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Abstract 

Dynamic motion often controls selectivity in reactions featuring two consecutive potential-energy 

transition states. Here we report DFT-based direct dynamics trajectories and machine learning classification 

analysis for cyclopentadienone dimerization and a N2 extrusion reaction leading to semibullvalene. These 

reactions have consecutive transition states and there is dynamic selectivity that determines which of two 

possible C-C bonds is formed after the first transition state. For cyclopentadienone dimerization with a 

bispericyclic first transition state, machine learning analysis using transition-state based features provided 

>90% trajectory classification accuracy, but only using AdaBoost and random forest algorithms. Many 

other relatively sophisticated machine learning algorithms showed poor accuracy despite the obvious 

motion responsible for selectivity. Feature importance analysis confirmed that the sigmatropic 

rearrangement vibrational motion in the bispericyclic transition state provides prediction of which of the 

second C-C bonds is dynamically formed. For the reaction leading to semibullvalene, machine learning 

analysis provides solid accuracy for classifying trajectories and predicting which C-C bond is formed and 



which C-C bond is broken immediately after N2 ejection. Like the cyclopentadienone dimerization reaction, 

machine learning feature importance analysis showed that the sigmatropic rearrangement vibrational 

motion in the N2 extrusion transition state determines which C-C bond is formed and which is broken. 

Surprisingly, machine learning struggles to predict which trajectories undergo a subsequent [3,3] 

sigmatropic rearrangement process, which isomerizes equivalent forms of semibullvalene. 

 

Introduction 

In reactions with two consecutive transition states the potential energy surface has a relatively flat 

ridge region that divides two products, which is illustrated in Scheme 1a.1,2 This type of energy landscape 

became prominent after Caramella described the energy surfaces of cyclopentadiene3 and 

cyclopentadienone4 dimerization reactions, which revealed consecutive bispericyclic cycloaddition and 

sigmatropic rearrangement transition states. Subsequently, this general type of consecutive transition-state 

bifurcated energy landscape was proposed for a variety of addition, 5,6,7,8 substitution,9,10,11,12 pericyclic,13,14 

rearrangement,15,16,17,18,19,20,21 and radical22,23,24,25,26,27 reactions. Importantly, the selectivity between 

products (or intermediates) in these types of reactions is not easily determined with typical statistical 

theories,28,29 especially selectivity models that utilize independent transition states leading to each product. 

Instead, dynamic atomic motion is responsible for selectivity and direct/ab initio dynamics trajectories have 

emerged as the dominant tool to provide qualitative or even sometimes quantitative treatment for selectivity 

in these reactions.30,31,32 

 

 



 

 
Scheme 1. a) Qualitative energy landscape with consecutive transition states (TS). Reactants (R) transform 

into either product 1 (P1) or product 2 (P2) and selectivity between these products is determined by dynamic 

motion through and past TS1. b) Cyclopentadienone dimerization and N2 extrusion reactions with 

consecutive transition states examined in this work using quasiclassical direct dynamics trajectories and 

machine learning classification. c) Outline of Caramella’s consecutive bispericyclic cycloaddition (TS1) 

and [3,3] sigmatropic rearrangement (TS2) transition states for cyclopentadienone dimerization. The dotted 

arrows represent dynamic pathways after TS1 leading to one of the cycloadducts. d)  Outline of N2 extrusion 

(TS3) and [3,3] sigmatropic rearrangement (TS4) consecutive transition states. The dotted arrows represent 

dynamic pathways after TS3 leading to semibullvalene. 

 

Despite the growing number of organic reactions that display consecutive transition states and 

dynamic selectivity, the origin of selectivity is often not directly analyzed or only analyzed in a qualitative 

manner. There has been a recent emphasis on predicting dynamic reaction selectivity using only a few key 

points on an energy landscape or transition-state partial bond lengths.33,34 This general type of approach 

was outlined by Carpenter in 1992.35 More recently, Truhlar proposed a method that does not require 

propagation of trajectories.36 The general emphasis on qualitative analysis arises because quantitative 



analysis is complicated by the large amount of information contained in a large ensemble of trajectories 

propagated along a complex multi-dimensional energy landscape. 

 Machine learning provides one type of approach to quantitively analyze dynamics trajectories and 

the opportunity to reveal the origin of dynamic selectivity in reactions with consecutive transition states by 

identifying patterns of motion related to selectivity. Complete sampling often requires hundreds or 

thousands of trajectories to be propagated and therefore machine learning is a powerful general technique 

because it can handle large quantities of chemical reaction information in a straightforward manner, and 

many different algorithms are readily available.37,38 Throughout chemistry, machine learning has become 

prominently used as a sophisticated regression tool to predict properties,39 but its use for classification has 

been significantly less explored. Previously, we used machine learning to analyze quasiclassical direct 

dynamics trajectories for the thermal deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene,40 which was 

inspired by the previous work of Carpenter who examined this reaction using experiments, ab initio 

calculations, and dynamics trajectories based on a semiempirical potential-energy surface method.41,42 Our 

work showed that at the transition state machine learning could qualitatively, but not quantitatively, identify 

Carpenter’s proposal of methylene bridge out-of-plane bending as the origin of nonstatistical endo-exo 

product selectivity. More recently, we used machine learning to determine the origin of IRC versus non-

IRC motion in cyclopropyl radical ring opening, which revealed that there are two key vibrational modes, 

and that their directional combination provides correlation and prediction of the trajectory motion.43 

However, at the transition state only two machine learning models (random forest and logistic regression 

classifier) provided quantitative accuracy above 80% and several machine learning models were close to 

the baseline accuracy of 50%, which corresponds to random assignment of one of two outcomes. 

In this work we wanted to examine reactions where selectivity is likely only controlled by the 

motion of two competing bonds, which could potentially be identified through vibrational mode 

information. Specifically, we wanted to examine reactions with two consecutive transition states where the 

second transition state is a [3,3] sigmatropic rearrangement. Therefore, we decided to run quasiclassical 

density functional theory (DFT) direct (Born-Oppenheimer) dynamics trajectories and perform machine 



learning classification analysis on cyclopentadienone (1) dimerization and N2 extrusion from 3 that results 

in semibullvalene (Scheme 1b). These reactions were selected for analysis because previous computational 

studies revealed consecutive transition states with the second transition state corresponding to a [3,3] 

sigmatropic rearrangement process.4,44 In cyclopentadienone dimerization the dynamic selectivity 

determines which of two possible second C-C bonds is formed (Scheme 1c).45,46 In the N2 extrusion reaction 

dynamic selectivity controls which bicyclo C-C bond is fully formed and which C-C bond is fully broken 

(Scheme 1d).47 Another reason why we examined cyclopentadienone dimerization is that Singleton 

previously reported cyclopentadiene dimerization trajectories and found a straightforward correlation 

(about 85%) between the second vibrational mode of the transition-state structure and the trajectory 

outcome.45 

As will be presented, for cyclopentadienone dimerization, machine learning analysis using 

transition-state based features provided >90% trajectory classification accuracy using AdaBoost48 and 

random forest algorithms.49 However, and perhaps surprisingly, several other machine learning algorithms 

that are generally considered to be robust significantly struggled to provide trajectory classification 

accuracy higher than 60%, which is only slightly higher than random assignment. As expected, for 

cyclopentadienone trajectories, feature importance analysis revealed the expected transition-state [3,3] 

sigmatropic rearrangement directional vibrational motion as controlling selectivity. For the N2 extrusion 

reaction leading to semibullvalene, machine learning at the first transition state (TS3) provides high 

accuracy (>90%) for classifying trajectories and predicting which C-C bond is immediately formed. 

However, and surprisingly, machine learning struggles to predict the outcome of the [3,3] sigmatropic 

rearrangement process that takes place after the first C-C bond is formed, which isomerizes the equivalent 

forms of semibullvalene. Zero-point energy flow into the reaction coordinate was examined as a possible 

origin of this rearrangement and poor machine learning performance. Trajectories with 75% of the zero-

point energy showed nearly identical dynamic motion but trajectories with 50% of the zero-point energy 

showed less rearrangement. 

 



Results and Discussion 

Cycloadditions have become the most prominent example of reactions with two consecutive 

transition states. This was principally the result of Caramella’s foundational reports that described the 

consecutive relationship of the endo bispericyclic transition states and a [3,3] sigmatropic rearrangement 

transition states in cyclopentadiene and cyclopentadienone dimerization.3,4 Outlined in Scheme 1c, 

Caramella showed that the first transition state, TS1 (called bispericyclic), for dimerization of 

cyclopentadienone involves a symmetrical process with one advanced partial C-C bond and two lagging 

C-C bonds that are portrayed with orange and blue dashed lines. The [3,3] sigmatropic rearrangement 

transition state, TS2, has a related symmetrical structure with one formed C-C bond and similar blue and 

orange partial C-C bonds. In Caramella’s original report, for TS1, B3LYP/6-31G* gave partial bond 

lengths of 2.17 Å and 2.80 Å. Our M06-2X/6-31G**50 first-order saddle structure TS1 (<S2> = 0) has 

very similar distances of 2.11 Å and 2.72 Å (Figure 1). Caramella previously demonstrated that this endo 

bispericyclic transition state is lower in energy than exo and diradical transition states.4 Caramella also 

outlined that the consecutive transition states TS1 and TS2 result in a symmetrical potential energy 

surface with a ridge region as depicted in Scheme 1a.4 This has the result of atomic momenta likely 

inducing the reaction pathway to divert and fall off the ridge and form either C2-C6 (blue) or C4-C15 

(orange) prior to progressing to the [3,3] sigmatropic rearrangement transition state, and this is depicted 

by dotted reaction arrows in Scheme 1c. 

 



 

Figure 1. M06-2X/6-31G** transition-state structures and atomic labels. Distances reported in Å. 

 

Based on Caramella’s energy surface description that the endo bispericyclic transition state should 

dynamically lead to the cycloadduct product by going down the ridge before reaching the [3,3] sigmatropic 

rearrangement transition state, we calculated quasiclassical direct dynamics trajectories starting at TS1 and 

tracked C2-C6 versus C4-C15 bond formation. M06-2X/6-31G** trajectories were generated with local 

mode and thermal sampling at 298 K in Gaussian 16 using the BOMD method,51 which creates a kinetic 

energy and potential energy ensemble (distorted geometry) of TS1. Trajectories were propagated using the 

gradient and updated, but not fully calculated, Hessian at each step. Trajectories were propagated with an 

approximate timestep of 0.5 femtoseconds (fs) using the default predictor-corrector type integration 

algorithm. The chemically forward direction was followed for approximately 400 fs. Reverse trajectories 

were created by inversion of all mass-weighted atomic velocities. The reverse direction was followed until 

cyclopentadienones were separated by several Ångstroms. Approximately 20% of forward trajectories 

showed recrossing and return to separated cyclopentadienones. These trajectories were removed from our 

data set and not analyzed with machine learning methods. 

As expected, due to the symmetrical potential-energy surface we found the nearly 1:1 ratio of C2-

C6/blue versus C4-C15/orange bond formation in trajectories. Figure 2 shows snapshots of a 



representative trajectory from TS1 that rapidly leads to forming the cycloadduct in about 50 timesteps 

(about 25 fs). In this example trajectory, the C5-C10 has a distance of 2.09 Å and decreases to 1.90 Å and 

1.43 Å at 25 and 50 timesteps, respectively. At timestep 1, the motion favoring the C2-C6 bond (2.42 Å) 

and not forming the C4-C15 (2.92 Å) bond is already evident, which is a function of the atomic motion 

passing through the transition-state region. Progression to timestep 25 shows very little change in the C2-

C6 and C4-C15 indicating most of the initial motion is formation of the leading C-C bond and then after 

timestep 25 to timestep 50 there is decrease in the C2-C6 distance while the C4-C15 distance is relatively 

unaffected. 

 

 

Figure 2. Example trajectory beginning at TS1 and leading to cycloadduct 2 by formation of the C2-C6 

bond. 

 

Figure 3 plots trajectory steps versus C-C bond distance for 336 trajectories propagated from 

TS1. Blue color coding corresponds to trajectories that fully form the C2-C6 bond (170 total trajectories) 

and orange color coding refers to trajectories that fully form the C4-C15 (166 total trajectories). The top 

plot in Figure 2 shows that in all trajectories the C5-C10 bond is fully formed by about 25 fs (50 steps) 

after TS1. The middle and bottom plots show that the lagging C2-C6 or C4-C15 bond is formed as early 

as 25 fs after the transition state or as late as about 100 fs after the transition state with average being 

about 60 fs. On average, at 298 K, there is about 35 fs between formation of the first and second C-C 

bonds. This time gap between leading and lagging bonds is in the vicinity to the time gap for 



cyclopentadiene dimerization.46 While this time gap is larger than in highly synchronous cycloaddition 

reactions, it is likely an insufficient amount of time to provide significant intramolecular vibrational 

energy redistribution52 to generate a sustained diradical or zwitterionic intermediate. 

 

 



 

Figure 3. Top: Plot of trajectory steps versus the C5-C10 distance. Middle: Plot of trajectory steps versus 

the C2-C6 distance. Bottom: Plot of trajectory steps versus the C4-C15 distance. Blue trajectories are 

classified as forming the C2-C6 bond and orange trajectories are classified as forming the C4-C15 bond. 

Trajectory steps are approximately 0.5 fs. Distances plotted in Å. 

 

With the generation and classification of trajectories as either forming the C2-C6/blue or C4-

C15/orange bond we then extracted transition-state features for machine learning analysis. The features 

were chosen based on fundamental physical differences between individual trajectories. We extracted 

about 100 transition-state features that include vibrational mode quanta, mass-weighted vibrational mode 

atomic displacements, mass-weighted atomic velocities, geometry distances, angles, and dihedral angles. 

For each machine learning model created, we used an equal number of C2-C6 versus C4-C15 bond 

forming trajectories (i.e., we randomly left out four C2-C6 bond forming trajectories) and similar to our 

previous approach,40,43 we used the Scikit-Learn53,54 Python library to set up and train classifiers with a 

10-fold cross validation to determine the classification accuracy of each machine learning model. This 

was done by dividing the sampled data set into 10-equally sized subsets, training the model on 9 subsets, 

and then evaluating the predictive accuracy using the left-out subset. This analysis was performed 10 

times with a different subset withheld in each instance. For training, trajectory classification labels were 

based on geometry analysis described above. Representative source code illustrating the creation, 

training, and use of classifiers can be found in the Supporting Information (SI). The reported accuracy of 



each machine learning model is the mean value of all iterations. Because there is binary classification, 

random assignment of trajectories would give 50% accuracy. 

There are several types of supervised machine learning algorithms implemented in the scikit-learn 

Python library. Broadly, a supervised machine learning algorithm uses labeled data during the training 

process which then allows a model-based prediction for unlabeled data. Within the tent of supervised 

classification methods there are linear models, kernel ridge regression, support vector machines, 

stochastic gradient descent, nearest neighbors, Gaussian processes, and neutral network models. Because 

it is difficult to know which algorithms will perform best for a specific chemical system, we examined 

several of these algorithms. Details of the algorithms can be found in References 53 and 54. For the best 

performing adaptive boosting and random forest models, which will be discussed later, we used 

GridSearchCV to optimize the features. GridSearch is an exhaustive search of parameter combinations, 

selecting the optimal parameters using cross-validation scores. For random forest we optimized the 

number of estimators, criterion, max_depth, and max features. For adaptive boosting we examined 

different base estimators, including a random forest model as the base estimator, number of estimators, 

and learning rate. Typically GridSearchCV was used several times, each time shrinking the boundaries of 

the parameter grid to narrow the parameters to specific values and this was done until no more model 

improvement was found. 

Because of Caramella’s potential-energy surface description,4 Singleton’s previous report on the 

dynamics of cyclopentadiene dimerization,45 and the visualization of a few representative trajectories (see 

Figure 2), it seemed likely that for cyclopentadienone dimerization C2-C6 versus C4-C15 bond formation 

should be heavily influenced by the [3,3] rearrangement process and machine learning models should be 

able to provide high accuracy classification. We examined the accuracy for predicting whether C2-C6 or 

C4-C15 is formed in each trajectory based on transition-state features using eight supervised classification 

algorithms (Figure 4). To our surprise, despite the relatively straightforward motion of these trajectories, 

several machine learning methods that are typically robust and effective struggled to forecast 

classification based on transition-state features. For example, logistic regression that predicts the target 



variable probability using binary classification only showed 66% accuracy with a baseline random 

assignment accuracy being 50%. Similarly, a support-vector machine method, which is typically useful 

for high dimensional problems,53 showed only 60% accuracy. While logistic regression and support-

vector machine methods showed significant inaccuracy for classification, an unoptimized random forest 

model gave 84% accuracy and an optimized random forest model gave 88% accuracy. Even better, a 

hyperparameter optimized adaptive boosting method resulted in a model with 91% accuracy. For this 

adaptive boosting algorithm, using only 200 rather than 332 trajectories in the dataset only resulted in 

accuracy decreasing by only a few percent, which suggests that this number of trajectories was sufficient 

to give a saturated result. Overall, ensemble learning methods outperform other types of machine learning 

methods. 

 

Figure 4. Plot of cyclopentadienone dimerization trajectory classification accuracy with several popular 

machine learning algorithms. The accuracy for each machine learning model is the mean accuracy of 10 

iterations where the accuracy is defined as the number of correct predictions divided by the total number of 

predictions. Red bars represent a 10-fold cross validation 95% confidence interval. GPC = gaussian process 

classification, KNN = K-nearest neighbor, MLP = Multilayer perceptron, SVM = support vector machine, 

SGD = stochastic gradient descent, LogR = logistic regression, Ada RF = adaptive boosting combined with 

random forest, Ada = adaptive boosting, RF Opt = hyperparameter optimized random forest, Ada optim = 

hyperparameter optimized adaptive boosting. 

 



This relatively high accuracy for adaptive boosting classification is important because it provides 

the ability to analyze the importance of physical features in the model and provide the origin of dynamic 

selectivity. The top of Figure 5 plots the 13 most important features found in the adaptive boosting model. 

As expected based on the example trajectory displayed in Figure 2 and Singleton’s previous analysis of 

cyclopentadiene dimerization,45 this analysis revealed that the two most important features correspond to 

the mass-weighted displacement and the mass-weighted velocities for the transition-state structure normal 

vibration mode 2. Vibrational mode zero-point and thermal energies are separated into potential and 

kinetic energies during the sampling process. Normal mode 1 is the negative vibrational frequency 

corresponding to the reaction coordinate. Mode 2 is the 74 cm-1 vibrational frequency that corresponds to 

the asymmetric rocking motion that develops into the subsequent negative vibrational mode of the [3,3]-

sigmatropic transition state TS2. Figure 6 illustrates TS1 vibrational mode 2 motion and negative and 

positive coordinate displacement. 

 

 

 

 

 

 



 

 

 
Figure 5. Cyclopentadienone dimerization trajectory classification analysis. Top: Weighted relative 

feature importance. The mode 2 mass-weighted displacement feature corresponds to the first positive 

transition-state normal mode vibration. [1, 6], [4, 18], [2, 14], and [1, 15] correspond to distance features. 

[1, 5, 10] and [5, 10, 18] are angle features. [18, 10, 5, 4] is a dihedral angle feature. Velocity y2 is the y 

component of the velocity for atom 2. Atom numbers are given in Figure 1. Middle: Plot of trajectory 

density versus the trajectory value for mode 2 mass-weighted displacement (MWD) and plot of trajectory 

density versus the trajectory value for mode 2 mass-weighted velocities (MWV). Bottom: Plot of mode 2 

mass-weighted displacement values versus mode 2 mass-weighted velocity values. Blue corresponds to 

trajectories that form the C2-C6 bond and orange corresponds to trajectories that form the C4-C15 bond. 
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Figure 6. Graphical depiction of motion for vibrational mode 2. 

 

The next seven most important features correspond to geometric distances, angles, and dihedral 

angles. However, their relative importance to the model is much smaller than mode 2 features. Features 

10-13 while non-zero are dramatically smaller than the first seven features. While the importance of mode 

2 may be considered obvious because this reaction potential-energy surface has been previously well 

described by Caramella,4 this analysis demonstrates that machine learning can identify physical features 

in the transition state that control dynamic bond forming selectivity. It is interesting to highlight that in 

cyclopentadienone trajectories there are four possible combinations of vibrational mode 2 displacement 

and vibrational mode 2 velocities creating four different vibrational value combinations and machine 

learning handles these dependent features. The middle of Figure 5 plots the density of trajectories with 

corresponding mode 2 displacement and velocity values. The bottom of Figure 5 plots mode 2 mass-

weighted displacement values versus mode 2 mass-weighted velocity values. These plots qualitatively 

show that when both the displacement and velocities are negative the C2-C6 bond is formed and when the 

displacement and velocities are both positive the C4-C15 bond is formed. In contrast, when the 

displacements and velocities have opposite signs there is overlap of the features, and it is likely that this is 

where the adaptive boosting machine learning model provides some inaccurate predictions.  

Because several trajectories showed overlap when the mass-weighted displacement values and 

mass-weighted velocities were plotted we analyzed the trajectories that are most difficult to classify. 

Therefore, we ran the adaptive boosting model 240 times and identified all trajectories that were correctly 



classified less than 48 times out of 240 times. Each model has different subgroups of training and testing 

during the cross-validation process. Figure 7 plots the mode 2 mass-weighted displacement values and 

density for the mode 2 mass-weighted velocities for these incorrectly forecasted trajectories. In accord 

with our speculation, the inaccurately predicted trajectories show values that heavily overlap. For 

example, comparison of the right-hand plot of Figure 7 with mass-weighted velocities shows orange and 

blue colored values that are heavily overlaid, and this contrasts with the plot in the middle of Figure 5 

where there is clear separation between blue and orange values. 

 

  

Figure 7. Left: Plot of mode 2 mass-weighted displacement values for or trajectories that were correctly 

forecasted less than 20% of the time. Right: Plot of mass-weighted velocity values for trajectories that 

were correctly forecasted less than 20% of the time. Blue corresponds to trajectories that form the C2-C6 

bond and orange corresponds to trajectories that form the C4-C15 bond. MWD = Mass-weighted 

displacement. MWV = Mass-weighted velocities.  

 

With the success of classifying and understanding the cyclopentadienone dimerization reaction, 

we wanted to examine another reaction with consecutive transition states where the second transition state 

also invovles a [3,3] sigmatropic rearrangement. Therefore, we examined N2 extrusion from 3 that results 

in semibullvalene. Based on Sauer’s synthesis of semibullvalenes,55 Birney examined the energy 

landscape for N2 extrusion converting 3 to 4 (Scheme 1b).44 In this work, Birney demonstrated with 

B3LYP DFT calculations that TS3 (Scheme 1d) leads to a ridge region and the [3,3] sigmatropic 



rearrangement transition state TS4.44 Inspection of TS3 indicates that both C1-C2 and C4-C5 bonds, 

green and purples bonds shown in Scheme 1d, are significantly stretched and depending on which 

direction a trajectory will follow will lead to either formation of C1-C2 and complete cleavage of C4-C5 

or formation of C4-C5 and complete cleavage of C1-C2. Datta later used trajectories to confirm this 

dynamic bond control and to analyze the lifetime of the transition-state zone and possible heavy atom 13C 

kinetic isotope effects.47 It was found that the C-N bonds were broken within about 15 fs and product 4 

could be identified on average shortly after 100 fs. 

For this N2 extrusion reaction, starting with a TS3 ensemble created using the same methodology 

as the cyclopentadienone dimerization trajectories, we calculated more than 800 reactive and non-

recrossing trajectories, but only 643 were used for machine learning analysis (see below). For all 

trajectories, Figure 8 plots the C1-C2 distance versus trajectory steps starting from the transition state. 

This plot shows the expected separation of the two possible semibullvalenes formed at 125 steps after the 

transition state. We classified trajectories as either C1-C2 forming/green or C4-C5 forming/purple at 125 

steps (about 63 fs) This classification was done by determining if the C1-C2 distance is less than 1.7 Å 

and the C4-C5 greater than 2.5 Å. Figure 8 also shows the [3,3] rearrangement process that occurs 

between 150-300 steps (crossover of purple and green lines) after TS3 and after the first semibullvalene 

structure is formed, which is likely due to the low barrier for rearrangement combined with a lack of 

significant internal vibrational energy redistribution. 



 

Figure 8. Plot of trajectory steps versus the C1-C2 distance (in Å) starting at TS3 and leading to 

semibullvalene. Trajectories are colored green if the C1-C2 distance is less than 2.2 Å at step 125. 

Trajectories are colored purple if the C1-C2 distance is greater than 2.2 Å at step 125. 

 

In the machine learning analysis, we used 303 C1-C2 bond-forming and 340 C4-C5 bond-

forming trajectories, which provides a total of 643 analyzed trajectories.  We did not include trajectories 

where at step 125 the structure showed the C1-C2 distance to be greater than 1.7 Å and the C4-C5 

distance to be less than 2.5 Å, which structures do not provide definitive classification at this trajectory 

step and still in the process of forming a definitive semibullvalene structure or could be considered a 

short-lived diradical/zwitterionic intermediate. Similar to the cyclopentadienone dimerization analysis we 

used a 10-fold cross validation strategy to determine the classification accuracy. The top of Figure 9 plots 

the classification accuracy for these semibullvalene forming trajectories. Several models gave between 

88%-95% accuracy and like the cyclopentadienone dimerization reaction (see Figure 4), adaptive 

boosting and random forest type models performed best. As expected, using velocity and geometry 

features at 50 steps after the transition state (no vibrational mode features) improves accuracy well above 

90%. 
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Figure 9. Top: Plot of N2 extrusion reaction trajectory classification accuracy with several popular machine 

learning algorithms. The accuracy for each machine learning model is the mean accuracy of 10 iterations 

where the accuracy is defined as the number of correct predictions divided by the total number of 

predictions. Red bars represent a 10-fold cross validation 95% confidence interval. GPC = gaussian process 

classification, LogR = logistic regression, KNN = K-nearest neighbor, MLP = Multilayer perceptron, SGD 

= stochastic gradient descent, SVM = support vector machine, Ada = adaptive boosting, RF = random 

forest, Ada RF = adaptive boosting combined with random forest, Ada optim = hyperparameter optimized 

adaptive boosting, RF Opt = hyperparameter optimized random forest. Middle: Weighted relative feature 

importance for the N2 extrusion reaction. The mode 7 mass-weighted displacement feature corresponds to 

the sixth positive transition-state normal mode vibration. [4, 5] corresponds to a distance feature between 

carbons 4 and 5. [2, 11, 1] is an angle feature. Bottom: Graphical depiction of motion for vibrational mode 

7. 

 

  

Using the optimized adaptive boosting model, we analyzed the feature importance of the 

trajectories at the transition state. The middle of Figure 9 displays the top seven features. Mode 7 

velocities is significantly more important than the other features. The bottom Figure 7 shows the normal 

mode 7 displacement. This normal mode displacement involves [3,3] sigmatropic rearrangement type 

motion that is very similar to mode 2 in the cyclopentadienone dimerization transition state. Again, this 

demonstrates that machine learning can identify chemically meaningful motion that determines and 

predicts the outcome of trajectories. 

 This semibullvalene reaction presents a challenge for machine learning classification that the 

cyclopentadienone dimerization reaction did not. As noted above, after semibullvalene is formed from 

TS3 many trajectories undergo a [3,3] sigmatropric rearrangement, which isomerizes the semibullvalene 

and is shown by the crossover of green and lines in Figure 8. We wanted to determine if machine learning 

could accurately classify the outcome of both semibullvalene formation and subsequent [3,3] sigmatropic 

rearrangement using TS3 features. Therefore, using classification at step 300 step rather than step 125 we 

examined the performance of machine learning models. Surprisingly, all machine learning models 

resulted in severely poor performance with no models giving classification prediction better than 60%. 

Because of this very poor prediction using transition-state features for classification at step 300 we 

extracted features at step 200, which is just prior to the [3,3] sigmatropic rearrangement process. In this 

analysis the machine learning models all showed revival of performance. For example, optimized random 



forest gave 85% prediction and the optimized adaptive boosting model gave 88% accuracy. Overall, this 

indicates that machine learning is effective for classification, but only when the features used are close 

enough in time to the desired structure prediction. 

 It is possible that machine learning struggles to predict the outcome of the [3,3] sigmatropic 

rearrangement process because during the trajectory zero-point energy flows into the reaction coordinate. 

Doubleday demonstrated this type of zero-point energy leakage in the Bergman cyclization reaction 

where an endothermic diradical intermediate undergoes recrossing of a relatively large energy barrier.56 

To test if zero-point energy leakage into the semibullvalene intermediate is the origin of the isomerization 

process between 150-300 steps we carried out trajectories compare a variable amount of total zero-point 

energy but retaining the same reaction coordinate velocity, which is similar to how Doubleday examined 

this issue in the Bergman cyclization.56 Figure 10 plots the trajectories starting at TS3 with 100%, 75% 

and 50% of each vibrational mode zero-point energy. The trajectories with 75% of zero-point energy have 

motion and rearrangement very similar to the trajectories with 100% zero-point energy. Trajectories with 

only 50% of the zero-point energy still show rearrangement, but the number of trajectories that undergoes 

this process is dampened and therefore this could be in part the reason for poor machine learning 

performance but unlikely the only cause. 

 

 

 

 



 

 

 



Figure 10. Plot of same 20 trajectories starting at TS3 and leading to semibullvalene. Plots show 

trajectory steps versus the C1-C2 distance (in Å). Top: Trajectories with 100% zero-point energy.  

Middle: Trajectories with 75% of zero-point energy. Bottom: Trajectories with 50% of zero-point energy. 

Trajectories are colored green if the C1-C2 distance is less than 2.2 Å at step 125. Trajectories are colored 

purple if the C1-C2 distance is greater than 2.2 Å at step 125. 

 

Conclusions 

This work demonstrated that machine learning analysis of transition-state features provides a 

platform to predict the outcome of quasiclassical trajectories for reactions featuring two sequential 

transition states. This analysis was performed for cyclopentadienone dimerization and a N2 extrusion 

reaction forming semibullvalene where dynamic selectivity determines which of two possible C-C bonds 

is formed. For cyclopentadienone dimerization, only a few specific machine learning algorithms provided 

>90% trajectory classification accuracy (AdaBoost and random forest type algorithms). In our opinion it is 

surprising that several other generally reliable and robust machine learning algorithms showed less than 

60% classification accuracy (50% is the floor). This is especially surprising since AdaBoost transition-state 

feature analysis revealed the expected [3,3] sigmatropic rearrangement vibrational mode velocity and 

displacement features as providing straightforward correlation for classification. For the N2 extrusion 

reaction leading to semibullvalene, again, only a few machine learning algorithms provided reasonable 

classification accuracy using TS3 transition state features. Like the cyclopentadienone dimerization 

reaction, the [3,3] sigmatropic rearrangement vibrational motion correlates/determines trajectory outcomes. 

Different than the cyclopentadienone dimerization reaction, machine learning cannot easily predict the 

outcome of the subsequent [3,3] sigmatropic rearrangement process that occurs after initial semibullvalene 

formation. 

 

Supplementary Information  

Initial mass-weighted velocities for classified trajectories. 

Data Availability  



Data (Jupyter notebooks and data sets) available on request from the authors. 
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