakes (Douglas and Gower 2010). Our analysis inferred C.
argentum to be sister to B. constrictor with moderate support
and strong support for the monophyly of a clade consisting
of those two species and Eryx tataricus. These relationships

are expected given previous phylogenetic analyses using
other molecular markers (Reynolds et al. 2018).
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