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Abstract—Many works focus on optimizing machine learning
models during their training phase, but fail to account how
these models adapt into their model-serving phase once they
are deployed into real world applications. In this phase models
must process through streams of data that can evolve over time
and distort the relationship between incoming data, causing
concept drift. This paper proposes leveraging the advantages
of emerging features stores in order to improve concept drift
detection on unlabeled, dynamic data streams across multiple
models. Firstly, we introduce Drift Detection on Distributed
Datasets (QuaD), which combines classical drift detectors to make
use of labeled and unlabeled data, and create local context (i.e.
per live model) and global context (i.e. across multiple models).
Secondly, we propose using feature store entities, SHAP values,
and Collaborative Filtering (CF) to augment unlabeled data
across multiple models. To the best of our knowledge, QuaD is the
first work that examines the collective behavior of concept drift
across multiple models and discerns associations between models
that may share a susceptibility in a dynamic setting. QuaD uses
a combination of performance-based and data distribution-based
drift detectors and CF to capture varying types of concept drifts
for labeled and unlabeled data streams and is modeled around
the data abstraction provided by emerging feature stores.

I. INTRODUCTION

Many works focus on optimizing machine learning (ML)
models during their training phase, but fail to account how
these models adapt into their model-serving phase once they
are deployed into real world applications (e.g. online sentiment
analysis, intrusion detection, fraud detection, etc). In this phase
models must process through streams of data that can evolve
over time and distort the relationship between incoming data,
X, and target variables (e.g. class labels for classification,
regression, or unsupervised problems), y. If left unaccounted,
models that performed optimally prior to this change ceases to
be optimal, despite the fact that the model itself is unmodified,
and results in the phenomena known as concept drift. Concept
drift is defined as an unexpected change in the context or joint
distribution of P(X,y), such that P,(X,y) # Pi+1(X,y) for
time ¢.

Many forms of drift detection and recovery models have
been proposed to mitigate concept drifts for online data

This work was supported by Graduate Assistance in Areas of National Need
(GAANN) under award P200A10052 and partially supported by the National
Science Foundation under award CCF-176379.

978-1-6654-8810-5/22/$31.00 ©2022 IEEE
DOI 10.1109/COMPSAC54236.2022.00168

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 05,2023 at 15:45:00 UTC from IEEE Xplore. Restrictions apply.

Jean-Luc Gaudiot
Electrical Engineering and Computer Science Department
University of California, Irvine
Irvine, USA
gaudiot@uci.edu

streams and can be categorized as performance-based and data
distribution-based approaches. Designing such approaches is
non-trivial as there is a trade-off between performance and
cost-efficiency [1]. Performance-based approaches monitor a
model’s performance measurements, such as accuracy, F-
measure, precision, and recall. They have the advantage of
detecting all types of drift (e.g. gradual, incremental, abrupt,
fixed space, or non-fixed space), but can only process labeled
data, which is cost inefficient. Expecting most of the data
to be labeled is impractical and expensive in terms of the
scale of ML applications. Rather than measuring classifier
performance metrics, data distribution-based approaches track
changes in location, density, and range of the data itself. These
approaches have the advantage of being able to process both
labeled and unlabeled data, but are limited in the types of
drift they can detect. For example, they cannot detect fixed
space drift for unlabeled data without combining multiple
approaches together. Hence, the trade off is that the ability
to detect all types of drift is dependent on whether unlabeled
data or labeled data are used.

Interestingly, these drift detectors only demonstrate how
to react to drift acting on a single model and/or single pair
of source and target stream. They do not take into account
the possibility of multiple live models acting on different
streams. In the real world setting, multiple models can run
simultaneously across streams and share subsets of training
data. This idea of managing offline training data and online
streams for multiple models and creating logically centralized
features based on physically distributed data has been gaining
popularity, so much so that it has given rise to several feature
stores [2]-[4]. The purpose of these feature stores are to create
an abstraction layer between the offline and online data and
promote data reuse by removing data silos among models,
reproducibility in training data, and mitigate training-serving
skews. Additionally, if feature stores are for maintaining and
deploying ML models in production, then SHAP values are a
means to promote explainable ML. SHAP values apply coop-
erative game theory to distinguish each feature’s contribution
to a model.

This paper proposes leveraging the advantages of emerging
features stores in order to improve drift detection on unlabeled,
dynamic data streams across multiple ML models. The purpose
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Fig. 1: Examples of concept drift compared to (1(a)) either
due to (1(b)) changes in class distribution (i.e. fixed space)
or (1(c)) changes in P(X), (i.e. non-fixed space). Shapes
indicate different classes of data.

of this work is two-fold.

Firstly, we introduce Drift Detection on Distributed Datasets
(QuaD), which combines classical drift detectors to make
use of labeled and unlabeled data, and create local context
(i.e. per live model) and global context (i.e. across multiple
models). Secondly, we propose using feature store entities,
SHAP values, and Collaborative Filtering (CF) to augment
unlabeled data across multiple models.

This paper is organized as follows. Section II reviews
background information related to drift detection methods,
feature store, SHAP values, and CF. Section III describes our
framework, QuaD. Section IV discusses metrics to evaluate
our framework and Section V details future work.

II. RELATED WORK
A. Concept Drift

The goal of ML models is that given a set of input features
X € R, predict a target variable y € R for regression tasks
(or classes for classification tasks) [5]. The prediction of y
is dependent on the prior probability of p(y) and of P(X|y).
Using Bayesian Decision Theory, the prediction of y given X
can be represented as

_ py)p(Xly)
plylx) = BEESE, M
p(X) = Zp(y)P(le), @)

Concept drift occurs when there is a statistically significant
difference in (1) as the model consumes streams of online data
in its model serving phase, such that P;(X,y) # Pi11(X,y)
for time ¢. [1], [6]-[8]. Note that for our definition, p(X) may
have changed or the class label has changed as shown in Fig.
1(a). Other factors can contribute to the type of drift such as
the rate of drift (gradual, incremental, sudden) and change in
distribution (fixed space or non-fixed space).

B. Drift detection methods

The most common forms of drift detection for single
concept drift can be broken down into performance-based
and data distribution-based detectors [1]. Performance-based
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detectors are supervised approaches that require labeled data
to monitor performance metrics, such as accuracy, precision,
and recall. Performance-based techniques such as DDM [9]
and STEPD [10] use error rate as their performance metric.
These methods utilize thresholds to indicate when drift has
occurred and which samples should be used to update the
model. They act on the premise that the model’s error rate
will decrease as samples increase so long as the stream is
stationary and therefore capturing instances when data is non-
stationary as is the case for concept drift.

Data distribution techniques on the other hand can operate
in a semi-supervised or unsupervised approach, but their
disadvantage is that they are unable to capture all forms of drift
and cannot identify for concept drifts due to class distribution
changes in unlabeled data as is the case in Fig (1(b)). Rather
than monitoring model metrics, these techniques monitor the
distribution of the data itself. They rely on clustering and den-
sity estimations to detect whether distributions are significantly
statistically different [11]-[14].

C. Feature store

There is a distinction between a model’s offline training
phase and online serving phase. Offline training ensures the
availability of a finite training set during the process. The data
is often retrieved in batches and possibly used by different
models or analyzed by multiple parties of data scientists
and engineers. The online serving phase must work along
windows of non-finite, real time data that are processed in
streams. Many problems can arise between the two phases
while the data layers are disconnected. Problems such as silos
of redundant data and susceptibility to training-serving skews
can occur. Feature stores serve as an abstraction layer between
the model training data from offline store and the model
serving data from online store. They can provide the benefits of
removing siloed data, promoting feature resuse over rebuild,
and decreasing occurrences of training-serving skews using
point in time consistency.

Feature stores provide a logically centralized registry phys-
ically distributed data by creating a catalog of feature data
and their metadata [3]. It is made of a hierarchy of project,
feature view and the triplet (feature, entity, and data source).
Data source is the raw underlying data that can be located
anywhere. The entity is a collection of semantically related
features. For example, a ride sharing service can have entities
of values customer or driver, while both entities have a shared
feature of trips taken. Feature views are made of the triplet
and represents a logical grouping or context. Finally, updates
of features can be done easily using the registry.

D. SHAP

Shapley values employ a coalition game theory to fairly
distribute the contribution of features for a prediction. It
takes the average marginal contribution of a feature across
all coalitions aka all possible permutations. SHAP uses this
notion of Shapley values to get a fair, order agnostic payout
of the features. The disadvantage to SHAP is that they are

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 05,2023 at 15:45:00 UTC from IEEE Xplore. Restrictions apply.



appropriate for linear models, but are costly for models with
many features because of the complexity of SHAP is on the
order O(27eature_size) [15], [16].

E. Collaborative Filtering

Collaborative Filtering (CF) is often used for recommender
systems. Given a set of relationship scores between users to
items, it builds an association between any the relationships
among user-to-items, user-to-user, or item-to-items. It works
on a labeled set and is dependent on the sparsity of data.
CF makes prediction on the empty user to item values based
on the similarity scores it generates from performing matrix
factorization or support vector machine. Modeling based on
the interactions of user-to-user and user-to-items is tricky,
since users themselves can change their mind. Hence, these
models are susceptible to concept drift and performance-based
methods have been used to track whether drift occurs.

III. PROPOSED FRAMEWORK
A. Problem statement

Given a system where streams of data are fed into multiple
models that share intersections of features, we aim to develop
a method to accomplish the following:

1) Detect drift for each model (local context)

2) Augment the labels based on shared features

3) Make the holistic features of the system more resistant

to drift (improve global context)

B. Detect Drift for each model

Drift Detection on Distributed Datasets (QuaD) is comprised
of two classical drift detection methods, DDM and KS test.
It combines both methods in order to detect varying types of
concept drifts and switch between labeled and unlabeled data
streams.

DDM is a performance-based method for drift detection and
tests for the statistical distribution of its model’s performance.
It is measured by its error rate, p and standard deviation, s (3)
and detects drift using thresholds, such as the warning level (4)
and the drift level (5). The values, S,,;, and p.,;, are defined
in the training phase and are updated if the sample, ¢ at time
t achieves (6).

st = /(1 —pe)/i (3)
Pt + St 2 Pmin + 28min 4)
Dt + St 2 Pmin + 3Smin Q)]
Pt + St < Pmin + Smin (6)

For example, if the warning level is triggered at instance
t., and reaches the drift level at ¢,,, then the model should be
retrained on the samples stored between t,, and ¢,,.

KS test [12], [13] can be used for data distribution-based
technique for concept drift detection in streams of data. It
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is non-parametric in form and compares the location and
shape between probability distributions, F'4 ,and Fg ., across
samples A with n observations and samples B with m obser-
vations. Their empirical distribution functions are computed
as:

1

>

=1

E,.(t) Hz; <t} @)

where (21, ...x,,) are independent and identically distributed
(i.i.d) random variables in the real numbers domain.

Concept drift can be detected when the KS test rejects the
null hypothesis at « if:

D > c(a) n:mm,

®)

D is the KS statistic (i.e. obtained p-value), ¢(«) is the
confidence interval at «, and the product on the right side
of the inequality is the obtained target p-value. Lastly, D is
defined as:

D= max |Fa(z) - Fa(o)|

®

C. Augment the labels based on shared features

For this scenario, we assume that the models running have
shared feature dependencies. Unlike other models, we plan
to employ feature views from feature stores to retrieve and
update shared features between models with the combination
of SHAP and CF. Analagous to the user-item relationship,
we translate models as our users and feature views as our
items. This will generate connections between models and
features within the feature view. To generate the weight of
the connection, which is expected from CF, we propose to
use SHAP. SHAP will fairly distribute the weight of a feature
for a prediction. From here we apply CF onto a recommender
system and build predictions of whether certain models should
be augmented with other features outside of their original
parameters, where the new features may or may not be labeled.

D. Make the holistic features of the system more resistant to

drift

We continue with our CF relationships. From here we not
only analyze the model-to-feature relationship, but also the
model-to-model relationship and try to discern whether some
models are more susceptible to concept drift. If drift is detected
on one model, the system can either 1) activate local drift
detector(s) on associated models or 2) update models without
measuring for drift. There is a trade-off between false alarms
and delay in detection between the two actions. Updating will
rely on the materialization process of feature stores.

IV. DISCUSSION
A. Metrics

The following are characteristics to evaluate the quality of
our concept drift detector.
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1) Probability of true change detection: This requires syn-
thetic data or ground truth and characterizes the capacity to
detect drift occurrences.

2) Probability of false alarms: This characterizes resiliency
and is equivalent to the inverse of the time to detection, which
is the expected time between false-positive detections. This can
be used on real data without drifts and the resulting detections
are considered as false alarms.

3) Delay of detection: This estimates the number of in-
stances required to detect a change after the actual occurence
of drift. Average time to detection is used on synthetic data.

B. Evaluation

Both DDM and KS test are reactive methods towards
concept drift, meaning that updates are made upon detection of
drift. They do not employ forecasting to prevent concept drift
from occurring in the first place. QuaD creates an ensemble
of these methods and tests across multiple models that share
a significant portion of their training data. The novelty of our
method is the consideration of multiple models and features to
form a global context and better explain concept drift. Upon
detection of drift, QuaD calls for an update on that specific
model and for models whose intersection with its training sets
is significant. Thereby calling for an update before concept
drift occurs on these susceptible models.

Additionally, it uses the strength of DDM to detect drifts
on non-fixed space and KS to function over unlabeled data.

The constraints, however, is that multiple models must have
a significant portion of their training set be shared. Moreover
the rate of false positives may be high, since our method calls
for an update based on association of similarly trained models.
There is an assumption that updates are computationally inex-
pensive due to the resources (e.g. data parallelism) available in
the system. This is especially true for SHAP, which generates
the weight for our novel way of using CF. There are methods
for model and data parallelism in ML that can be explored.
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V. CONCLUSION AND FUTURE WORK

To the best of our knowledge, QuaD is the first work
that examines the collective behavior of concept drift across
multiple models and discerns associations between models that
may share a susceptibility in a dynamic setting. QuaD uses a
combination of performance-based and data distribution-based
drift detectors and CF to capture varying types of concept
drifts for labeled and unlabeled data streams and is modeled
around the data abstraction provided by emerging feature
stores.

Developing QuaD will require frameworks, such as
River [17] to enable models to run concurrently and to process
data as streams. Metrics mentioned in Section 4 should be used
to evaluate QuaD’s performance and reliability.

Future work can explore if association of models based on
feature store values can benefit from other drift detectors. For
example, DDG-DA [18] forecasts drift by generating datasets
based on a sampling of historical data instead of the most
recent data. The notion of generating synthetic data may relax
the constraint of relying on shared datasets between models.
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