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First and Second Graders Successfully Reason About Ratios With Both Dot
Arrays and Arabic Numerals
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Children struggle with exact, symbolic ratio reasoning, but prior research demonstrates children show surpris-
ing intuition when making approximate, nonsymbolic ratio judgments. In the current experiment, eighty-five
6- to 8-year-old children made approximate ratio judgments with dot arrays and numerals. Children were
adept at approximate ratio reasoning in both formats and improved with age. Children who engaged in the
nonsymbolic task first performed better on the symbolic task compared to children tested in the reverse order,
suggesting that nonsymbolic ratio reasoning may function as a scaffold for symbolic ratio reasoning. Nonsym-
bolic ratio reasoning mediated the relation between children’s numerosity comparison performance and sym-
bolic mathematics performance in the domain of probabilities, but numerosity comparison performance
explained significant unique variance in general numeration skills.

Ratio reasoning is prevalent in everyday life. We
reason about ratios when we estimate how long it
will take to walk to the grocery store, decide how
many hands we need to carry all the grocery bags
into the house, or when we slice a birthday cake to
ensure that everyone at the party will get a piece.
Mathematics provides a symbolic system to calcu-
late exact solutions to these ratio reasoning prob-
lems, however, in everyday life we typically avoid
such precise calculations and instead arrive at an
approximate, workable solution. These approximate
ratio reasoning skills are present from infancy and
are shared with other animal species. Comparative
and developmental research demonstrates that ani-
mals and human babies possess an intuitive capac-
ity for ratio reasoning that is not dependent on
language or knowledge of symbolic mathematics.
For example, when an ape is given a choice
between two human hands that each randomly
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drew one food item from one of two buckets, the
ape will tend to pick the hand that drew from the
bucket that contained the more favorable ratio of
banana pellets to carrots (Eckert, Call, Hermes, Her-
rmann, & Rakoczy, 2018; Rakoczy et al., 2014). Sim-
ilarly, rhesus macaques can be trained to pick the
array with the more favorable ratio of a rewarded
shape, or to match different colored line lengths
based on ratio, for a juice reward (Drucker, Rossa,
& Brannon, 2015; Vallentin & Nieder, 2008). When
6-month-old human infants are habituated to a par-
ticular ratio of yellow to blue objects within an
array, they look longer at a novel compared to a
familiar ratio (McCrink & Wynn, 2007). Ten to 12-
month-old infants will reliably crawl toward a cup
that contains a lollipop drawn from a bucket with a
more favorable ratio of their preferred color lollipop
(Denison & Xu, 2014). Relatedly, it violates infants’
expectations when a sample is drawn from a popu-
lation of items that does not reflect the population
distribution (Kayhan, Gredeback, & Lindskog, 2017;
Xu & Garcia, 2008). For example, when 8-month-
old infants see a box filled with ping-pong balls
where the majority is red and only a few are white,
they look longer when four of the five balls ran-
domly drawn from this box are white (Xu & Garcia,
2008). Thus, infants and nonhuman primates are
equipped with intuitive ratio reasoning skills that
are flexible to probabilistic context and the
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depiction of the ratio. An important question is
whether this powerful ratio reasoning mechanism
can be harnessed to improve symbolic ratio reason-
ing ability in school-age children.

Children continue to reason nonsymbolically and
approximately with ratios before they are capable
of calculating with symbolic ratio representations.
Six-year-old children can solve proportional reason-
ing problems displayed with continuous magni-
tudes (e.g., line lengths), and by age 10 they can
solve the same ratio problems presented with dis-
crete magnitudes (e.g., squares; Boyer & Levine,
2015; Boyer, Levine, & Huttenlocher, 2008). Elemen-
tary and preschool-aged children (6-11 years old)
can successfully pick which of two jars has the
more favorable ratio of their preferred color object
(Falk, Yudilevich-Assouline, & Elstein, 2012; Yost,
Siegel, & Andrews, 1962). Moreover, there is a con-
nection between a student’s nonsymbolic propor-
tional reasoning ability and their symbolic math
skill. A student’s nonsymbolic proportional reason-
ing ability in fifth grade predicts unique variance in
knowledge of symbolic fractions in sixth grade (Jor-
dan, Resnick, Rodrigues, Hansen, & Dyson, 2016).
Performance on a spatial proportional reasoning
task is correlated with fraction understanding in 8-
to 10-year-olds (Mohring, Newcombe, Levine, &
Frick, 2016). In sum, children possess an intuitive
grasp of nonsymbolic ratio magnitudes that is
linked to their symbolic math skill. But in contrast
to children’s prodigious intuitive ratio reasoning
skill, exact, symbolic ratio reasoning is very difficult
for children to acquire.

According to the US Common Core standards,
children begin formal education about ratio in third
grade, but by fourth grade only 32% of students is
able to identify whether simple fractions are greater
or < %, and only 27% of eighth graders can success-
fully place a rational number in the correct spot on
a number line (National Center for Education Statis-
tics, 2017). Ratios, fractions, and proportions are
critically important for advanced math education,
thus deficits in symbolic ratio reasoning are a major
challenge for math educators (Butterworth, Varma,
& Laurillard, 2011; Duncan et al., 2007; Parsons &
Bynner, 2005; Siegler et al., 2012). One possible way
to improve children’s symbolic ratio reasoning is to
use a child’s intuitive understanding of ratio to
scaffold their symbolic learning (Ahl, Moore, &
Dixon, 1992; Falk & Wilkening, 1998; Fujimura,
2001). Prior research has established that children
are able to nonsymbolically and approximately cal-
culate over nonsymbolic dot arrays by adding, sub-
tracting, multiplying, dividing, solving for

unknown values in algebra problems, and placing
dot arrays on a number line (Barth et al., 2006;
Honoré & Noél, 2016, Kibbe & Feigenson, 2017;
McCrink, Shafto, & Barth, 2016; Park, Bermudez,
Roberts, & Brannon, 2016). Moreover, training with
some nonsymbolic and approximate math opera-
tions yields improvement in symbolic math ability.
For example, practice of adding and subtracting
arrays of objects improves the general math skill of
preschoolers after 10 days of training (Park et al,,
2016; Szkudlarek & Brannon, 2018). Similarly, prac-
tice with a symbolic and nonsymbolic number line
task improves number line and arithmetic perfor-
mance in 8- to 10-year-old children (Kucian et al.,
2011). It is therefore possible that practice with non-
symbolic ratio reasoning could benefit symbolic
ratio reasoning in a similar way.

The first goal of this study was to examine the
nonsymbolic, approximate ratio comparison skills
of children in early elementary school, and to test
whether children can extend their nonsymbolic,
approximate ratio reasoning ability to a novel sym-
bolic, approximate ratio comparison task. To this
end, we created both a nonsymbolic and symbolic
version of the same approximate ratio reasoning
task. On each trial, children were presented with an
illustration of two gumball machines both filled
with blue and white colored gumballs (dots) or
blue and white numerals (Figure 1). The task was
to pick the machine with the best chance of produc-
ing a blue (or white, counterbalanced) gumball.
Crucially, the task did not require exact calculation
of the ratio of ratios, but instead only required chil-
dren to identify which ratio of blue to white was
more favorable. Due to the approximate nature of
the task, we predicted that children would perform
above chance despite their lack of formal knowl-
edge of ratio or probabilistic reasoning with both
formats of the task (e.g., Gilmore, McCarthy, &
Spelke, 2007 for a similar finding with approximate
addition and subtraction). We further hypothesized
that if children were able to connect their nonsym-
bolic ratio reasoning skills to the symbolic version
of the calculation, engaging in nonsymbolic ratio
reasoning should provide a foothold for children as
they attempt to make the isomorphic judgment
with symbols. To test this, each child completed
both the symbolic and nonsymbolic ratio compar-
ison tasks with order counterbalanced across chil-
dren. If children’s symbolic ratio reasoning can be
scaffolded by engaging in the nonsymbolic ratio
reasoning task, then performance on the symbolic
task should be modulated by the order of the two
tasks.
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Figure 1. Illustration of one trial of the (A) nonsymbolic ratio comparison task and (B) symbolic ratio comparison task. [Color figure

can be viewed at wileyonlinelibrary.com]

The second goal of this study was to examine
the degree to which children made true ratio com-
parisons or instead relied on simpler unidimen-
sional heuristics. Prior work found that when
children 7 years of age or younger were presented
with two ratios they tend to erroneously compare
only the number of preferred items in an integer-
based strategy (Clarke & Roche, 2009; Falk et al.,
2012; Jeong, Levine, & Huttenlocher, 2007; Ober-
steiner, Bernhard, & Reiss, 2015; Shaklee & Paszek,
1985; Siegler, Strauss, & Levin, 1981). As children
progress in their mathematical knowledge, they are
more likely to perform a true ratio comparison and
consider both the preferred and nonpreferred items
in each array. However, previous research on ratio
comparison strategies has relied on self-report or
differences in accuracy between trial types to test
for the wuse of a particular heuristic. These
approaches have serious drawbacks. First, self-re-
port may be inaccurate, especially among young
children who have not yet learned formal ratio rea-
soning in school. Second, a comparison of accuracy
by trial type does not account for the fact that
many binary choice ratio comparisons can be
solved using more than one strategy. For example,
imagine two gumball machines where the left
machine has 25 blue gumballs and 15 white, and
the right machine has 12 blue gumballs and 18
white. A child needs to pick the machine with the
best chance of getting a blue gumball on their first
try. The correct answer based on a comparison of
ratios is the left machine. But a child could also
pick the left machine because it has a larger total
number of gumballs, because it has the largest

absolute number of blue gumballs, or the smallest
absolute quantity of white gumballs. Greater accu-
racy on trials of this type does not disambiguate
between the use of these strategies. A more flexible
analysis of strategy is needed to describe the poten-
tial use of multiple strategies within one subject.
Here, we constructed the stimuli such that the cor-
rect answer was orthogonal to the total number of
items in a gumball machine, and the correlation
between the correct choice and the one with more
of the preferred or nonpreferred colored items was
minimized. We then modeled the left or right
choices a child would make under three alternative
unidimensional heuristics that children could use
on a binary choice ratio comparison task. This stim-
ulus structure allowed us to detect the degree to
which children used unidimensional heuristics or a
ratio comparison to solve the ratio tasks by looking
at a child’s pattern of behavior across all trials. Our
strategy analysis had three goals. The first was to
determine whether children can perform a true
ratio comparison independent of incorrect heuristics
on both the symbolic and nonsymbolic tasks. The
second was to examine whether the errors children
make during the ratio tasks correspond with using
an incorrect heuristic. The third was to assess the
degree to which task order (nonsymbolic or sym-
bolic first) affects not only overall accuracy, but the
strategies children employ to complete the task. We
hypothesized that engaging in nonsymbolic ratio
comparison would shift the strategies children use
to solve the symbolic ratio task and lead to
improved symbolic ratio reasoning. More specifi-
cally, we expected that children might rely less on
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heuristics in the symbolic version of the task if they
first engaged in the nonsymbolic task.

The third goal of this study was to determine
whether the Approximate Number System (ANS) is
a cognitive foundation underlying nonsymbolic
ratio reasoning. The ANS supports the ability to
represent numerical magnitude without symbols,
and is present in infants, adults, and many animal
species (Feigenson, Dehaene, & Spelke, 2004). Previ-
ous work suggests that the ANS is involved in bin-
ary choice ratio comparison tasks, because
performance on these tasks is dependent on the
ratio of ratios being compared, as predicted by
Weber’s law (Drucker et al., 2015; Eckert et al., 2018;
McCrink & Wynn, 2007). Ratio-dependent numeri-
cal discrimination following Weber’s law is a hall-
mark of the ANS (Feigenson et al., 2004). Moving
beyond the description of a ratio effect, in this
study, we independently measured each child’s
ANS acuity as a stronger test of whether children
with sharper ANS acuity are better at nonsymbolic
ratio reasoning.

We also examined the relation between ratio rea-
soning skill, ANS acuity, and formal math ability.
A multitude of studies has linked individual differ-
ences in the acuity of ANS representations to a
variety of symbolic math skills, but the mechanism
for this relation is unknown (Halberda, Mazzocco,
& Feigenson, 2008; see Schneider et al., 2016 for
meta-analysis). Recent work suggests that accuracy
in performing mathematical operations using non-
symbolic quantities may be a better predictor of
symbolic math ability than ANS acuity (Matthews,
Lewis, & Hubbard, 2016; Pinheiro-Chagas et al,,
2014; Starr, Roberts, & Brannon, 2016). Indeed,
among university undergraduates, nonsymbolic
ratio comparison accuracy was a stronger predictor
than ANS acuity of a variety of symbolic math
tasks. This finding led to the proposal of a Ratio
Processing System (Matthews et al., 2016). It is pos-
sible that the Ratio Processing System, when deal-
ing in discrete magnitudes, functions as a “higher
order extension” of the ANS (Lewis, Matthews, &
Hubbard, 2016). Here we test the possibility that
performing a nonsymbolic operation, in this case
specifically a ratio comparison operation, is a mech-
anism of the relation between ANS acuity and sym-
bolic math. We hypothesize that sharper ANS
acuity allows for better nonsymbolic ratio calcula-
tion. In turn, better nonsymbolic ratio calculation
allows children to conceptually ground symbolic
ratio representations in their nonsymbolic sense of
ratio, leading to better symbolic calculation skill. To
test this, we asked whether nonsymbolic ratio skill

mediates the relation between ANS acuity and sym-
bolic math skill as measured by our symbolic ratio
comparison test and two subtests of the Key-Math-
3 standardized test. The Key-Math-3 test is divided
into subtests that represent different symbolic math
skills (numeration, algebra, geometry, measure-
ment, data analysis and probability). Based on our
hypothesis that nonsymbolic ratio calculation leads
to a conceptual grounding of ratio computation, we
administered two subtests with the goal of target-
ing both ratio based and nonratio-based symbolic
math concepts. The Data Analysis and Probability
section includes questions about probability and
graphical representations of data; these math con-
cepts overlap with the concepts involved in a non-
symbolic probabilistic ratio comparison judgment.
We also administered the Numeration section,
which is a test of general counting and calculation
skill. These general math skills have less conceptual
overlap with nonsymbolic ratio comparison. Thus,
we hypothesize that nonsymbolic ratio skill will
mediate the relation between ANS acuity and ques-
tions about Data Analysis and Probability but will
not mediate the relation between ANS acuity and
general Numeration skill.

To summarize, the present experiment was
designed with three major goals. First, to determine
whether children’s nonsymbolic ratio reasoning
skill functions to scaffold symbolic ratio reasoning.
Second, to examine the degree to which children
utilize true ratio reasoning or instead rely on incor-
rect unidimensional heuristics to solve a binary
choice ratio comparison task. Third, to investigate
the relations between ANS acuity, nonsymbolic
ratio reasoning, and symbolic math performance.
Taken together, these questions have important
implications for the value of including nonsymbolic
ratio calculation in early math education.

Method
Subjects

Eighty-five 6- to 8-year-old children were tested
(22 six-year-olds, 33 seven-year-olds, 30 eight-year-
olds, Mg = 7.6 years old, SD = 0.83 years; 35
female, 47 male, 3 chose not to report, 5 kinder-
garteners, 35 first graders, 31 second graders, 12
third graders, 2 unknown). We chose this age range
because we wanted to test children’s knowledge of
ratio before they begin to learn formally about frac-
tion concepts in school. Written parental consent
and children’s verbal assent were obtained in accor-
dance with a protocol accepted by the University of
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Pennsylvania’s Institutional Review Board. Ten
additional children were consented but were
excluded from the final sample because they did
not complete both the nonsymbolic and symbolic
ratio comparison tasks. The parents of 43 children
in our sample elected to fill out a detailed demo-
graphics questionnaire. Of this subset of the sam-
ple, 37% identified as Hispanic or Latino, 49%
identified as African American, 21% as Caucasian,
5% as Asian, 12% as more than one race, and 13%
chose not to report. Our sample included a large
proportion of children from families with house-
hold incomes of 50,000 or less (23% $0-$25,0000,
42%  $25,000-$50,000, 5% $50,000-$75,000, 2%
$75,000-$100,000, 7%  $100,000-$150,000, 12%
$150,000+, and 9% chose not to report). All subjects
were recruited from six after school programs in
the Philadelphia, PA area between October 2016
and April 2017. A subset of the children who com-
pleted both the nonsymbolic and symbolic ratio
comparison tasks completed additional assessments
(Dot comparison, n =75; Key-Math Numeration
assessment, n =78; the Key-Math Data Analysis
and Probability assessment, n = 73; the Woodcock—
Johnson Basic Reading Skills cluster, n = 72; and a
measure of numeral identification, n = 82). All par-
ticipants received a small toy as a thank you gift
after completion of the experiment.

Procedure

Children completed all tasks individually with
an experimenter in a quiet room at their after-
school program. Children completed the nonsym-
bolic and symbolic ratio comparison tasks first, and
the order of the tasks was counterbalanced across
children (nonsymbolic first n = 40, symbolic first
n = 45). All but nine participants received the two
ratio comparison tasks on the same day. The order
in which all other tasks were administered was ran-
dom across participants and was dependent on the
child’s availability. Each participant was tested for
a total of 45-60 min across 2-3 days. Children also
completed a math anxiety questionnaire, but these
results are not included in this paper. Children
received stickers throughout the session to maintain
motivation.

Experimental Tasks

Both the symbolic and nonsymbolic tasks were
run in MATLAB and programmed using the Psy-
chophysics Toolbox extension (Brainard, 1997; Klei-
ner, Brainard & Pelli, 2007; Pelli, 1997). The
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programs were run on a 15-in. touch screen laptop
computer. We have posted the ratio comparison
task scripts and data at this link https://osf.io/
2fkbn/.

Introduction to the Ratio Comparison Tasks

All children regardless of whether they were
given the symbolic or nonsymbolic version of the
ratio task first were introduced to an alien character
next to a single red and yellow gumball machine
that held 11 orange colored gumballs (dots). Chil-
dren were shown that only one gumball comes out
of the machine at a time and that the alien doesn’t
care if he gets a big or small gumball. The child
was also told that all of the gumballs regardless of
their placement in the machine have an equal
chance of coming out.

Nonsymbolic Ratio Comparison Task

Children were given five nonsymbolic practice
trials. On the first trial, children were presented
with two gumball machines where one machine
contained 10 green gumballs and the other con-
tained 10 orange gumballs. The child was told that
the alien’s favorite color gumball is orange. As the
experimenter pointed to each machine the child
was told “There are this many green gumballs in
this machine and this many orange gumballs in this
machine.” The child was then asked “Which
machine gives Mr. Alien the best chance of getting
an orange gumball on his first try?” The child was
asked to touch the gumball machine of their choice.
Children were given verbal feedback by the experi-
menter. The remaining four practice trials all had
mixed green and orange gumballs in each machine.
In one trial the correct choice had more orange
gumballs (8:2 vs. 2:8), in one trial the correct choice
had more orange gumballs and a greater number of
total gumballs (6:4 vs. 1:4), in one trial the correct
answer had fewer total items (2:3 vs. 2:8), and in
the last trial the correct answer had fewer orange
gumballs (3:2 vs. 4:6). Regardless of accuracy on
this last trial, the child was told “See, the machine
with the most orange gumballs is not always the
one with the best chance of an orange gumball.” On
all practice trials, the experimenter did not proceed
until the child picked the correct machine. After the
practice trials, children were told that the alien
wants a blue or white gumball, counterbalanced
across participants. Children completed 60 trials.
After a correct response, children saw three smiling
aliens, a spaceship blasting off, and the word

1°€ “120T ‘$T98LIYI

paus//:sdny woxy papeoy

ASUAOI] SUOWILLO) dA1EaI) o[qeorjdde oty q PAUISA0S ale SA[OIIE Y() 2SN JO SA[NI 10§ AIeIqI] Sul[uQ) KJ[IA\ UO (SUONIPUOI-PUB-SULIA}/W0d Ao[1m AreIqi[ouruoy/:sdny) suonipuo)) pue swa | oy 23S *[£707/S0/20] uo Areiqi aurjuQ Loip ‘BIueA[Asuusg JO ANSIOATUN AQ OLE ] AP/ [ 1°01/10P/W0d K[IM"



1016 Szkudlarek and Brannon

“Great!”. After an incorrect response, children saw
a spaceship crashing into a planet, and the words
“Let’s try again!”. The only instructions a child was
given throughout testing were “Which machine has
the best chance of giving a (blue/white) color gum-
ball?”. Children were instructed not to count the
dots if they appeared to be doing so, and to
respond as quickly as possible. The dots moved
altogether in a circular motion on the screen for
300 ms at the beginning of each trial to encourage
interest. There were 30 unique ratio comparisons,
and each ratio comparison occurred twice. The
number of blue or white gumballs within one
machine ranged from 1 to 30. The ratios of ratios
(ratio of preferred to nonpreferred in machine 1/ra-
tio of preferred to nonpreferred in machine 2) ran-
ged from 1.5 to 10. The correct answer was
orthogonal to the total number of items in a gum-
ball machine (no correlation), and there was a small
correlation between the correct choice and the one
with the greater number of the preferred color
(r = .2) and between the correct choice and the one
with less of the nonpreferred items (r =.2). The
stimuli are provided in Appendix S1 (Table A2).
The stimuli were also counterbalanced to control
for congruency with additive reasoning (Ober-
steiner et al., 2015). Specifically, at each ratio of
ratio level there were an equal number of trials
where both machines, only one machine, or neither
machine had a greater number of the preferred
compared to the nonpreferred color (Figure A2 in
Appendix S1).

Symbolic Ratio Comparison Task

The procedure and numerical values were identi-
cal to those described for the nonsymbolic task. In
the symbolic version of the task, the number of
gumballs in each gumball machine was represented
by blue and white Arabic numerals 1 to 30, instead
of dots (see Figure 1). The introduction to Mr. Alien
and how the gumball machine works were shown
with gumballs (dots) in the machine to exactly
match the nonsymbolic version of the task. The five
practice trials used green and orange numerals, and
as in the nonsymbolic version, the experimenter did
not use number words when pointing to the con-
tents of the gumball machines.

Dot Comparison Task

Two dots arrays appeared on a black screen for
750 ms. The dot arrays were subsequently occluded
and the child was required to touch the array with

a greater quantity. Children completed 200 trials of
this task, with feedback on every trial. The number
of dots ranged from 8 to 32. The stimuli were cre-
ated to evenly sample a stimulus space that varied
by the ratio between the number, size, and the
spacing of the dots. To encourage greater reliability
of the measurement, trial level difficulty was
titrated (Lindskog, Winman, Juslin, & Poom, 2013).
The titration procedure calculated the percentage
correct over the last five trials. The ratio between
the two dot arrays moved one log level farther
apart if the accuracy was less than 70% and moved
one log level closer together if the accuracy was
> 80%. A quantitative index of each child’s ANS
acuity was calculated with the Weber fraction (w)
as specified in (DeWind, Adams, Platt, & Brannon,
2015). This model accounts for the effects of nonnu-
merical features of dot arrays on numerical discrim-
ination (DeWind et al., 2015).

Numeral Identification Task

Each child’s numeral recognition ability was
assessed by presenting the numerals 1-30 individu-
ally on index cards. The numerals were displayed
in random order, and the child was asked “What
number is this?” The accuracy of each child’s
response was recorded.

Key Math-3 Diagnostic Assessment

The Numeration and Data Analysis and Proba-
bility sections of the Key Math-3 Diagnostic Assess-
ment Form B (Connolly, 2007) were administered.
The Numeration section is a test of general basic
math skills such as place value, counting, the rela-
tive magnitude of numbers, and an understanding
of fractions, decimals, and percentages. For exam-
ple, children are presented with four numerals and
told “Read the numbers in order, from least to
greatest”. While the Numeration subtest does con-
tain questions about fractions, the vast majority of
these questions occurred farther in the test than
was age-appropriate for the children in our sample
to reach. The Data Analysis and Probability section
targets math content related to concepts of proba-
bility, statistics, and graphical representations of
data. For example, this section includes questions
where children see relevant pictures and are asked
“Which spinner gives you an equal chance of land-
ing on green or white?” and “Here is a picture
graph of the animals in a pet store. There are two
more turtles than which animal?” While some of
these questions include nonsymbolic elements
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(animal pictures, spinners, tally marks) they require
an exact answer in response to formalized, symbolic
math language. In this way we consider the Data &
Analysis and Probability section to be an age-ap-
propriate symbolic math measure that tests formal
math concepts related to our nonsymbolic ratio test.
We used the age-standardized scale score for both
sections of the test.

Woodcock—Johnson 1V Test of Cognitive Abilities

Participants” reading abilities were assessed
using the “Basic Reading Skills” cluster of the
Woodcock-Johnson. This cluster is comprised of the
“Letter-Word Identification” and “Word Attack”
subtests. In the “Letter-Word Identification” subtest,
participants named letters and read words aloud.
In “Word Attack,” participants read nonsense
words and identified letter sounds. We used the
age-standardized Basic Reading Skills score.

Analysis Plan

Due to the novel nature of our symbolic, approx-
imate ratio comparison task and our hypothesis on
the relation between ANS acuity and nonsymbolic
ratio calculation all analyses presented are explora-
tory.

Strategy Analysis

We examined three incorrect heuristics: picking
the machine with a greater absolute number of the
preferred color gumbealls, picking the machine with
a greater number of total items, and picking the
machine with less of the nonpreferred color gum-
ball. We will refer to these strategies as the “More
Good”, “More Items”, and “Less Bad” strategies,
respectively. Three subjects were excluded from
these analyses because they did not complete the
full 60 trials for one of the two ratio tasks.

We first identified for each trial whether the cor-
rect ratio strategy would result in a left machine
response (coded as 0) or a right machine response
(coded as 1). We refer to this as the Ratio Model.
For example, imagine a trial with three white and
seven blue gumballs in the left machine and two
white and 14 blue gumballs in the right machine
where white is the preferred color. The Ratio Model
would indicate a 0 since the left machine has a
higher ratio of the preferred color.

To test whether children performed true ratio
comparisons independent of incorrect heuristics we
constructed three models for each of the three

Ratio Comparison With Dots and Numerals 1017

heuristics. The Heuristic Model indicated the left
and right responses aligned with each heuristic
(Model 1). The Child’s Deviation from Heuristic
Model indicated how each child’s actual choices
deviated from each Heuristic Model (Model 2). The
Ratio Deviation from Heuristic Model indicated
how the Ratio Model and each Heuristic Model dif-
fer (Model 3).

To create each Heuristic Model we identified the
left or right response a child would make using
each heuristic (1 for the choice of the right machine,
and 0 for a choice of the left machine). For the
example trial described earlier, the More Good and
Less Bad Heuristic Models would both indicate the
choice of the left machine (coded with a 0) for that
trial, whereas the More Items Heuristic Model
would indicate the choice of the right machine
(coded with a 1).

To create each Child’s Deviation from Heuristic
Model we subtracted each Heuristic Model from
children’s actual left and right responses on the task
and took the absolute value. A 0 indicated that a
child’s response corresponded to the incorrect
heuristic, and a 1 indicated their response differed
from that predicted by the given Heuristic Model.

To create each Ratio Deviation from Heuristic
Model we subtracted each Heuristic Model from
the Ratio Model and took the absolute value. Thus,
for each heuristic, the Ratio Deviation from Heuris-
tic Model indicated whether the heuristic would
predict the same response as the Ratio Model
(coded as 0) or a different response (coded as 1). To
continue with our example trial (3 white and 7 blue
on left, 2 white and 14 blue on right), the Ratio
Deviation from Heuristic Model for the More Good
and Less Bad heuristics indicates 0 for this trial
because a child using either heuristic would pick
the correct machine. However, the Ratio Deviation
from Heuristic Model for the More Items heuristic
indicates 1 because the More Items heuristic pre-
dicts the opposite response from the Ratio Model
for this trial.

We next calculated a Pearson correlation coeffi-
cient between the Child’s Deviation from Heuristic
Model and the Ratio Deviation from Heuristic
Model for each child. A perfect correlation between
these models (r = 1) would indicate perfect ratio
comparison performance or 100% accuracy. If a
child was exclusively using one of the incorrect
heuristics, then the Child’s Deviation from Heuristic
Model would indicate all 0Os (no deviations from
using a heuristic) and so the correlation between
the two models would be undefined because the
Child’s Deviation from Heuristic Model would
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have a standard deviation of zero. Perfect heuristic
use with random noise will thus generate correla-
tion coefficients close to zero. This analysis results
in six correlation coefficients for each subject, one
for each heuristic on both the nonsymbolic and
symbolic ratio comparison tasks. We then tested at
a group level whether children’s correlation coeffi-
cients differed from zero with a one-sample t-test
for each of the three heuristics on both the nonsym-
bolic and symbolic ratio tasks. In sum, a positive
correlation between the Child’s Deviation from
Heuristic Model and the Ratio Deviation from
Heuristic Model indicates choices based on a true
ratio comparison when controlling for use of each
heuristic, in contrast, a correlation of zero indicates
use of the heuristic.

We also wanted to characterize which, if any,
heuristics children used. To differentiate performing
a ratio comparison from using a heuristic, we
examined the trials where the ratio strategy pre-
dicted a different response from a given heuristic.
Thus, we correlated the Ratio Deviation from
Heuristic Model for each heuristic with a child’s
actual errors on the task (0 indicates a correct
response, 1 indicates an incorrect response). A sig-
nificant positive correlation indicates children made
incorrect responses on trials where a given heuristic
predicted an incorrect response. This analysis tests
if the errors children made on the ratio comparison
tasks were random or could be described by a bias
toward using a specific heuristic. This analysis also
produced six correlation coefficients for each sub-
ject, one for each heuristic for each task format.
Again, we used a one-sample t-test to test whether
the correlation differed from zero at a group level.

Mediation Analysis

We first removed any outliers on each task that
were greater or less than three times the interquartile

Table 1

range. This process removed two ANS acuity scores.
ANS acuity and symbolic ratio comparison scores
were log-transformed to approach a normal distribu-
tion (ANS acuity Shapiro-Wilk W = .96; symbolic
ratio comparison W = .98). To ensure that correla-
tions between measures were not simply due to age
or demographics of each school location, we par-
tialed out age and school location from our measures
of ANS acuity and symbolic and nonsymbolic ratio
comparison, and school location from the age-stan-
dardized scores of the Woodcock-Johnson and the
Key Math. The age and school location standardized
Pearson correlations are reported in Table 1.

Mediation analyses test for a significant indirect
effect (the product of the standardized coefficients a
and b) that accounts for some portion of the origi-
nal direct effect (c). The remaining direct effect is
represented as ¢’. The goal of this analysis is to test
whether nonsymbolic ratio comparison accuracy
mediates the relation between ANS acuity and each
symbolic math measure separately. In our cross-sec-
tional experimental design this analysis cannot
demonstrate causality. Instead, our goal is to exam-
ine whether nonsymbolic ratio calculation and ANS
acuity account for the same or different variance in
each symbolic math outcome measure. A significant
mediation effect would be consistent with our
hypothesis that nonsymbolic ratio calculation is a
mechanism of the relation between ANS acuity and
symbolic math.

Results

Symbolic and Nonsymbolic Ratio Comparison
Performance

Children performed both the nonsymbolic (69%
tga = 14.15 p < .001, Cohen’s d = 1.54) and symbolic
(61% tgq =822 p <.001, Cohen’s d =0.89) ratio
tasks with above chance accuracy. This result held

Age and School Location Standardized Pearson Correlations Between Each Measure

Nonsymbolic ratio

Symbolic ratio Key-Math 3 Key-Math 3

ANS acuity comparison comparison Numeration =~ Data Analysis & Probability
Nonsymbolic ratio comparison —.24%
Symbolic ratio comparison -.14 B2k
Key-Math 3 e 30%* 32%*
Numeration
Key-Math 3 —.28% 37 30%* 64K
Data Analysis & Probability
W-J reading custer —-.18 18 .30* .28% .23

*p < 05, **p < 01, ***p < 001.
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Figure 2. (A) Accuracy was above chance on both the nonsymbolic and symbolic ratio comparison tasks. Children were more accurate
during nonsymbolic than symbolic ratio comparison. (B) Performance on the symbolic and nonsymbolic ratio comparison tasks were
highly correlated. Dotted lines indicate chance performance. Error bars indicate the standard error of the mean. **p < .01, ***p < .001.

independently at each age tested (Figure 2A; Eight-
year-olds Nonsymbolic 75% ty =10.1 p <.001,
Cohen’s d = 1.84; Symbolic 65% t,g = 5.65 p < .001,
Cohen’s d =1.03; Seven-year-olds Nonsymbolic
68% tz =9.8 p <.001, Cohen’s d = 1.71; Symbolic
60% t3; = 5.62 p <.001, Cohen’s d = 0.98; Six-year-
olds Nonsymbolic 63% t; = 5.61 p < .001, Cohen’s
d = 1.20; Symbolic 55% t;; = 3.43 p = .003, Cohen’s
d = 0.73). Performance increased as a function of
age on both ratio tasks (nonsymbolic rg; = .42,
t=42, p<.001;, symbolic rg=.41, t=41,
p < .001). Children were more accurate on nonsym-
bolic ratio comparison than symbolic ratio compar-
ison (tga =720 p <.001, Cohen’s d =0.78). This
format effect remained with the subset of children
(N =59) who recognized all numerals 1-30 on the
numeral identification test, indicating that numeral
recognition ability was not driving this difference
(tss = 6.86, p <.001, Cohen’s d = 0.89). Moreover,
this format effect was significant at each age inde-
pendently  (Eight-year-olds 1t =5.12 p <.001,
Cohen’s d=0.93; Seven-year-olds t3 =4.57
p <.001, Cohen’s d = 0.80; Six-year-olds f; = 2.80
p = .01, Cohen’s d = 0.60). As shown in Figure 2B,
accuracy on the nonsymbolic and symbolic ratio
comparison tasks were highly correlated (Table Al
in Appendix S1; r = .62, tgz = 7.22 p < .001).

To test whether the ratio of ratios of the two
arrays impacted accuracy, we ran a generalized

mixed-effects linear model following a binomial dis-
tribution predicting accuracy as a function of task
format (symbolic or nonsymbolic), the ratio of
ratios as fixed effects, and a random effect of sub-
ject. This model indicated significant main effects of
ratio and task (ratio of ratio B =.11, z =946,
p < .001; task B = —.16, z = —2.21, p = .03), and an
interaction between ratio of ratio and task format
(B=—-.06, z= -390, p <.001). Follow-up analyses
indicate that accuracy was dependent on the ratio
of ratios for both formats of the ratio comparison
task when modeled separately (Nonsymbolic ratio
of ratio f = .11, z = 9.52, p < .001; Symbolic = .05,
z =492, p <.001).

Nonsymbolic Ratio Comparison Facilitates Symbolic
Ratio Comparison

To test the hypothesis that experience with non-
symbolic ratio comparison scaffolds understanding
of the symbolic version of the task, we ran a mixed-
effects analysis of variance (ANOVA) with a main
effect of task order (first or second), task format
(symbolic or nonsymbolic), a task order by task for-
mat interaction, and a random effect of subject. As
planned, we removed any children who could not
identify all numerals 1-30 from these analyses (see
Figure A4 in Appendix S1 for the same analysis with
all subjects). This left 59 children spanning the age
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Figure 3. There is a significant interaction between task order
and task format. Children who completed the nonsymbolic ratio
comparison task first were significantly more accurate on the
symbolic ratio comparison task. Error bars indicate the standard
error of the mean. *p < .05.

range of the entire sample (11 six-year-olds, 22
seven-year-olds, 26 eight-year-olds). In line with our
prediction, there was a significant task order by task
format interaction (Figure 3; F;s; = 5.03, p = .03).
This effect was driven by significantly better perfor-
mance on the symbolic ratio comparison test after
completion of the nonsymbolic version of the task
(59% vs. 67% ts; = —2.44, p = .02, Cohen’s d = 0.64)
and a nonsignificant effect of task order on nonsym-
bolic ratio comparison accuracy (70% vs. 75%
ts; = —1.59, p = .12). The ANOVA also revealed a
significant main effect of task (72% vs. 63%
Fi57 = 47.1, p < .001), consistent with our analysis of
the larger data set, and a nonsignificant effect of task
order (First 67% vs. Second 68% F;s5; = 1.09,
p = .30). These findings are consistent with our
hypothesis that nonsymbolic ratio reasoning serves
as a scaffold for symbolic ratio reasoning.

Children Perform a True Ratio Comparison But Also
Use Incorrect Heuristics

We examined whether children performed a
ratio comparison when controlling for heuristic use
on both the symbolic and nonsymbolic ratio tasks.
We included the 82 subjects in this analysis who
completed all trials. Figure 4 displays the correla-
tion between each Ratio Deviation from Heuristic
Model and Child’s Deviation from Heuristic Model.
A one-sample t-test revealed a significant positive

correlation (Figure 4, Nonsymbolic More Good
r=.35 tg =116, p <.001;, More Items r= 41,
tsg =151, p <.001; Less Bad r = .44, tg; =168,
p < .001; Symbolic More Good r = .18, tg = 6.49,
p <.001; More Items r = .23, tg; =842, p <.001;
Less Bad r = .25, tg; = 9.28, p < .001). This analysis
revealed that children’s choices were significantly
driven by a comparison of ratios in both the sym-
bolic and nonsymbolic ratio comparison tasks even
when controlling for the potential use of each incor-
rect heuristic.

Although the previous analysis demonstrates
that children did not rely on any particular unidi-
mensional heuristic to solve the ratio comparison
tasks, it remains possible that children used one or
more heuristic on some trials. Figure 5 displays the
correlation between the Ratio Deviation from
Heuristic Model for each strategy and a child’s
actual errors on the nonsymbolic and symbolic ratio
comparison tasks (for a breakdown of positive cor-
relations by subject see Figure A3 in Appendix S1)
For the nonsymbolic ratio comparison task, a one-
sample t-test on the mean correlation indicated that
children’s errors were in accordance with the More
Good or More Items strategies (Figure 5; More
Good r=.36, tg =107, p<.001, More Items
r=.29, tg1 =9.12, p <.001). The negative correla-
tion between errors and the Less Bad strategy indi-
cated that children were significantly doing the
opposite of the Less Bad strategy (r= —.24,
tg1 = —8.11, p <.001). The same pattern of results
was found for the symbolic ratio comparison task.
Specifically, children’s errors were in accord with
the More Good (r = .25, tg; = 7.83, p < .001) and the
More Items (r = .20, tg; = 6.61, p <.001) strategy.
Children also did the opposite of the Less Bad strat-
egy on the symbolic version of the task (r = —.17,
ts1 = —6.17, p <.001). Thus, the errors children
made on the ratio task were qualitatively similar
regardless of presentation format.

No Evidence of a Strategy Shift After Nonsymbolic
Ratio Practice

We used the same strategy analysis described
above to investigate heuristic use, but this time split
participants by the order in which they completed
the ratio tasks (nonsymbolic first n = 27, symbolic
first n =36) and analyzed their performance on
only the symbolic version of the task. Contrary to
our hypothesis, there was no significant difference
in the degree to which children’s errors reflected
use of the More Good or More Items strategies by
the order in which they completed the symbolic

A ‘€ “120T “$T98LIYT

paus//sdny woxy papeoy

ASUAOI] SUOWILLO) dA1EaI) o[qeorjdde oty q PAUISA0S ale SA[OIIE Y() 2SN JO SA[NI 10§ AIeIqI] Sul[uQ) KJ[IA\ UO (SUONIPUOI-PUB-SULIA}/W0d Ao[1m AreIqi[ouruoy/:sdny) suonipuo)) pue swa | oy 23S *[£707/S0/20] uo Areiqi aurjuQ Loip ‘BIueA[Asuusg JO ANSIOATUN AQ OLE ] AP/ [ 1°01/10P/W0d K[IM"



Ratio Comparison With Dots and Numerals 1021

1.00

c 075

2

-

©

o 050

| .

S

o

O 25

]

S

o

= 0.00 -\ foo oot AR e e [
-0.25

Less Bad More Good More ltems

Symbolic | Non-Symbolic

Figure 4. Correlation between each Ratio Deviation from Heuristic Model and Child’s Deviation from Heuristic Model. A correlation
significantly above zero indicates children made choices consistent with ratio comparison, even when controlling for the use of each
incorrect heuristic. Children’s responses were significantly positively correlated with the responses indicated by a ratio comparison
strategy for all three heuristics on both formats of the ratio comparison task p < .001. Points indicate the mean correlation of all sub-
jects, and the gray area of the violin plot indicates the distribution of individual correlations. Error bars indicate the standard error of
the mean. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Correlation between the Ratio Deviation from Heuristic Model for each strategy and a child’s actual errors on the nonsym-
bolic and symbolic ratio comparison tasks. A correlation significantly above zero indicates the use of the strategy. The errors children
made on both the symbolic and nonsymbolic ratio tasks were consistent with the use of the More Good or More Items strategy
p < .001. The errors children made were significantly opposite of using the Less Bad strategy p < .001. Points indicate the mean correla-
tion of all subjects, and the gray area of the violin plot indicates the distribution of individual correlations. Error bars indicate the stan-
dard error of the mean. [Color figure can be viewed at wileyonlinelibrary.com]

task (Figure Al in Appendix S1; two-sample t test  order on the degree to which children did not use
More Good tg = —.66, p=.51; More Items the Less Bad heuristic (Figure Al in Appendix S1;
te1 = —.82, p = 41). There was also no effect of task te1 = 1.09, p = .28).
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The Relation Between ANS Acuity, Nonsymbolic Ratio
Comparison, and Symbolic Math

Finally, we examined how children’s ability to
compare ratios nonsymbolically related to their
ANS acuity, and symbolic math skill. Table 1 dis-
plays the age and school location standardized cor-
relations between nonsymbolic and symbolic ratio
comparison skill, ANS acuity, Key-Math-3 Numera-
tion and Data Analysis and Probability sections,
and the Reading Cluster score on the Woodcock—
Johnson (for zero-order correlations see Table Al in
Appendix S1). Mean performance on the Key-Math-
3 Numeration subtest was 9.05 (SD 3.3), and mean
performance on the Data Analysis & Probability
subtest was 8.47 (SD 3.1). The scale scores are con-
structed to have a mean of 10 (SD 3).

Children completed three symbolic math mea-
sures: symbolic ratio comparison, Key-Math-3
Numeration, and Key-Math-3 Data Analysis and
Probability. ANS acuity was no longer correlated
with accuracy on the symbolic ratio comparison
task when controlling for age and school location
(comparison of Table Al in Appendix S1 and
Table 1). Consequently, we ran mediation models
with only the Key-Math 3 Numeration and Data
Analysis and Probability sections as symbolic math

outcome measures. We ran all mediation analyses
using the “mediation” package in R (Tingle, Yama-
moto, Hirose, Keele & Imai, 2014). As seen in
Table 1, the Key-Math-3 Numeration section score
was significantly correlated with children’s score on
the Woodcock-Johnson Basic Reading Skills. To
ensure that this outcome measure is a test of gen-
eral math skill, and not general academic perfor-
mance, we partialed out children’s Woodcock-
Johnson Basic Reading score from the Key-Math
Numeration score. The residuals from the models
with age, school location, and the Basic Reading
Skills test as predictors were used in the mediation
analysis.

We tested whether nonsymbolic ratio compar-
ison accuracy mediated the relation between ANS
acuity and the two subtests of the Key-Math-3 test
(Figure 6). We first ran the mediation analysis with
the Numeration subtest as an outcome measure.
ANS acuity was a significant predictor of the Key-
Math 3 Numeration score (standardized P = —.41,
p <.001) and was also a significant predictor of
accuracy on the nonsymbolic ratio comparison task
(standardized B = —.27, p =.02). However, when
ANS acuity and nonsymbolic ratio comparison
accuracy were both entered into the same model,
nonsymbolic ratio comparison accuracy was no

A
c=-41%
ANS Acuity — Key Ma_th
Numeration
Non-symbolic
Ratio Comparison
=-27*
. c' =-.36" Key Math
ANS Acuity — > Numeration
ab =-.05

B
c=-.28"
ANS Acuity BN Reyliath =
Data Analysis & Probability
Non-symbolic
Ratio Comparison
=-.29*
, c'=-18 Key Math
ANS Acxiity , | Data Analysis & Probability
ab =-.09

Figure 6. Mediation analyses test for a significant indirect effect (the product of the standardized coefficients a and b) that accounts for
some portion of the original direct effect (c). The remaining direct effect is represented as c’. (A) Nonsymbolic ratio comparison accu-
racy does not mediate the relation between Approximate Number System (ANS) acuity and a child’s score on the Key-Math-3 Numera-
tion section. The direct effect ¢’ remains significant. (B) Nonsymbolic ratio comparison accuracy mediates the relation between ANS
acuity and a child’s score on the Key-Math-3 Data Analysis and Probability section. *p < .05, **p < .01, ***p < .001.
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longer a significant predictor of the Key-Math-3
Numeration score (f =.19, p = .09), whereas ANS
acuity remained a significant predictor (B = —.36,
p =.002). The direct effect was significant when
tested with a bootstrap estimation approach with
5000 simulations (direct effect = —.36, 95% CI [—.54,
—.18], p < .001), whereas the indirect effect was not
significant (indirect effect = —.05, 95% CI [-.15,
.001], p = .06). Thus, nonsymbolic ratio comparison
did not mediate the relation between ANS acuity
and a child’s score on the Key-Math-3 Numeration
test. Instead, ANS acuity explained unique variance
beyond nonsymbolic ratio calculation accuracy in
performance on the Key-Math-3 Numeration test.
We then ran the mediation analysis with the
Data Analysis and Probability subtest as an out-
come measure. ANS acuity was a significant predic-
tor of a child’s score on the Key-Math-3 Data
Analysis and Probability section (standardized
= —.28, p = .03) and of accuracy on the nonsym-
bolic ratio comparison task (standardized p = —.29,
p = .02). In contrast to the previous analysis of the
Numeration subtest, ANS acuity was no longer a
significant predictor of the score on the Probability
and Data Analysis subtest after controlling for the
mediator, nonsymbolic ratio comparison accuracy
(ANS acuity standardized B = —.18, p = .13; non-
symbolic ratio comparison accuracy standardized
B =.32, p=.008). Nonsymbolic ratio comparison
mediates the relation between ANS acuity and per-
formance on the Key-Math-3 Data Analysis and
Probability subtest. The indirect effect was signifi-
cant when tested with a bootstrap estimation
approach (indirect effect = —.09, 95% CI [-.22,
—.01], p = .03). The direct effect was not significant
(direct effect = —.18, 95% CI [—.40, .02], p = .07).
The proportion mediated was .34 (p = .03, 95% CI
[0.04, 1.10]). Thus, a higher Key-Math-3 Data Anal-
ysis and Probability score was associated with
0.09 SDs sharper ANS acuity as mediated through
nonsymbolic ratio comparison accuracy.

Discussion

The first goal of our study was to assess whether
elementary school children engage in both nonsym-
bolic and symbolic ratio reasoning, and whether
exposure to nonsymbolic ratio reasoning might
scaffold symbolic ratio reasoning. We found that
children are adept at solving both nonsymbolic and
symbolic ratio comparisons before they receive for-
mal education about fractions and ratios. While per-
formance on both tasks improved with age, even 6-
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year-olds demonstrated above chance accuracy on
both the nonsymbolic and symbolic ratio tasks. Our
results support previous work demonstrating that
young children engage in intuitive ratio reasoning
before they learn about ratios and fractions in
school (Boyer & Levine, 2015; Falk et al., 2012; Yost
et al., 1962). We further provide the first evidence
that young children intuitively reason about ratios
with symbolic numerals. While one previous study
found that slightly older 7- to 10-year-old children
could compare ratios presented as a frequency dis-
tribution (e.g., 4 tokens out of 10 are gold), the
stimuli in that study were constructed such that
children could have attended only to the numerator
rather than truly evaluating the ratio of the numer-
ator to the denominator (Ruggeri, Vagharchakian,
& Xu, 2018). This study is thus the first to demon-
strate that 6- to 8-year-old children can perform
approximate ratio comparisons with a symbolic for-
mat without relying on unidimensional comparison
heuristics.

Consistent with our hypothesis that engaging in
nonsymbolic ratio reasoning scaffolds symbolic
ratio reasoning, we found a significant effect of task
order on symbolic ratio comparison accuracy. Chil-
dren who received the nonsymbolic task first per-
formed with higher accuracy on the symbolic task
as compared to children who started the session
with the symbolic task. One possibility is that
engaging in the nonsymbolic task first highlighted
the conceptual link between the two tasks. The non-
symbolic task offers a concrete representation of the
ratio comparison problem, which may allow chil-
dren to create a conceptual model of correct ratio
comparison. This conceptual model may remain
opaque when children encounter only symbolic rep-
resentations of the numerical magnitudes involved
in the computation. This interpretation is consistent
with prior work where nonsymbolic representations
of a math problem boost symbolic calculation (for
examples see Carbonneau, Marley, & Selig, 2013;
Fujimura, 2001; Fyfe, McNeil, Son, & Goldstone,
2014; Park et al., 2016) An alternative possibility is
that because overall performance is greater on the
nonsymbolic task, engaging in the nonsymbolic
ratio comparison task first boosted children’s
domain-general or domain-specific confidence.
Under this scenario, practice on the nonsymbolic
task may not have changed how children solved
the symbolic task, but instead increased confidence
in their ratio intuitions. Our finding that children
did not change the strategies they used on the sym-
bolic task after completion of the nonsymbolic task,
but still had an overall increase in accuracy, may be
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interpreted as support for this hypothesis. This type
of confidence hysteresis effect, where children per-
form with higher accuracy when trials move from
easy to hard, has been demonstrated in other
domains and among ANS tasks (Hock & Schoner,
2010; Odic, Hock, & Halberda, 2014). Ultimately,
future work utilizing a pretest-training-posttest
experimental design is necessary to disentangle the
mechanism of this scaffolding effect and to test the
robustness of the benefit of nonsymbolic ratio prac-
tice for symbolic ratio understanding.

The second goal of our experiment was to exam-
ine whether children use unidimensional heuristics
when solving the ratio comparison tasks. Impor-
tantly, children’s performance on the two ratio
tasks could not be explained by any single incorrect
heuristic. At the same time, when children did
make an error, they tended to erroneously pick the
machine with more of the preferred item, or with
more total items. This finding is consistent with
previous research on young children’s intuitive
ratio reasoning (Clarke & Roche, 2009; Falk et al,,
2012; Jeong et al., 2007; Obersteiner et al., 2015;
Shaklee & Paszek, 1985; Siegler et al., 1981). Taken
together, our results suggest that children are cap-
able of true ratio reasoning, but continue to exhibit
a bias toward the ratio with the greater number of
preferred items and the ratio with a greater number
of total items. Children also exhibit this pattern of
mixed strategy use when placing a fraction magni-
tude on a number line (Braithwaite & Siegler, 2018).
Future work with an even larger stimulus set
should examine whether children’s use of incorrect
unidimensional heuristics depends on the difficulty
of the ratios being compared. Perhaps children
reply on incorrect heuristics when the ratio compar-
ison is difficult.

The third and final goal of this study was to
examine whether the ANS serves as a cognitive
foundation for nonsymbolic ratio reasoning, and to
test whether performing a nonsymbolic operation
may be a mechanism of the relation between ANS
acuity and symbolic math. Our hypothesis was that
sharper ANS acuity would allow children to create
better intuitive ratio models, which allow for more
accurate nonsymbolic ratio calculation. In turn, bet-
ter nonsymbolic ratio comparison accuracy can pro-
vide a better conceptual scaffold for related math
concepts. Consistent with the first part of our
hypothesis, ANS acuity was significantly correlated
with children’s accuracy on the nonsymbolic ratio
reasoning task. Moreover, performance on both the
nonsymbolic and symbolic ratio reasoning tasks
was dependent on the ratio of ratios being

compared, in accord with Weber’s law (Feigenson
et al., 2004). Consistent with the second part of our
hypothesis, nonsymbolic ratio accuracy mediated
the relation between ANS acuity and performance
on the Key-Math-3 Data Analysis and Probability
section. This Key-Math-3 section included questions
such as “Which spinner gives you an equal chance
of landing on green or white?” and “There are two
more turtles than which animal?” while displaying
a pictograph. Thus, nonsymbolic ratio comparison
mediates the relation between ANS acuity and for-
mal math questions about probability and counting
objects. This finding is in line with work demon-
strating that performing a nonsymbolic operation
explains significant unique variance in formal math
skill beyond ANS acuity (Matthews et al., 2016;
Park & Brannon, 2014; Pinheiro-Chagas et al., 2014;
Starr et al., 2016).

Our finding that nonsymbolic ratio comparison
explains significant unique variance in performance
on the Key-Math-3 Data Analysis and Probability
subtest is consistent with the finding that nonsym-
bolic, approximate ratio reasoning predicts sym-
bolic fraction, number line, and algebra knowledge
when controlling for ANS acuity in adults (Mat-
thews et al., 2016). These findings have led to the
proposal of an intuitive Ratio Processing System
(Matthews & Hubbard, 2017). The current experi-
ment is the first to find similar relations between
nonsymbolic, approximate ratio processing ability,
ANS acuity, and formal math skill in elementary
school children. Thus, the Ratio Processing System
may support children’s early understanding of
ratios during the elementary school years, even
without explicit instruction linking children’s non-
symbolic and symbolic ratio representations.

However, we did not find evidence that nonsym-
bolic ratio accuracy mediates the relation between
ANS acuity and scores on the Key-Math-3 Numera-
tion section. In this case, the direct relation between
ANS acuity and basic numeration concepts was not
significantly attenuated by the indirect effect of
nonsymbolic ratio accuracy. This finding is consis-
tent with work correlating sharper ANS acuity with
better early symbolic math skills in children (Sch-
neider et al., 2016). The Key-Math-3 Numeration
section included questions such as “Read these
numbers from least to greatest” and “Starting at
forty-one, count up by tens”. Thus, the Key-Math-3
Numeration section tests general symbolic number
skills, whereas the Data Analysis & Probability sec-
tion tests concepts that are more similar to the non-
symbolic ratio task. Taken together, our mediation
analyses suggest that nonsymbolic ratio calculations
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serve as a conceptual scaffold for symbolic math
problems that conceptually overlap, but not for
unrelated math skills. In other words, perhaps not
surprisingly, nonsymbolic calculation cannot func-
tion as a conceptual scaffold for symbolic calcula-
tion when the required calculations differ
dramatically from each other. While the current
experiment explored the relations between ANS
acuity, a nonsymbolic ratio comparison operation,
and symbolic math, future research should test
whether a more general measure of nonsymbolic
approximate calculation, beyond ratio calculation
alone, mediates the relation between ANS acuity
and general math skill. Such work would identify
the degree to which algorithmic overlap between
the nonsymbolic and symbolic math tested is
required for mediation of the relation between ANS
acuity and symbolic math.

While we initially predicted that nonsymbolic
ratio reasoning would mediate the relation between
ANS acuity and approximate, symbolic ratio rea-
soning performance, we were unable to test this
hypothesis because performance on our symbolic
ratio reasoning task was no longer correlated with
ANS acuity after controlling for age and school
location. This lack of correlation may be due to the
variability in numeral knowledge between schools.
For example, perhaps numeral identification (espe-
cially numbers 11-30) was taught at some schools
and not others. In support of this hypothesis, two
schools were significant predictors of numeral iden-
tification score in a model with age and school loca-
tion as regressors (Table A3 in Appendix S1). In
contrast to our standardized Key-Math-3 measures,
curriculum timing may have had a role to play in
our measurement of symbolic ratio comparison
ability, and this may have made it harder to mea-
sure the correlation between symbolic ratio compar-
ison ability and ANS acuity.

It is our hope that the current experiment will
inspire future explorations of how nonsymbolic
numerical reasoning can scaffold symbolic numeri-
cal reasoning. A limitation of this study is that both
ratio tasks were presented in a part-part format
rather than the part-whole format used with sym-
bolic fractions (e.g. X out of X gumballs are blue).
For example, it is possible we could see an
increased use of the More Items strategy if the total
number of items was explicitly displayed during
the symbolic version of the task. The total number
of gumballs in the nonsymbolic task may be more
directly perceived as a whole by ignoring the indi-
vidual gumball color. Future work could explore
whether presenting the task in a part-whole format
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changes heuristic use or influences the degree of
format facilitation. Future work should also explore
the role of executive function and short-term mem-
ory in the relations between nonsymbolic ratio rea-
soning, ANS acuity, and symbolic math given the
importance of these skills for general mathematics.
In summary, our findings highlight that even
before children begin to learn about fractions and
ratios in school, they possess an intuitive ratio rea-
soning capacity. This intuitive ratio reasoning skill
extends to nonsymbolic quantities and numerals.
Children have a notoriously difficult time under-
standing ratios in school (Siegler, Fazio, Bailey, &
Zhou, 2013). This difficulty has sometimes been
attributed to a “Whole Number Bias”, the tendency
for children to overgeneralize integer calculation to
rational numbers (DeWolf & Vosniadou, 2015; Ni &
Zhou, 2005). Emphasizing children’s intuitions about
ratios as well as whole numbers at an early age holds
the potential to mitigate some of this conceptual con-
fusion. Specifically, grounding children’s symbolic
ratio reasoning in isomorphic nonsymbolic problems
may facilitate learning. A greater understanding of
the intuitive mathematical knowledge children pos-
sess may help educators make abstract mathematical
computations more accessible to young learners.
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