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Abstract
A function is called quasiperiodic if its fundamental frequencies are linearly indepen-
dent over the rationals. With appropriate parameters, the sliding window point clouds
of such functions can be shown to be dense in tori with dimension equal to the number
of independent frequencies. In this paper, we develop theoretical and computational
techniques to study the persistent homology of such sets. Specifically, we provide
parameter optimization schemes for sliding windows of quasiperiodic functions, and
present theoretical lower bounds on their Rips persistent homology. The latter lever-
ages a recent persistent Künneth formula. The theory is illustrated via computational
examples and an application to dissonance detection in music audio samples.

Keywords Topological data analysis · Persistent homology · Dynamical systems ·
Sliding window embeddings · Quasiperiodicity · Time series analysis

Mathematics Subject Classification Primary 55N31 · 37M10; Secondary 68W05

1 Introduction

Recurrent behavior—both in time and space—is ubiquitous in nature. Periodicity and
quasiperiodicity are two prominent examples, characterized by a vector of underly-
ing non-zero frequencies: If all pairwise ratios are rational, then the recurrence is
periodic, while quasiperiodicity, on the other hand, occurs if there are at least two
frequencies whose quotient is irrational. Quasiperiodic recurrence is at the heart of
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KAM (Kolmogorov–Arnold–Moser) theory (Broer 2004), it appears as a signature of
biphonation (i.e., the voicing of two simultaneous pitches) in mammalian vocalization
(Wilden et al. 1998), in climate change patterns on Mars (Pollack and Toon 1982), in
the oscillatory movement of the star TT Arietis (Hollander and Van Paradijs 1992),
and in the brain functioning in mice as reported by fMRI scans (Belloy et al. 2017).
The list goes on.

Quasiperiodicity in dynamical systems is typically studied with numerical methods
including Birkhoff averages (Das et al. 2016), periodic approximations (Slater 1967;
Sós 1958), estimation of Lyapunov exponents (Weixing et al. 1993), power spectra
(Wojewoda et al. 1993), and recurrence quantification analysis (Webber and Zbilut
1994;Zbilut et al. 2002).New techniques fromapplied topologyhave emerged recently
as complements to these traditional approaches in the task of recurrence detection—
specifically for periodicity and quasiperiodicity quantification—in time series data
(Perea and Harer 2015; Perea 2016; Tralie and Perea 2018). This novel framework
combines two key ingredients: sliding window embeddings and persistent homology.

Sliding window (also known as time-delay) embeddings provide a framework to
reconstruct the topology of state-space attractors in dynamical systems, given observed
time series data. Indeed, given parameters d ∈ N = {0, 1, . . .} (controlling the embed-
ding dimension d + 1) and τ ∈ {x ∈ R | x > 0} (the time delay) the sliding window
embedding of f : R −→ C at t ∈ R is the vector

SWd,τ f (t) :=

⎡
⎢⎢⎢⎣

f (t)
f (t + τ)

...

f (t + dτ)

⎤
⎥⎥⎥⎦ ∈ C

d+1. (1)

Themotivation behind this construction is Takens’ embedding theorem (Takens 1981),
which asserts that if f is the result of observing the evolution of a (potentially unknown)
dynamical system, then the underlying topology of the sliding window point cloud
SWd,τ f := SWd,τ f (R)—generically in f and for appropriate parameters d, τ—
recovers that of the traversed portion of the state space. In particular, this is how
attractors can be reconstructed from observed time series data.

The topology of attractors constrains many properties of the underlying dynamical
system (e.g., periodic orbits, chaos, etc) and detecting these features in practice is
where persistent homology has come into play (Robins 1999). Persistent homology is
a tool fromTopological Data Analysis widely used to quantify multiscale homological
features of shapes. Its typical input is a collection K = {Kε}ε≥0 of spaces with
Kε ⊂ Kε′ continuous for all ε ≤ ε′. This is called a filtration. The output in each
dimension j ∈ N is a multiset

dgm j (K) ⊂ {(x, y) ∈ [0,∞] × [0,∞] | 0 ≤ x < y}

called the j-th persistence diagram ofK, where each pair (a, b) ∈ dgm j (K) encodes
a j-dimensional topological feature (like a connected component, a hole, or a void)
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which appears at Ka and disappears entering Kb. The quantity b−a is the persistence
of the feature, and typically measures significance across the filtration.

In data analysis applications the input to persistent homology is often a metric
space (X ,dX )—e.g., a sliding window point cloud SWd,τ f—from which the Rips
(simplicial) complex

Rε(X ,dX ) :=
{
{x0, . . . , xn} ⊂ X | max

0≤ j,k≤n
dX (x j , xk) < ε, n ∈ N

}
(2)

is computed at each scale ε ≥ 0, producing the Rips filtration

R(X ,dX ) := {Rε(X ,dX )}ε≥0. (3)

Points in the Rips persistence diagrams dgmR
j (X) := dgm j

(R(X ,dX )
)
quantify

the underlying topology of X in that pairs (a, b)with large persistence b−a represent
likely topological features of a continuous space around which X accumulates.

The diagrams dgmR
j (SWd,τ f ) have shown to be rich signatures for recurrence

detection in time series, with applications including: periodicity quantification in gene
expression data (Perea et al. 2015), (quasi)periodicity detection in videos (Tralie and
Perea 2018), synthesis of slow-motion videos from repetitive movements (Tralie and
Berger 2018), wheezing detection (Emrani et al. 2014), and chatter prediction (Kha-
sawneh et al. 2018). See Perea (2019) for a recent survey. One of themain challenges in
these applications is the validation of empirical results, which stems, in part, from the
current limited theoretical understanding of how dgmR

j (SWd,τ f ) depends on f , d, τ

and T . That said, there are recent explicit conditions on f for SWd,τ f to provide
appropriate reconstructions (Xu et al. 2019), as well as analyses of sliding window
persistence for periodic functions (Perea and Harer 2015), and quasiperiodic functions
of the form (Perea 2016)

f (t) = c1e
itω1 + · · · + cN e

itωN . (4)

In Eq. (4) the ωn > 0 are Q-linearly independent (i.e., incommensurate), and the
coefficients cn ∈ C are nonzero. Our goal in this paper is to extend (Perea and Harer
2015) and (Perea 2016) to general quasiperiodic functions; i.e., those beyond Eq. (4).

1.1 Contributions

The first contribution of this paper is methodological: we develop techniques to study
the persistent homology of sliding window point clouds from general quasiperiodic
functions. Specifically, we show that if f : R −→ C is quasiperiodic with incommen-
surate frequencies ω = (ω1, . . . , ωN ) (Definition 2.4), and if for k ∈ Z

N , K ∈ N, we
let

F̂(k) = lim
λ→∞

1

λ

∫ λ

0
f (t)e−i〈k,tω〉dt, SK f (t) =

∑
‖k‖∞≤K

F̂(k)ei〈k,tω〉
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then the Rips persistence diagrams dgmR
j (SWd,τ f ), j ∈ N, can be approximated in

bottleneck distance by dgmR
j (SWd,τ SK f ) as K → ∞. The diagrams of SWd,τ SK f

are then studied directly with methods extending those of Perea (2016), Perea and

Harer (2015); the approximation to dgmR
j (SWd,τ f ) is of order O

(
K

N
2 −r
)
when

|F̂(k)| = O
(‖k‖−r

2

)
and r > N/2 (Corollary 3.2).

This approximation strategy leads to our second contribution: computational
schemes for optimizing the choice of parameters d ∈ N and τ > 0, so that the
geometry (and hence the Rips persistent homology) of the sliding window point cloud
SWd,τ f = SWd,τ f (R) robustly reflects that of an N -torus. Explicitly:

1. Given f , estimate the coefficients F̂(k) and their frequency locations
〈k, ω〉. This can be done numericallywithmethods leveraging theDiscrete
Fourier Transform (Gómez et al. 2010; Laskar 1993) or Wavelet analysis
(Vela-Arevalo 2002).

2. Let K ∈ N be the smallest integer so that

supp(F̂K ) :=
{
k ∈ Z

N | F̂(k) �= 0 and ‖k‖∞ ≤ K
}

spans an N -dimensional Q-vector space. This is possible provided f is
smooth enough (Lemma 4.1).

3. Let d be the cardinality of supp(F̂K ), or alternatively, the number of
prominent peaks in the spectrum of f . This choice is so that SWd,τ f has
the right toroidal dimension (Theorem 4.2).

4. Let τ > 0 be a minimizer over [0, τmax] of the scalar function

�(x) =
∑
k �=k′

∣∣∣1 + eix〈k−k′,ω〉 + · · · + eix〈k−k′,ω〉d
∣∣∣2

where the sum runs over k,k′ ∈ supp(F̂K ). This choice is meant to
amplify the toroidal features in dgmR

j (SWd,τ f )—see Figs. 4 and 5—
and can be implemented via simple minimization algorithms.

Here, by toroidal features, we refer to the torus shaped attractors in the underlying
dynamical system, which are captured by computing the persistent homology of the
sliding window point cloud. By strong N -toroidal features, we mean that there are

(N
j

)

number of significant persistence points in dgmR
j .

Our third contribution leverages the aforementioned approximation strategy, param-
eter choices, and a recent persistent Künneth formula (Gakhar and Perea 2019), to
establish bounds for the cardinality and persistence of strong toroidal features in
dgmR

j (SWd,τ f ), for 1 ≤ j ≤ N . We prove the following (Sect. 6):

Theorem With K , d ∈ N and τ > 0 as before, let σmin > 0 be the smallest singular
value of the (d+1)×d Vandermonde matrix

[
ei〈k,ω〉τ j

]
j=0,...,d, k∈supp(F̂K )

. Moreover,
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let k1, . . . ,kN ∈ supp(F̂K ) be Q-linearly independent with

|F̂(k1)| ≥ |F̂(k2)| ≥ · · · ≥ |F̂(kN )| > 0.

For 1 ≤ n ≤ N, let 1 ≤ n1 < · · · < n� ≤ N be the longest sequence (i.e., largest
�) for which

|F̂(kn)| = |F̂(kn1)| = · · · = |F̂(kn�
)|

and for 1 ≤ j ≤ N, let

μ j (n) :=
(
n1 − 1

j − 1

)
+ · · · +

(
n� − 1

j − 1

)
.

Then, there are at least μ j (1) + · · · + μ j (n) toroidal features (a, b) ∈
dgmR

j

(
SWd,τ f

)
, counted with multiplicity, and with persistence

b − a ≥ √
3|F̂(kn)|σmin − 4

√
d + 1‖ f − SK f ‖∞. (5)

We envision for these kinds of theorems to be useful in separating noise from fea-
tures in applications of quasiperiodicity detection/quantification with sliding windows
and persistence. As an illustration, consider the quasiperiodic signal

f (t) = 2 sin(t) + 1.8 sin
(√

3t
)

shown in Fig. 1 below (left), together with dgmR
j (SWd,τ f ) (right) in dimensions

j = 1 (blue) and j = 2 (orange), computed with appropriate parameters d, τ . The
corresponding theoretical lower bounds on persistence from Eq. (5) are depicted with
dashed lines. We also use f (t) to demonstrate the effect of random noise on sliding
window persistence. See Sect. 7.1 for computational details.

Finally, as an application of the theory established in this paper, we illustrate how
sliding windows and persistence can be used to identify the presence of dissonance in
music audio recordings. Indeed, dissonant intervals in music (like the tritone) lead to
quasiperiodic recurrence in the recorded audio waves, which we show can be effec-
tively detected with the methods developed here. We also note that the preliminary
versions of these results appeared in the first author’s Ph.D. thesis (Gakhar 2020).

1.2 Organization

Section 2 presents the necessary mathematical background on the Fourier theory
of quasiperiodic functions and persistent homology. Section3 provides Fourier-type
approximation theorems with explicit rates, at the level of sliding window point clouds
and Rips persistent homology. Section4 is devoted to studying the geometric structure
of the slidingwindow point cloud SWd,τ SK f as a function of the parameters involved.
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Fig. 1 Left: the function f (t) = 2 sin(t) + 1.8 sin
(√

3t
)
. Right: The persistence diagrams in dimensions

j = 1 (blue) and j = 2 (orange) of the sliding window point cloud SWd,τ f , together with the lower
bounds on persistence (dashed lines) from Eq. (5) (color figure online)

In Sect. 5, we establish a computational framework for the optimization of d and τ .
Section6 establishes the advertised theoretical lower bounds on dgmR

j (SWd,τ f ), and
we end in Sect. 7 with computational examples and applications.

1.3 Notation

Let T = R/2πZ ∼= S1, that is, [0, 2π ] with the endpoints identified. Similarly for
N ∈ N, let T

N = (R/2πZ)N ∼= S1 × · · · × S1. We will abuse notation and regard
any F : T

N −→ C as both a function of a variable t ∈ R
N where each coordinate tn

is 2π -periodic, and also as a function on the quotient T
N .

2 Preliminaries

In this section we establish the necessary background for later parts of the paper. In
particular, we provide a short review of Kronecker’s multidimensional approximation
theorem in Sect. 2.1, as well as of quasiperiodic functions and their Fourier theory in
Sect. 2.2. The theory of persistent homology is briefly discussed in Sect. 2.3.

2.1 Kronecker’s theorem

If we regard R as a vector space over Q, then a finite set {β1, . . . , βN } ⊂ R is
called incommensurate if β1, . . . , βN are linearly independent over Q. That is, for
c1, . . . , cN ∈ Q

c1β1 + · · · + cNβN = 0 if and only if c1 = · · · = cN = 0.

Kronecker’s theorem is concerned with simultaneous diophantine approximations
to real numbers, and incommensurability turns out to be the main condition. Later on
we will use this theorem to see why sliding window point clouds from functions with
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Fig. 2 The set Tβ/2πZ
3 ⊂ T

3 for β = (
√
2,

√
3, 0) (left, a 2-torus), β = (

√
2,

√
3,

√
2 + √

3) (second,
a 2-torus), β = (

√
2,

√
3, 3

√
2 + 2

√
3) (third, a 2-torus), β = (

√
2,

√
3, π2 + 1) (right, a 3-torus) and

T =
[
−104, 104

]
∩ Z

incommensurate frequencies (i.e., quasiperiodic) are dense in high-dimensional tori.
For now, the theorem can be stated as follows (Apostol 2012, Chapter 7).

Theorem 2.1 (Kronecker) {β1, . . . , βN } ⊂ R is incommensurate if and only if for
every r1, . . . , rN ∈ R and every ε > 0, there exist t ∈ R and k1, . . . , kN ∈ Z so that

|tβn − rn − 2πkn| < ε for all 1 ≤ n ≤ N . (6)

As a consequence, the entries of β = (β1, . . . , βN ) ∈ R
N are incommensurate if

and only if Rβ/2πZ
N := {t(β1, . . . , βN ) mod 2π | t ∈ R

}
is dense in T

N .

Remark 2.2 If one further assumes that {π, β1, . . . , βN } is incommensurate, then Eq.
(6) holds with t ∈ Z.

Here is a useful consequence of Kronecker’s theorem:

Corollary 2.3 Let β = (β1, . . . , βα) ∈ R
α , for α ∈ N. Then spanQ{β1, . . . , βα} has

dimension N over Q, if and only if Rβ/2πZ
α ⊂ T

α is dense in an N-torus embedded
in T

α .

Before presenting the proof, and as an illustration of this Corollary, Fig. 2 shows
what Tβ/2πZ

3 looks like inside T
3 for T := [−104, 104

] ∩ Z and β equals one of

(√
2,

√
3, 0
)

,
(√

2,
√
3,

√
2 + √

3
)

,
(√

2,
√
3, 3

√
2 + 2

√
3
)

,
(√

2,
√
3, π2 + 1

)
.

Notice that in each case, Tβ/2πZ
3 traces a torus of the appropriate dimension, but

embedded in ways governed by the linear relations between the entries of β.

Proof (of Corollary 2.3) Let {β1, . . . , βα} ⊂ R span an N -dimensional vector space
over Q, and without loss of generality, assume that β1, . . . , βN form a basis, N < α.
For 1 ≤ j ≤ α − N let k j , k j,n ∈ Z be so that

k jβN+ j =
N∑

n=1

k j,nβn (7)
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If N = 1 we further require that gcd(k j , k j,1) = 1, and if k = lcm(k1, . . . , kα−1),
then it readily follows that

T
1 −→ T

α

t �→ kt
β1

β

is an embedding of T
1 into T

α with the closure Rβ/2πZα = Rβ/2πZ
α as its image.

Now, for N ≥ 2 define φ : R
N −→ R

α and ψ : R
α −→ R

α as

φ(t1, . . . , tN ) =
(
t1, . . . , tN ,

N∑
n=1

k1,ntn, . . . ,
N∑

n=1

kα−N ,ntn

)
(8)

ψ(t1, . . . , tα) = (t1, . . . , tN , k1tN+1, . . . , kα−N tα
)

(9)

Note that both φ and ψ preserve classes modulo 2π , and therefore descend to
continuous maps φ : T

N −→ T
α , ψ : T

α −→ T
α . Moreover, since φ : T

N −→ T
α

is injective and tori are compact and Hausdorff, then φ is a homeomorphism onto
its image. We claim that ψ : T

α −→ T
α is injective when restricted to Rβ/2πZ

α .
Indeed, if t �= t ′ ∈ R are so that ψ(tβ) = ψ(t ′β) in T

α , then there exist p, q ∈ Z

with

(t − t ′)β1 = 2π p

(t − t ′)β2 = 2πq

which implies qβ1 = pβ2, contradicting the Q-linear independence of β1, . . . , βN .
It follows that ψ is an injective continuous map on Rβ/2πZα , and thus induces a

homeomorphism Rβ/2πZα ∼= ψ
(
Rβ/2πZα

)
. Finally, since Eq. (7) implies that

ψ(tβ) = φ
(
t(β1, . . . , βN )

)
for every t ∈ R, and R(β1, . . . , βN )/2πZN ∼= T

N by
Kronecker’s theorem, then

Rβ/2πZα ∼= ψ
(
Rβ/2πZα

) ∼= φ
(
R(β1, . . . , βN )/2πZN

)
= φ

(
T
N
) ∼= T

N .

The only if direction follows from the fact that two tori of different dimensions
cannot be homeomorphic. ��

2.2 Quasiperiodic functions

As we alluded to in the introduction, quasiperiodic functions are superpositions of
periodic oscillators with incommensurate frequencies. They arise in dynamical sys-
tems as observation functions on invariant toroidal submanifolds (Samoilenko 2012).
More specifically,
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Definition 2.4 Let ω1, . . . , ωN > 0 be incommensurate. A function f : R −→ C is
said to be quasiperiodic with frequency vector ω = (ω1, . . . , ωN ) if

f (t) = F(ω1t, . . . , ωN t)

for all t ∈ R and a continuous function F : T
N −→ C. That is F ∈ C(TN ), which

we will call a parent function for f .

Remark 2.5 The case N = 1 recovers the family of complex-valued periodic functions,
and thus the results presented here generalize those of Perea and Harer (2015).

Remark 2.6 (Important) We will require throughout that the dimension N of the fre-
quency vector ω ∈ R

N for f quasiperiodic, be minimal. The reason being that if
not, then a function like f (t) = ei(1+π)t can be regarded as being quasiperiodic with
frequency vector ω = 1+ π and parent function F(t) = eit , or as having ω = (1, π)

for frequency vector and F(t1, t2) = ei(t1+t2) for parent function. Requiring that N be
minimal, and showing that for a given ω the parent function is unique (we will do so
in Theorem 2.7 below), eliminates this ambiguity.

It turns out that the traditional approximation theory via Fourier series on L2(TN )

and C(TN ) can be leveraged to obtain similar insights for quasiperiodic functions.
We describe how in what follows (Theorem 2.11), though the interested reader
should also consult (Apostol 2012; Grafakos 2008; Samoilenko 2012). Indeed, let
‖(k1, . . . , kN )‖∞ = max

1≤n≤N
|kn|, and for K ∈ N let I NK = {

k ∈ Z
N | ‖k‖∞ ≤ K

}

be the integral square box of side 2K . The K -truncated Fourier polynomial of
F ∈ L2

(
T
N
)
is the function

SK F(t) =
∑

k∈I NK
F̂(k)ei〈k,t〉 (10)

where t = (t1, . . . , tN ) ∈ R
N , 〈·, ·〉 is the standard inner product in R

N , and

F̂(k) = 1

(2π)N

2π∫

0

· · ·
2π∫

0

F(t1, . . . , tN )e−i〈k,t〉dt1 · · · dtN =
〈
F, ei〈k,·〉〉

L2
(11)

is the k-Fourier coefficient of F , for k ∈ Z
N . As it is well-known (Grafakos 2008,

Proposition 3.2.7), the sequence {SK F}K∈N converges to F in L2(TN ) as K → ∞.
That is,

lim
K→∞ ‖F − SK F‖L2 = 0.

It is not the case, however, that one has pointwise convergence SK F(t) → F(t),
t ∈ T

N , even for F ∈ C(TN ) [see (Grafakos 2008, Proposition 3.4.6.) for negative
results, and Theorem 2.9 below for appropriate conditions].
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One can address these difficulties with approximate identities, and in particular
using the square Cesàro (or Fejér) mean

CK F(t) =
∑

k∈I NK

(
1 − |k1|

K + 1

)
· · ·
(
1 − |kN |

K + 1

)
F̂(k)ei〈k,t〉 (12)

which for F ∈ C(TN ) satisfies

lim
K→∞ ‖F − CK F‖∞ = 0 (13)

(this is Fejér’s theorem) for ‖ · ‖∞ the sup-norm of uniform convergence in C(TN ).
We now state the first main result on the Fourier theory of quasiperiodic functions.

Theorem 2.7 If f : R −→ C is quasiperiodic with frequency vector ω ∈ R
N , then f

has a unique parent function F ∈ C(TN ) with Fourier coefficients

F̂(k) = lim
λ→∞

1

λ

∫ λ

0
f (t)e−i〈k,tω〉dt . (14)

Proof Write f (t) = F(ωt) for F ∈ C(TN ). Since lim
K→∞ ‖F − CK F‖∞ = 0 (from

Eq. (13)), then CK f (t) := CK F(ωt) converges to f (t) uniformly in t ∈ R. We claim
that

1

λ

∫ λ

0
CK f (t)e−i〈k,tω〉dt → 1

λ

∫ λ

0
f (t)e−i〈k,tω〉dt

uniformly in λ > 0 as K → ∞. Indeed,

∣∣∣∣
1

λ

∫ λ

0

(
CK f (t) − f (t)

)
e−i〈k,tω〉dt

∣∣∣∣ ≤ ‖CK f − f ‖∞

where the right hand side goes to zero as K → ∞ independent of λ. Therefore, by
the Moore–Osgood theorem, we can exchange the order of limits as

lim
λ→∞

1

λ

∫ λ

0
f (t)e−i〈k,tω〉dt = lim

K→∞ lim
λ→∞

1

λ

∫ λ

0
CK f (t)e−i〈k,tω〉dt (15)

and if

λk =
(
1 − |k1|

K + 1

)
· · ·
(
1 − |kN |

K + 1

)
F̂(k)
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are the coefficients of CK F [defined in Eq. (12)], then evaluating the right hand side
of Eq. (15) yields

lim
λ→∞

1

λ

∫ λ

0
f (t)e−i〈k,tω〉dt = lim

K→∞ lim
λ→∞

⎛
⎜⎝λk +

∑

k′∈I NK �{k}
λk′

ei〈k′−k,λω〉 − 1

i〈k′ − k, ω〉λ

⎞
⎟⎠

= lim
K→∞

(
1 − |k1|

K + 1

)
· · ·
(
1 − |kN |

K + 1

)
F̂(k)

= F̂(k).

If there were another parent function G ∈ C(TN )—i.e., with f (t) = G(tω)—then
the above calculation shows that Ĝ(k) = F̂(k) for every k ∈ Z

N . Since functions
in L2(TN ) with the same Fourier coefficients are equal almost everywhere (Grafakos
2008, Proposition 3.2.7), then continuity improves this to functional equality G = F .

��
We now move onto providing conditions for the uniform convergence of

SK f (t) :=
∑

k∈I NK
F̂(k)ei〈k,tω〉, t ∈ R, K ∈ N (16)

as K → ∞. Here the F̂(k) can be seen equivalently as the Fourier coefficients of the
parent function F , or as the result of evaluating the right hand side of Eq. (14). The
latter is what we expect to have access to in practice. We start with an upper bound on
the size of the coefficients F̂(k) (Grafakos 2008, Theorem 3.3.9).

Proposition 2.8 Let r ∈ N and suppose that the partial derivatives ∂ lF exist and are
continuous for all ‖l‖1 = |l1| + · · · + |lN | ≤ r . That is, F ∈ Cr (TN ). Then

∣∣F̂(k)
∣∣ ≤

√
N

r

‖k‖r2
∣∣∣̂∂rn F(k)

∣∣∣

where n = n(k) satisfies |kn| = ‖k‖∞ and ∂rn F is the r-th partial derivative of F with
respect to tn.

These types of inequalities can be used to estimate the degree r of regularity of
the parent function F , by inspecting the rate of decay of the coefficients

∣∣F̂(k)
∣∣.

Proposition 2.8 yields the following estimate for uniform approximation error.

Theorem 2.9 If F ∈ Cr (TN ) for N
2 < r ∈ N, then

∑

k/∈I NK

∣∣F̂(k)
∣∣ ≤

(
Area(SN−1)Nr

K 2r−N (2r − N )

N∑
n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

)1/2

(17)
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where ∂rn F is the r-th partial derivative of F with respect to tn. As a result, the sequence
of Fourier coefficients F̂(k) is absolutely summable, i.e.

∑

k∈ZN

∣∣F̂(k)
∣∣ < ∞.

Proof From Proposition 2.8 we have that

∑

k/∈I NK

∣∣F̂(k)
∣∣ ≤

∑

k/∈I NK

√
N

r

‖k‖r2
∣∣∣̂∂rn F(k)

∣∣∣ (18)

for any fixed K ∈ N. Note that n = argmax
1≤ j≤N

|k j | depends on k, so we will write it as

n(k), and the right hand side of Eq. (18) can be bounded using Cauchy-Schwarz as

∑

k/∈I NK

√
N

r

‖k‖r2
∣∣∣∂̂rn(k)F(k)

∣∣∣ ≤
√
N

r

⎛
⎜⎝
∑

k/∈I NK

1

‖k‖2r2

⎞
⎟⎠

1/2⎛
⎜⎝
∑

k/∈I NK

∣∣∣∂̂rn(k)F(k)

∣∣∣2
⎞
⎟⎠

1/2

.

Moreover, since ∂rn F is continuous and thus square integrable for each n ∈ N, then
its Fourier coefficients are square summable:

∑

k∈ZN

∣∣∣̂∂rn F(k)

∣∣∣2 = ∥∥∂rn F
∥∥2
L2 < ∞ (19)

by Parseval’s theorem. Hence, summing over n and rearranging terms we get

∑

k/∈I NK

∣∣∣∂̂rn(k)F(k)

∣∣∣2 ≤
N∑

n=1

∑

k/∈I NK

∣∣∣̂∂rn F(k)

∣∣∣2 =
N∑

n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

which goes to zero as K → ∞. In order to bound the remaining sum of fractions, let
J N
K = {y ∈ R

N | ‖y‖∞ ≤ K
}
and let BN

K = {y ∈ R
N | ‖y‖2 ≤ K

}
. Observe that

∑

k/∈I NK

1

‖k‖2r2
≤
∫

x/∈J NK

1(
y21 + · · · + y2N

)r dy1 · · · dyN

≤
∫

x/∈BN
K

1(
y21 + · · · + y2N

)r dy1 · · · dyN
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which in higher dimensional spherical coordinates can be written as

∫

SN−1

∞∫

K

1

ρ2r−N+1 dρdσ

for dσ the differential of surface area on the unit sphere S
N−1 (the differential solid

angle) and ρ the distance from a point in R
N to the origin. The integral satisfies

∫

SN−1

∞∫

K

1

ρ2r−N+1 dρdσ = Area
(
S
N−1

) ρN−2r

N − 2r

∣∣∣∣
∞

K

= Area
(
S
N−1

)
K 2r−N (2r − N )

and thus

∑

k/∈I NK

∣∣F̂(k)
∣∣ ≤

(
Area(SN−1)Nr

K 2r−N (2r − N )

N∑
n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

)1/2

where the right hand side goes to zero as K → ∞. ��
Remark 2.10 See Stein and Weiss (2016, Chapter VII, Corollary 1.9) for a result akin
to Theorem 2.9. While both have similar hypotheses and deal with absolute Fourier
convergence, Theorem 2.9 above gives explicit bounds for the size of the error term∑

k/∈I NZ
∣∣F̂(k)

∣∣. We will need such explicit estimates when discussing Fourier approx-
imations to persistent homology of sliding window point clouds in Sect. 3.

Now, absolute summability of the Fourier coefficients F̂(k) implies uniform con-
vergence SK F → F , Stein and Weiss (2016, Chapter VII, Corollary 1.8), since

|F(t) − SK F(t)| ≤
∑

k/∈I NK

∣∣F̂(k)
∣∣

for all t ∈ T
N . Combining this fact with Eq. (17), yields the following Fourier series

approximation theorem for quasiperiodic functions:

Theorem 2.11 Let f be quasiperiodic with parent function F ∈ Cr (TN ), r > N
2 . If

SK f is defined as in Eq. (16), then

‖ f − SK f ‖∞ ≤
(

Area(SN−1)Nr

K 2r−N (2r − N )

N∑
n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

)1/2

which goes to zero faster than 1

Kr− N
2
as K → ∞.
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2.3 Persistent homology

As we mentioned in Sect. 1, persistent homology is a tool from Topological Data
Analysis used to study the evolution of topological features in filtered spaces. Indeed,
for any filtrationK = {Kε}ε≥0, taking homology in dimension j ∈ N and coefficients
in a field F yields a family

Hj (K; F) = { Tε,ε′ : Hj (Kε; F) −→ Hj (Kε′ ; F), ε ≤ ε′ }

of F-vector spaces and linear transformations Tε,ε′ induced by the inclusion maps
Kε ↪→ Kε′ , for ε ≤ ε′. The j-th persistent homology groups are

H ε,ε′
j (K; F) := Img

(
Tε,ε′

)
(20)

and their dimension over F are the persistent Betti numbers

β
ε,ε′
j (K) := rank(Tε,ε′) = dimF

(
H ε,ε′

j (K; F)
)

. (21)

Ifβε,ε
j (K) < ∞ for every ε—i.e., if Hj (K; F) ispointwise-finite—then a theoremof

Crawley-Boevey (2015) contends that the isomorphism type of Hj (K; F) is uniquely
determined by a multiset of intervals I ⊂ [0,∞], called the barcode of Hj (K; F),
and denoted bcd j (K). The (undecorated) persistence diagram dgm j (K), on the other
hand, is the multiset of pairs (a, b) resulting from taking the endpoints a ≤ b of the
intervals in bcd j (K). In terms of persistent Betti numbers, one can check that

β
ε,ε′
j (K) = #

{
I ∈ bcd j (K) | [ε, ε′] ⊂ I

}
(22)

where cardinality (#) on the right hand side is that of multisets. If all intervals in
bcd j (K) are of the same type (i.e., all open, closed, right/left open), then

β
ε,ε′
j (K) = #

{
(a, b) ∈ dgm j (K) | a ≺� ε ≤ ε′ ≺r b

}
(23)

where ≺� and ≺r are chosen to coincide with the interval type of bcd j (K).

The pointwise-finite hypothesis on Hj (K; F) can be relaxed to β
ε,ε′
j (K) < ∞ for

all ε < ε′; this is called being q-tame, and is a condition satisfied by the persistent
homology of the Rips filtration (defined in Eq. (3)) of any totally bounded metric
space (Chazal et al. 2014, Proposition 5.1). It is known that barcodes and persistence
diagrams can be defined in the q-tame case in such a way that Eq. (22) (and also Eq.
(23) if all intervals are of the same type) is still valid (Chazal et al. 2016, Corollary 3.8,
Theorem 3.9). As a result, and when (X ,dX ) is totally bounded, we have well-defined
Rips persistence diagrams

dgmR
j (X ,dX ) := dgm j (R(X ,dX ))
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for every j ∈ N.
A bit more is true: these diagrams are well-behaved in the sense that they are stable

under Gromov–Hausdorff perturbations on (X ,dX ). Here is what this means. The
Hausdorff distance in a metric space (M,d) between two bounded and non-empty
subsets X ,Y ⊂ M is defined as

dM
H (X ,Y ) := inf

{
δ > 0 | X ⊂ Y (δ) and Y ⊂ X (δ)

}
.

Here X (δ) (resp. Y (δ)) is the union of open balls in M of radius δ > 0 centered
at points in X (resp. Y ). Also, when the ambient metric space is clear, the notation
dM
H (X ,Y ) is simplified to dH (X ,Y ). The Gromov–Hausdorff distance, on the other

hand, is defined for bounded metric spaces (X ,dX ), (Y ,dY ) as

dGH ((X ,dX ), (Y ,dY )) := inf
M,ϕ,ψ

dM
H

(
ϕ(X), ψ(Y )

)

where the infimum runs over all metric spaces (M,d), and all isometric embeddings
ϕ : (X ,dX ) ↪→ (M,d), ψ : (Y ,dY ) ↪→ (M,d). In particular, if X ,Y ⊂ (M,d),
then

dGH ((X ,d|X ), (Y ,d|Y )) ≤ dM
H (X ,Y ). (24)

TheGromov–Hausdorff distance is ameasure of similarity between boundedmetric
spaces; in fact it is a pseudometric, which is zero if and only if the completions of the
metric spaces involved are isometric. The stability of Rips persistence diagrams, on the
other hand, is an inequality comparing the Gromov–Hausdorff distance between the
input metric spaces, and a notion of distance between their persistence diagrams called
the bottleneck distance. This distance is defined as follows: two persistence diagrams
dgm and dgm′ are said to be δ-matched, δ > 0, if there is a bijection μ : A −→ A′
of multisets A ⊂ dgm and A′ ⊂ dgm′ for which:

1. If (x, y) ∈ A and (x ′, y′) = μ(x, y), then max
{|x − x ′|, |y − y′|} < δ

2. If (x, y) ∈ (dgm � A) ∪ (dgm′
� A′) then y − x < 2δ

The bottleneck distance between dgm and dgm′ is

dB
(
dgm,dgm′) := inf

({
δ > 0 | dgm and dgm′ are δ − matched

} ∪ {∞}) . (25)

Finally, the stability of Rips persistent homology (Chazal et al. 2014, Theorem 5.2)
contends that

dB

(
dgmR

j (X ,dX ),dgmR
j (Y ,dY )

)
≤ 2dGH

(
(X ,dX ), (Y ,dY )

)
(26)

for (X ,dX ) and (Y ,dY ) totally bounded.
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3 Fourier approximations of sliding window persistence

With the preliminaries out of the way, we now move onto studying the Rips persistent
homology of sliding window point clouds from quasiperiodic functions. Thus far we
have that if f is quasiperiodic and its parent function F has enough regularity, then
f can be uniformly approximated by the truncated series SK f . This is the content of
Theorem 2.11, and in particular says that the higher the smoothness of F , then the
faster the degree of approximation SK f → f . We will see next that these results
can be readily bootstrapped to the level of sliding window point clouds, and hence to
statements about Rips persistence diagrams.

Theorem 3.1 Let f be quasiperiodic with parent function F ∈ Cr (TN ), r > N
2 . If

SWd,τ f = SWd,τ f (T ) and SWd,τ SK f = SWd,τ SK f (T ), T ⊂ R

are the sliding window point clouds of f and SK f , respectively, then the Hausdorff
distance between them satisfies

dH
(
SWd,τ f , SWd,τ SK f

) ≤ √
d + 1‖ f − SK ‖∞

≤
(
Area(SN−1)(d + 1)Nr

K 2r−N (2r − N )

N∑
n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

)1/2

which goes to zero faster than 1

Kr− N
2
as K → ∞.

Proof Let ε >
√
d + 1‖ f − SK f ‖∞, and let t ∈ T . Then

‖SWd,τ f (t) − SWd,τ SK f (t)‖2 ≤ √
d + 1‖ f − SK f ‖∞ < ε

which implies that ε satisfies both

SWd,τ f ⊂ (SWd,τ SK f
)(ε) and SWd,τ SK f ⊂ (SWd,τ f

)(ε)
. (27)

Since the Hausdorff distance in C
d+1 between SWd,τ f and SWd,τ SK f is the

infimum over all δ > 0 satisfying Eq. (27), then we have that

dH
(
SWd,τ f , SWd,τ SK f

) ≤ ε.

Because this is true for any ε >
√
d + 1‖ f − SK f ‖∞, then

dH
(
SWd,τ f , SWd,τ SK f

) ≤ √
d + 1‖ f − SK f ‖∞

and the bound from Theorem 2.11 finishes the proof. ��
Using the stability of Rips persistent homology (Eq. (26)), we can readily bound

the bottleneck distance between the corresponding persistence diagrams:
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Corollary 3.2 With the same hypotheses of Theorem 3.1, and for all j ∈ N,

dB

(
dgmR

j (SWd,τ f ),dgmR
j (SWd,τ SK f )

)

≤ 2
√
d + 1‖ f − SK f ‖∞

≤ 2

(
Area(SN−1)(d + 1)Nr

K 2r−N (2r − N )

N∑
n=1

∥∥∂rn F − SK ∂rn F
∥∥2
L2

)1/2

and thus goes to zero faster than 1

Kr− N
2
as K → ∞.

The main point of these approximation results is that studying dgmR
j (SWd,τ f )

can be reduced to understanding dgmR
j (SWd,τ SK f ) and its asymptotes as K → ∞.

This is a vastly more accessible simplification, as we will see shortly.

4 The geometric structure of SWd,�SK f

Our next goal is to show that for suitable choices of d, K ∈ N, T ⊂ R, and τ > 0, the
closure of the sliding window point cloud SWd,τ SK f = SWd,τ SK f (T ) in C

d+1, is
homeomorphic to an N -torus. Indeed, for F ∈ Cr (TN ) and K ∈ N, let

supp
(
F̂K
) =

{
k ∈ I NK | F̂(k) �= 0

}

denote the support of the Fourier transform F̂ restricted to the square box I NK .

Lemma 4.1 Let f (t) = F(ωt) be quasiperiodic with frequency vector ω ∈ R
N , and

parent function F ∈ Cr (TN ), r > N
2 . Then, for all large enough K ∈ N, supp

(
F̂K
)

spans an N-dimensional Q-vector space.

Proof The first thing to note is that since

supp
(
F̂
) =

⋃
K∈N

supp
(
F̂K
) ⊂ Z

N ,

then V = spanR

(
supp

(
F̂
))

is an R-linear subspace of R
N . It follows that

L = spanZ

(
supp

(
F̂
))

is an additive discrete subgroup of V , and therefore a lattice (Stewart and Tall 2015,
Theorem 6.1) of dimension n ≤ dimR(V ) ≤ N . It suffices to show that n = N .

Let z1, . . . , zn ∈ L be so that L = spanZ{z1, . . . , zn}. Incommensurability of ω

implies that ω̃ j = 〈z j , ω〉, j = 1, . . . , n, are Q-linearly independent, and we can
assume without loss of generality that ω̃ j > 0; otherwise replace z j by −z j as a
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basis element for L . Hence, ω̃ = (ω̃1, . . . , ω̃n) ∈ R
n is a vector of incommensurate

frequencies.
For t ∈ T

n let

G(t) :=
∑
a∈Zn

F̂(a1z1 + · · · + anzn)ei〈a,t〉

which converges uniformly in t ∈ T
n since the Fourier coefficients F̂(k) are absolutely

summable (Theorem 2.9). Therefore G ∈ C(Tn), and thus

f (t) =
∑

k∈ZN

F̂(k)ei〈k,ω〉t

=
∑
a∈Zn

F̂(a1z1 + · · · + anzn)ei〈a,ω̃〉t

= G (ω̃t)

which shows that G is also a parent function for f , with ω̃ as the corresponding
frequency vector. Since the dimension N of the frequency vector for f is assumed to
be minimal (Remark 2.6), then n = N , completing the proof. ��

Now, if we write supp
(
F̂K
) = {k1, . . . ,kα}, for 1 ≤ α ≤ (1 + 2K )N , then

SWd,τ SK f (t) = �K , f · xK , f (t) (28)

where

xK , f (t) =
⎡
⎢⎣
F̂(k1)ei〈k1,ω〉t

...

F̂(kα)ei〈kα,ω〉t

⎤
⎥⎦ ∈ C

α (29)

and �K , f is the Vandermonde (d + 1) × α matrix

�K , f =

⎡
⎢⎢⎢⎣

1 · · · 1
ei〈k1,ω〉τ · · · ei〈kα,ω〉τ

...
...

ei〈k1,ω〉τd · · · ei〈kα,ω〉τd

⎤
⎥⎥⎥⎦ (30)

with nodes ei〈k1,ω〉τ , . . . , ei〈kα,ω〉τ ∈ S1 ⊂ C (Aubel and Bölcskei 2019). We define
XK , f to be the collection of vectors xK , f (t) as above in Eq. (29):

XK , f = {xK , f (t) | t ∈ R
} ⊂ C

α. (31)

The decomposition in Eq. (28) with Lemma 4.1 yields conditions on the parameters
K , d, τ under which the sliding window point cloud SWd,τ SK f is dense in a torus of
the appropriate dimension. Indeed,
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Theorem 4.2 Let f (t) = F(tω) be quasiperiodic with frequency vector ω ∈ R
N and

parent function F ∈ Cr (TN ), r > N
2 . Let

supp(F̂K ) = {k1, . . . ,kα}

and assume that τ > 0 is not an integer multiple of 2π
〈kn−km ,ω〉 for 1 ≤ n < m ≤ α. If

K ∈ N is large enough so that supp(F̂K ) spans an N-dimensional Q-vector space,
and d ≥ α − 1, then the sliding window point cloud

SWd,τ SK f = SWd,τ SK f (R)

is dense in an N-torus embedded in C
d+1.

Proof The first thing to note is that since τ > 0 is not an integer multiple of any
2π

〈kn−km ,ω〉 , 1 ≤ n < m ≤ α, then the points ei〈k1,ω〉τ , . . . , ei〈kα,ω〉τ ∈ S1 are all
distinct. Thus, the Vandermonde matrix �K , f is full rank. This can be checked via
induction on α, by showing that the determinant of an α×α Vandermonde matrix with
nodes ζ1, . . . , ζα is

∏
1≤n<m≤α(ζm −ζn). Combining this observation with d+1 ≥ α,

implies that �K , f : C
α −→ C

d+1 is injective as a linear transformation.
Now, Corollary 2.3 with β1 = 〈k1, ω〉, . . . , βα = 〈kα, ω〉, together with Lemma

4.1, imply that for all large enough K ∈ N the point cloud XK , f (defined in Eq. (31))
is dense in an N -torus embedded in C

α . The result follows from �K , f being a linear
homeomorphism onto its image. ��

Corollary 4.3 With the same hypotheses of Theorem 4.2, and if {π,ω1, . . . , ωN } is
incommensurate, then the sliding window point cloud

SWd,τ SK f = SWd,τ SK f (Z)

is dense in an N-torus embedded in C
d+1.

Proof If k1, . . . ,kN ∈ Z
N are Q-linearly independent, then incommensurability of

{π,ω1, . . . , ωN } implies incommensurability of {π, 〈k1, ω〉, . . . , 〈kN , ω〉}. The result
follows in the same way as Theorem 4.2, but using the integer version of Kronecker’s
theorem as starting point (see Remark 2.2). ��

Wewould like to emphasize that the condition on τ in Theorem 4.2 only guarantees
the topology of an N -torus. Preserving the geometric structure as much as possible
when going from XK , f to SWd,τ SK f , and consequently amplifying the toroidal fea-
tures in dgmR

j

(
SWd,τ SK f

)
, requires specific optimizations on τ .
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5 Parameter selection: how to optimize d and �?

5.1 The embedding dimension

In practice, the diagrams

dgmR
j

(
SWd,τ f (T )

)
, T ⊂ R finite

are computed as approximations to those of SWd,τ f (R); the latter set is relatively
compact, and hence the stability theorem (see Eq. (26)) implies that finite samples
provide arbitrarily good approximations. The difficulty lies in that as d → ∞, it
becomes necessary for T to also grow in order to overcome the curse of (ambient
space) dimensionality, and provide appropriate geometric recovery (Radovanovic et al.
2010). This is problematic since the Rips filtration grows exponentially in the number
of points, and the matrix reduction algorithm for computing persistent homology is in
the worst case cubic in the number of simplices (Morozov 2005). It is thus desirable
for d to be as small as possible. With this and Theorem 4.2 in mind, we propose the
following procedure for choosing d: Let K be the smallest integer so that supp(F̂K )

spans an N -dimensional vector space over Q, and let d be the cardinality (α) of
supp(F̂K ). When f is given numerically as a potentially noisy time series sampled
at finitely many evenly spaced time points, then d can be estimated as the number of
prominent peaks in the spectrum of f .

Remark 5.1 The structure theorems for both periodic functions (Perea andHarer 2015,
Theorem5.6) andquasiperiodic functions (Theorem4.2) only required ≥ α−1.While
the choice d = α − 1 works for periodic signals in practice, we will demonstrate in
Example 5.2 that d = α is preferable in the quasiperiodic case. This discrepancy arises
in the computation of the time delay τ . Indeed, while for periodic functions there is
a clear closed-form choice of τ , it turns out that this is typically not possible in the
quasiperiodic case. We will investigate how in what follows.

5.2 The time delay

Oneway in which τ controls the shape of SWd,τ SK f is via the condition number (i.e.,
the largest singular value divided by the smallest singular value) of the Vandermonde
matrix �K , f (defined in Eq. (30)). Indeed, when this number is much larger than 1
and the singular subspaces from the smallest singular values of �K , f intersect XK , f

transversally, then the persistence of the toroidal features of SWd,τ SK f localized
along these directions can be greatly diminished. One can avoid this problem by
selecting a τ > 0 promoting orthogonality between the columns u1, . . . ,uα of �K , f .
Indeed, mutual orthogonality together with ‖u1‖ = · · · = ‖uα‖ = √

d + 1 would
imply that�K , f is

√
d + 1 times a linear isometry. Such a transformation would have

condition number equal to 1, and would preserve the persistent features ofXK , f (these
are described in Theorem 6.6). That said, exact mutual orthogonally of the u j ’s is not
possible in general, for if N ≥ 3, then 〈u1,u2〉 = 〈u1,u3〉 = 0 implies that there exist
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Fig. 3 Real (top) and imaginary (bottom) part of the function f (t) = eit + ei
√
2t + ei

√
3t , 0 ≤ t ≤ 400

m,m′ ∈ Z satisfying

〈k1 − k2, ω〉τ(d + 1) = 2πm

〈k1 − k3, ω〉τ(d + 1) = 2πm′

which in turn would imply

m′〈k1 − k2, ω〉 = m〈k1 − k3, ω〉

contradicting either the linear independence of k1,k2,k3, or the incommensurability
ofω.Wewill settle for the next best option: to let τ be so that the u j ’s are, in average, as
orthogonal as possible. In other words, we will choose τ as a minimizer over [0, τmax]
of the scalar function

�(x) :=
∑

1≤ j<�≤α

∣∣∣1 + ei〈k j−k�,ω〉x + · · · + ei〈k j−k�,ω〉xd
∣∣∣2 (32)

which is exactly the sum of squaredmagnitudes of the inner products 〈u j ,u�〉 between
the columns of the Vandermonde matrix �K , f . The thing to note is that when f is
given as a noisy finite sample, then the inner products 〈k j , ω〉 can be estimated as the
frequency locations of the prominent peaks in the spectrum of f .

Example 5.2 As an illustration of our parameter selection procedure, let

f (t) = eit + ei
√
2t + ei

√
3t , 0 ≤ t ≤ 400.

The real and imaginary part of this function are shown in Fig. 3 below.

It can be readily checked that ω =
(
1,

√
2,

√
3
)
is the frequency vector for f , and

supp(F̂K ) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, K ≥ 1.
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Fig. 4 Rips persistence diagrams of SWd,τ f (T ) in dimensions j = 1 (blue), j = 2 (orange), F = Z2,
d = 3, τ = 16.458 (first) and τ = 49.325 (second). Computations performed with Ripser.py (Tralie
et al. 2018). We also provide the barcode representations in dim 1 (third) and dim 2 (fourth) to substantiate
that there are indeed three strong classes in both dimensions (color figure online)

Following the discussion from Sect. 5.1 we let d = 3 (the cardinality of supp(F̂K ))
and computedgmR

j

(
SWd,τ f (T )

)
forT ⊂ [0, 400] in dimensions j = 1, 2 as follows.

We begin by evaluating SWd,τ f (t) at 2,000 evenly spaced points in [0, 400], and then
further subsample this point cloud by selecting 800 points via maxmin sampling. That
is, we pick t1 ∈ T̃ = { n5 | n = 0, . . . , 2000

}
uniformly at random, and if t1, . . . , t� ∈

T̃ have been selected, then we let

t�+1 = argmax
t∈T̃

min
{
‖SWd,τ f (t) − SWd,τ f (t1)‖, . . . , ‖SWd,τ f (t) − SWd,τ f (t�)‖

}
.

This inductive process continues until the sampling set T = {t1, . . . , t800} ⊂ T̃
is constructed, and then we compute the Rips persistence diagrams of SWd,τ f (T ) in
dimensions j = 1, 2, coefficients in Z2, and two choices of time delay: τ = 16.458
and τ = 49.325. The resulting persistence diagrams are shown in Fig. 4 below.

We note that the maxmin sampling is used here because it selects subsample points
in way that prevents clustering. This can be observed in the equation above: the time
t�+1 selected corresponds to the point SWd,τ f (t�)which is the farthest from the already
chosen set {SWd,τ f (t1), SWd,τ f (t2), . . . , SWd,τ f (t�)}.

For this particular example we expect persistence diagrams consistent with a 3-
torus—i.e., 3 strong classes in dimension 1, and 3 strong classes in dimension 2—
since there are three linearly independent frequencies: 1,

√
2 and

√
3. That said, and

as Fig. 4 shows, a poor choice of time delay (e.g., τ = 16.458) can completely obscure
these toroidal features with sampling artifacts (points near the diagonal). This stresses
how important the need for delay optimization can be.

A broader picture of how the persistence of the top 3 features in each dimension
varies with τ is shown in Fig. 5.

The value τ = 49.325 is optimal in the sense that it jointly maximizes the persis-
tence of the top 3 features in both dimensions. More importantly, it is also optimal in
that it is a global minimizer over [0, 100] for the function �(x) (defined in Eq. (32))
as described in Sect. 5.2. We reiterate that the values 〈k, ω〉, k ∈ supp(F̂K ), needed
to compute τ as the minimizer of �(x) can be estimated numerically as the frequency
locations of the d most prominent peaks in the spectrum of f . Indeed, Fig. 6 shows
the result of computing the Discrete Fourier Transform f̂ (ξ) of f sampled at t ∈ T̃ ,
as well as the locations of the most prominent peaks in amplitude.
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Fig. 5 Persistence of top 3 features in dimension 1 (top) and dimension 2 (bottom) as a function of τ , for
SWd,τ f (T ) and d = 3

Fig. 6 Modulus of the discrete Fourier transform for f sampled at t ∈ T̃ . The locations of the most
prominent peaks approximate the inner products 〈k, ω〉

An important thing to note is that the Discrete Fourier Transform (DFT) by itself
is known to provide only very rough approximations to the frequency locations of
quasiperiodic functions. This can have deleterious effects in the appropriate estimation
of τ via minimization of �(x). One solution is to use methods like (Gómez et al. 2010;
Laskar 1993), which leverage the DFT to produce high-accuracy frequency estimates.

Finally, to illustrate the difference between the choicesd = α andd = α−1outlined
in Remark 5.1, we repeat the same process above with d = 2. The persistence of the
top 3 features in dimensions 1 and 2, as a function of τ , is shown in Fig. 7 below.

As Fig. 7 shows, the global minimizer τ = 65.731 of �(x), 0 ≤ x ≤ 100, jointly
maximizes the top 3persistence values in both dimensions. In particular, the underlying
3-torus topology is clearly captured by this choice of time delay. One thing to note
when comparing Fig. 5 (d = α = 3) and Fig. 7 (d = α − 1 = 2) is the number and
nature of local maxima in persistence (specially in dimension 2) as a function of τ .
Indeed, d = 3 yields a larger number of stable local maxima; by stable we mean that
the values of persistence remain large in a neighborhood of a local maximizer. This
suggests that while d = 2 still captures the right underlying topology, as Theorem
4.2 guarantees, the embedding in C

3 of the sliding window point cloud is nonlinear
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Fig. 7 Persistence of top 3 features in dimension 1 (top) and dimension 2 (bottom) as a function of τ , for
SWd,τ f (T ) and d = 2

enough that strong features in persistence (with the ambient Euclidean distance) occur
for only very specific time delays.

6 The rips persistent homology of SWd,�SK f and SWd,�f

We now turn our attention to the persistent homology of the sliding window point
clouds SWd,τ SK f and SWd,τ f , as well as their dependence on both the Fourier
coefficients F̂(k), and the parameters K , d, τ . Our aim is to establish bounds on the
cardinality and persistence of strong toroidal features in dgmR

j (SWd,τ f ). To that end,
let K ∈ N be so that

supp
(
F̂K
) = {k1, . . . ,kα}, 1 ≤ α ≤ (1 + 2K )N

spans a Q-vector space of dimension N (Lemma 4.1). We will further assume, after
re-indexing if necessary, that k1, . . . ,kN are Q-linearly independent and that

|F̂(k1)| ≥ |F̂(k2)| ≥ · · · ≥ |F̂(kN )| > 0.

With this convention, let

T
N
F̂

:=
{
z ∈ C

N : |z1| = |F̂(k1)|, . . . , |zN | = |F̂(kN )|
}

(33)

regarded as a metric space with the ‖ · ‖∞ distance:

‖z − z′‖∞ = max{|z1 − z′1|, . . . , |zN − z′N |}.
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In order to understand the Rips persistent homology of SWd,τ f , the first step is
to clarify that of T

N
F̂
. This involves two theorems that we now describe. The first is a

result by Adamaszek and Adams (2017, Theorem 7.4) computing the homotopy type
of Rε(S1) at each scale ε > 0.

Proposition 6.1 (Adamaszek and Adams (2017)) The Rips complex Rε(S1r ) of a circle
S1r ⊂ C of radius r (equipped with the Euclidean metric) is homotopy equivalent to
S2�+1 if and only if

r� = 2r sin

(
π

�

2� + 1

)
< ε ≤ 2r sin

(
π

� + 1

2� + 3

)
= r�+1 , � ∈ N.

Moreover, for all � ∈ N and r� < ε ≤ ε′ ≤ r�+1, the inclusion Rε(S1r ) ↪→ Rε′(S1r ) is
a homotopy equivalence.

As a consequence, the Rips persistent homology of (S1r , | · |) is pointwise-finite—
hence q-tame—the resulting barcodes (and hence the persistence diagrams) are
singleton multisets in odd dimensions, and empty in positive even dimensions:

bcdRj
(
S1r , | · |

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(
2r sin

(
π �

2�+1

)
, 2r sin

(
π �+1

2�+3

)]}
if j = 2� + 1

{(0,∞)} if j = 0

∅ if j = 2� + 2

(34)

The second result needed to describe dgmR
j (TN

F̂
, ‖ · ‖∞) is a Künneth formula for

Rips persistent homology and themaximummetric (Gakhar and Perea 2019, Corollary
4.6).

Proposition 6.2 (Gakhar and Perea (2019)) Let (X1,d1), . . . , (XN ,dN ) be metric
spaces with pointwise-finite Rips persistent homology. Then, for all j ∈ N

bcdRj (X1 × · · · × XN ,dmax) =
{

N⋂
n=1

I jn

∣∣∣ I jn ∈ bcdRjn (Xn,dn),
N∑

n=1

jn = j

}

and thus

dgmR
j (X1 × · · · × XN ,dmax) =

{(
max
n

an,min
n

bn
) ∣∣∣ (an, bn) ∈ dgmR

jn (Xn,dn),
N∑

n=1

jn = j

}

where dmax(x, x′) := max
1≤n≤N

dn(xn, x ′
n) is the maximum metric.

These results combined yield the following:
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Lemma 6.3 If a <
√
3|F̂(kN )|, then

(a, b) ∈ dgmR
j (TN

F̂
, ‖ · ‖∞), 1 ≤ j ≤ N

if and only if a = 0 and b = √
3|F̂(kn)| for some 1 ≤ n ≤ N.

Moreover, if 1 ≤ n ≤ N, and 1 ≤ n1 < · · · < n� ≤ N is the longest sequence (i.e.,
largest �) for which

|F̂(kn)| = |F̂(kn1)| = · · · = |F̂(kn�
)|

then
(
0,

√
3|F̂(kn)|

)
appears in dgmR

j (TN
F̂
, ‖ · ‖∞) with multiplicity

μ j (n) :=
(
n1 − 1

j − 1

)
+ · · · +

(
n� − 1

j − 1

)
.

Proof By Proposition 6.2, we have that (a, b) ∈ dgmR
j (TN

F̂
, ‖ · ‖∞), 1 ≤ j ≤ N , if

and only if there exist integers 0 ≤ j1, . . . , jN ≤ j and

(an, bn) ∈ dgmR
jn

(
S1|F̂(kn)|, | · |

)
, 1 ≤ n ≤ N

so that j1 + · · · + jN = j , a = max{a1, . . . , aN } and b = min{b1, . . . bN }. Assume
without loss of generality that a = a1.

If

a1 <
√
3|F̂(kN )| ≤ √

3|F̂(k1)|

then Eq. (34) implies that a1 = 0 (hence a1 = · · · = aN = 0) and therefore

bn =
{ ∞ if jn = 0

√
3|F̂(kn)| if jn = 1

, for all 1 ≤ n ≤ N .

The first part of the lemma readily follows from this and j ≥ 1.
Let us now address the multiplicity computation. We will do so by counting the

number of distinct copies of
(
0,

√
3|F̂(kn)|

)
contributed to dgmR

j (TN
F̂
, ‖ · ‖∞) by

each index 1 ≤ n1 < · · · < n� ≤ N . Indeed, start with n1 and assume 1 ≤ j ≤ n1.
Then, each choice of j − 1 integers 1 ≤ m1 < · · · < m j−1 < n1 yields a set of
indices

M(n1) = {m1, . . . ,m j−1, n1}
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parametrizing a unique way of writing
(
0,

√
3|F̂(kn)|

)
as
(
max
m

am, min
m

bm
)
for

(am, bm) =
{(

0,
√
3|F̂(km)|

)
if m ∈ M(n1)

(0,∞) if m ∈ {1, . . . , N } � M(n1).

Since there are
(n1−1
j−1

)
ways of choosing M(n1), the sets M(n1), . . . ,M(n�) are

all distinct, and this computation accounts for all copies, then this completes the proof.
��

Corollary 6.4 If 0 < δ ≤ ε <
√
3|F̂(kN )| and 1 ≤ j ≤ N, then the homomorphism

ι∗ : Hj

(
Rδ(T

N
F̂
, ‖ · ‖∞); F

)
−→ Hj

(
Rε(T

N
F̂
, ‖ · ‖∞); F

)

induced by the inclusion ι : Rδ(T
N
F̂
, ‖ · ‖∞) ↪→ Rε(T

N
F̂
, ‖ · ‖∞), is surjective.

Let

P : C
α −→ C

N

be the projection onto the first N -coordinates. The first thing to note is that P(XK , f ) ⊂
T
N
F̂
(see Eq. (31)), and since

‖P(z) − P(z′)‖∞ ≤ ‖P(z) − P(z′)‖2 ≤ ‖z − z′‖2
for every z, z′ ∈ C

α , then P induces simplicial maps at the level of Rips complexes

Rε(P) : Rε(XK , f , ‖ · ‖2) −→ Rε(T
N
F̂
, ‖ · ‖∞)

σ �→ P(σ )

for every ε > 0. The idea now is to use R(P) = {Rε(P) | ε > 0} in order to derive
insights about the persistent homology ofR(XK , f , ‖ ·‖2) from that ofR(TN

F̂
, ‖ ·‖∞).

We have the following,

Lemma 6.5 For all 0 < ε <
√
3|F̂(kN )| and 1 ≤ j ≤ N, the homomorphism

Rε(P)∗ : Hj (Rε(XK , f , ‖ · ‖2); F) −→ Hj (Rε(T
N
F̂
, ‖ · ‖∞); F)

is surjective.

Proof The case N = 1 is essentially Theorem 6.8 in Perea and Harer (2015), so
assume N ≥ 2.

Our first claim is that the projection P : (Cα, ‖ · ‖2) −→ (CN , ‖ · ‖∞) restricts to
a homeomorphism

P : XK , f
∼=−−−→ T

N
F̂
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Indeed, surjectivity is the content of Kronecker’s Theorem (2.1), so in order to
check injectivity, assume that x, x′ ∈ XK , f have P(x) = P(x′), and write

x =
⎡
⎢⎣
F̂(k1)ei〈k1,ω〉t

...

F̂(kα)ei〈kα,ω〉t

⎤
⎥⎦ , x′ =

⎡
⎢⎣
F̂(k1)ei〈k1,ω〉t ′

...

F̂(kα)ei〈kα,ω〉t ′

⎤
⎥⎦

for t, t ′ ∈ R. Since P(x) = P(x′) and F̂(kr ) �= 0 for r = 1, . . . , α, then there exist
m1,m2 ∈ Z for which

〈k1, ω〉(t − t ′) = 2πm1

〈k2, ω〉(t − t ′) = 2πm2

If t �= t ′, then we would have that

〈m2k1 − m1k2, ω〉 = 0

contradicting either the incommensurability of ω, or the Q-linear independence of
the vectors k1,k2, . . . ,kN . Thus t = t ′, showing that P is injective on XK , f , and
continuity plus Hausdorffness improves this to injectivity on XK , f . Finally, since P
provides a continuous bijection between XK , f and T

N
F̂
, and the former is compact

(since it is closed and bounded), then P yields the desired homeomorphism.
Now, given ε > 0, let 0 < δε ≤ ε be so that

‖P(x) − P(x′)‖∞ < δε always implies ‖x − x′‖2 < ε (35)

for x, x′ ∈ XK , f . The existence of δε > 0 follows from the uniform continuity of
P−1 : T

N
F̂

−→ XK , f , and replacing δε with min{δε, ε} if necessary. Density of XK , f

in XK , f implies that for each z ∈ T
N
F̂
there is xz ∈ XK , f so that ‖P(xz) − z‖∞ < δε

4 .
Fixing a choice of xz for each z defines a function

ν : T
N
F̂

−→ XK , f

z �→ xz

satisfying

‖P ◦ ν(z) − z‖∞ <
δε

4
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for every z ∈ T
N
F̂
. Therefore, if z, z′ ∈ T

N
F̂
are so that ‖z − z′‖∞ < δε

2 , then

‖P ◦ ν(z) − P ◦ ν(z′)‖∞ ≤ ‖P ◦ ν(z) − z‖∞ + ‖z − z′‖∞ + ‖z′ − P ◦ ν(z′)‖∞

<
δε

4
+ δε

2
+ δε

4

= δε

which implies ‖ν(z) − ν(z′)‖2 < ε (by Eq. (35)), and ν extends to a simplicial map

R(ν) : R δε
2
(TN

F̂
, ‖ · ‖∞) −→ Rε(XK , f , ‖ · ‖2)
σ �→ ν(σ )

at the level of Rips complexes.
We claim that Rε(P) ◦ R(ν) is contiguous to the inclusion

ι : R δε
2
(TN

F̂
, ‖ · ‖∞) ↪→ Rε(T

N
F̂
, ‖ · ‖∞)

Indeed, if z, z′ ∈ T
N
F̂
are so that ‖z − z′‖∞ < δε

2 , then

‖z′ − P ◦ ν(z)‖∞ ≤ ‖z′ − z‖∞ + ‖P ◦ ν(z) − z‖∞

<
δε

2
+ δε

4

< δε

≤ ε

showing that the set-theoretic union

ι(σ ) ∪ (
Rε(P) ◦ R(ν)

)
(σ )

is an element of Rε(T
N
F̂
, ‖ · ‖∞) for every σ ∈ R δε

2
(TN

F̂
, ‖ · ‖∞).

Contiguity at the level of simplicial maps implies that ι∗ = Rε(P)∗ ◦ R(ν)∗ in
homology, and since ι∗ is surjective (Corollary 6.4), then it follows that Rε(P)∗ is also
surjective. ��

The next thing to note is that Lemma 6.3 together with Lemma 6.5 yields the
following estimate for the number of toroidal persistent features in R(XK , f , ‖ · ‖2):
Theorem 6.6 Fix 1 ≤ n ≤ N, and let 1 ≤ n1 < · · · < n� ≤ N be the longest
sequence for which

|F̂(kn)| = |F̂(kn1)| = · · · = |F̂(kn�
)|.
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Then, for each 1 ≤ j ≤ N, the multiset cardinality of

{
(0, b) ∈ dgmR

j

(
XK , f

) ∣∣∣ b ≥ √
3|F̂(kn)|

}

is greater than or equal to μ j (1) + · · · + μ j (n), for

μ j (n) =
(
n1 − 1

j − 1

)
+ · · · +

(
n� − 1

j − 1

)
.

In order to make statements on dgmR
j (SWd,τ SK f ), we will leverage the diagram

(
SWd,τ SK f , ‖ · ‖2

) (
XK , f , ‖ · ‖2

)
�+

K , f

�K , f

(36)

and the estimates in Rips persistence that it implies. Here �K , f is the Vandermonde
matrix defined in Eq. (30), and �+

K , f is its Moore-Penrose pseudoinverse (see Ben-
Israel and Greville (2003, III.3.4)).

Let 0 < σmin ≤ σmax be the smallest and largest singular values of �K , f , respec-
tively. Standard singular value decomposition arguments show that

∥∥�K , f u
∥∥
2 ≤ σmax‖u‖2 and

∥∥∥�+
K , f v

∥∥∥
2

≤ 1

σmin
‖v‖2

for every u ∈ C
α and v ∈ C

d+1, and thus we have induced simplicial maps

� : Rε(XK , f ) −→ Rεσmax(SWd,τ SK f )

�+ : Rδσmin(SWd,τ SK f ) −→ Rδ(XK , f )

at the level of Rips complexes. Let

κ(�K , f ) = σmax

σmin

denote the condition number of �K , f . Then for every ε ≤ ε′, the diagram

Rεσmin(SWd,τ SK f ) Rε′σmin(SWd,τ SK f )

Rε/κ(�K , f )(XK , f ) Rε(XK , f ) Rε′(XK , f )

�+ �+� (37)
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commutes. The horizontalmaps are inclusions, and commutativity follows fromnoting
that �+

K , f is a left inverse of �K , f . Indeed, the latter (tall skinny) matrix is full-rank
with our choice of d and τ . Taking homology in dimension j ∈ N we get the induced
homomorphisms

H εσmin, ε′σmin
j (R(SWd,τ SK f ); F)

H
ε/κ(�K , f ), ε′
j (R(XK , f ); F) H ε, ε′

j (R(XK , f ); F)

�+∗

at the level of persistent homology groups (See Eq. (20)), where the horizontal map is
an inclusion as linear spaces. Commutativity of the diagram in Eq. (37) implies that

H
ε/κ(�K , f ), ε′
j (R(XK , f ); F) ⊂ Img

(
�+∗
)

which, after taking dimensions, yields the following inequality of persistent Betti
numbers (see Eq. (21)):

β
εσmin, ε′σmin
j (R(SWd,τ SK f )) ≥ rank

(
�+∗
) ≥ β

ε/κ(�K , f ), ε′
j (R(XK , f ))

Letting ε → 0 and using Theorem 6.6, we get the following:

Theorem 6.7 Let f (t) = F(tω) be quasiperiodic with frequency vector ω ∈ R
N and

parent function F ∈ Cr (TN ), r > N
2 . Fix parameters K , d, τ as before.

Let σmin > 0 be the smallest singular value of the Vandermonde matrix �K , f (see
Eq. (30)), and for 1 ≤ n ≤ N, let 1 ≤ n1 < · · · < n� ≤ N be the longest sequence
for which

|F̂(kn)| = |F̂(kn1)| = · · · = |F̂(kn�
)|.

Then, for each 1 ≤ j ≤ N, the multiset cardinality of

{
(0, b) ∈ dgmR

j

(
SWd,τ SK f

) ∣∣∣ b ≥ √
3|F̂(kn)|σmin

}

is greater than or equal to μ j (1) + · · · + μ j (n) for

μ j (n) =
(
n1 − 1

j − 1

)
+ · · · +

(
n� − 1

j − 1

)
.

The Stability Theorem for Rips persistence (Eq. (26)), together with Theorem 6.7
and Corollary 3.2 yield the main result of this section.

Theorem 6.8 With the same hypotheses of Theorem 6.7, and for 1 ≤ j, n ≤ N, the
multiset cardinality of

{
(a, b) ∈ dgmR

j

(
SWd,τ f

) ∣∣∣ b − a ≥ √
3|F̂(kn)|σmin − 4

√
d + 1‖ f − SK f ‖∞

}
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is greater than or equal to μ j (1) + · · · + μ j (n).

The extremal singular values of Vandermonde matrices with nodes in the unit
circle haven been extensively studied in the harmonic analysis and computational
mathematics literature (Aubel and Bölcskei 2019; Moitra 2015; Ferreira 1999). In
particular, the lower bound on σmin from Aubel and Bölcskei (2019, Eq. (55)) implies
the following.

Corollary 6.9 With the same hypotheses of Theorem 6.7, and if

d >
1

δω

− 3

2
, δω := min

1≤�<m≤α

1

π
arcsin

(∣∣ei〈k�,ω〉τ − ei〈km ,ω〉τ ∣∣
2

)

then, for each 1 ≤ j, n ≤ N, the multiset cardinality of

{
(a, b) ∈ dgmR

j

(
SWd,τ f

) ∣∣∣b − a ≥ √
3|F̂(kn)|

√
d + 3

2
− 1

δω

− 4
√
d + 1‖ f − SK f ‖∞

}

is always greater than or equal to μ j (1) + · · · + μ j (n).

This brings us to the end of the theoretical quasiperiodicity analysis in this paper.
In the next section, we focus on examples and applications.

7 Experiments and applications

This section has two goals: first, to illustrate the pipeline developed in this paper
for the analysis of quasiperiodic time series data. Indeed, we will utilize a synthetic
example to review the optimization of d and τ , evaluate our theoretical lower bounds
on persistence, and study the effects of noise on sliding window persistence. The
second goal is to provide an example of how quasiperiodicity can arise in naturally-
occurring time series data. Specifically, wewill study a sound recording of dissonance,
and illustrate how quasiperiodicity emerges through the lens of sliding windows and
persistence.

7.1 Computational pipeline and valuation of theoretical lower bounds

Let

f (t) = 2 sin(t) + 1.8 sin
(√

3t
)

for 0 ≤ t ≤ 60π

with graph shown in Fig. 8 below.
We sample f at 10,000 evenly spaced points; that is, at each

t ∈ T =
{
3nπ

500
| n = 0, . . . , 9, 999

}
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Fig. 8 f (t) = 2 sin(t) + 1.8 sin
(√

3t
)
for 0 ≤ t ≤ 60π

Fig. 9 Modulus of the DFT for f (T )

producing a discrete time series for which the Discrete Fourier Transform is computed
(see Fig. 9 below). We note that since f is real-valued, then | f̂ (ξ)| is symmetric

with respect to the origin, ω =
(
1,

√
3
)
, k1 = (1, 0), k2 = (0, 1), k3 = (−1, 0),

k4 = (0,−1), and that |F̂(k1)| = |F̂(k3)| ≈ 1, |F̂(k2)| = |F̂(k4)| ≈ 0.9.
The number of prominent peaks in | f̂ (ξ)| is used—as described in Sect. 5.1—to

select d = 4, while the peak locations 〈k, ω〉 define the function �(x) (see Eq. (32))
whose minimizer over [0, τmax], for τmax = 3

4
60π
d , yields the choice τ ≈ 11.9577 as

described in Sect. 5.2. The value of τmax is selected to guarantee that the window size
dτ is less than that of the domain T over which f is evaluated.

The number of points in T is already large enough that computing theRips persistent
homology of SWd,τ f (T ), using standard software (Bauer 2016), is algorithmically
intensive. Thus, we take a maxmin subsample SWd,τ f (T̃ ) (see Example 5.2) by
selecting T̃ ⊂ T with 1,000 points, and compute dgmR

j

(
SWd,τ f (T̃ )

)
in dimensions

j = 1, 2 and coefficients in F = Z2.
Since T̃ �= R, then the lower bounds on persistence from Theorem 6.7 do not

readily apply to the diagrams dgmR
j (SWd,τ f (T̃ )). That said, the stability theorem

implies that the inequality can be corrected to

b − a ≥ √
3|F̂(kn)|σmin − 4

√
d + 1‖ f − SK f ‖∞ − 4dH

(
SWd,τ f (T̃ ), SWd,τ f

)

(38)

where, for this example, the Hausdorff distance term was estimated as

dH
(
SWd,τ f (T̃ ), SWd,τ f

) ≈ 0.54292.
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Fig. 10 Rips persistence diagrams of SWd,τ f (T̃ ) in dimensions j = 1 (blue) and j = 2 (orange), and
coefficients in F = Z2. Lower bounds on persistence are shown with dashed lines. Left: no Hausdorff
correction, and Right: Hausdorff correction (color figure online)

Figure10 below shows the Rips persistence diagrams dgmR
j (SWd,τ f (T̃ )), as well

as the estimated lower bounds in persistence with and without the correction term on
Hausdorff distance.

Next, we aim to illustrate the effect of introducing noise to a quasiperiodic signal by
examining the sliding window persistence of the resulting signal. Note that in (Tralie
and Perea 2018, Section 4.1), the authors extensively studied the effect of adding
different types and levels of noise to recurrent videos. They measured the accuracy of
a binary classification task inspired by their persistence based (quasi)periodicity scores
and showed that persistence separates recurrent and non-recurrent videos under noise

very well. Here, we use the function f (t) = 2 sin(t) + 1.8 sin
(√

3t
)
at t ∈ T ={ 3nπ

500 | n = 0, . . . , 9, 999
}
and add random Gaussian noise to f . Then we use the

Discrete Fourier Transform to determine the frequencies. For parameter selection,
we choose d based on the number of prominent peaks and compute the optimal τ as
described in Sect. 5.2. For each noise level, we compute the slidingwindowpersistence
for 800 landmarks chosen via the maxmin subsampling process. In Fig. 11 (Top), we
track the maximum persistence (blue) and the second maximum persistence (purple)
in dimension 1 as we increase the Noise-to-Signal Ratio (NSR) defined as

NSR =
√

E[N 2]
E[S2]

where N is the Gaussian noise, S is the signal f , and E[ · ] is the expected value.
We also show, for contrast, all other lower persistences (gray), i.e. third maximum
persistence, fourth maximum persistence, and so on. Similarly, in Fig. 11 (Bottom),
we track the maximum persistence (orange) and all other lower persistences (gray),
i.e. second maximum persistence, third maximum persistence, etc., in dimension 2.
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Fig. 11 Sliding Window Persistence versus Noise-to-Signal Ratio. The top figure shows the two maximum
persistences in dimension 1 and the bottom figure shows the maximum persistence in dimension 2. In both
cases, the curves for lower persistences, i.e. all other persistences are also added for contrast

7.2 Application: dissonance detection inmusic

In music theory, consonance and dissonance are classifications of multiple simultane-
ous tones. While the former is associated with pleasantness, the latter creates tension
as experienced by the listener. Perfect dissonance occurs when the audio frequencies
are irrational with respect to each other. One such instance is the tritone, which is
a musical interval that is halfway between two octaves. Mathematically, for a base
frequency ω1, its tritone is

√
2ω1. We will use the theory of sliding window embed-

ding to quantify quasiperiodicity from a dissonant sample. For the purpose of this
application, we use a 5-second audio recording of a brass horn playing the tritone.1

The signal was read using wavfile.read() and the resulting amplitude plot is shown in
Fig. 12 (Top). Like before, in order to perform sliding window analysis, we need to
choose appropriate parameters d and τ . We proceed exactly as before with the spectral
analysis shown in Fig. 12 (Bottom).

We then find peaks with height at least 0.04 and at least 100 radians per second apart
to detect prominent frequencies which we will use for estimation of the embedding
parameters. See Table 1.

The resulting embedding parameters are d = 8 and τ = 0.0285736. We use cubic
splines to compute the sliding window vectors and present the PCA representation of
the point cloud, along with the persistence diagrams computed for 1300 landmarks,
i.e. maxmin subsample as defined in Example 5.2, in Fig. 13.

1 Generously provided by Adam Huston.
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Fig. 12 (Left) Theplot of a dissonantmusic sample created on abrass horn. (Right)The amplitude-frequency
spectrum of the music sample plot using Fast Fourier Transform

Table 1 List of frequencies in the positive side of the (symmetric) amplitude-frequency spectrum: First
row: list of detected frequencies. Second row: their conversion to Hertz. Third row: ratio with respect to the
first row

Angular frequencies 1384.93 1957.83 2769.86 3911.93

Frequencies (Hz) 220.41 311.59 440.83 622.60

Proportion 1 1.4137 ≈ √
2 2 2.8246 ≈ 2

√
2

Fig. 13 (Left) PCA representation of the sliding window point cloud. (Middle) Persistence Diagrams in
homological dimensions 0, 1 and 2. (Right) The persistence scatter plot

In Fig. 13, the persistence diagrams (middle) indicate that the sliding window point
cloud has two high persistence features in dimension 1 and one high persistence
feature in dimension 2. This claim is validated with the persistence scatter plot (right).
This tell us that the point cloud fills a two dimensional torus (perhaps a very twisted
one) embedded in R

9, which verifies that the dissonant music sample was indeed
quasiperiodic.
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