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Abstract
In this paper we present a construction of interpolatory Hermite multiwavelets for
functions that take values in nonlinear geometries such as Riemannian manifolds
or Lie groups. We rely on the strong connection between wavelets and subdivision
schemes to define a prediction-correction approach based on Hermite subdivision
schemes that operate on manifold-valued data. The main result concerns the decay of
the wavelet coefficients: We show that our manifold-valued construction essentially
admits the same coefficient decay as linear Hermite wavelets, which also generalizes
results on manifold-valued scalar wavelets.

Keywords Interpolatory hermite wavelets · Subdivision schemes ·
Coefficient decay · Manifold-valued data

Mathematical Subject Classification (2010) 65T60 · 65D15 · 41A25 · 53A99

Communicated by: Holger Rauhut

B Caroline Moosmüller
cmoosm@unc.edu

Mariantonia Cotronei
mariantonia.cotronei@unirc.it

Tomas Sauer
tomas.sauer@uni-passau.de

Nada Sissouno
sissouno@ma.tum.de

1 DIIES, Università Mediterranea di Reggio Calabria, Via Graziella loc. Feo di Vito, Reggio
Calabria 89122, Italy

2 Department of Mathematics, University of North Carolina at Chapel Hill, 120 E Cameron
Avenue, CB #3250, Chapel Hill, NC 27599, USA

3 Lehrstuhl für Mathematik mit Schwerpunkt Digitale Signalverarbeitung & FORWISS,
Universität Passau, Innstr. 43, Passau 94032, Germany

4 Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, Garching 85748,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-023-10042-2&domain=pdf
http://orcid.org/0000-0002-7728-0261


M. Cotronei et al.

1 Introduction

Wavelets are one of the most important tools for the analysis of signals and images,
as they allow to study local properties of functions at different resolutions. In the last
decades a lot of different types of one or multidimensional wavelets as well as their
properties have been studied; see [9, 29] for an overview.

Over the last few years there has been a growing interest in the analysis of manifold-
valued data, such as data lying in Riemannian manifolds or Lie groups. Many of such
data may typically be collected from a variety of digital sensors and include, as exam-
ples, time series of orientations or rigidmotions,measurements of deformations/strains
in material science, color image data relying on representations different from RGB,
distance or covariance matrices, etc. Wavelets tailored to manifold-valued data turn
out to be very promising tools to process (for example, for compression or denoising
reasons) or interpret this type of data. A (non-exhaustive) list of possible applications
can be found in [39].

The literature on wavelet transforms for functions that take values in nonlinear
geometries is not as exhaustive as in the linear case. In the manifold setting, the aim
is to construct processes which are intrinsic to the underlying geometry, for example,
by preserving invariances with respect to certain transformation groups.

The idea of formalizing a wavelet framework for geometric data goes back to
[39], and has led to a series of results concerning convergence and smoothness of
subdivision schemes, starting with the work of [42, 43], the coefficient decay for
interpolatory wavelets [18], and the definability and stability of multiscale transforms
[16, 19].

In this paper, we aim at extending this line of research by defining and analyz-
ingmultiwavelets for manifold-valued data. Linear multiwavelets are a generalization
of classical (scalar) wavelets and are obtained by allowing several functions in the
construction of multiresolution analyses. They are based on a multi-scaling function
that satisfies a vector refinement equationwith matrix-valued rather than scalar coeffi-
cients. Multiwavelets can have advantageous properties, for example, for constructing
bases with short support and high approximation [28].

This paper focuses on multiwavelets of Hermite-type, meaning that the multi-
scaling functions satisfy Hermite conditions [6–8, 38]. Such wavelet systems find
applications in contexts where Hermite data need to be processed, typically leading
to more accurate representations than in the standard point-value case.

In particular, starting from an interpolatory Hermite subdivision scheme reproduc-
ing elements in a given space, for example, the space of polynomials or exponential
functions, it is always possible to realize a biorthogonal wavelet system, where the
associated wavelet operator possesses the property of “cancelling” those elements [8].
This is the usually required vanishing moment property assuring good compression
capabilities to the wavelet system.

We use the mentioned tight connection between subdivision schemes and wavelets
to obtain manifold-valued Hermite wavelet schemes, using the construction presented
in [32, 33]. Our construction works in a similar way as presented in [18, 19], with the
difference that we incorporate derivative information, so the data consist not only of
manifold locations, but also of velocity vectors.
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Hermite multiwavelets for manifold-valued data

The main result of this paper is a wavelet coefficient decay property of such
manifold-valued wavelets, which mimics the linear case [7] and can be considered
as an extension of [18] to Hermite-type interpolatory wavelets. The crucial parts of
this work are the transfer of the symbol-based theory of [8] to an operator framework,
and the interpretation of the difference of Hermite points as elements of a fiber of
T M ⊕ T M , where T M is the tangent bundle of a manifold M .

The paper is organized as follows. In Sections2 and 3 we introduce the linear tools
necessary to construct Hermite-type wavelets, mainly focusing on Hermite subdivi-
sion schemes. Section4 introduces linear Hermite multiwavelets based on [8]. We
reinterpret their constructions in terms of operators rather than symbols, highlight-
ing the similarities with the scalar multiscale transforms of [19]. Section5 introduces
our Hermite prediction-correction scheme for manifold-valued data, which is a direct
generalization of [8] and makes use of natural tools in nonlinear geometries such as
the exponential map and the parallel transport operator. In this section we also prove
that the wavelet coefficients at level n decay as 2−2n for dense enough input data,
showing that manifold-valued Hermite wavelets have similar properties as their linear
counterparts [7].

2 Preliminaries

In this paper we are concerned with wavelets for functions f : R → M , where
M is a manifold. The main examples of manifolds we consider are surfaces in R

m

and Lie groups. To construct wavelets for manifold-valued functions, we also include
information about the first derivatives f ′.

In the linear version of this problem, the data are of the form ( f (x), f ′(x))T ∈
R
m ×R

m for x ∈ R. To simplify notation, we denote by V = R
m , so that the data lies

in V 2. Throughout this text, m always denotes the dimension of V .
Elements in V 2 are denoted by bold lower case letters p. We are also concerned

with L(V )2×2, where L(V ) is the space of all linear functions V → V . Elements
of L(V )2×2 are denoted by bold upper case letters A. The space of all vector-valued
sequences Z → V 2 is denoted by �(Z, V 2). Elements of �(Z, V 2) are again denoted
by bold lower case letters p = ( p j : j ∈ Z). We also consider the matrix-valued
sequence space �(Z, L(V )2×2). Elements of this space are again denoted by bold
upper case letters A = (A j : j ∈ Z).

We use infinity-norms on V , V 2, L(V ) and L(V )2×2:

| p|∞ = max
i=1,...,m

| pi |, p ∈ V = R
m,

∣
∣
∣
∣

(

p
v

)∣
∣
∣
∣∞

= max{| p|∞, |v|∞},
(

p
v

)

∈ V 2,

|a|∞ = max
p∈V ,| p|∞=1

|a( p)|∞, a ∈ L(V ),

|A|∞ = max
i, j=0,1

|ai j |∞, A =
(

a00 a01
a10 a11

)

∈ L(V )2×2.
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Based on these infinity-norms, we introduce norms on �(Z, V 2) and �(Z, L(V )2×2):

‖ p‖∞ = sup
j∈Z

| p j |∞ (1)

‖A‖∞ = sup
j∈Z

|A j |∞.

The space consisting only of bounded sequences with respect to the norms (1) are
denoted by �∞(Z, V 2) and �∞(Z, L(V )2×2). We further consider �0(Z, L(V )2×2),
which is the space of finitely supported sequences in �(Z, L(V )2×2).

By C(R, V )we denote the space of continuous functionsR → V , while Cu(R, V )

denotes the space of uniformly continuous and bounded functions.We further consider
the space of continuously differentiable functions C1(R, V ) and the space C1

u(R, V )

of functions f ∈ C1(R, V ) with f ′ ∈ Cu(R, V ).
The decomposition and reconstruction of data using filter banks is closely related

to wavelets and subdivision schemes. A detailed discussion of the connection of filter
banks and wavelets, especially in the setting of biorthogonal wavelets that we analyze,
can be found in [40, 41].

We consider filters or masks A[n] ∈ �0(Z, L(V )2×2), n ∈ N, of the form

A[n] =
(

a[n]
00 a[n]

01

a[n]
10 a[n]

11

)

, (2)

where a[n]
00 , a[n]

10 , a[n]
01 , a[n]

11 ∈ �(Z,R). The entries of A[n] in eq. (2) are to be understood
as a[n]

00 · I , etc., where I denotes the identity matrix. Through this form of A[n], results
for Hermite subdivision schemes with V = R can be directly applied to our setup.
An important mask is the delta sequence δ = (δ j : j ∈ Z) given by δ0 = I and
δ j = 0 for j ∈ Z\{0}. Let p ∈ �(Z, V 2) and j ∈ Z. Given a mask A[n], the associated
reconstruction or subdivision operator of level n, SA[n] : �(Z, V 2) → �(Z, V 2), is
given by

(SA[n] p) j =
∑

k∈Z
A[n]

j−2k pk, (3)

while the decomposition or wavelet operator DA[n] is given by

(DA[n] p) j =
∑

i∈Z
A[n]
i−2 j pi .

We also need the shift operator L : �(Z, V 2) → �(Z, V 2) defined as

(L p)i = pi+1. (4)

The reconstruction and decomposition operators satisfy the following well-known
properties:

SA[n]L = L2SA[n] and DA[n]L2 = LDA[n] (5)
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3 Linear Hermite subdivision schemes

Consider a sequence of finitely supportedmasks (A[n] : n ≥ 0). A linear Hermite sub-
division scheme S(A[n] : n ≥ 0) is the iterative procedure of constructing sequences
p[n] from an initial sequence p[0] via the rule

Dn+1 p[n+1] = SA[n] Dn p[n], n ∈ N. (6)

Here D denotes the D = diag (1, 1/2) ∈ L(V )2×2, where a constant C is to be
understood as C · I . Since we associate p[n] with pairs of function and derivative each
evaluated on the grid 2−n

Z, the matrix D and its powers arise because of the chain
rule.

Schemes of the form eq. (6) are often called level-dependent as opposed to station-
ary. In stationary subdivision A[n] = A is satisfied for a fixed mask A, i.e., the mask
does not depend on the iteration level n.

In this paper we are mostly concerned with interpolatory schemes: A scheme sat-
isfying eq. (6) is called interpolatory if p[n+1]

2 j = p[n]
j for j ∈ Z, n ∈ N. This property

relates to the sequence of masks (A[n], n ∈ N) satisfying A[n]
2 j = Dδ j , j ∈ Z, n ∈ N.

In terms of operators the interpolation property can be written as DδSA[n] = D.
A Hermite subdivision scheme is called C1-convergent if for every initial data

p[0] ∈ �∞(Z, V 2) there exists a function � = [�k]1k=0 : R → V 2 such that the
sequence p[n] satisfies

lim
n→∞ sup

j∈Z
| p[n]

j − �

(
j

2n

)

|∞ = 0,

and where �0 ∈ C1
u(R, V ) with �′

0 = �1. We further assume that there exists at
least one sequence p[0] ∈ �(Z, V 2) such that the resulting limiting function satisfies
� 	= 0. Results on the convergence of linear Hermite subdivision schemes can be
found, for example, in [11, 12, 14, 20, 22, 30] for the stationary case, in [3, 27] in the
level-dependent case, and in [4, 21, 34, 35] for smoothness of high order.

When applying a C1-convergent scheme to the delta sequence as initial data it
converges to the so-called basic limit function

F =
(

�0 �1

�′
0 �′

1

)

,

see [12] for the case of Hermite schemes. If we consider C1-convergent schemes
starting at level �, i.e., S(A[n+�] : n ≥ 0) for � ≥ 0 applied to the delta sequence,
we obtain a sequence of basic limit functions F[�] with F[0] = F. The basic limit
functions at different levels are connected via a refinement equation, which allows to
use them for the construction of multiresolution analyses [7, 8].

Closely related to the convergence of subdivision schemes and the refinement prop-
erty is the property of reproducing certain spaces [2, 3, 26, 30]. Here we consider

123

Page 5 of 18    40



M. Cotronei et al.

Hermite subdivision schemes that reproduce at least a 2-dimensional space of poly-
nomials and/or exponentials. Since reproduction of constants is a necessary condition
for convergence, the space to be reproduced should either contain

span{1, x} or span{1, eλx }, (7)

where λ ∈ C \ {0}. Some examples of Hermite schemes reproducing such spaces can
be found in [2, 4, 5, 26, 27]. In the following, we write W to mean either one of the
spaces in (7).

The reproduction property can be formulated in terms of the spectral condition [2,
13, 30] or sum rules [22]:

Definition 1 A subdivision operator SA[n] satisfies theW-spectral condition, whereW
is either one of the spaces in (7), if

SA[n] Dnv
[n]
f = Dn+1v

[n+1]
f , f ∈ W , n ∈ N.

where v
[n]
f is the vector-valued sequences

v
[n]
f ; j =

(

f (2−n j)
f ′(2−n j)

)

, j ∈ Z.

defined by a function f ∈ W .

4 Linear wavelets from interpolatory Hermite subdivision schemes

In [8] multiwavelets are constructed from linear Hermite subdivision schemes and [7]
provides an estimate on the wavelet coefficient decay. These papers rely on the symbol
of the matrix mask, i.e., the matrix-valued Laurent polynomials

A[n](z) :=
∑

k∈Z
A[n]
k zk, z ∈ C, (8)

and A[n] ∈ �0(Z, L(V )2×2). To generalize the results of [7, 8] to the manifold-valued
case we rewrite the necessary constructions in terms of operators rather than symbols.

We consider sets of level-dependent filters {A[n], B[n], Ã[n]
, B̃

[n]
, n ∈ N}, where

Ã
[n]

and B̃
[n]

are the filters associated to the decomposition of data and A[n] as well
as B[n] denote filters associated to the reconstruction.

Definition 2 Given a set of level-dependent filters {A[n], B[n], Ã[n]
, B̃

[n]
, n ∈ N} we

say that they form a biorthogonal system if the following conditions are satisfied:

D(Ã[n])T SA[n] = D(B̃[n])T SB[n] = id,

D(Ã[n])T SB[n] = D(B̃[n])T SA[n] = 0,
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for all n ∈ N.

The biorthogonal system conditions of Definition 2 are exactly the biorthogonal
system conditions formulated in terms of symbols in [8], as proved in the following
Proposition.

Proposition 1 The biorthogonal system conditions of Definition 2 are exactly the
biorthogonal system conditions formulated in terms of symbols in [8].

Proof The biorthogonal system conditions in terms of symbols of [8, Eq. (6)] are:

( Ã
[n]

)�(z)A[n](z) + ( Ã
[n]

)�(−z)A[n](−z) = 2I ,

( Ã
[n]

)�(z)B[n](z) + ( Ã
[n]

)�(−z)B[n](−z) = 0,

(B̃
[n]

)�(z)A[n](z) + (B̃
[n]

)�(−z)A[n](−z) = 0,

(B̃
[n]

)�(z)B[n](z) + (B̃
[n]

)�(−z)B[n](−z) = 2I .

where ( Ã
[n]

)�(z) = (A[n])T (z−1) (see the definition of the symbol (8)). We show that
the first condition is the same as our first operator condition (Definition 2); the rest
can be proved analogously.

We compute the symbol from the first equation:

2I =
∑

i, j

( Ã
[n]

)Ti z
−i A[n]

j z j +
∑

i, j

( Ã
[n]

)Ti (−z)−i A[n]
j (−z) j

=
∑

i, j

(1 + (−1)i+ j )( Ã
[n]

)Ti A[n]
j z j−i

=
∑

k

( ∑

i

(1 + (−1)k)( Ã
[n]

)Ti A[n]
i+k

)

zk

This implies
∑

i

(1 + (−1)k)( Ã
[n]

)Ti A[n]
i+k =

{

2I if k = 0,

0 if k 	= 0.

In particular
∑

i

( Ã
[n]

)Ti A[n]
i+k =

{

I if k = 0,

0 if k 	= 0 and k is even.
(9)

Now the equation using operators is

(D(Ã[n])T SA[n] c) j =
∑

i∈Z
(Ã[n])Ti−2 j (SA[n] c)i =

∑

i,k

(Ã[n])Ti−2 j A
[n]
i−2k ck

=
∑

k

( ∑

i

(Ã[n])Ti−2 j A
[n]
i−2k

)

ck =
∑

k

( ∑

r

(Ã[n])Tr A[n]
r+2( j−k)

)

ck

Applying (9) we see that
(D(Ã[n])T SA[n] c) j = c j .
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Thus D(Ã[n])T SA[n] = id. 
�

Remark 1 From the biorthogonal filter conditions (Definition 2), it follows that if A[n]

satisfies the W -spectral condition (Definition 1) then B̃
[n]

satisfies the W -vanishing
moment condition, i.e., elements of W are cancelled in the decomposition of data:
D

(B̃[n]
)T
Dn+1v

[n+1]
f ;k = 0 for f ∈ W .

Indeed, if f ∈ W , then

SA[n] Dnv
[n]
f ;k = Dn+1v

[n+1]
f ;k �⇒ D(B̃[n])T D

n+1v
[n+1]
f ;k = D(B̃[n])T SA[n] Dnv

[n]
f ;k = 0.

See [8] for more details on the relation between spectral and vanishing moment
conditions.

For a given level-dependent biorthogonal wavelet system {A[n], B[n], Ã[n]
, B̃

[n]
, n

∈ N} we rewrite the discrete wavelet transform formula, for the decomposition and
the reconstruction, in terms of the respective operators:

Definition 3 Let N ∈ N and c[N ] ∈ �(Z, V 2). For n = N − 1, . . . , 0, the decomposi-
tion scheme reads as

c[n] = D(Ã[n])T c
[n+1],

d[n] = D(B̃[n])T c
[n+1].

Repeated application of the decomposition scheme leads to coarse data c[0] andwavelet
coefficients d[0], . . . , d[N−1]. One can reconstruct the data c[n] via the reconstruction
scheme:

Definition 4 Let N ∈ N and c[0], d[0], . . . , d[N−1] ∈ �(Z, V 2). For n = 0, . . . , N−1,
the reconstruction scheme reads as:

c[n+1] = SA[n] c[n] + SB[n]d[n].

The reconstruction of c[n], n = 1, . . . , N , is called perfect reconstruction, if

SA[n]D(Ã[n])T + SB[n]D(B̃[n])T = id . (10)

for all n.
Using the biorthogonality conditions (Definition 2), we may write the decomposi-

tion scheme in the following way (compare [19, p.3, eq. (5)]):

c[n] = D(Ã[n])T c
[n+1],

d[n] = D(B̃[n])T
(

c[n+1] − SA[n] c[n])

= D(B̃[n])T
(

id−SA[n]D(Ã[n])T
)

c[n+1]. (11)
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4.1 Prediction-correction scheme

For the construction of nonlinear multiresolution analyses, we restrict ourselves to a
special case of biorthogonal wavelet systems, namely prediction-correction schemes.
These schemes are typically associated with an interpolatory subdivision operator
SA[n] (predictor), i.e., an operator satisfying

DδSA[n] = D.

To obtain the other operators, we use the prediction-correction scheme as defined
in [8, Eq. (25)] in terms of symbols:

B[n](z) = z I , Ã[n](z) = D−1, B̃[n](z) = zD−1(A[n])�(−z), (12)

again with notation (A[n])�(z) := (A[n])T (z−1).

Lemma 1 The prediction-correction scheme defined in (12) can be written in terms of
operators in the following way:

1. SB[n] = L−1Sδ,

2. D(Ã[n])T = D−1Dδ .

3. D(B̃[n])T = DD(Ã[n])TL
(

id−SA[n]D(Ã[n])T
)

= DδL
(

id−SA[n] D−1Dδ

)

Remark 2 From Lemma 1 it is apparent that the prediction-correction construction of
[8] is a Hermite version of [19, Example 1.1.].

Proof (Proof of Lemma 1) The first two parts are immediate from the definition of the
symbol.

To see part (3), we first compute (B̃[n])Tk from its symbol:

(B̃[n])Tk = (−1)1−k A[n]
1−kD

−1, (13)

see also [8, p. 14]. Therefore

(D(B̃[n])T c)i =
∑

k

(B̃[n])Tk ck+2i =
∑

k

(−1)1−k A[n]
1−kD

−1ck+2i . (14)

Now compute the other operator, using the first two parts of this lemma and the
interpolation property of A[n]:

(

DD(Ã[n])TL
(

id−SA[n]D(Ã[n])T
)

c
)

i
= (DδLc)i − (DδLSA[n] D−1Dδc)i

= c2i+1 − (SA[n] D−1Dδc)2i+1

= c2i+1 −
∑

j

A[n]
−2 j+1D

−1(Dδc)i+ j

= c2i+1 −
∑

j

A[n]
−2 j+1D

−1c2(i+ j)
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= c2i+1 −
∑

j

A[n]
−2 j+1D

−1c2(i+ j) +
∑

j

A[n]
−2 j D

−1c2(i+ j)+1 − c2i+1

=
∑

k

(−1)k A[n]
k D−1c2i+1−k

=
∑

k

(−1)1−k A[n]
1−kD

−1c2i+k .

From (14) the result follows. 
�
Based on Lemma 1, the decomposition scheme (Definition 3) in the prediction-

correction case is given by

c[n]
i = D−1c[n+1]

2i

d[n]
i =

(

c[n+1] − SA[n] c[n])

2i+1
. (15)

We note that due to the interpolation property of SA[n] , i.e., since SA[n] c[n]
2i = Dc[n]

i =
c[n+1]
2i , we have

(

c[n+1] − SA[n] c[n])
2i = 0.

Given a function f ∈ C1(R, V ), the discrete data c[n]
i is interpreted as samples of

the function and its derivative at i/2n . This means

c[n] = Dnv
[n]
f . (16)

Through this interpretation, we obtain the Hermite wavelet transform of f , which
represents f in terms of the decomposition sequence

c[0], d[0], d[1], . . . (17)

The reconstruction scheme in the prediction-correction case is

c[n+1]
2i = Dc[n]

i

c[n+1]
2i+1 =

(

SA[n] c[n])

2i+1
+ d[n]

i . (18)

This can be used to reconstruct the function f from the decomposition sequence (17).

5 Hermite subdivision and wavelets for manifold-valued data

5.1 Basic constructions in manifolds

By M we denote a smooth, finite-dimensional manifold which carries a linear con-
nection1. A linear connection allows to compute derivatives along tangent directions

1 By this we mean a linear connection on the tangent bundle T M → M , which induces a covariant
derivative in the sense of [31, Section 19.11-19.12]
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of vector fields (and more general, tensors), see [31, Chapter IV] for an introduction.
The most important examples of such manifolds are Riemannian manifolds with the
Levi-Civita connection [10], and Lie groups with a Cartan-Schouten connection [1,
37].

As M carries a linear connection we have notions of parallel transport, geodesics
and the exponential map, which we now define.

By T M we denote the tangent bundle, and by TpM the tangent space at p ∈ M ,
which is a linear space. For I = [0, 1], let c : I → M be a smooth curve such that
c(0) = p and c(1) = q with p, q ∈ M . A vector field along c is a smooth curve
V : I → T M such that V(t) ∈ Tc(t)M . Via the linear connection on M we can
differentiate vector fields along c. If in local charts (using Einstein summation) we
have V = vk∂k and ċ = xk∂k , then

DV
dt

:=
(
dvk

dt
+ vi x j�k

ji

)

∂k .

Here the coefficients�k
ji are uniquely determined by the underlying linear connection.

If M is a Riemannian manifold, they are called Christoffel symbols.
The vector field V is called parallel along c if

DV
dt

= 0.

In charts this is a linear ODE, which implies that for a curve c, c(0) = p and v ∈ TpM
there exists a unique vector field V along c such that V(0) = v.

Since ċ is a vector field along c, we define a geodesic to be a curve c satisfying

Dċ

dt
= 0.

There exists a unique geodesic joining two points p and q (if not too far apart). In the
Riemannian case, geodesics locally minimize length.

The exponential map is defined by expp(v) := g(1), where g is the unique geodesic
g satisfying g(0) = p and ġ(0) = v.

We mention that the exponential map is always smooth, but in general not globally
defined. Two important examples for which it is globally defined are complete Rie-
mannian manifolds and matrix groups [23, 36]. Similarly, the inverse exponential map
is generally only smooth if p and q are close together. Manifold-valued subdivision
schemes often rely on the exponential map and therefore results are usually only valid
for “dense enough” input data, see, for example, [15, 32, 43–45]. However, there exist
convergence results valid for all input data in specific cases [24, 25, 44]. Dense enough
input data is also a necessary assumption for our results in Section4.

If c(0) = p and c(1) = q , then the parallel transport along c is the linear map
Pq
p (c) : TpM → TqM , v �→ V(1), where V is the unique parallel vector field along c
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withV(0) = v. Themap Pq
p (c) is an isomorphism, and ifM is a Riemannianmanifold,

it is also an isometry. The parallel transport satisfies

Pq
m(c) ◦ Pm

p (c) = Pq
p (c), (19)

where m is a point on c. In this paper we always choose the curve to be the geodesic
joining p and q when we compute the parallel transport. We introduce the simplified
notation

[v]q := Pq
p (g)(v),

where v ∈ TpM and g is the geodesic from p to q . Equation (19) now reads [[v]m]q =
[v]q .

5.2 Hermite subdivision schemes for manifold-valued data and the proximity
condition

Following [32], we define a Hermite subdivision operator for manifold-valued data.

Definition 5 A Hermite subdivision operator on M is a map T : �(Z, T M) →
�(Z, T M) such that

1. L2T = T L, where L is the left shift operator (4),
2. T has compact support, i.e., there exists N such that (T c)2 j and (T c)2 j+1 depend

only on c j−N , . . . , c j+N , for all j ∈ Z and c ∈ �(Z, T M).

Compare this definition with the properties of linear Hermite subdivision operators (3)
and (5).

We use a linear Hermite subdivision operator SA, with mask A of the form (2), to
define a manifold-valued analogue TA satisfying the properties of Definition 5. This
is based on the parallel transport construction of [33].

Choose a base point sequence m ∈ �(Z, M). For c = (p, v)T ∈ �(Z, T M) we
define

(TAc) = c̃, (20)

where c̃ = ( p̃, ṽ)T ∈ �(Z, T M) is given by

p̃ j = expm j

(
∑

k∈Z
a00j−2k exp

−1
m j

(pk) + a01j−2k[vk]m j

)

,

ṽ j =
[
∑

k∈Z
a10j−2k exp

−1
m j

(pk) + a11j−2k[vk]m j

]

p̃ j

for j ∈ Z.
From the manifold-valued subdivision operator based on a mask A (20), we can

define a manifold-valued subdivision scheme as the iterative process to construct
c[n] ∈ �(Z, T M) from c[0] ∈ �(Z, T M) via

Dn+1c[n+1] = TA[n] Dnc[n], n ∈ N, (21)
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where (A[n], n ∈ N) is a sequence of masks.
Results for manifold-valued subdivision schemes on topics such as convergence,

smoothness, and approximation order, are often derived from their linear counterparts
via a proximity condition [15, 17, 32, 33, 43–45]. A comparison between a linear and
a manifold-valued operator only makes sense in a chart or an embedding of M . In this
paper we use charts and thus assume that T M ⊂ V 2.

We now define a proximity condition for Hermite subdivision operators as in [32],
which is also to be understood in charts.

Definition 6 (Proximity condition)Let
(

SA[n] : n ∈ N
)

be a sequence of linearHermite
subdivision operators. Let

(

TA[n] : n ∈ N
)

be its manifold-valued analogue defined
via (20). The proximity condition is satisfied if there exists a constant C such that

∥
∥
∥
∥

(

SA[n] − TA[n]
)
(

p
v

)∥
∥
∥
∥∞

≤ C

∥
∥
∥
∥

(

	p
v

)∥
∥
∥
∥

2

∞
, n ∈ N, (p, v)T ∈ �(Z, T M),

In [33, Corollary 1] it is shown that if the base point sequence is chosen as either
mi = pi or as the geodesic midpoint between pi and pi+1, and the input data is
bounded, then the proximity condition between SA and TA is satisfied. Therefore, in
this paper, we choose the base point sequence as either one of those sequences.

5.3 Manifold-valued prediction-correction scheme

We define operations⊕ and� in manifolds as generalization of+,− in vector spaces.
Indeed, the operations we define are extensions of ⊕,� defined in [19, 44] for point-
data to Hermite data.

We consider point-vector Hermite data (p, v)T and vector-vector data (u0, u1)T ,
which is an element of TqM ⊕ TqM , with q ∈ M , hence an element of a fiber of
T M ⊕ T M . We define the addition of such elements as:

(
p

v

)

⊕
(
u0
u1

)

:=
(

expp([u0]p)
[v]expp([u0]p) + [u1]expp([u0]p)

)

. (22)

Similarly, for point-vector data (p, v)T , (q, u)T we define their difference as

(
q

u

)

�
(
p

v

)

:=
(
exp−1

p (q)

[u]p − v

)

. (23)

The resulting element lies in the fiber TpM ⊕ TpM . In Lemma 2 below we show that
these operations satisfy similar properties as the operations on point-data defined in
[44].

Lemma 2 Consider point-vector data a, ã and vector-vector data b. Then we have the
following properties:

a ⊕ (ã � a) = ã,

(a ⊕ b) � a = [b]p,
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with [b]p = ([u0]p, [u1]p)T when b = (u0, u1)T .

Proof Let a = (p, v)T , ã = ( p̃, ṽ)T and b = (u0, u1)T . Then (23) implies

ã � a = (exp−1
p ( p̃), [ṽ]p − v)T .

From (22) we see that the first entry of a ⊕ (ã � a) is p̃ and

a ⊕ (ã � a) = ( p̃, [v] p̃ + [[ṽ]p − v] p̃) = ( p̃, [ṽ] p̃) = ã.

Similarly, (22) and (23)

(a ⊕ b) � a = ([u0]p, v + [u1]p − v) = ([u0]p, [u1]p) = [b]p.

This concludes the proof. 
�
Remark 3 If a and b are taken from the same fiber, i.e., v, u0, u1 ∈ TpM , then (a ⊕
b) � a = a.

Based on ⊕,� and (15), and (18), we can define a prediction-correction scheme
for manifold-valued Hermite data where the decomposition scheme is

c[n]
i = D−1c[n+1]

2i

d[n]
i =

(

c[n+1] � TA[n] c[n])

2i+1
. (24)

Similar to (16), given a function f ∈ C1(R, M), the discrete data c[n]
i is interpreted

as the function and its derivative at i/2n , i.e., c[n] = Dnv
[n]
f . Eq. 24 is then used as the

decomposition sequence of f and the reconstruction scheme is defined by

c[n+1]
2i = Dc[n]

i

c[n+1]
2i+1 =

(

TA[n] c[n])

2i+1
⊕ d[n]

i . (25)

5.4 Coefficient decay for manifold-valued Hermite wavelets

We now generalize the linear wavelet coefficient decay result of [7] to the manifold-
valued case.

Theorem 1 Let S(A[n] : n ≥ 0) be a C1-convergent interpolatory Hermite subdi-
vision scheme satisfying the W-spectral condition (Definition 1). Moreover assume
that there exists N ∈ N such that supp(A[n]) ⊆ [−N , N ] for all n ∈ N, and that
supn∈N ‖F[n]‖∞ < ∞. Let M be a manifold (as described in Section5.1) and let
f ∈ C1

u(R, M). We assume that c[N ] is dense enough. Then the associated manifold-
valued wavelet coefficients d[n] (24) satisfy the following property: For R < 1, there
exist m ∈ N and a constant C > 0, depending on W , R, f , N , M and the subdivision
scheme, such that

‖d[n]‖∞ ≤ C 2−2n, n ≥ m.
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Proof Recall that in this paper we work in coordinate charts and that all constructions
are local. For bounded sequences a, b ∈ �∞(Z, T M) and in some compact subset of
a chart, the operator �, as defined in (23), satisfies

‖a � b‖∞ ≤ C ‖a − b‖∞ ,

for some constantC . This follows from the linearizations exp−1
p (q) = q− p+O(‖q−

p‖2) and P p
q (u) = u+O(‖q − p‖‖u‖) for q → p and fixed u, compare [33, Lemma

1]. We assume this bound to hold for all data since the data are required to be dense
enough. Therefore, we have

‖d[n]‖∞ = ‖c[n+1] � TA[n] c[n]‖∞ ≤ C‖c[n+1] − TA[n] c[n]‖∞
≤ C

(

‖c[n+1] − SA[n] c[n]‖∞ + ‖SA[n] c[n] − TA[n] c[n]‖∞
)

, (26)

The first part is bounded by C 2−2n whenever n ≥ m by the linear wavelet decay
result of [7, Theorem 11]. For the second part, the proximity condition (Definition 6)
implies:

∥
∥
∥SA[n] c[n] − TA[n] c[n]

∥
∥
∥∞ ≤

∥
∥
∥
∥

(

	 0
0 1

)

c[n]
∥
∥
∥
∥

2

∞
.

Since c[n] = Dnv
[n]
f , the two components of the right side are given by

(

	 0
0 1

)

c[n] =
(

	 f ( j/2n)
2−n f ′( j/2n)

)

.

Since f ∈ C1
u(R, M), f ′ is bounded and therefore f is Lipschitz. Thus

∥
∥
∥
∥
	 f

(
j

2n

)∥
∥
∥
∥∞

=
∥
∥
∥
∥
f

(
j + 1

2n

)

− f

(
j

2n

)∥
∥
∥
∥∞

≤ C 2−n

and we obtain the bound

∥
∥
∥SA[n] c[n] − TA[n] c[n]

∥
∥
∥∞ ≤

∥
∥
∥
∥

(

	 0
0 1

)

c[n]
∥
∥
∥
∥

2

∞
≤ C 2−2n .

This bound together with the estimate (26) and the linear wavelet coefficient result [7,
Theorem 11] concludes the proof. 
�

6 Conclusions

In this paper we have provided a framework for the construction of Hermite-type
multiwavelets in a manifold setting. In particular we have extended to such a setting
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a recent result about the decay of the wavelet coefficients [7]. Our ideas go in the
direction of providing efficient representations of Hermite manifold-valued data as
in a traditional wavelet analysis, for example, for compression or denoising applica-
tions. Future research will focus on such applications and on the generalization of the
obtained theoretical results to the case of higher order derivatives.
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