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Abstract—Many works focus on optimizing machine learning
models during their training phase, but fail to account how
these models adapt into their model-serving phase once they
are deployed into real world applications. In this phase models
must process through streams of data that can evolve over time
and distort the relationship between incoming data, causing
concept drift. This paper proposes leveraging the advantages
of emerging features stores in order to improve concept drift
detection on unlabeled, dynamic data streams across multiple
models. Firstly, we introduce Drift Detection on Distributed
Datasets (QuaD), which combines classical drift detectors to make
use of labeled and unlabeled data, and create local context (i.e.
per live model) and global context (i.e. across multiple models).
Secondly, we propose using feature store entities, SHAP values,
and Collaborative Filtering (CF) to augment unlabeled data
across multiple models. To the best of our knowledge, QuaD is the
first work that examines the collective behavior of concept drift
across multiple models and discerns associations between models
that may share a susceptibility in a dynamic setting. QuaD uses
a combination of performance-based and data distribution-based
drift detectors and CF to capture varying types of concept drifts
for labeled and unlabeled data streams and is modeled around
the data abstraction provided by emerging feature stores.

I. INTRODUCTION

Many works focus on optimizing machine learning (ML)

models during their training phase, but fail to account how

these models adapt into their model-serving phase once they

are deployed into real world applications (e.g. online sentiment

analysis, intrusion detection, fraud detection, etc). In this phase

models must process through streams of data that can evolve

over time and distort the relationship between incoming data,

X, and target variables (e.g. class labels for classification,

regression, or unsupervised problems), y. If left unaccounted,

models that performed optimally prior to this change ceases to

be optimal, despite the fact that the model itself is unmodified,

and results in the phenomena known as concept drift. Concept

drift is defined as an unexpected change in the context or joint

distribution of P (X, y), such that Pt(X, y) �= Pt+1(X, y) for

time t.
Many forms of drift detection and recovery models have

been proposed to mitigate concept drifts for online data
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streams and can be categorized as performance-based and data

distribution-based approaches. Designing such approaches is

non-trivial as there is a trade-off between performance and

cost-efficiency [1]. Performance-based approaches monitor a

model’s performance measurements, such as accuracy, F-

measure, precision, and recall. They have the advantage of

detecting all types of drift (e.g. gradual, incremental, abrupt,

fixed space, or non-fixed space), but can only process labeled

data, which is cost inefficient. Expecting most of the data

to be labeled is impractical and expensive in terms of the

scale of ML applications. Rather than measuring classifier

performance metrics, data distribution-based approaches track

changes in location, density, and range of the data itself. These

approaches have the advantage of being able to process both

labeled and unlabeled data, but are limited in the types of

drift they can detect. For example, they cannot detect fixed

space drift for unlabeled data without combining multiple

approaches together. Hence, the trade off is that the ability

to detect all types of drift is dependent on whether unlabeled

data or labeled data are used.

Interestingly, these drift detectors only demonstrate how

to react to drift acting on a single model and/or single pair

of source and target stream. They do not take into account

the possibility of multiple live models acting on different

streams. In the real world setting, multiple models can run

simultaneously across streams and share subsets of training

data. This idea of managing offline training data and online

streams for multiple models and creating logically centralized

features based on physically distributed data has been gaining

popularity, so much so that it has given rise to several feature

stores [2]–[4]. The purpose of these feature stores are to create

an abstraction layer between the offline and online data and

promote data reuse by removing data silos among models,

reproducibility in training data, and mitigate training-serving

skews. Additionally, if feature stores are for maintaining and

deploying ML models in production, then SHAP values are a

means to promote explainable ML. SHAP values apply coop-

erative game theory to distinguish each feature’s contribution

to a model.

This paper proposes leveraging the advantages of emerging

features stores in order to improve drift detection on unlabeled,

dynamic data streams across multiple ML models. The purpose
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(a) Original distribution (b) Class distribution
changed

(c) Input sample distri-
bution changed

Fig. 1: Examples of concept drift compared to (1(a)) either

due to (1(b)) changes in class distribution (i.e. fixed space)

or (1(c)) changes in P (X), (i.e. non-fixed space). Shapes

indicate different classes of data.

of this work is two-fold.

Firstly, we introduce Drift Detection on Distributed Datasets

(QuaD), which combines classical drift detectors to make

use of labeled and unlabeled data, and create local context

(i.e. per live model) and global context (i.e. across multiple

models). Secondly, we propose using feature store entities,

SHAP values, and Collaborative Filtering (CF) to augment

unlabeled data across multiple models.

This paper is organized as follows. Section II reviews

background information related to drift detection methods,

feature store, SHAP values, and CF. Section III describes our

framework, QuaD. Section IV discusses metrics to evaluate

our framework and Section V details future work.

II. RELATED WORK

A. Concept Drift

The goal of ML models is that given a set of input features

X ∈ R, predict a target variable y ∈ R for regression tasks

(or classes for classification tasks) [5]. The prediction of y

is dependent on the prior probability of p(y) and of P (X|y).
Using Bayesian Decision Theory, the prediction of y given X
can be represented as

p(y|X) = p(y)p(X|y)
p(X)

, (1)

p(X) =

c∑
i=1

p(y)P (X|y), (2)

Concept drift occurs when there is a statistically significant

difference in (1) as the model consumes streams of online data

in its model serving phase, such that Pt(X, y) �= Pt+1(X, y)
for time t. [1], [6]–[8]. Note that for our definition, p(X) may

have changed or the class label has changed as shown in Fig.

1(a). Other factors can contribute to the type of drift such as

the rate of drift (gradual, incremental, sudden) and change in

distribution (fixed space or non-fixed space).

B. Drift detection methods

The most common forms of drift detection for single

concept drift can be broken down into performance-based

and data distribution-based detectors [1]. Performance-based

detectors are supervised approaches that require labeled data

to monitor performance metrics, such as accuracy, precision,

and recall. Performance-based techniques such as DDM [9]

and STEPD [10] use error rate as their performance metric.

These methods utilize thresholds to indicate when drift has

occurred and which samples should be used to update the

model. They act on the premise that the model’s error rate

will decrease as samples increase so long as the stream is

stationary and therefore capturing instances when data is non-

stationary as is the case for concept drift.

Data distribution techniques on the other hand can operate

in a semi-supervised or unsupervised approach, but their

disadvantage is that they are unable to capture all forms of drift

and cannot identify for concept drifts due to class distribution

changes in unlabeled data as is the case in Fig (1(b)). Rather

than monitoring model metrics, these techniques monitor the

distribution of the data itself. They rely on clustering and den-

sity estimations to detect whether distributions are significantly

statistically different [11]–[14].

C. Feature store

There is a distinction between a model’s offline training

phase and online serving phase. Offline training ensures the

availability of a finite training set during the process. The data

is often retrieved in batches and possibly used by different

models or analyzed by multiple parties of data scientists

and engineers. The online serving phase must work along

windows of non-finite, real time data that are processed in

streams. Many problems can arise between the two phases

while the data layers are disconnected. Problems such as silos

of redundant data and susceptibility to training-serving skews

can occur. Feature stores serve as an abstraction layer between

the model training data from offline store and the model

serving data from online store. They can provide the benefits of

removing siloed data, promoting feature resuse over rebuild,

and decreasing occurrences of training-serving skews using

point in time consistency.

Feature stores provide a logically centralized registry phys-

ically distributed data by creating a catalog of feature data

and their metadata [3]. It is made of a hierarchy of project,

feature view and the triplet (feature, entity, and data source).

Data source is the raw underlying data that can be located

anywhere. The entity is a collection of semantically related

features. For example, a ride sharing service can have entities

of values customer or driver, while both entities have a shared

feature of trips taken. Feature views are made of the triplet

and represents a logical grouping or context. Finally, updates

of features can be done easily using the registry.

D. SHAP

Shapley values employ a coalition game theory to fairly

distribute the contribution of features for a prediction. It

takes the average marginal contribution of a feature across

all coalitions aka all possible permutations. SHAP uses this

notion of Shapley values to get a fair, order agnostic payout

of the features. The disadvantage to SHAP is that they are

1077

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 05,2023 at 15:45:00 UTC from IEEE Xplore.  Restrictions apply. 



appropriate for linear models, but are costly for models with

many features because of the complexity of SHAP is on the

order O(2feature size) [15], [16].

E. Collaborative Filtering

Collaborative Filtering (CF) is often used for recommender

systems. Given a set of relationship scores between users to

items, it builds an association between any the relationships

among user-to-items, user-to-user, or item-to-items. It works

on a labeled set and is dependent on the sparsity of data.

CF makes prediction on the empty user to item values based

on the similarity scores it generates from performing matrix

factorization or support vector machine. Modeling based on

the interactions of user-to-user and user-to-items is tricky,

since users themselves can change their mind. Hence, these

models are susceptible to concept drift and performance-based

methods have been used to track whether drift occurs.

III. PROPOSED FRAMEWORK

A. Problem statement

Given a system where streams of data are fed into multiple

models that share intersections of features, we aim to develop

a method to accomplish the following:

1) Detect drift for each model (local context)

2) Augment the labels based on shared features

3) Make the holistic features of the system more resistant

to drift (improve global context)

B. Detect Drift for each model

Drift Detection on Distributed Datasets (QuaD) is comprised

of two classical drift detection methods, DDM and KS test.

It combines both methods in order to detect varying types of

concept drifts and switch between labeled and unlabeled data

streams.

DDM is a performance-based method for drift detection and

tests for the statistical distribution of its model’s performance.

It is measured by its error rate, p and standard deviation, s (3)

and detects drift using thresholds, such as the warning level (4)

and the drift level (5). The values, smin and pmin are defined

in the training phase and are updated if the sample, i at time

t achieves (6).

st =
√
pt(1− pt)/i (3)

pt + st ≥ pmin + 2smin (4)

pt + st ≥ pmin + 3smin (5)

pt + st < pmin + smin (6)

For example, if the warning level is triggered at instance

tm and reaches the drift level at tn, then the model should be

retrained on the samples stored between tm and tn.

KS test [12], [13] can be used for data distribution-based

technique for concept drift detection in streams of data. It

is non-parametric in form and compares the location and

shape between probability distributions, FA,nand FB,m across

samples A with n observations and samples B with m obser-

vations. Their empirical distribution functions are computed

as:

Fn(t) =
1

n

n∑
i=1

1{xi ≤ t} (7)

where (x1, ...xn) are independent and identically distributed

(i.i.d) random variables in the real numbers domain.

Concept drift can be detected when the KS test rejects the

null hypothesis at α if:

D > c(α)

√
n+m

nm
, (8)

D is the KS statistic (i.e. obtained p-value), c(α) is the

confidence interval at α, and the product on the right side

of the inequality is the obtained target p-value. Lastly, D is

defined as:

D = max
x⊂A∪B

|FA(x)− FB(x)| (9)

C. Augment the labels based on shared features

For this scenario, we assume that the models running have

shared feature dependencies. Unlike other models, we plan

to employ feature views from feature stores to retrieve and

update shared features between models with the combination

of SHAP and CF. Analagous to the user-item relationship,

we translate models as our users and feature views as our

items. This will generate connections between models and

features within the feature view. To generate the weight of

the connection, which is expected from CF, we propose to

use SHAP. SHAP will fairly distribute the weight of a feature

for a prediction. From here we apply CF onto a recommender

system and build predictions of whether certain models should

be augmented with other features outside of their original

parameters, where the new features may or may not be labeled.

D. Make the holistic features of the system more resistant to
drift

We continue with our CF relationships. From here we not

only analyze the model-to-feature relationship, but also the

model-to-model relationship and try to discern whether some

models are more susceptible to concept drift. If drift is detected

on one model, the system can either 1) activate local drift

detector(s) on associated models or 2) update models without

measuring for drift. There is a trade-off between false alarms

and delay in detection between the two actions. Updating will

rely on the materialization process of feature stores.

IV. DISCUSSION

A. Metrics

The following are characteristics to evaluate the quality of

our concept drift detector.
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Fig. 2: Overview of QuaD in a single-stream, multiple model

system.

1) Probability of true change detection: This requires syn-

thetic data or ground truth and characterizes the capacity to

detect drift occurrences.

2) Probability of false alarms: This characterizes resiliency

and is equivalent to the inverse of the time to detection, which

is the expected time between false-positive detections. This can

be used on real data without drifts and the resulting detections

are considered as false alarms.

3) Delay of detection: This estimates the number of in-

stances required to detect a change after the actual occurence

of drift. Average time to detection is used on synthetic data.

B. Evaluation

Both DDM and KS test are reactive methods towards

concept drift, meaning that updates are made upon detection of

drift. They do not employ forecasting to prevent concept drift

from occurring in the first place. QuaD creates an ensemble

of these methods and tests across multiple models that share

a significant portion of their training data. The novelty of our

method is the consideration of multiple models and features to

form a global context and better explain concept drift. Upon

detection of drift, QuaD calls for an update on that specific

model and for models whose intersection with its training sets

is significant. Thereby calling for an update before concept

drift occurs on these susceptible models.

Additionally, it uses the strength of DDM to detect drifts

on non-fixed space and KS to function over unlabeled data.

The constraints, however, is that multiple models must have

a significant portion of their training set be shared. Moreover

the rate of false positives may be high, since our method calls

for an update based on association of similarly trained models.

There is an assumption that updates are computationally inex-

pensive due to the resources (e.g. data parallelism) available in

the system. This is especially true for SHAP, which generates

the weight for our novel way of using CF. There are methods

for model and data parallelism in ML that can be explored.

V. CONCLUSION AND FUTURE WORK

To the best of our knowledge, QuaD is the first work

that examines the collective behavior of concept drift across

multiple models and discerns associations between models that

may share a susceptibility in a dynamic setting. QuaD uses a

combination of performance-based and data distribution-based

drift detectors and CF to capture varying types of concept

drifts for labeled and unlabeled data streams and is modeled

around the data abstraction provided by emerging feature

stores.

Developing QuaD will require frameworks, such as

River [17] to enable models to run concurrently and to process

data as streams. Metrics mentioned in Section 4 should be used

to evaluate QuaD’s performance and reliability.

Future work can explore if association of models based on

feature store values can benefit from other drift detectors. For

example, DDG-DA [18] forecasts drift by generating datasets

based on a sampling of historical data instead of the most

recent data. The notion of generating synthetic data may relax

the constraint of relying on shared datasets between models.
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