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Abstract
This is the third paper in a series in whichwe developmachine learning (ML)moment closure
models for the radiative transfer equation. In our previous work (Huang et al. in J Comput
Phys 453:110941, 2022), we proposed an approach to learn the gradient of the unclosed
high order moment, which performs much better than learning the moment itself and the
conventional PN closure. However, while the ML moment closure has better accuracy, it is
not able to guarantee hyperbolicity and has issueswith long time stability. In our second paper
(Huang et al., in:Machine learningmoment closure models for the radiative transfer equation
II: enforcing global hyperbolicity in gradient based closures, 2021. arXiv:2105.14410), we
identified a symmetrizer which leads to conditions that enforce that the gradient based ML
closure is symmetrizable hyperbolic and stable over long time. The limitation of this approach
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is that in practice the highest moment can only be related to four, or fewer, lower moments. In
this paper, we propose a new method to enforce the hyperbolicity of the ML closure model.
Motivated by the observation that the coefficient matrix of the closure system is a lower
Hessenberg matrix, we relate its eigenvalues to the roots of an associated polynomial. We
design two new neural network architectures based on this relation. The ML closure model
resulting from the first neural network is weakly hyperbolic and guarantees the physical
characteristic speeds, i.e., the eigenvalues are bounded by the speed of light. The second
model is strictly hyperbolic and does not guarantee the boundedness of the eigenvalues.
Several benchmark tests including theGaussian source problemand the two-material problem
show the good accuracy, stability and generalizability of our hyperbolic ML closure model.

Keywords Radiative transfer equation · Moment closure · Machine learning · Neural
network · Hyperbolicity

1 Introduction

In this paper, we introduce an extension to our previous works on ML closures for radia-
tive transfer modeling [23, 24]. The new approach enforces the hyperbolicity (and physical
characteristic speeds) by ensuring mathematical consistency between the closure and the
macroscopic model. Further, the numerical results demonstrate the plausibility of capturing
kinetic effects in a moment system with a handful of moments and an appropriate closure
model.

The study of radiative transfer is of vital importance in many fields of science and engi-
neering including astrophysics [40], heat transfer [29], and optical imaging [28]. The kinetic
description of radiative transfer is a integro-differential equation in six dimensions in spa-
tial and angular spaces plus time. While there exist many numerical methods to solve this
equation, fromMonte Carlo methods to deterministic mesh based schemes, the fundamental
fact remains that radiative transfer equation (RTE) is computationally demanding for many
problems.

An alternative approach is to directly model the observables of the kinetic equations:
density, momentum, energy etc. by taking moments of the kinetic equation. However, the
resulting system of equations is not closed, since the equation for the pth moment depends
on knowledge of the (p + 1)th moment. This is known as the moment closure problem. To
obtain a closed system of equations, typically a relationship has to be introduced to eliminate
the dependency of the equations on the (p + 1)th moment. This may be as simple as setting
the (p+ 1)th moment to zero, or involve some other relations relating the (p+ 1)th moment
to lower order moments. Many moment closure models have been developed, including the
PN model [10]; the variable Eddington factor models [32, 38]; the entropy-basedMN models
[1, 2, 21]; the positive PN models [20]; the filtered PN models [30, 37]; the B2 models [3];
and the MPN model [14, 15, 34].

Inmoment closure problems, hyperbolicity is a critical issue,which is essential for a system
of first-order partial differential equations (PDEs) to bewell-posed [45]. The pioneeringwork
on the moment closure for the Boltzmann equation, in the context of gas kinetic theory, was
introduced by Grad in [17] and is the most basic one among the moment models. Recent
analysis for Grad’s 13-moment model showed that the equilibrium of the model is on the
boundary of the region of hyperbolicity in 3D [9]. This instability issue has led to a range
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of efforts to develop closures that lead to globally hyperbolic moment systems [7, 8, 14, 15,
34].

The traditional trade off in introducing a closure relation and solving a moment model
instead of a kinetic equation is generic accuracy verses practical computability. However,
thanks to the rapid development of machine learning (ML) and data-driven modeling [6, 18,
42], a new approach to solve the moment closure problem has emerged based on ML [5, 19,
23–25, 35, 36, 41, 43, 44, 48]. This approach offers a path for multi-scale problems that is
relatively unique, promising to capture kinetic effects in a moment model with only a handful
ofmoments. Formore detailed literature review,we refer readers to [23].We remark thatmost
of the works mentioned above are not able to guarantee hyperbolicity or long time stability,
except the works in [24, 25, 41, 43]. In [25], based on the conservation-dissipation formalism
[50] of irreversible thermodynamics, the authors proposed a stable ML closure model with
hyperbolicity and Galilean invariance for the Boltzmann BGK equation. Nevertheless, the
model is limited to only one extra non-equilibrium variable and it is still not clear how
to generalize to an arbitrary number of moments. In [41, 43], the authors constructed ML
surrogatemodels for themaximumentropy closure [33] of themoment system of theRTE and
theBoltzmann equation. By approximating the entropy using convex splines and input convex
neural networks [4], the ML model preserves the structural properties of the original system
and reduces the computational cost of the associated ill-conditioned constrained optimization
problem significantly, which needed to be solved at each time step in the original formulation
of the maximum entropy closure.

This paper is a continuation of our previous work in [23], where we proposed to directly
learn a closure that relates the gradient of the highest order moment to the gradients of the
lower order moments. This gradient based closure is consistent with the exact closure for the
free streaming limit and also provides a natural output normalization. A variety of numerical
tests show that the ML closure model in [23] has better accuracy than an ML closure based
on learning a relation between the moments, as opposed to a relation between the gradients,
and the conventional PN closure. Further, the method was able to accurately model both the
optically thin and optically thick regime in a single domain with only six moments and was
in good agreement with moments computed from the kinetic solution. However, it is not able
to guarantee hyperbolicity and long time simulations are not always satisfactory.

In our follow-up work [24], we proposed a method to enforce the global hyperbolicity
of the ML closure model. The main idea is to seek a symmetrizer (a symmetric positive
definite matrix) for the closure system, and derive constraints such that the system is globally
symmetrizable hyperbolic. It was also shown that the hyperbolic ML closure system inherits
the dissipativeness of the RTE and preserves the correct diffusion limit as the Knunsden
number goes to zero. In the numerical tests, the method preformed as well as our original
gradient based ML closure for short time simulations and also has the additional benefit of
long time stability. A limitation of our approach in [24] is that in practice it is limited to
relating the gradient of the highest moment to the gradient of the next 4 lower moments.
However, our analysis in [23] indicated that in the free streaming limit, the gradient of the
highest moment should be related to a range of gradients which include the lowest moments.

In this paper, to overcome this limitation, we take a different approach to enforce the
hyperbolicity of our gradient based ML closure model. The approach is to design a structure
preserving neural network that ensures that the desired hyperbolicity is preserved in our ML
gradient based closure. The main idea is motivated by the observation that the coefficient
matrix of the gradient based closure system [23] is an unreduced lowerHessenbergmatrix, see
Definition 2.1. Due to this particular mathematical structure, we relate its eigenvalues to the
roots of some polynomials associatedwith the coefficientmatrix. Therefore, the hyperbolicity
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of the closure model is equivalent to the condition that the associated polynomial only has
simple and real roots, see Theorems 2.4 and 3.1. Then, we derive the relation between the
eigenvalues and the weights in the gradient based closure using the Vieta’s formula and a
linear transformation between monomial basis functions and Legendre polynomials. Based
on this relation, we design two new neural network architectures both starting with a fully
connected neural network which takes the input as the lower order moments. The first neural
network architechture is then followed by a component-wise hyperbolic tangent function to
enforce the boundedness of the eigenvalues, while the second one has some postprocessing
layers to enforce that the eigenvalues are distinct. Lastly, two sublayers representing the
Vieta’s formula and a linear transformation are applied to produce the weights in the gradient
based closure as the final output, see Figs. 1 and 2 in Sect. 4. The resulting ML closure model
from the first neural network is weakly hyperbolic and guarantees the physical characteristic
speeds, i.e. the eigenvalues lie in the range of the interval [−1, 1], see Theorem 4.1, while the
symmetrizer approach in [24] usually violates the physical characteristic speeds. The second
model is strictly hyperbolic and does not guarantee the boundedness of the eigenvalues, see
Theorem 4.2. Nevertheless, in practice, we find the characteristic speeds stay close to the
physical bound. Maintaining physical characteristic speeds saves substantial computational
efforts by allowing for a larger time step size, as compared to [24] when solving the closure
system. We numerically tested that the hyperbolic ML closure model has good accuracy in
a variety of numerical examples and, just as with our previous work, can capture accurate
solutions to problems which have regions in both the optically thin and optically thick regime
with only 6 moments. Further, we numerically demonstrate that as we increase the number
of moments in the new approach, the ML closure converges rapidly to the solution of the
kinetic equation.

Nevertheless, there exists some numerical instability for the current model when a small
number of moments are used. For the first neural network, we observe numerically that the
eigenvalues get too close, which behaves as if the system is weakly hyperbolic instead of
strongly hyperbolic. For the second neural network, we check the linear stability of the system
numerically and find that the loss of linear stability probably results in the blow up of the
numerical solutions. How to stabilize the closure system, while maintaining the accuracy, is
a topic to be investigated in the future.

The remainder of this paper is organized as follows. InSect. 2,wepresent somepreliminary
results about Hessenberg matrixes. In Sect. 3, we introduce the hyperbolic ML moment
closure model. In Sect. 4, we present the details in the architectures and the training of
the neural networks. The effectiveness of our ML closure model is demonstrated through
extensive numerical results in Sect. 5. Some concluding remarks are given in Sect. 6.

2 Preliminary Results About HessenbergMatrix

In this section, we review important properties of the Hessenberg matrix. These properties
facilitate directly relating the eigenvalues of a Hessenberg matrix to the roots of some asso-
ciated polynomial and derive some equivalent conditions for a Hessenberg matrix to be real
diagonalizable.As thematrix being real diagonalizable is equivalent to enforcing that the first-
order system is hyperbolic, this is a critical aspect in the design of our structure-preserving
neural network in Sects. 3 and 4.

We startwith the definitions of the (unreduced) lowerHessenbergmatrix and the associated
polynomial sequence [13]:
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Fig. 1 Schematic of the neural network with bounded eigenvalues. Input: the moments (m0,m1, . . . ,mN ),
output: the weights (N0,N1, . . . ,NN ) in the gradient based closure in (3.4). The Vieta’s formula is given in
(3.18). The linear transformation from (c0, c1, . . . , cN ) to (N0,N1, . . . ,NN ) is given in (3.27)

Fig. 2 Schematic of the neural network with distinct eigenvalues. Input: the moments (m0,m1, . . . ,mN ),
output: the weights (N0,N1, . . . ,NN ) in the gradient based closure in (3.4). Here, κ = κ(x) > 0 is a
positive function. The layer connecting (z̃0, z̃1, . . . , z̃N ) and (r0, r1, . . . , rN ) is given in (4.3). The Vieta’s
formula is given in (3.18). The linear transformation from (c0, c1, . . . , cN ) to (N0,N1, . . . ,NN ) is given in
(3.27)

Definition 2.1 (lower Hessenberg matrix) The matrix H = (hi j )n×n is called lower Hes-
senberg matrix if hi j = 0 for j > i + 1. It is called unreduced lower Hessenberg matrix if
further hi,i+1 �= 0 for i = 1, 2, . . . , n − 1.

Definition 2.2 (associated polynomial sequence [13]) Let H = (hi j )n×n be an unreduced
lower Hessenberg matrix. The associated polynomial sequence {qi }0≤i≤n with H is defined
as: q0 = 1, and

qi (x) = 1

hi,i+1

⎛
⎝xqi−1(x) −

i∑
j=1

hi j q j−1(x)

⎞
⎠ , 1 ≤ i ≤ n, (2.1)

with hn,n+1 := 1.

Notice that the recurrence relation in (2.1) can be written as a matrix–vector form:

Hqn−1(x) = xqn−1(x) − qn(x)en, (2.2)

where qn−1(x) = (q0(x), q1(x), . . . , qn−1(x))T and en = (0, 0, . . . , 0, 1)T ∈ R
n . From

this relation, one can immediately relate the roots of qn to the eigenvalues of H [13]:
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Theorem 2.3 [13] Let H = (hi j )n×n be an unreduced lower Hessenberg matrix and
{qi }0≤i≤n is the associated polynomial sequence with H. The following conclusion holds
true:

1. Ifλ is a root of qn, thenλ is an eigenvalue of thematrix H and a corresponding eigenvector
is (q0(λ), q1(λ), . . . , qn−1(λ))T ;

2. If all the roots of qn are simple, then the characteristic polynomial of H is precisely ρqn
with ρ = �n−1

i=1 hi,i+1, i.e.,

det(x In − H) = ρqn(x), (2.3)

where In denotes the identity matrix of order n.

By analyzing the eigenspace of the unreduced lower Hessenberg matrix, we have the
following equivalent conditions for an unreduced lower Hessenberg matrix to be real diago-
nalizable. The proof is included in the “Appendix”.

Theorem 2.4 Let H = (hi j )n×n be an unreduced lower Hessenberg matrix and {qi }0≤i≤n is
the associated polynomial sequence with H. The following conditions are equivalent:

1. H is real diagonalizable;
2. all the eigenvalues of H are distinct and real;
3. all the roots of qn are simple and real.

3 Moment Closure for Radiative Transfer Equation

In this section, we first review the gradient based MLmoment closure method for the RTE in
slab geometry proposed in [23]. Then, we present our approach to enforce the hyperbolicity
of the ML moment closure model. Our method for enforcing hyperbolicity comes from a
direct relation we derive in Sect. 3.2 between the coefficients of the neural network in the
gradient based model and the eigenvalues of coefficient matrix. Given this relation, in Sect. 4
we propose two neural network architectures where we directly learn the eigenvalues of the
coefficient matrix A such that the eigenvalues are real. The resulting setup produces distinct
eigenvalues and there by guarantees that the learned gradient based closure is hyperbolic.

3.1 Gradient BasedMLMoment Closure

We consider the time-dependent RTE for a gray medium in slab geometry:

∂t f + v∂x f = σs

(
1

2

∫ 1

−1
f dv − f

)
− σa f , −1 ≤ v ≤ 1 (3.1)

Here, f = f (x, v, t) is the specific intensity of radiation. The variable v ∈ [−1, 1] is
the cosine of the angle between the photon velocity and the x-axis. σs = σs(x) ≥ 0 and
σa = σa(x) ≥ 0 are the scattering and absorption coefficients.

Denote the k-th order Legendre polynomial by Pk = Pk(x). Define the k-th order moment
by

mk(x, t) = 1

2

∫ 1

−1
f (x, v, t)Pk(v)dv. (3.2)
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Multiplying by Pk(v) on both sides of (3.1) and integrating over v ∈ [−1, 1], we derive the
moment equations:

∂tm0 + ∂xm1 = −σam0

∂tm1 + 1

3
∂xm0 + 2

3
∂xm2 = −(σs + σa)m1

· · ·
∂tmN−1 + N − 1

2N − 1
∂xmN−2 + N

2N − 1
∂xmN = −(σs + σa)mN−1

∂tmN + N

2N + 1
∂xmN−1 + N + 1

2N + 1
∂xmN+1 = −(σs + σa)mN

(3.3)

The above system is clearly not closed due to the existence of ∂xmN+1 in the last equation.
The learning gradient approach proposed in [23] is to find a relation between ∂xmN+1 and
the gradients on lower order moments:

∂xmN+1 =
N∑
i=0

Ni (m0,m1, . . . ,mN )∂xmi (3.4)

with N = (N0,N1, . . . ,NN ) : R
N+1 → R

N+1 approximated by a neural network and
learned from data. Plugging (3.4) into the closure system, we derive the moment closure
model:

∂tm0 + ∂xm1 = −σam0

∂tm1 + 1

3
∂xm0 + 2

3
∂xm2 = −(σs + σa)m1

· · ·
∂tmN−1 + N − 1

2N − 1
∂xmN−2 + N

2N − 1
∂xmN = −(σs + σa)mN−1

∂tmN + N

2N + 1
∂xmN−1 + N + 1

2N + 1

(
N∑

k=0

Nk(m0,m1, . . . ,mN )∂xmk

)
= −(σs + σa)mN .

(3.5)

In the numerical tests, this approach is shown to be accurate in the optically thick regime,
intermediate regime and the optically thin regime. Moreover, the accuracy of this gradient-
based model is much better than the approach based on creating a ML closure directly
trained to match the moments, as well as the conventional PN closure. However, this model
exhibits numerical instability due to the loss of hyperbolicity [23]. This severely restricts the
application of this model, especially for long time simulations.

3.2 Hyperbolic MLMoment Closure

In this work, our main idea to enforce the hyperbolicity is motivated by the observation
that the coefficient matrix of the closure system is a lower Hessenberg matrix. We write the
closure model (3.5) into an equivalent form:

∂tm + A∂xm = Sm (3.6)
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with m = (m0,m1, . . . ,mN )T and the coefficient matrix A ∈ R
(N+1)×(N+1):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
1
3 0 2

3 0 . . . 0
0 2

5 0 3
5 . . . 0

...
...

...
. . .

...
...

0 0 . . . N−1
2N−1 0 N

2N−1
a0 a1 . . . aN−2 aN−1 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

with

a j =

⎧⎪⎪⎨
⎪⎪⎩

N + 1

2N + 1
N j , j �= N − 1,

N

2N + 1
+ N + 1

2N + 1
N j , j = N − 1.

(3.8)

and the source term

S = diag(−σa,−(σs + σa), . . . , −(σs + σa)). (3.9)

In what follows, we will use the properties of the Hessenberg matrix in Sect. 2 to analyze the
real diagonalizability of the coefficient matrix A in (3.7).

We first write down the associated polynomial sequence of A using the definition (2.1):

q0(x) = 1, (3.10a)

i

2i − 1
qi (x) = xqi−1(x) − i − 1

2i − 1
qi−2(x), i = 1, . . . , N (3.10b)

qN+1(x) = xqN (x) −
N∑

k=0

akqk(x). (3.10c)

Notice that (3.10b) is exactly the same as the recurrence relation for the Legendre polynomial.
Thus, we have

qi (x) = Pi (x), i = 0, 1, . . . , N . (3.11)

Then from (3.10c), we derive

qN+1(x) = N + 1

2N + 1
PN+1(x) + N

2N + 1
PN−1(x) −

N∑
k=0

ak Pk(x), (3.12)

where we used the recurrence relation for the Legendre polynomial:

N + 1

2N + 1
PN+1(x) = x PN (x) − N

2N + 1
PN−1(x). (3.13)

By Theorem 2.3, it is easy to derive the following theorem:

Theorem 3.1 For the coefficient matrix A in (3.7), the associated polynomial sequence sat-
isfies:

qi (x) = Pi (x), i = 0, 1, . . . , N , (3.14a)

qN+1(x) = N + 1

2N + 1
PN+1(x) + N

2N + 1
PN−1(x) −

N∑
k=0

ak Pk(x), (3.14b)
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where Pn(x) denotes the Legendre polynomial of degree n. If all the roots of qN+1(x) are
simple, then the characteristic polynomial of A is:

det(x IN+1 − A) = ρqN+1(x) = ρ

⎛
⎝ N + 1

2N + 1
PN+1(x) + N

2N + 1
PN−1(x) −

N∑
k=0

ak Pk(x)

⎞
⎠

(3.15)

with ρ = N !
(2N−1)!! . If further assuming all the roots of qN+1(x) are simple and real, then all

the eigenvalues of A are distinct and real. In this case, the moment closure system is strictly
hyperbolic. If further assuming all the roots of qN+1(x) are simple, real and lie in the interval
[−1, 1], then the moment closure system is strictly hyperbolic with physical characteristic
speeds.

Remark 3.2 From Theorem 2.4, the condition that all the roots of qN+1(x) are simple and
real, is also necessary for the moment closure system to be hyperbolic.

Next, we will derive the relation between the eigenvalues of A (or the roots of qN+1(x))
and the weights of the gradients in (3.4). In particular, we will represent {Nk}0≤k≤N in (3.4)
using the eigenvalues of A.

We denote the distinct real eigenvalues of A by {rk}0≤k≤N . Then, by Theorem 3.1, we
have

(x − r0)(x − r1) · · · (x − rN ) = ρ

⎛
⎝ N + 1

2N + 1
PN+1(x) + N

2N + 1
PN−1(x) −

N∑
k=0

ak Pk(x)

⎞
⎠ .

(3.16)

First, we expand the characteristic polynomial using a set of monomial basis:

det(x IN+1 − A) = c0 + c1x + · · · + cN x
N + xN+1. (3.17)

Using Vieta’s formulas, we relate the coefficients {ck}0≤k≤N to the sums and products of its
roots {rk}0≤k≤N :

r0 + r1 + · · · + rN−1 + rN = −cN ,

(r0r1 + r0r2 + · · · + r0rN ) + (r1r2 + r1r3 + · · · + r1rN ) + · · · + rN−1rN = cN−1,

...

r0r1 · · · rN−1rN = (−1)N+1c0,

(3.18)

or equivalently written as a compact formulation
∑

0≤i1<i2<···<ik≤N

(
�k

j=1ri j

)
= (−1)kcN+1−k, k = 1, 2, . . . , N + 1. (3.19)

Here the indices ik are sorted in strictly increasing order to ensure each product of k roots is
used exactly once.

Then,we establish the relationship between {ck}0≤k≤N to {ak}0≤k≤N . Using the generating
function of Legendre polynomials, one can express the monomial in terms of a summation of
Legendre polynomials [47]. We present the conclusion in the following lemma and include
the proof in the “Appendix”.
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Lemma 3.3 For any integer m ≥ 0, there holds the following equality:

xm =
�m/2�∑
k=0

F(m, k)Pm−2k(x), (3.20)

with F(m, k) = m!(2m−4k+1)
2kk!(2m−2k+1)!! . Here Pn(x) is the n-th order Legendre polynomial, and �·�

is the floor function which takes a real number x as input, and gives the greatest integer less
than or equal to x as output.

We rewrite (3.20) into an equivalent formulation:

xm =
m∑

k=0

bmk Pk(x), m ≥ 0, (3.21)

with

bmk =

⎧⎪⎨
⎪⎩

F

(
m,

1

2
(m − k)

)
, if m ≡ k (mod 2),

0, otherwise.

(3.22)

From this formula, we can expand any polynomial
∑n

i=0 ci x
i in terms of Legendre polyno-

mials:

n∑
i=0

ci x
i =

n∑
i=0

ci

(
i∑

k=0

bik Pk(x)

)
=

n∑
k=0

(
n∑

i=k

ci bik

)
Pk(x) =

n∑
k=0

αk Pk(x), (3.23)

with

αk =
n∑

i=k

ci bik . (3.24)

We apply the above relation to derive the relationship between {ck}0≤k≤N to {ak}0≤k≤N :

c0 + c1x + · · · + cN x
N + xN+1 = ρ

(
N + 1

2N + 1
PN+1(x) + N

2N + 1
PN−1(x) −

N∑
k=0

ak Pk(x)

)
,

(3.25)

and obtain

−ρak =
N+1∑
i=k

ci bik, k = 0, 1, . . . , N − 3, N − 2, N , (3.26a)

ρ(
N

2N + 1
− aN−1) =

N+1∑
i=N−1

ci bi,N−1, (3.26b)

ρ
N + 1

2N + 1
=

N+1∑
i=N+1

ci bi,N+1, (3.26c)

with cN+1 := 1. The last one (3.26c) is automatically satisfied since bN+1,N+1 = F(N +
1, 0) = (N+1)!(2N+3)

(2N+3)!! = (N+1)!
(2N+1)!! .
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Lastly, we rewrite (3.26a)–(3.26b) in terms of {Nk}0≤k≤N using the relation (3.8):

Nk = − 2N + 1

ρ(N + 1)

N+1∑
i=k

ci bik, k = 0, 1, . . . , N , (3.27)

with cN+1 := 1.
Now, together with (3.18) and (3.27), we have expressed {Nk}0≤k≤N using the eigenvalues

{rk}0≤k≤N .

4 Architectures and Training of the Neural Network

In this section, we provide the architectures and training of the proposed neural networks
that enforces the hyperbolicity of the closure system.

4.1 Architectures of the Neural Network

We start with the first neural network architecture. As shown in Fig. 1, this neural network
begins with a fully connected neural network denoted by Mθ : R

N+1 → R
N+1 with

the input being the lower order moments (m0,m1, . . . ,mN ) and the output denoted by
(z0, z1, . . . , zN ). Here θ denotes the collection of all the parameters to be trained in the
neural network. It is then followed by a component-wise hyperbolic tangent function to
enforce the boundness of the eigenvalues, i.e. ri = tanh(zi ) for i = 0, 1, . . . , N . Lastly,
two sublayers representing the Vieta’s formula (3.18) and a linear transformation (3.27) are
applied to produce the weights (N0,N1, . . . ,NN ) in the gradient based closure in (3.4) as
the final output. For the ML moment closure model resulted by this neural network in Fig. 1,
we have the following conclusion:

Theorem 4.1 The ML moment closure model (3.5) resulting from the neural network with
bounded eigenvalues shown in Fig. 1 is weakly hyperbolic. Moreover, it guarantees the phys-
ical characteristic speeds, i.e., the eigenvalues lie in the interval [−1, 1].

There is a small gap between the implementation of the neural network in Fig. 1 and
the theory presented in previous sections. From Theorem 2.4, all the eigenvalues being
distinct and real is a necessary and sufficient condition for the moment closure system to be
hyperbolic. However, we do not force all the eigenvalues to be distinct in the current neural
network architecture. Thus, this only guarantees that the resulting system is theoretically
weakly hyperbolic instead of the system being hyperbolic, and might cause an instability
issue.

In the numerical tests in Sect. 5, we observe that the ML closure model is numerically
stable for N ≥ 6. Meanwhile, for N ≤ 5, the model has some stability issues, and these
stability issues are associated with the case when two of the eigenvalues are within 10−3 of
each other on a range of grid points, see the detailed discussion in Fig. 7 in Sect. 5.

To fix this problem, we tried several approaches by enforcing that the eigenvalues are
distinct (or well separated). The first approach is to divide the interval [−1, 1] into (N + 1)
uniform subintervals with some threshold gap between two neighbouring subintervals: Ik =
[−1 + 2k

N+1 + γ,−1 + 2(k+1)
N+1 − γ ] for k = 0, . . . , N . Then, we put exactly one eigenvalue

into each subinterval, enforced by a scaled hyperbolic tangent function. Here γ ≥ 0 is a
small number to guarantee a minimum distance of any two eigenvalues. We take γ = 0
and 10−3 in the implementation. This approach is motivated by the fact that, in the PN
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closure, each subinterval contains exactly one eigenvalue. However, we find that, the neural
network results in large training errors in the training process, which are generally larger
than 14% with N = 3, 4, . . . , 10. In these tests, we fix the number of nodes to be 64 and the
number of layers to be 6. This indicates that the assumption of the uniform distribution of
the eigenvalues is too restrictive, so that the approximation power of the neural network is
not enough to produce an accurate closure. We will not focus on this neural network in the
afterwards.

The other approach is to replace the hyperbolic tangent layer in Fig. 1 with some other
postprocessing layers. As illustrated in Fig. 2, we first applied some positive function, κ , to
the outputs of the fully-connected neural network except for the first component:

z̃0 = z0, z̃i = κ(zi ), i = 1, . . . , N , (4.1)

Here κ = κ(x) ≥ γ > 0 is a strictly positive function taken as

κ(x) = ln(1 + ex ) + γ (4.2)

with γ = 0.1. Then, it is followed by a linear transformation:

ri =
i∑

k=0

z̃k, i = 0, . . . , N , (4.3)

which produces the eigenvalues of the closure system. Next, the Vieta’s formula and the
linear transformation are imposed as in Fig. 1. This approach can guarantee that the eigen-
values are distinct, i.e. r0 < r1 < · · · < rN , but may lose the boundness property of the
eigenvalues. Nevertheless, in the numerical simulations, we observe that the model has the
physical characteristic speeds for most of the time although this constrain is not enforced
explicitly, see the discussion in Fig. 6 in Sect. 5. For the ML moment closure model resulted
from this neural network in Fig. 2, we have the following conclusion:

Theorem 4.2 The ML moment closure model (3.5) resulted from the neural network with
distinct eigenvalues shown in Fig. 2 is strictly hyperbolic.

We remark that the the current neural network architectures could not guarantee (strongly)
hyperbolicity and the physical characteristic speeds simultaneously. We also tried another
approach by adding the hyperbolic tangent function after the roots ri for i = 0, . . . , N before
feeding into the Vieta’s formula in Fig. 2. The eigenvalues are thus bounded and also distinct
since tanh is a monotone increasing function with the range between -1 and 1. Theoretically,
this couldmake the eigenvalues bounded and also distinct.However,we observed numerically
that the resulted roots will not be well separated when they are away from zero (e.g. |ri | > 2)
and fall in the flat region of the hyperbolic tangent function. This makes the system weakly
hyperbolic and result in the instability.

We note that, in the neural network architecture shown in Fig. 1, the hyperbolic tangent
function could be also removed. In this case, the boundness of the eigenvalues could be
enforced by adding penalty in the loss function:

L = 1

Ndata

∑
j,n

∣∣∂xmtrue
N+1(x j , tn) − ∂xm

appx
N+1(x j , tn)

∣∣2 + λ

Ndata

∑
j,n

N∑
i=0

ReLU(r2i (x j , tn) − 1). (4.4)

Here ri (x j , tn) for i = 0, 1, . . . , N denotes the eigenvalues at (x j , tn), and λ > 0 is the
penalty parameter. For this approach, we did not find a set of hyperparameters to reach the
reasonable training error. Nevertheless, we will more fully explore this direction in our future
work.

123



Journal of Scientific Computing (2023) 94 :7 Page 13 of 27 7

4.2 Training of the Neural Network

For the training of the neural network, we take 1000 total epochs (the number of iterations in
the optimization process). We investigated two activation functions including the hyperbolic
tangent (tanh) function and Rectified Linear Unit (ReLU) function. The learning rate is set
to be 10−3 in the initial epoch and decays by 0.5 every 100 epochs. The L2 regularization is
applied with weight 10−7. The batch size is taken to be 1024. The training is implemented
within the PyTorch framework [39]. We use the same hyperparameters for the two neural
networks.

Following [23], in the training process, the loss function is taken to be:

L = 1

Ndata

∑
j,n

∣∣∂xmtrue
N+1(x j , tn) − ∂xm

appx
N+1(x j , tn)

∣∣2 . (4.5)

Here, ∂xmtrue
N+1(x j , tn) denotes the spatial derivative of (N + 1)-th order moment at x = x j

and t = tn computed from the kinetic solver and ∂xm
appx
N+1(x j , tn) comes from the evaluation

of the neural network using (3.4).
Following [23], the training data comes from numerically solving the RTE (3.1) using the

space-time discontinuous Galerkin (DG) method [11, 12] with a range of initial conditions
in the form of truncated Fourier series and different scattering and absorption coefficients
which are constants over the computational domain. We consider the unit interval [0, 1] in
the physical domain with periodic boundary conditions. The initial condition is taken to be
an isotropic distribution in the form of a truncated Fourier series:

f0(x, v) = a0 +
kmax∑
k=1

ak sin(2kπx + φk). (4.6)

Here, we take kmax = 10 in our dataset. For k ≥ 1, ak and φk are random variables sampled
from theuniformdistributions on [− 1

k , 1
k ] and [0, 2π ], respectively.We takea0 = c+∑kmax

k=1
1
k

with c a random variable sampled from the uniform distributions on [0, 1]. This guarantees
the positivity of the distribution function. Both σs and σa are constants over the domain
for each run. The scattering coefficient σs is sampled from a log-uniform distribution on
[0.1, 100]. The absorption coefficient σa are randomly sampled from [0, 10]. In the current
work, we train with 100 different initial data. For each initial data set, we run the numerical
solver up to t = 1. The other parameters are the same as in [23].

To evaluate the accuracy in the training process, we define the relative L2 error for the
gradient to be

E2 =
√√√√

∑
j,n(∂xm

true
N+1(x j , tn) − ∂xm

appx
N+1(x j , tn))

2

∑
j,n(∂xm

true
N+1(x j , tn))

2
. (4.7)

The depth and width of neural networks (i.e., the number of hidden layers and the number
of nodes in the hidden layers) are crucial hyperparameters in a neural network. Here, we
perform a grid search to find the optimal hyperparameters of the neural network including
the number of layers and the number of nodes in the first fully-connected neural networkMθ .
In particular, we take the number of layers to be {2, 3, . . . , 10} and the number of nodes to be
{16, 32, . . . , 256}. For the first neural network in Fig. 1, the relative L2 errors in the training
data with different depths and widths, and tanh and ReLU activation functions are shown in
Fig. 3. Here, we only show the cases with the number of moments to be N = 5, 7, 9, the

123



7 Page 14 of 27 Journal of Scientific Computing (2023) 94 :7

cases with N = 6, 8 are similar. With the ReLU activation function, the error decreases when
we increase the number of layers and nodes in hidden layers until it saturates, see Fig. 3b, d.
However, we observe a different phenomenonwith the hyperbolic tangent activation function.
When we increase the depth and width, the error decreases only when the network stay
relatively small widths 16, 32 and 64 in Fig. 3a and widths 16 and 32 in Fig. 3c. When the
neural networks get deeper, the error increases with width. This numerical observation is
similar to the well-known vanishing gradient problem. In our current setup, the problem is
probably caused by the strong nonlinearity of the Vieta’s formula after the fully connected
neural network, which stops the neural network from further training. The hyperbolic tangent
function, as the activation function, has gradients in the range of (0, 1), whichmakes it easy for
the neural network to become stuck in a localminimumdue to the vanishing gradient problem.
ReLU suffers less from the vanishing gradient problem than the hyperbolic tangent function,
because it only saturates in one direction, the one with negative inputs. Other solutions to
the vanishing gradient problem, such as residual neural networks (ResNet) [22] and batch
normalization [26], may also be applied here to achieve better performance. We will explore
this direction in our future work. Moreover, these tests indicate that taking number of layers
to be 6 and number of nodes to be 64 and ReLU activation function are good hyperparameters
for our neural network. As such these are the values used in all the numerical tests in Sect. 5
unless otherwise stated.

5 Numerical Tests

In this section, we show the performance of our ML closure model on a variety of bench-
mark tests, including problemswith constant scattering and absorption coefficients, Gaussian
source problems and two-material problems. The main focus of the tests is on the compari-
son of four moment closure models: (i) the symmetrizer based hyperbolic ML closure [24]
(termed as “hyperbolic (symmetrizer)”); (ii) the hyperbolic ML closure with bounded eigen-
values (termed as “hyperbolic (bound)”), see the neural network architechture in Fig. 1; (iii)
the hyperbolic ML closure with distinct eigenvalues (termed as “hyperbolic (distinct)”), see
the neural network architechture in Fig. 2; (iv) the classical PN closure [10].

In all the numerical examples, we take the physical domain to be the unit interval [0, 1]
and periodic boundary conditions are imposed. To numerically solve the moment closure
system, we apply the fifth-order finite difference WENO scheme [27] with a Lax–Friedrichs
flux splitting for the spatial discretization, and the third-order strong-stability-preserving
Runge-Kutta (RK) scheme [46] for the time discretization. We take the grid number in space
to be Nx = 256. The CFL condition is taken to be
t = 0.8
x/c with c being the maximum
eigenvalues in all the grid points.

Example 5.1 (constant scattering and absorption coefficients) The setup of this example is
the same as the data preparation. The scattering and absorption coefficients are taken to be
constants over the domain. The initial condition is taken to be a truncated Fourier series, see
the details in [23].

In Fig. 4, we show the numerical solutions ofm0 andm1 with sevenmoments in the closure
system (N = 6) in the optically thin regime (σs = σa = 1). It is observed that, at t = 0.5
and t = 1, all the hyperbolic ML moment closures agree well the RTE. As a comparison, the
PN closure has large deviations from the exact solution at both t = 0.5 and t = 1.

In Fig. 5, we display the log-log scatter plots of the relative L2 error versus the scattering
coefficient for N = 6 at t = 1. We observe that, all the hyperbolic ML closures have better
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(a)

(c) (d)

(e) (f)

(b)

Fig. 3 Relative L2 error in the training data with different depths and widths of the neural networks. Here,
we use the first neural network architecture in Fig. 1. The number of layers: 2, 3, . . . , 10; the number of nodes
in the hidden layers: 16, 32, . . . , 256. Left: hyperbolic tangent activation function; right: ReLU activation
function. The number of moments N = 5, 7, 9

accuracy than the PN closure.Moreover, in the optically thick regime, all the closures perform
well. It is also observed that the ML hyperbolic closure model with bounded eigenvalues
generally has better accuracy than the other two ML closures.

In Fig. 6a, we present the L2 errors as a function of time for the solutions of the three
hyperbolicMLmoment closure systems and the solution generated by theRTE in the optically
thin regime (σs = σa = 1). We observe that the three hyperbolic closures generate good
predictions in the long time simulation up to t = 10. Moreover, the eigenvalue based ML
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(a) (b)

(c) (d)

Fig. 4 Example 5.1: constant scattering and absorption coefficients, optically thin regime (σs = σa = 1),
N = 6, t = 0.5 and t = 1

(a) (b)

Fig. 5 Example 5.1: constant scattering and absorption coefficients, N = 6 and t = 1

hyperbolic closure models are more accurate than the symmetrizer based model in [24]. This
is probably due to the fact that there is only 4 degrees of freedom in [24]. In contrast, the
current eigenvalue based approach makes full use of all the degrees of freedom, which results
in better approximation results.

We also display the maximum eigenvalues of the three hyperbolic ML closure models at
all the grid points during the time evolution in Fig. 6b. It is observed that the eigenvalues are
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(a) (b)

Fig. 6 Example 5.1: constant scattering and absorption coefficients, N = 6

always real numbers, which validates the hyperbolicity feature of the closure models. More-
over, the ML closure with bounded eigenvalues always has physical characteristic speeds
bounded by 1. For the closure with distinct eigenvalues, it is interesting to see that the model
has the physical characteristic speeds for most of the time although this constrain is not
enforced explicitly. The largest eigenvalues of this model during the time evolution is 1.12,
which is slightly larger than 1. As a comparision, the symmetrizer based closure in [24] usu-
ally violates the physical characteristic speeds, which can be as large as 5.05. The physical
characteristic speed of the current ML closure model results in larger time step size in the
numerical simulations and thus less computational cost. Moreover, to determine the time
step size in the symmetrized based ML model [24] during the time evolution based on the
CFL condition, it is required to first compute the coefficient matrix for the closure models
and then compute the maximum eigenvalues, which results in additional computational cost.
Therefore, the current two ML closure models are better than the symmetrizer based model
in [24] in terms of the efficiency.

Next, we discuss the instability issue of the hyperbolic ML closure with bounded eigen-
values. The two eigenvalues get too close for small numbers of moments (N = 3, 4, 5),
which behaves as if the system is weakly hyperbolic. We simulate the ML closure model
with bounded eigenvalues with N = 3 and N = 5 in the optically thin regime (σs = σa = 1).
The numerical solutions blow up at t = 0.18 for N = 3 and t = 1.25 for N = 5, see Fig. 7b,
d for the L∞ norm of the numerical solutions during the time evolution. As a comparison, the
solution stays stable for N = 7, see Fig. 7f. To investigate this phenomenon in detail, in each
time step, we compute the eigenvalues at each grid point, and compute the number of grid
points with two eigenvalues which are closer than a given thresholds ε. The number of grid
points with close eigenvalues with different thresholds in the time evolution are presented in
Fig. 7a, c. From the figure, we observe that there are no grid points with close eigenvalues
in the beginning. As time evolves, more grid points with non-distinct eigenvalues appear for
N = 3 and N = 5. For N = 7, there only exists a couple of grid points with the thresholds
10−3 and 10−4 and no grid points with the thresholds 10−5 and 10−6. This does not affect
the numerical stability of the simulation.

We also observe numerical instability in the hyperbolic ML closure model with distinct
eigenvalues for some parameters. The model is numerically stable for N ≥ 6 but numerically
unstable for N = 3, 4, and 5 in the optically thin regime. We show the distributions of the
training data and the numerical solution during the time evolution of the ML closure model
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Example 5.1: constant scattering and absorption coefficients. Here, we use the first neural network
architecture in Fig. 1. The number of grid points with imaginary eigenvalues and L∞ norm of numerical
solutions during the time evolution in the optically thin regime (σs = σa = 1) with N = 3, 5, 7

with N = 3 and N = 6 in Fig. 8. At each time step, there is a curve composed of 256 points
and the plots represent the evolution of the closed curve where the color denotes the evolution
time. It can be seen for the N = 3 case, that as the numerical solutions is approaching the
steady state, it suddenly undergoes a dramatic change in the dynamics of the solution and
then proceeds to run out side of the range of the training data. This in contrast to the case
N = 6 which is plotted in Fig. 8b, which clearly shows relaxation to the steady state. In the
plots, the color bar represents the time of the solution.

To investigate the instability of the ML closure model with distinct eigenvalues further,
we check the linear stability of the system numerically. We denote the source term of the
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Fig. 8 Example 5.1: constant scattering and absorption coefficients, m2/m0 vs m1/m0 with N = 3 and
N = 6. Here, we use the second neural network architecture in Fig. 2. At each time step, there is a curve
composed of 256 points and the plots represent the evolution of the closed curve where the color denotes
the evolution time. For N = 3, as the numerical solutions is approaching the steady state, it suddenly has a
dramatic change in dynamics of the solution and then proceeds to run outside of the range of the training data.
This in contrast to the case N = 6 which is plotted, which clearly shows relaxation to the steady state. The
grey points denote the training data and the colorful points denote the numerical solutions solving from the
ML moment closure system

closure model in (3.5) by S = (−σam0,−(σs + σa)m1, . . . ,−(σs + σa)mN ). Then, the
Jacobian matrix of the source term is SU = diag(−σa,−(σs + σa), . . . ,−(σs + σa)). The
model is called linearly stable if all the eigenvalues of (iξ A + SU ) have non-positive real
part for any ξ ∈ R. Here, A is the coefficient matrix of the closure system given in (3.7)
and i is the imaginary unit. Linear stability is essential for the closure system to generate
stable results in long time simulations [49]. The symmetrizer based hyperbolic ML moment
closure model in [24] satisfies this stability condition.We test for linear stability numerically,
by taking ξ = −100,−99, . . . , 99, 100, and computing the eigenvalues of (iξ A + SU ) at
all grid points. The number of grid points with eigenvalues with positive real part and the
L∞-norm of m0 during the time evolution is shown in Fig. 9. It is observed that for N = 3
and 5, the solution blows up when the grid points with linear instability appear. This indicates
that the loss of linear stability probably results in the blow up of the numerical solutions.
It is also interesting to see that for N = 9, the model generates stable solution; however,
there also exists several grid points with linear instability when the time is around 0.7 and the
model returns to stability in the time afterwards. How to stabilize the closure system, while
maintaining training accuracy, is a topic to be investigated in the future.

Example 5.2 (Gaussian source problem) In this example, we investigate the RTE with the
initial condition to be a Gaussian distribution in the physical domain:

f0(x, v) = c1
(2πθ)1/2

exp

(
− (x − x0)2

2θ

)
+ c2. (5.1)

In this test, we take c1 = 0.5, c2 = 2.5, x0 = 0.5 and θ = 0.01. We note that this problem
is named the Gaussian source problem in the literature [14, 16].

In Fig. 10, we present the results obtained using various closure models. Here, we take
σs = 1 and σa = 0. We observe good agreement between the three ML closure models
and the kinetic model, while the PN model has large deviations from the kinetic model.
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(a) (b)

Fig. 9 Example 5.1: constant scattering and absorption coefficients

(a) (b)

Fig. 10 Example 5.2: Gaussian source problem, N = 6 and t = 1

These results show the good generalizability of our ML closure models. Moreover, the three
hyperbolic ML models have the same level of accuracy in this test.

Example 5.3 (two-material problem) The two-material problem models a domain with a
discontinuousmaterial cross section [31]. In our problem setup, there exist two discontinuities
0 < x1 < x2 < 1 in the domain, and σs and σa are piecewise constant functions:

σs(x) =
{

σs1, x1 < x < x2,

σs2, 0 ≤ x < x1 or x2 ≤ x < 1.

and

σa(x) =
{

σa1, x1 < x < x2,

σa2, 0 ≤ x < x1 or x2 ≤ x < 1.

Specifically, we take x1 = 0.3, x2 = 0.7, σs1 = 1, σs2 = 10 and σa1 = σa2 = 0. The
numerical results are shown in Fig. 11. The gray part is in the optically thin regime and the
other part is in the intermediate regime. We observe that our current closure model agrees
well with the kinetic solution over the whole domain at both t = 0.5 and t = 1. We note
that this is in contrast to the PN closure, which has large deviations from the kinetic solution
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(a) (b)

(c) (d)

Fig. 11 Example 5.3: two-material problem. Numerical solutions of m0 and m1 at t = 0.5 and t = 1 with
N = 6. The gray part in the middle is in the optically thin regime and the other part is in the intermediate
regime

in the optically thin portion of the domain, see Fig. 11. Moreover, the two eigenvalue based
hyperbolic closures perform better than the closure in [24] which has some overshoot near
the discontinuities, see Fig. 11d.

In Fig. 12, we numerically investigate the convergence of the ML closure model with
bounded eigenvalues to the kinetic model as the number of moments increases. We take the
number of moment to be N = 6, 8, 10, 12, 14, 16. In Table 1, we present the relative L2

errors of m0 and m1 for the same numerical example. We observe that the error between the
solution to the ML closure model and the solution to the kinetic equation becomes smaller
with an increasing number ofmoments. This numerically indicates that theML closuremodel
converges to the kinetic model as the number of moments increases. It is worth noting that
the saturation in convergence seen in Table 1 is of the same order as the training error in the
ML closure model.
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(a) (b)

Fig. 12 Example 5.3: two-material problem, convergence with respect to number of moments, the ML closure
model with bounded eigenvalues. Numerical solutions of m0 at t = 2 with N = 6, 8, 10, 12, 14, 16. The gray
part in the middle is in the optically thin regime and the other part is in the intermediate regime

Table 1 Example 5.3:
two-material problem,
convergence with respect to
number of moments, the ML
closure model with bounded
eigenvalues

N Relative L2 error of m0 Relative L2 error of m1

6 5.79e−4 7.84e−2

8 3.78e−4 5.69e−2

10 3.67e−4 2.93e−2

12 3.66e−4 3.64e−2

14 1.98e−4 2.94e−2

16 1.66e−4 2.21e−2

The relative L2 errors of the numerical solutions of m0 and m1 at t = 2
with N = 6, 8, 10, 12, 14, 16

6 Conclusion

In this paper, we propose a new method to enforce the hyperbolicity of a ML closure model.
Motivated by the observation that the coefficient matrix of the closure system is a lower
Hessenberg matrix, we relate its eigenvalues to the roots of an associated polynomial. We
design two new neural network architectures based on this relation. The ML closure model
resulting from the first neural network is weakly hyperbolic and guarantees the physical
characteristic speeds, i.e. the eigenvalues lie in the range of the interval [−1, 1]. The second
model is strictly hyperbolic, but does not guarantee the boundedness of the eigenvalues,
although in practice the eigenvalues lie nearly within the physical range. Having the physical
characteristic speeds saves substantial computational expenses when numerically solving the
closure system by allowing for a larger time step size compared to [24]. Several benchmark
tests including the Gaussian source problem and the two-material problem show the good
accuracy and generalizability of our hyperbolic ML closure model. Nevertheless, there exists
some numerical instability for the current model when a small number of moments are used.
We will try to fix this problem in the future work.
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Appendix A: Collections of Proofs

In this appendix,we collect some lemmaandproofs.We startwith a lemmawhich characterize
the eigenspace of unreduced lower Hessenberg matrix.

Lemma A.1 For an unreduced lower Hessenberg matrix H = (hi j )n×n, the geometric multi-
plicity of any eigenvalue λ is 1 and the corresponding eigenvector is (q0(λ), q1(λ), . . . , qn−1

(λ))T . Here {qi }0≤i≤n−1 is the associated polynomial sequence defined in (2.1).

Proof By Definition 2.1, we have that hi j = 0 for j > i + 1 and hi,i+1 �= 0 for i =
1, . . . , n−1. Let r = (r1, r2, . . . , rn) be an eigenvector associated with λ. We write Ar = λr
as an equivalent component-wise formulation:

i∑
j=1

hi j r j + hi,i+1ri+1 = λri , i = 1, . . . , n − 1, (A.1)

and

n∑
j=1

hnjr j = λrn . (A.2)

Here we used the fact that hi j = 0 for j > i + 1. Since hi,i+1 �= 0 for i = 1, . . . , n − 1,
(A.1) is equivalent to

ri+1 = 1

hi,i+1

⎛
⎝λri −

i∑
j=1

hi j r j

⎞
⎠ , i = 1, . . . , n − 1 (A.3)

From (A.3), we deduce that r1 �= 0, otherwise r2 = · · · = rn = 0. Moreover, ri for
i = 2, . . . , n are uniquely determined by r1. Therefore, the geometric multiplicity of λ is
1. Moreover, without loss of generality, we take r1 = 1. In this case, r is exactly the same
with (q0(λ), q1(λ), . . . , qn−1(λ))T . Here {qi }0≤i≤n−1 is the associated polynomial sequence
defined in (2.1). ��

Lemma A.2 Let H = (hi j )n×n be an unreduced lower Hessenberg matrix and {qi }0≤i≤n is
the associated polynomial sequence with H. If λ is an eigenvalue of H, then λ is a root of
qn.

Proof From Lemma A.1, we have the geometric multiplicity of λ is 1 and the corresponding
eigenvector qn−1(λ) = (q0(λ), q1(λ), . . . , qn−1(λ))T , i.e. Hqn−1(λ) = λqn−1(λ). Plugging
λ into (2.2), we immediately have qn(λ) = 0, i.e., λ is a root of qn . ��
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A.1: Proof of Theorem 2.4

Proof We start by proving that condition 1 and condition 2 are equivalent. First, it is easy
to see that condition 2 implies condition 1. We only need to prove that condition 1 implies
condition 2. Since A is real diagonalizable, all the eigenvalues of A are real.Moreover, for any
eigenvalue of A, the geometric multiplicity is equal to its algebraic multiplicity. By Lemma
A.1, the geometric multiplicity of any eigenvalue of an unreduced lower Hessenberg matrix
is 1. Therefore, any eigenvalue of A has algebraic multiplicity of 1, i.e. all the eigenvalues
of A are distinct.

Next, we prove that the equivalence of condition 2 and condition 3. It is easy to see that,
condition 3 implies condition 2 from Theorem 2.3, and condition 2 implies condition 3 from
Lemma A.2. This completes the proof. ��

A.2: Proof of Lemma 3.3

Proof We start from the definition of Legendre polynomials by the generating function:

1√
1 − 2t x + t2

=
∞∑
n=0

Pn(x)t
n . (A.4)

Introduce the variable s such that

1 − ts =
√
1 − 2t x + t2, (A.5)

which is equivalent to

x = 1 + t2 − (1 − ts)2

2t
= s + t

2
(1 − s2). (A.6)

Therefore, we have

∞∑
n=0

tn
∫ 1

−1
xm Pn(x)dx

(A.4)=
∫ 1

−1

xmdx√
1 − 2t x + t2

(A.6)=
∫ 1

−1

xm(1 − ts)ds√
1 − 2t x + t2

(A.5)- (A.6)=
∫ 1

−1

(
s + t

2
(1 − s2)

)m

ds. (A.7)

Define

am,n :=
∫ 1

−1
xm Pn(x)dx . (A.8)

By comparing the coefficients of tn on both sides of (A.7), we find that am,n = 0 if n > m
or m, n has different parity. For n = m − 2k for some integer k ≥ 0, we have

am,m−2k = 22k−m
(
m

2k

) ∫ 1

−1
s2k(1 − s2)m−2kds = 22k−m

(
m

2k

) ∫ 1

0
2s2k(1 − s2)m−2kds

(A.9)
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By introducing the variable τ = s2 or equivalently s = τ
1
2 , we have

am,m−2k = 22k−m
(
m

2k

) ∫ 1

0
2s2k(1 − s2)m−2kds

= 22k−m
(
m

2k

) ∫ 1

0
2τ k(1 − τ)m−2k 1

2
τ− 1

2 dτ

= 22k−m
(
m

2k

) ∫ 1

0
τ k−

1
2 (1 − τ)m−2kdτ

= 22k−m
(
m

2k

)
�(k + 1

2 )�(m − 2k + 1)

�(m − k + 3
2 )

= m!
2k−1k!(2m − 2k + 1)!!

(A.10)

where in the fourth equality we used the relation between the gamma function and the beta
function:

B(x, y) :=
∫ 1

0
t x−1(1 − t)y−1dt = �(x)�(y)

�(x + y)
, (A.11)

and in the last equality we used the properties of the gamma function: for any integer n ≥ 0

�(n) = (n − 1)!, �(n + 1

2
) = (2n − 1)!!

2n
√

π. (A.12)

Lastly, using the orthogonality relation
∫ 1
−1 Pm(x)Pn(x) = 2

2m+1δm,n , we have for any
integer m ≥ 0,

xm =
�m/2�∑
k=0

(
2m − 4k + 1

2

)
am,m−2k Pm−2k(x) =

�m/2�∑
k=0

m!(2m − 4k + 1)

2kk!(2m − 2k + 1)!! Pm−2k(x)

(A.13)

This completes the proof. ��
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