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Abstract

A function is called quasiperiodic if its fundamental frequencies are linearly indepen-
dent over the rationals. With appropriate parameters, the sliding window point clouds
of such functions can be shown to be dense in tori with dimension equal to the number
of independent frequencies. In this paper, we develop theoretical and computational
techniques to study the persistent homology of such sets. Specifically, we provide
parameter optimization schemes for sliding windows of quasiperiodic functions, and
present theoretical lower bounds on their Rips persistent homology. The latter lever-
ages a recent persistent Kiinneth formula. The theory is illustrated via computational
examples and an application to dissonance detection in music audio samples.

Keywords Topological data analysis - Persistent homology - Dynamical systems -
Sliding window embeddings - Quasiperiodicity - Time series analysis
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1 Introduction

Recurrent behavior—both in time and space—is ubiquitous in nature. Periodicity and
quasiperiodicity are two prominent examples, characterized by a vector of underly-
ing non-zero frequencies: If all pairwise ratios are rational, then the recurrence is
periodic, while quasiperiodicity, on the other hand, occurs if there are at least two
frequencies whose quotient is irrational. Quasiperiodic recurrence is at the heart of
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KAM (Kolmogorov—Arnold—Moser) theory (Broer 2004), it appears as a signature of
biphonation (i.e., the voicing of two simultaneous pitches) in mammalian vocalization
(Wilden et al. 1998), in climate change patterns on Mars (Pollack and Toon 1982), in
the oscillatory movement of the star TT Arietis (Hollander and Van Paradijs 1992),
and in the brain functioning in mice as reported by fMRI scans (Belloy et al. 2017).
The list goes on.

Quasiperiodicity in dynamical systems is typically studied with numerical methods
including Birkhoff averages (Das et al. 2016), periodic approximations (Slater 1967;
S6s 1958), estimation of Lyapunov exponents (Weixing et al. 1993), power spectra
(Wojewoda et al. 1993), and recurrence quantification analysis (Webber and Zbilut
1994; Zbilut et al. 2002). New techniques from applied topology have emerged recently
as complements to these traditional approaches in the task of recurrence detection—
specifically for periodicity and quasiperiodicity quantification—in time series data
(Perea and Harer 2015; Perea 2016; Tralie and Perea 2018). This novel framework
combines two key ingredients: sliding window embeddings and persistent homology.

Sliding window (also known as time-delay) embeddings provide a framework to
reconstruct the topology of state-space attractors in dynamical systems, given observed
time series data. Indeed, given parametersd € N = {0, 1, ...} (controlling the embed-
ding dimensiond + 1) and 7 € {x € R | x > 0} (the time delay) the sliding window
embedding of f : R — C at¢ € R is the vector

f@®
ft+1)

SWao f(1) = cHl (1)

£t +dr)

The motivation behind this construction is Takens’ embedding theorem (Takens 1981),
which asserts that if f is the result of observing the evolution of a (potentially unknown)
dynamical system, then the underlying topology of the sliding window point cloud
SWy.r f := SWy . f(R)—generically in f and for appropriate parameters d, T—
recovers that of the traversed portion of the state space. In particular, this is how
attractors can be reconstructed from observed time series data.

The topology of attractors constrains many properties of the underlying dynamical
system (e.g., periodic orbits, chaos, etc) and detecting these features in practice is
where persistent homology has come into play (Robins 1999). Persistent homology is
atool from Topological Data Analysis widely used to quantify multiscale homological
features of shapes. Its typical input is a collection K = {Kc}e>0 of spaces with
K. C K. continuous for all ¢ < ¢'. This is called a filtration. The output in each
dimension j € N is a multiset

dgm;;(K) C {(x, y) € [0, 00] x [0,00] | 0 < x < y}

called the j-th persistence diagram of KC, where each pair (a, b) € dgm; (K) encodes
a j-dimensional topological feature (like a connected component, a hole, or a void)
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which appears at K, and disappears entering K. The quantity b — a is the persistence
of the feature, and typically measures significance across the filtration.

In data analysis applications the input to persistent homology is often a metric
space (X, dy)—e.g., a sliding window point cloud SW, ; f—from which the Rips
(simplicial) complex

R.(X,dy) := {{x(),...,xn} Cc X | Oma}(x dx(xj,x) <€, ne N} 2)
k<n

<Jj
is computed at each scale € > 0, producing the Rips filtration
R(X,dy) :={Re(X, dx)}e>0- (3)

Points in the Rips persistence diagrams dgm;z(X ) :=dgm i (R(X , dX)) quantify
the underlying topology of X in that pairs (a, b) with large persistence b — a represent
likely topological features of a continuous space around which X accumulates.

The diagrams dgm?(SWd,, f) have shown to be rich signatures for recurrence
detection in time series, with applications including: periodicity quantification in gene
expression data (Perea et al. 2015), (quasi)periodicity detection in videos (Tralie and
Perea 2018), synthesis of slow-motion videos from repetitive movements (Tralie and
Berger 2018), wheezing detection (Emrani et al. 2014), and chatter prediction (Kha-
sawneh et al. 2018). See Perea (2019) for arecent survey. One of the main challenges in
these applications is the validation of empirical results, which stems, in part, from the
current limited theoretical understanding of how dg m;-3 (SWy, ¢ f)dependson f,d, T
and 7. That said, there are recent explicit conditions on f for SW, ; f to provide
appropriate reconstructions (Xu et al. 2019), as well as analyses of sliding window
persistence for periodic functions (Perea and Harer 2015), and quasiperiodic functions
of the form (Perea 2016)

f@) = c1e!"® 4o 4 eyel'n. @)

In Eq. (4) the w, > 0 are Q-linearly independent (i.e., incommensurate), and the
coefficients ¢, € C are nonzero. Our goal in this paper is to extend (Perea and Harer
2015) and (Perea 2016) to general quasiperiodic functions; i.e., those beyond Eq. (4).

1.1 Contributions

The first contribution of this paper is methodological: we develop techniques to study
the persistent homology of sliding window point clouds from general quasiperiodic
functions. Specifically, we show thatif f : R — C is quasiperiodic with incommen-
surate frequencies w = (wy, ..., wy) (Definition 2.4), and if for k € ZN, K € N, we
let

— 1 r* . — .
F(k) = lim — / FOe MR1Oqr Sk f(t) = Z F(k)e' K1)
r—o0 A Jo K<k
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then the Rips persistence diagrams dg m}z(SW/d,r f), j € N, can be approximated in

bottleneck distance by dgm?(SWd,T Sk f) as K — oo. The diagrams of SWy . Sk f
are then studied directly with methods extending those of Perea (2016), Perea and

Harer (2015); the approximation to dgm}z(SWd,, f) is of order O (K %”) when

|f(k)| =0 (||k||2_’) and r > N /2 (Corollary 3.2).

This approximation strategy leads to our second contribution: computational
schemes for optimizing the choice of parameters d € N and T > 0, so that the
geometry (and hence the Rips persistent homology) of the sliding window point cloud
SWy . f = SW4 . f(R) robustly reflects that of an N-torus. Explicitly:

1. Given f, estimate the coefficients F (k) and their frequency locations
(k, w). This can be done numerically with methods leveraging the Discrete
Fourier Transform (Gémez et al. 2010; Laskar 1993) or Wavelet analysis
(Vela-Arevalo 2002).

2. Let K € N be the smallest integer so that

supp(Fy) := [k e ZV | F(k) # 0 and [|k[lco < K}

spans an N-dimensional Q-vector space. This is possible provided f is
smooth enough (Lemma 4.1).

3. Let d be the cardinality of supp(ﬁ k), or alternatively, the number of
prominent peaks in the spectrum of f. This choice is so that SWy ; f has
the right toroidal dimension (Theorem 4.2).

4. Let T > 0 be a minimizer over [0, tmax] of the scalar function

F(,x) = Z ‘1 _'_eix(k—k”w) + . +eix<k_k,,w)d 2
k2K’

where the sum runs over k, Kk’ € supp(I? k). This choice is meant to
amplify the toroidal features in dgm?(SWd,f f)—see Figs. 4 and 5—
and can be implemented via simple minimization algorithms.

Here, by toroidal features, we refer to the torus shaped attractors in the underlying
dynamical system, which are captured by computing the persistent homology of the
sliding window point cloud. By strong N-toroidal features, we mean that there are (17 )

number of significant persistence points in dg m}a.

Our third contribution leverages the aforementioned approximation strategy, param-
eter choices, and a recent persistent Kiinneth formula (Gakhar and Perea 2019), to
establish bounds for the cardinality and persistence of strong toroidal features in
dgm}z(SWd,rf), for 1 < j < N. We prove the following (Sect. 6):

Theorem With K,d € N and t > 0 as before, let opin > 0 be the smallest singular

value of the (d + 1) x d Vandermonde matrix [ei<k"”>fj]j=0 .. kesupp(Fy)" Moreover,
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letky,....ky € supp(ﬁK) be Q-linearly independent with
[F(k)| = [Fk)| > -+ > [F(ky)| > 0.

Forl <n <N,letl <nj <---<ng
£) for which

IA

N be the longest sequence (i.e., largest

|F (k)| = [Fkp)| = = | F(Kp,)|

andfor1 < j <N, let

) L nl—l ne—l
= (32 )+ (F2))

Then, there are at least j(1) + --- + uj(n) toroidal features (a,b) €
dgm}2 (SWd,T f ) counted with multiplicity, and with persistence

b—a > V3[Fky)lomn — 4Vd+ 1] f — Sk flloc- (&)

We envision for these kinds of theorems to be useful in separating noise from fea-
tures in applications of quasiperiodicity detection/quantification with sliding windows
and persistence. As an illustration, consider the quasiperiodic signal

F(t) = 2sin(t) + 1.8sin (ﬁz)

shown in Fig.1 below (left), together with dgm?(SWd,f f) (right) in dimensions
Jj = 1 (blue) and j = 2 (orange), computed with appropriate parameters d, . The
corresponding theoretical lower bounds on persistence from Eq. (5) are depicted with
dashed lines. We also use f(¢) to demonstrate the effect of random noise on sliding
window persistence. See Sect. 7.1 for computational details.

Finally, as an application of the theory established in this paper, we illustrate how
sliding windows and persistence can be used to identify the presence of dissonance in
music audio recordings. Indeed, dissonant intervals in music (like the tritone) lead to
quasiperiodic recurrence in the recorded audio waves, which we show can be effec-
tively detected with the methods developed here. We also note that the preliminary
versions of these results appeared in the first author’s Ph.D. thesis (Gakhar 2020).

1.2 Organization

Section 2 presents the necessary mathematical background on the Fourier theory
of quasiperiodic functions and persistent homology. Section 3 provides Fourier-type
approximation theorems with explicit rates, at the level of sliding window point clouds
and Rips persistent homology. Section 4 is devoted to studying the geometric structure
of the sliding window point cloud SW, ; Sk f as a function of the parameters involved.
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Fig. 1 Left: the function f(t) = 2sin(¢) 4+ 1.8 sin <\/§t> Right: The persistence diagrams in dimensions

j = 1 (blue) and j = 2 (orange) of the sliding window point cloud SWy ; f, together with the lower
bounds on persistence (dashed lines) from Eq. (5) (color figure online)

In Sect. 5, we establish a computational framework for the optimization of d and t.
Section 6 establishes the advertised theoretical lower bounds on dgm;z(SWd,, f),and
we end in Sect. 7 with computational examples and applications.

1.3 Notation

LetT = R/2rZ = S 1 that is, [0, 2] with the endpoints identified. Similarly for
N e N let TV = (R/271Z)N >~ §! x ... x S'. We will abuse notation and regard
any F : TN —s C as both a function of a variable t € RY where each coordinate 7,
is 277-periodic, and also as a function on the quotient T .

2 Preliminaries
In this section we establish the necessary background for later parts of the paper. In
particular, we provide a short review of Kronecker’s multidimensional approximation

theorem in Sect. 2.1, as well as of quasiperiodic functions and their Fourier theory in
Sect.2.2. The theory of persistent homology is briefly discussed in Sect.2.3.

2.1 Kronecker’s theorem

If we regard R as a vector space over Q, then a finite set {f1,..., Bny} C R is
called incommensurate if By, ..., By are linearly independent over Q. That is, for
cl,...,cn€Q

cifi1+---+cyBny =0 ifandonlyif ¢y =---=cy =0.

Kronecker’s theorem is concerned with simultaneous diophantine approximations
to real numbers, and incommensurability turns out to be the main condition. Later on
we will use this theorem to see why sliding window point clouds from functions with
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~ 2

Fig.2 The set TB/2xZ> C T3 for B = (v/2, /3, 0) (left, a 2-torus), B = (v/2, v/3, /2 + +/3) (second,
a 2-torus), B = (v/2,v/3,3v/2 + 24/3) (third, a 2-torus), B = (v/2,v/3, 72 + 1) (right, a 3-torus) and
T = [7104, 104] nz

incommensurate frequencies (i.e., quasiperiodic) are dense in high-dimensional tori.
For now, the theorem can be stated as follows (Apostol 2012, Chapter 7).

Theorem 2.1 (Kronecker) {81, ..., Bn} C R is incommensurate if and only if for
everyri,...,ry € Rand every € > 0, there existt € Randky, ..., ky € Z so that

[tBy —rn — 2mky| < € for all 1<n<N. (6)

As a consequence, the entries of B = (B1, ..., Bn) € RN are incommensurate if
and only if RB/2nZN = {t(ﬁl, ...,Bn) mod2m |t e R} is dense in TN .

Remark 2.2 If one further assumes that {r, 1, ..., By} is incommensurate, then Eq.
(6) holds with ¢ € Z.

Here is a useful consequence of Kronecker’s theorem:

Corollary 2.3 Let B = (B1, ..., Ba) € R”, for a € N. Then spang{p1, ..., Bu} has
dimension N over Q, if and only if RB/2n 7% C T* is dense in an N -torus embedded
in T*.

Before presenting the proof, and as an illustration of this Corollary, Fig.2 shows
what T 8/27 Z3 looks like inside T for T := [—10%, 10*] N Z and B equals one of

(«/5,«/30), (ﬁ,ﬁ,«/ﬁ+«/§), («/5,«/§,3«/§+2«/§), («/5,«/3,:1%1).

Notice that in each case, T 8/27wZ> traces a torus of the appropriate dimension, but
embedded in ways governed by the linear relations between the entries of 8.

Proof (of Corollary 2.3) Let {1, ..., B} C R span an N-dimensional vector space
over Q, and without loss of generality, assume that 81, ..., By form a basis, N < «.
Forl < j <a— Nletkj, k;, € Zbe so that

N
kiBn+j =Y kjnbn )
n=1
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If N = 1 we further require that gcd(k;, k; 1) = 1, and if k = lem(ky, ..., ko—1),
then it readily follows that

T! — T
kt
r = ﬁ_lﬁ

is an embedding of T into T with the closure RB/27Z* = RB/2xZ* as its image.
Now, for N > 2 define ¢ : RY — R* and ¢ : R — R as

N N
¢(t17 B tN) = <tl, .o IN, Zkl,ntna e ZkaN,ntn) (8)
n=1 n=1

I/f(tl""7t0() = (t]5"-7tN7 kltNJr]""’ ka*NtOl) (9)

Note that both ¢ and v preserve classes modulo 27, and therefore descend to
continuous maps ¢ : TV — T¢, v : T* — T%. Moreover, since ¢ : TV — T¢
is injective and tori are compact and Hausdorff, then ¢ is a homeomorphism onto
its image. We claim that ¢ : T — T is injective when restricted to RB/2wZ“.
Indeed, if 1 # ¢’ € R are so that ¥ (t8) = ¥ (¢’B) in T%, then there exist p,q € Z
with

(t—1)B1 =2mp
(t —1)Br =2mq

which implies g1 = pf», contradicting the Q-linear independence of S, ..., Bx.
It follows that v is an injective continuous map on RB/27wZ%, and thus induces a

homeomorphism RS/2xZ% = (R,B / ZnZ“). Finally, since Eq. (7) implies that

Y(p) = ¢(t(Bi.....BN)) forevery t € R, and R(By, ..., Bn)/2nZN = TV by
Kronecker’s theorem, then

RB/277 = (Rﬂ/Zn’ZO‘) ~ ¢ (R(ﬂl, L ,BN)/ZJTZN> —¢ (TN) ~ TN,

The only if direction follows from the fact that two tori of different dimensions
cannot be homeomorphic. O

2.2 Quasiperiodic functions

As we alluded to in the introduction, quasiperiodic functions are superpositions of
periodic oscillators with incommensurate frequencies. They arise in dynamical sys-
tems as observation functions on invariant toroidal submanifolds (Samoilenko 2012).
More specifically,
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Definition 2.4 Let wy, ..., wy > 0 be incommensurate. A function f : R — Cis
said to be quasiperiodic with frequency vector v = (w1, ..., wy) if

f@®) = F(wit,...,oNt)

for all # € R and a continuous function F : TN —» C. Thatis F € C(TV), which
we will call a parent function for f.

Remark 2.5 Thecase N = 1 recovers the family of complex-valued periodic functions,
and thus the results presented here generalize those of Perea and Harer (2015).

Remark 2.6 (Important) We will require throughout that the dimension N of the fre-
quency vector @ € R for f quasiperiodic, be minimal. The reason being that if
not, then a function like f(r) = '+ can be regarded as being quasiperiodic with
frequency vector @ = 1 + 7 and parent function F () = €'/, or as having w = (1, 7)
for frequency vector and F (t1, t;) = ¢'17%2) for parent function. Requiring that N be
minimal, and showing that for a given w the parent function is unique (we will do so
in Theorem 2.7 below), eliminates this ambiguity.

It turns out that the traditional approximation theory via Fourier series on L2(TV)
and C(TV) can be leveraged to obtain similar insights for quasiperiodic functions.
We describe how in what follows (Theorem 2.11), though the interested reader
should also consult (Apostol 2012; Grafakos 2008; Samoilenko 2012). Indeed, let
Nty ... kn)lloo = max. lknl, and for K € Nlet I¥ = {k € ZV | |k| o < K}

n

be the integral squarg box of side 2K. The K-truncated Fourier polynomial of
FelL? (’]TN ) is the function

Sk F(t) = Z F(k)e' &t (10)
ke]}}’
where t = (11, ...,ty) € RV, (-, .) is the standard inner product in RV, and
2 2
F(k) = (2;)N f~-~/F(tl,...,tN)e_“k’t)dt] codty =<F,e"<k")>Lz (11)
0 0

is the k-Fourier coefficient of F, for k € ZV. As it is well-known (Grafakos 2008,
Proposition 3.2.7), the sequence {Sk F'}xeN converges to F in L3(TNyas K — oo.
That is,

lim ||F — SgF|l;2 =0.
K—o0

It is not the case, however, that one has pointwise convergence Sk F'(t) — F(t),
t € TV, even for F € C(TV) [see (Grafakos 2008, Proposition 3.4.6.) for negative
results, and Theorem 2.9 below for appropriate conditions].
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One can address these difficulties with approximate identities, and in particular
using the square Cesaro (or Fejér) mean

CxF(t) = Z <1 - ng—i'l) (1 - Ilkill) Fk)e' &t (12)

kel

which for F € C(TV) satisfies

lim |F —CkFllo =0 (13)
K—o0
(this is Fejér’s theorem) for || - || the sup-norm of uniform convergence in C (TM).

We now state the first main result on the Fourier theory of quasiperiodic functions.

Theorem 2.7 If f : R — C is quasiperiodic with frequency vector € RN then f
has a unique parent function F € C(TN) with Fourier coefficients

~ 1 [ .
F(k) = lim — / f(ne 110y, (14)
A—>00 A 0

Proof Write f(t) = F(wt) for F € C(TN). Since Klim |F = CgFlloco = 0 (from
—00

Eq. (13)), then Ck f(t) := Ck F(wt) converges to f(¢) uniformly in € R. We claim
that

L[ : [ .
—/ CKf(l)e_l<k’tw)dt — _/ f(t)e—t(k,tw)dt
A Jo " )

uniformly in A > 0 as K — oo. Indeed,

1" -
‘—/0 (Cxf@)— f@)e "t | < |ICk f = flloo

A

where the right hand side goes to zero as K — oo independent of A. Therefore, by
the Moore—Osgood theorem, we can exchange the order of limits as

1 A . 1 A .
lim — / f@e &g = lim lim — / Cx f(e &g (15)
r—o0 A Jo K A Jo

—00 A—>00

and if

Skl (ki) s
M‘_(l K+1> (1 K+1)F(k)

@ Springer



Sliding window persistence of quasiperiodic functions

are the coefficients of Cg F' [defined in Eq. (12)], then evaluating the right hand side
of Eq. (15) yields

1 s K ro) ei(klfk,)ua)) —1
lim — e MW@ gy — lm lm A Ak
Jim /O fe im im0

K—00 A—00 ik —k, o)A
Kel¥ (k)
k k ~
— tim (1- By (g - R F(k)
K—o0 K+1 K+1

F(K).

If there were another parent functlon G € ( C(TN)—i.e., with f(t) = G(tw)—then
the above calculation shows that G(k) =F (k) for every k € ZN . Since functions
in L2(T") with the same Fourier coefficients are equal almost everywhere (Grafakos
2008, Proposition 3.2.7), then continuity improves this to functional equality G = F'.

O

We now move onto providing conditions for the uniform convergence of

Skf0) =Y Fke'® ™ reR, KeN (16)
keIII(V

as K — oo. Here the F (k) can be seen equivalently as the Fourier coefficients of the
parent function F, or as the result of evaluating the right hand side of Eq. (14). The
latter is what we expect to have access to in practice. We start with an upper bound on
the size of the coefficients F (k) (Grafakos 2008, Theorem 3.3.9).

Proposition 2.8 Let r € N and suppose that the partial derivatives 3'F exist and are
continuous for all |11 = |l1| + - -+ |Iy| < r. Thatis, F € C"(TN). Then

WV

Fao| = X0 (37 )|
| | (NP
where n = n(K) satisfies |k,| = ||K|loc and 9, F is the r-th partial derivative of F with

respect to t.

These types of inequalities can be used to estimate the degree r of regularity of
the parent function F', by inspecting the rate of decay of the coefficients |F (k)|.
Proposition 2.8 yields the following estimate for uniform approximation error.

Theorem 2.9 If F € C"(TN) for § <r €N, then

12
A Area(SNHNT &

¥ Pl = a2 Slaar - serl) o
n=1

k¢l
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where 0, F is the r-th partial derivative of F with respect to .. As a result, the sequence
of Fourier coefficients F (K) is absolutely summable, i.e.

> |F®)| < 0.

keZN

Proof From Proposition 2.8 we have that

> |Fo| < Z ”k”r

ke Iy

9,7 (k)| as)

for any fixed K € N. Note that n = argmax |k;| depends on k, so we will write it as
1<j<N
n(k), and the right hand side of Eq. (18) can be bounded using Cauchy-Schwarz as

1/2 1/2

1
n(k)F(k)‘ - Z ”k”2r Z
kgrd 12

k¢ 1y

n(k)

2 ﬂ T 00|
k¢lY

Moreover, since d;, F' is continuous and thus square integrable for each n € N, then
its Fourier coefficients are square summable:

2

keZN

—— 2
G FM[ = ||, <o (19)

by Parseval’s theorem. Hence, summing over n and rearranging terms we get

2 N
> ‘afz(k)F(k)‘ <=2

k¢l n=lggr¥

2 N
GFM[ = Y loF —skoF|
n=1

which goes to zero as K — oo. In order to bound the remaining sum of fractions, let
J¥ ={yeR" | |lyllo < K}andlet BY ={y e R" | |lyl> < K}. Observe that

1 1
< -  dvi---d
Z ||k||2r — / 2N V1 YN

2
kg1 s (1 %)
< / —1 d d
= yi---dyN
OF +---4+0%)
X¢B%
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which in higher dimensional spherical coordinates can be written as
o
1 dpd
2N+ 4PAe
SN-1 K

for do the differential of surface area on the unit sphere S¥~! (the differential solid
angle) and p the distance from a point in R to the origin. The integral satisfies

o
1 B N pN—Zr 00
f /deda_Area (S )N—Zr

SN-1 K

K

B Area (SN_I)
= KN =N

and thus

12
—~ Area(SN"HN” N 2
> IFw| < (mZHB;F_SKa;F”LZ
k¢111¥ n=1

where the right hand side goes to zero as K — oo. O

Remark 2.10 See Stein and Weiss (2016, Chapter VII, Corollary 1.9) for a result akin
to Theorem 2.9. While both have similar hypotheses and deal with absolute Fourier
convergence, Theorem 2.9 above gives explicit bounds for the size of the error term
>k g1y | F (k) | We will need such explicit estimates when discussing Fourier approx-
imations to persistent homology of sliding window point clouds in Sect. 3.

Now, absolute summability of the Fourier coefficients F(Kk) implies uniform con-
vergence Sg F — F, Stein and Weiss (2016, Chapter VII, Corollary 1.8), since

IF(t) = Sk F) < Y [F(k)|

k¢lY

for all t € TV. Combining this fact with Eq. (17), yields the following Fourier series
approximation theorem for quasiperiodic functions:

Theorem 2.11 Let f be quasiperiodic with parent function F € C"(TV), r > % If
Sk f is defined as in Eq. (16), then

172
Area(SV-HNT Y )

SolonF = sk F |
=1

If — Sk flleo < (mn

which goes to zero faster than 1 v as K — oo.
K'™72
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2.3 Persistent homology

As we mentioned in Sect. 1, persistent homology is a tool from Topological Data
Analysis used to study the evolution of topological features in filtered spaces. Indeed,
for any filtration L = {K¢}e>0, taking homology in dimension j € N and coefficients
in a field IF yields a family

Hi(K;F) ={Tee : H(K:;F) — Hj(Ko; F), e <€}

of [F-vector spaces and linear transformations 7¢ o induced by the inclusion maps
K¢ <> K¢, for € < €. The j-th persistent homology groups are

HS (K F) = Img (T.0) (20)
and their dimension over [F are the persistent Betti numbers
B5 (K) = rank(T..«) = dimg (Hj»f’(ic; IF)) . Q1)

If 85 (KC) < coforeverye—i.e.,if H i (K, F) is pointwise-finite—then a theorem of
Crawley-Boevey (2015) contends that the isomorphism type of H; (/C; IF) is uniquely
determined by a multiset of intervals I C [0, oo], called the barcode of H;(IC; IF),
and denoted bcd ; (). The (undecorated) persistence diagram dgm j (K), on the other
hand, is the multiset of pairs (a, b) resulting from taking the endpoints a < b of the
intervals in bcd; (). In terms of persistent Betti numbers, one can check that

B 00 = #]1 e bed; (0 | [e, €1 1} 22)

where cardinality (#) on the right hand side is that of multisets. If all intervals in
bcd; (K) are of the same type (i.e., all open, closed, right/left open), then

,3;'6/(16) = #{(a, by edgm;(K) | a <€ <€ <, b} (23)

where <y and <, are chosen to coincide with the interval type of bcd;; ().

The pointwise-finite hypothesis on H;(K; F) can be relaxed to ,3;’6/ (K) < oo for
all € < ¢’; this is called being g-tame, and is a condition satisfied by the persistent
homology of the Rips filtration (defined in Eq. (3)) of any totally bounded metric
space (Chazal et al. 2014, Proposition 5.1). It is known that barcodes and persistence
diagrams can be defined in the g-tame case in such a way that Eq. (22) (and also Eq.
(23) if all intervals are of the same type) is still valid (Chazal et al. 2016, Corollary 3.8,
Theorem 3.9). As aresult, and when (X, dy) is totally bounded, we have well-defined
Rips persistence diagrams

dgm7 (X, dx) := dgm; (R(X, dx))

@ Springer



Sliding window persistence of quasiperiodic functions

forevery j € N.

A bit more is true: these diagrams are well-behaved in the sense that they are stable
under Gromov—Hausdorff perturbations on (X, dy). Here is what this means. The
Hausdorff distance in a metric space (M, d) between two bounded and non-empty
subsets X, Y C M is defined as

(X, Y) = inf {5 S0 XCYDandy C X@)} .

Here X©® (resp. Y®) is the union of open balls in M of radius § > 0 centered
at points in X (resp. Y). Also, when the ambient metric space is clear, the notation
d%H(X , Y) is simplified to dg (X, Y). The Gromov-Hausdorff distance, on the other
hand, is defined for bounded metric spaces (X, dy), (Y, dy) as

dgy ((X,dx), (Y,dy)) == Minf dli/lﬂ(w(X), Y (Y))
NN

where the infimum runs over all metric spaces (M, d), and all isometric embeddings
¢ (X,dy) =& M,d), ¥ : (Y,dy) — (M, d). In particular, if X,Y C (M, d),
then

dou (X, d[x), (Y, dly)) < djj(X, V). (24)

The Gromov—Hausdorff distance is a measure of similarity between bounded metric
spaces; in fact it is a pseudometric, which is zero if and only if the completions of the
metric spaces involved are isometric. The stability of Rips persistence diagrams, on the
other hand, is an inequality comparing the Gromov—Hausdorff distance between the
input metric spaces, and a notion of distance between their persistence diagrams called
the bottleneck distance. This distance is defined as follows: two persistence diagrams
dgm and dgm’ are said to be §-matched, § > 0, if there is a bijection . : A —> A’
of multisets A C dgm and A’ C dgm’ for which:

1. If (x, y) € Aand (x/, y) :,u(x,y),thenmax{|x x|,y —y/|} <4
2. If (x, y) € (dgm ~ A) U (dgm’ ~. A") then y — x < 26

The bottleneck distance between dgm and dgm’ is
dp(dgm, dgm’) := inf ({8 > 0 | dgm and dgm’ are § — matched } U {o0}).  (25)

Finally, the stability of Rips persistent homology (Chazal et al. 2014, Theorem 5.2)
contends that

dg (dgm (X, dx), dgm (¥, dy)) = 2don((X,dx), (Y. dp))  (26)

for (X, dy) and (Y, dy) totally bounded.
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3 Fourier approximations of sliding window persistence

With the preliminaries out of the way, we now move onto studying the Rips persistent
homology of sliding window point clouds from quasiperiodic functions. Thus far we
have that if f is quasiperiodic and its parent function F has enough regularity, then
f can be uniformly approximated by the truncated series Sk f. This is the content of
Theorem 2.11, and in particular says that the higher the smoothness of F, then the
faster the degree of approximation Sx f — f. We will see next that these results
can be readily bootstrapped to the level of sliding window point clouds, and hence to
statements about Rips persistence diagrams.

Theorem 3.1 Let f be quasiperiodic with parent function F € C"(TN), r > % If
SWd,‘[f = SWd‘rf(T) and SWd,rSKf = SWd,rSKf(T), TCcR

are the sliding window point clouds of f and Sk f, respectively, then the Hausdorff
distance between them satisfies

Ay (SWao f, SWy Sk f) < Vd+ 11 f — Skl

1/2
Area(SV N (d + HN" & 2
- ( K2r—N(2r —N) Z ||8;F - SKB;F”LZ

n=1

which goes to zero faster than Kl v as K — oo.
Proof Lete > /d + 1||f — Sk flloo, and let t € T. Then

ISWa e f(t) = SWaSk f(D2 < Vd+11f =Sk fllo < €
which implies that € satisfies both

SWarf C (SWarSkf)© and SWy . Skf c (SWar ). @7

Since the Hausdorff distance in C4*! between SWy . f and SWy Sk f is the
infimum over all § > 0 satisfying Eq. (27), then we have that

dg(SWy . f, SWy .Sk f) < e.
Because this is true for any € > +/d + 1|| f — Sk f ||, then
dy(SWao f, SWa Sk f) < Vd + 11 f = Sk fllo

and the bound from Theorem 2.11 finishes the proof. O

Using the stability of Rips persistent homology (Eq. (26)), we can readily bound
the bottleneck distance between the corresponding persistence diagrams:
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Corollary 3.2 With the same hypotheses of Theorem 3.1, and for all j € N,
dg (dgmT SWo,c £), dgm? (SWa,c Sk f))
2Vd + 11 f — Sk flleo

1/2
Area(SN- 1)(d+1)N
2< T ar =N Z||a F — Sko, F||L2>

IA

and thus goes to zero faster than 1 + as K — oo.
K'™7

The main point of these approximation results is that studying dng(SWd o)

can be reduced to understanding dgm (SWy Sk f) and its asymptotes as K — oo.
This is a vastly more accessible sunphﬁcatlon as we will see shortly.

4 The geometric structure of SWy Sk f

Our next goal is to show that for suitable choices of d, K € N, T C R, and t > 0, the
closure of the sliding window point cloud SWy Sk f = SWy Sk f(T) in (OZaRIST
homeomorphic to an N-torus. Indeed, for F € C” (TV¥) and K € N, let

supp (Fx) = {k e 1Y | Fk) # o}

denote the support of the Fourier transform F restricted to the square box / 11;' .

Lemma4.1 Let f(t) = F(wt) be quasiperiodic with frequency vector @ € RV, and
parent function F € C"(TV), r > % Then, for all large enough K € N, supp (FK)
spans an N -dimensional Q-vector space.

Proof The first thing to note is that since

supp (F) = U supp (Fx) c Z",
KeN

then V = spang, (supp (F)) is an R-linear subspace of RV. It follows that

L = spang (supp (f))

is an additive discrete subgroup of V, and therefore a lattice (Stewart and Tall 2015,
Theorem 6.1) of dimension n < dimg(V) < N. It suffices to show that n = N.
Letzy,...,z, € L be so that L = spany{zy, ..., z,}. Incommensurability of w
implies that ®; = (z;,w), j = 1,...,n, are Q-linearly independent, and we can
assume without loss of generality that @; > 0; otherwise replace z; by —z; as a
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basis element for L. Hence, ® = (&1, ..., ®,) € R" is a vector of incommensurate
frequencies.
Fort € T" let

G(t) = Z ﬁ(alzl + . 4+ anzn)ei(a,t)

aeZ

which converges uniformly in t € T” since the Fourier coefficients F (k) are absolutely
summable (Theorem 2.9). Therefore G € C(T"), and thus

f@oy =) Fe'er

keZN
= Z Flaiz + - + apzy)e' ™"

aeZ"

= G (at)

which shows that G is also a parent function for f, with @ as the corresponding
frequency vector. Since the dimension N of the frequency vector for f is assumed to
be minimal (Remark 2.6), then n = N, completing the proof. O

Now, if we write supp (FK) ={ki,...,ky},forl <a < (1+ ZK)N, then
SWa Sk f(1) = Qk. 5 - xk, £ (1) (28)

where

ﬁ(kl)ei(k]’w>t
Xk, (1) = : ecC” (29)
F(ka)6i<k°"w>t

and Qg r is the Vandermonde (d + 1) x o matrix

1 1

dKLO)T L ilke.o)T

Qk.p = : : (30)

ky,w)td | Ky, w)td

ol el

with nodes e k-7 oitka.@)T ¢ g1 C (Aubel and Béleskei 2019). We define
Xk, s to be the collection of vectors xg r(t) as above in Eq. (29):

Xk, r = {xk.p(0) |t € R} C C 31)
The decomposition in Eq. (28) with Lemma 4.1 yields conditions on the parameters

K, d, T under which the sliding window point cloud SWy ; Sk f is dense in a torus of
the appropriate dimension. Indeed,
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Theorem 4.2 Let f(t) = F(tw) be quasiperiodic with frequency vector v € RN and
parent function F € C"(TN), r > % Let

supp(Fx) = (K1, ... Ky}

and assume that T > 0 is not an integer multiple of(k_zT”w)for l<n<m<oalf
1 R

K € N is large enough so that supp(I? ) spans an N-dimensional Q-vector space,
and d > o — 1, then the sliding window point cloud

SWd,TSKf = SWd,TSKf(R)

is dense in an N-torus embedded in C3+1,

Proof The first thing to note is that since T > 0 is not an integer multiple of any
(k,,—zTﬂm,w)’ 1 <n < m < «, then the points eitkro)r o Litke0)T o gl gpe gl
distinct. Thus, the Vandermonde matrix Qg ¢ is full rank. This can be checked via
induction on «, by showing that the determinant of an « x o Vandermonde matrix with
nodes ¢i, ..., ¢y is ], <n<m<a&m — ¢n). Combining this observation withd +1 > a,
implies that Qg 5 : C* —> C?*1 is injective as a linear transformation.

Now, Corollary 2.3 with 81 = (k1, ), ..., Bo = (kq, @), together with Lemma
4.1, imply that for all large enough K € N the point cloud Xg ¢ (defined in Eq. (31))
is dense in an N-torus embedded in C¥. The result follows from Qg r being a linear

homeomorphism onto its image. O

Corollary 4.3 With the same hypotheses of Theorem 4.2, and if {r, w1, ..., wN} is
incommensurate, then the sliding window point cloud

SWd,rSKf = SWa’,rSKf(Z)

is dense in an N-torus embedded in C411,

Proof If ki, ..., ky € ZN are Q-linearly independent, then incommensurability of
{m, w1, ..., oy} implies incommensurability of {r, (k|, w), ..., (Ky, ®)}. The result
follows in the same way as Theorem 4.2, but using the integer version of Kronecker’s
theorem as starting point (see Remark 2.2). O

We would like to emphasize that the condition on 7 in Theorem 4.2 only guarantees
the topology of an N-torus. Preserving the geometric structure as much as possible
when going from Xg s to SWy Sk f, and consequently amplifying the toroidal fea-

tures in dgm;a (SWd,,S xkf ), requires specific optimizations on t.
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5 Parameter selection: how to optimize d and 7?
5.1 The embedding dimension

In practice, the diagrams
dgm” (W, f(I))., T CR finite

are computed as approximations to those of SW; ; f(R); the latter set is relatively
compact, and hence the stability theorem (see Eq. (26)) implies that finite samples
provide arbitrarily good approximations. The difficulty lies in that as d — oo, it
becomes necessary for 7 to also grow in order to overcome the curse of (ambient
space) dimensionality, and provide appropriate geometric recovery (Radovanovic et al.
2010). This is problematic since the Rips filtration grows exponentially in the number
of points, and the matrix reduction algorithm for computing persistent homology is in
the worst case cubic in the number of simplices (Morozov 2005). It is thus desirable
for d to be as small as possible. With this and Theorem 4.2 in mind, we propose the
following procedure for choosing d: Let K be the smallest integer so that supp(f x)
spans an N-dimensional vector space over QQ, and let d be the cardinality (o) of
supp(ﬁ k). When f is given numerically as a potentially noisy time series sampled
at finitely many evenly spaced time points, then d can be estimated as the number of
prominent peaks in the spectrum of f.

Remark 5.1 The structure theorems for both periodic functions (Perea and Harer 2015,
Theorem 5.6) and quasiperiodic functions (Theorem 4.2) only required > o —1. While
the choice d = o — 1 works for periodic signals in practice, we will demonstrate in
Example 5.2 thatd = « is preferable in the quasiperiodic case. This discrepancy arises
in the computation of the time delay 7. Indeed, while for periodic functions there is
a clear closed-form choice of 7, it turns out that this is typically not possible in the
quasiperiodic case. We will investigate how in what follows.

5.2 The time delay

One way in which 7 controls the shape of SW, ; Sk f is via the condition number (i.e.,
the largest singular value divided by the smallest singular value) of the Vandermonde
matrix Qg ¢ (defined in Eq. (30)). Indeed, when this number is much larger than 1
and the singular subspaces from the smallest singular values of Qg ¢ intersect Xg ¢
transversally, then the persistence of the toroidal features of SW, Sk f localized
along these directions can be greatly diminished. One can avoid this problem by

selecting a T > 0 promoting orthogonality between the columns uy, ..., uy of Qg ¢.
Indeed, mutual orthogonality together with |ui]| = -+ = |luy|]| = +/d + 1 would

imply that Qg ¢ is +/d + 1 times a linear isometry. Such a transformation would have
condition number equal to 1, and would preserve the persistent features of Xg _r (these
are described in Theorem 6.6). That said, exact mutual orthogonally of the u;’s is not
possible in general, for if N > 3, then (uj, up) = (uy, uz) = 0 implies that there exist

@ Springer



Sliding window persistence of quasiperiodic functions

4

Re f(t)

T T T T T
0 100 200 300 400

Img f(t)
o

T T T T T
0 100 200 300 400
t

Fig.3 Real (top) and imaginary (bottom) part of the function f(t) = el + eiﬁ’ +éf V3t ,0 <1 <400
m, m’ € Z satisfying

(ki —ky,w)t(d+1) =2mm
(ki — k3, w)t(d+1) =2mm’

which in turn would imply

m' (ki — kg, w) = m(k; — k3, o)
contradicting either the linear independence of ki, ko, k3, or the incommensurability
of w. We will settle for the next best option: to let T be so that the u;’s are, in average, as

orthogonal as possible. In other words, we will choose T as a minimizer over [0, Tmax]
of the scalar function

T(x) = Z )1 Loeilkikeolx itk —kew)xd 2 (32)

1<j<t<a
which s exactly the sum of squared magnitudes of the inner products (u;, ug) between
the columns of the Vandermonde matrix Qg . The thing to note is that when f is
given as a noisy finite sample, then the inner products (K;, ) can be estimated as the

frequency locations of the prominent peaks in the spectrum of f.

Example 5.2 As an illustration of our parameter selection procedure, let
) =e' + eV 4 V30 <1 < 400.

The real and imaginary part of this function are shown in Fig. 3 below.
It can be readily checked that w = (1, V2, «/§> is the frequency vector for f, and

supp(Fx) = {(1,0,0), (0, 1,0), 0,0, D}, K > 1.
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d=3,1=16.458 d=3,1=49325 H, Barcode: d = 3, T = 49.325 H; Barcode: d = 3, T = 49.325

[ % A
Ha s Hz

ITH -

e o’
i 1
y
. E3ad
1 1 pd

0 1 2 3 4 1 2 3 4 1 2 3

Birth Birth

Fig. 4 Rips persistence diagrams of SWy ; f(T') in dimensions j = 1 (blue), j = 2 (orange), I = Zj,
d =3, v = 16.458 (first) and T = 49.325 (second). Computations performed with Ripser.py (Tralie
et al. 2018). We also provide the barcode representations in dim 1 (third) and dim 2 (fourth) to substantiate
that there are indeed three strong classes in both dimensions (color figure online)

Following the discussion from Sect. 5.1 we let d = 3 (the cardinality of supp(f x))
and compute dgm;z (SWd,r f(T)) for T C [0, 400]indimensions j = 1, 2 as follows.
We begin by evaluating SW; ; f (¢) at 2,000 evenly spaced points in [0, 400], and then
further subsample this point cloud by selecting 800 points via maxmin sampling. That
is, we pick 1] € T = {% |ln=0,..., 2000} uniformly at random, and if t1, ..., % €
T have been selected, then we let

lg41 = argmax min {”SWd,zf(t) = SWa f@ON, ..., ISWa f(2) — SWd,rf(te)ll}-
teT
This inductive process continues until the sampling set 7 = {t1, ..., 300} C T

is constructed, and then we compute the Rips persistence diagrams of SWy . f(T) in
dimensions j = 1, 2, coefficients in Z,, and two choices of time delay: T = 16.458
and T = 49.325. The resulting persistence diagrams are shown in Fig. 4 below.

We note that the maxmin sampling is used here because it selects subsample points
in way that prevents clustering. This can be observed in the equation above: the time
te+1 selected corresponds to the point S Wy 1 f (t¢) which is the farthest from the already
chosen set {SWy - f(t1), SWa - f(t2), ..., SWa  f(te)}.

For this particular example we expect persistence diagrams consistent with a 3-
torus—i.e., 3 strong classes in dimension 1, and 3 strong classes in dimension 2—
since there are three linearly independent frequencies: 1, +/2 and /3. That said, and
as Fig. 4 shows, a poor choice of time delay (e.g., T = 16.458) can completely obscure
these toroidal features with sampling artifacts (points near the diagonal). This stresses
how important the need for delay optimization can be.

A broader picture of how the persistence of the top 3 features in each dimension
varies with 7 is shown in Fig. 5.

The value T = 49.325 is optimal in the sense that it jointly maximizes the persis-
tence of the top 3 features in both dimensions. More importantly, it is also optimal in
that it is a global minimizer over [0, 100] for the function I"(x) (defined in Eq. (32))
as described in Sect.5.2. We reiterate that the values (k, w), k € supp(ﬁ ), needed
to compute t as the minimizer of I'(x) can be estimated numerically as the frequency
locations of the d most prominent peaks in the spectrum of f. Indeed, Fig.6 shows
the result of computing the Discrete Fourier Transform f(& ) of f sampledatt € T,
as well as the locations of the most prominent peaks in amplitude.
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4 —— max pers, Hy
—— 279 Jargest pers, Hy
§ 34 —— 3 Jargest pers, H;
o]
]
)
[
4
[
a

0.1 16.458 7" = 49.325 (optimal) 100.0 (7)

max pers, H,
—— 2 |argest pers, H,

g 3 |argest pers, H,
T 2
@
@ P Ay A A A
& [ 1\ /) \ [\
14 / “\ | A j A | ]\ A
¥ ol \‘uﬂ"'”"'“ W o\, W \«.». S
0+ i .
0.1 16.458 T" = 49.325 (optimal) 100.0 (1)

Fig. 5 Persistence of top 3 features in dimension 1 (top) and dimension 2 (bottom) as a function of , for
SWyf(T)andd =3

1.01

0 0.5 1.005 1.414=V2 1.728=V3 2.5
&2n

Fig. 6 Modulus of the discrete Fourier transform for f sampled at t € T. The locations of the most
prominent peaks approximate the inner products (k, @)

An important thing to note is that the Discrete Fourier Transform (DFT) by itself
is known to provide only very rough approximations to the frequency locations of
quasiperiodic functions. This can have deleterious effects in the appropriate estimation
of T via minimization of I"(x). One solution is to use methods like (Gémez et al. 2010;
Laskar 1993), which leverage the DFT to produce high-accuracy frequency estimates.

Finally, to illustrate the difference between the choicesd = o andd = o—1 outlined
in Remark 5.1, we repeat the same process above with d = 2. The persistence of the
top 3 features in dimensions 1 and 2, as a function of t, is shown in Fig. 7 below.

As Fig.7 shows, the global minimizer T = 65.731 of I'(x), 0 < x < 100, jointly
maximizes the top 3 persistence values in both dimensions. In particular, the underlying
3-torus topology is clearly captured by this choice of time delay. One thing to note
when comparing Fig.5 (d = o = 3) and Fig.7 (d = o — 1 = 2) is the number and
nature of local maxima in persistence (specially in dimension 2) as a function of .
Indeed, d = 3 yields a larger number of stable local maxima; by stable we mean that
the values of persistence remain large in a neighborhood of a local maximizer. This
suggests that while d = 2 still captures the right underlying topology, as Theorem
4.2 guarantees, the embedding in C> of the sliding window point cloud is nonlinear
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Fig. 7 Persistence of top 3 features in dimension 1 (top) and dimension 2 (bottom) as a function of t, for
SWq . f(T)andd =2

enough that strong features in persistence (with the ambient Euclidean distance) occur
for only very specific time delays.

6 The rips persistent homology of SWy ;Skf and SWq_.f
We now turn our attention to the persistent homology of the sliding window point
clouds SW, x Sk f and SWy . f, as well as their dependence on both the Fourier
coefficients F(k), and the parameters K, d, . Our aim is to establish bounds on the
cardinality and persistence of strong toroidal features in dgm}z(SWd,r f). Tothatend,
let K € N be so that

supp (Fx) = ki, ... ke), 1<a<(1+2K)"

spans a (Q-vector space of dimension N (Lemma 4.1). We will further assume, after
re-indexing if necessary, that Ky, ..., ky are Q-linearly independent and that

[F(k)| = [F(k)| > -+ > [F(ky)| > 0.
With this convention, let
T i={zeCV : lal=1Fk)l.... |anl = [Flky)l | (33)
regarded as a metric space with the || - || distance:
Iz —7'|lc = max{|z1 — Z}l..... 128 — 2y}
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In order to understand the Rips persistent homology of SWy . f, the first step is
to clarify that of ']I‘%’. This involves two theorems that we now describe. The first is a
result by Adamaszek and Adams (2017, Theorem 7.4) computing the homotopy type
of Rc(S') at each scale € > 0.

Proposition 6.1 (Adamaszek and Adams (2017)) The Rips complex R, (S,l) of a circle
Sr1 C C of radius r (equipped with the Euclidean metric) is homotopy equivalent to
S+ if and only if

2r sin n_@ < € < 2rsin 7r—€+1 feN
re = 2r r =T ) :
¢ 20+1 = 20+3 b

Moreover, forall £ € Nandry < € < €' < rgyy, the inclusion Ré(Srl) > RE/(Srl) is
a homotopy equivalence.

As a consequence, the Rips persistent homology of (Srl, | - |) is pointwise-finite—
hence g-tame—the resulting barcodes (and hence the persistence diagrams) are
singleton multisets in odd dimensions, and empty in positive even dimensions:

{(2rsin (mof57)  2rsin (n425) |} i =2¢+1

bed® (S}, |- I) = 1 {(0, 00)} ifj=0 (34)
9 ifj=20+42
The second result needed to describe dgm?(T%’, |l - lloo) is a Kiinneth formula for

Rips persistent homology and the maximum metric (Gakhar and Perea 2019, Corollary
4.6).

Proposition 6.2 (Gakhar and Perea (2019)) Let (X1,d1), ..., (Xy,dy) be metric
spaces with pointwise-finite Rips persistent homology. Then, for all j € N

N N
bed ¥ (X1 x -+ x Xy, dmax) = :ﬂ L, | 1, € bedT (X dn). D ju = }

n=1 n=1

and thus

dgmj'z(xl X oo X XN, dmax) =

N
{(mr?xana H}linbn> ’ (an, bp) € dgm}j(xn’ d,), Z]n =] }

n=1

where dmax (X, X') := max _d,(x,, x,,) is the maximum metric.
1<n<N
These results combined yield the following:
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Lemma 6.3 Ifa < /3|F(ky)|, then

(a,b) € dgmT(TX, || o), 1<j<N

ifand only ifa = 0 and b = \/§|f(kn)|f0rsome 1 <n<N.
Moreover, if 1 <n < N,and1 <n; <--- <ny < N isthe longest sequence (i.e.,
largest £) for which

|F (k)| = |F(kp)| = - = |F(Kp,)|

then (0, ﬁ|ﬁ(k,,)|) appears in dgm?(ﬂrg, | - lloo) with multiplicity

' i ny—1 ng — 1
ww = ("7 e (),

Proof By Proposition 6.2, we have that (a, b) € dgm?(T%, I llec), 1 <j <N,if

and only if there exist integers 0 < ji, ..., jy < j and
R (¢l
(@, ba) € dgm % (Sl 1 1), 1= =N
sothat ji +---+ jy = j,a = max{aj,...,ay} and b = min{by, ...by}. Assume
without loss of generality that a = a;.
If

a1 < V3IFky)| < V3[F (k)|

then Eq. (34) implies that a; = 0 (hence a; = - - - = ay = 0) and therefore

00 if j, =0
= , forall 1<n<N.

V3IF (k)| if ju =1

The first part of the lemma readily follows from this and j > 1.
Let us now address the multiplicity computation. We will do so by counting the

number of distinct copies of (O, V3 |F (k,,)|> contributed to dgm;z(’]I‘%V, I+ loo) bY

eachindex 1 < n; < --- < ny < N. Indeed, start with n; and assume 1 < j < n;.
Then, each choice of j — 1 integers 1 < m; < --- < mj_1 < nj yields a set of
indices

M) ={my,....,mj_1,ni}
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parametrizing a unique way of writing (0, V3 |F (kn)|) as (max ap, min bm> for
m m

(0. V3IF den)1) if m € M)
(am, bm) =
(0, 0c0) ifme{l,..., N} \ M(ny).
Since there are ("jl__]l) ways of choosing M (n1), the sets M(ny), ..., M(n,) are
all distinct, and this computation accounts for all copies, then this completes the proof.

O

Corollary 6.4 If0 <8 <€ < «/§|f(kN)| and 1 < j < N, then the homomorphism
et Hy (Ro(TY. I+ o) F) —> H (Re(TY, 11 llo): F)

induced by the inclusion  : Ra(Tg, Il lloo) <= Re (TIFY, Il - lloo), s surjective.

Let
P:C* — CN

be the projection onto the first N-coordinates. The first thing to note is that P (Xg r) C
'IF%V (see Eq. (31)), and since

IP@) — P = IP()—P@)l2 = llz—7Z|>

for every z,z' € C%, then P induces simplicial maps at the level of Rips complexes

Re(P) : Re(Xk 7, |l 1) —> Re(TX, - lloo)
o — P(o)

for every € > 0. The idea now is to use R(P) = {R(P) | € > 0} in order to derive
insights about the persistent homology of R(Xg f, | - ||2) from that of R(T%, I 1loo)-
We have the following,

Lemma 6.5 Forall) < € < \/§|f(k1v)| and 1 < j < N, the homomorphism
Re(P)s i Hi(Re(Xk 7, || - [12); F) —> H,-(RG(T% I lloo)s F)

is surjective.

Proof The case N = 1 is essentially Theorem 6.8 in Perea and Harer (2015), so
assume N > 2.

Our first claim is that the projection P : (C%, || - 2) —> (CV, || - |loo) restricts to
a homeomorphism

X, . = N
PXst—)Tﬁ
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Indeed, surjectivity is the content of Kronecker’s Theorem (2.1), so in order to
check injectivity, assume that x, X' € Xg_ s have P(x) = P(X'), and write

f(kl)ei(kl,w)t
X = , X = :
F (kg )e! K-t F(ky)e! Ke-o)t’

f(kl)ei(kl,w)t’

for t,t € R. Since P(x) = P(x’) and f(kr) # 0forr =1,...,«a, then there exist
my, my € Z for which

(K1, 0)(t —t') = 2mwmy
(ky, w)(t — ') = 2mmy

If t # ¢/, then we would have that
(maky —miko, w) =0

contradicting either the incommensurability of w, or the Q-linear independence of
the vectors ki, ko, ..., ky. Thus r = ¢/, showing that P is injective on Xk, r, and
continuity plus Hausdorffness improves this to injectivity on Vf Finally, since P
provides a continuous bijection between Vf and T¥, and the former is compact
(since it is closed and bounded), then P yields the desired homeomorphism.

Now, given € > 0, let 0 < §. < € be so that

[P(x) — P(X)|loo <8¢ alwaysimplies |x—x|; <€ (35)
for x,x € Xk, r- The existence of §c > 0 follows from the uniform continuity of

Pl ']I‘% — Xk, s, and replacing 8. with min{dc, €} if necessary. Density of Xg

in Xk s implies that for each z € TX there is x, € Xk, rsothat |P(Xz) — Z[loo < %.
Fixing a choice of x, for each z defines a function

. N
v:TE — Xk f
I > X

satisfying

Se
1P ov(@) —zlleo <
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for every z € ']I‘%V. Therefore, if z, ' € T%’ are so that |z — 2|0 < %, then

[P ov(@) —Pov@)lo < IPov(@) —zloo + 12— Zllec + |2 — P ov(@)llso

S 8 6
~3 T2ty
=5,

which implies [|v(z) — v(z')|l2 < € (by Eq. (35)), and v extends to a simplicial map

R(): R%(Tg, I lloo) —> Re(Xk, 5 11+ 1l2)
o — v(o)

at the level of Rips complexes.
We claim that R, (P) o R(v) is contiguous to the inclusion

L1 R (TE 11 lloo) = Re(T, 11+ lloo)
Indeed, if z, Z' € T% are so that ||z — z'|| 0 < %, then

12" = Pov@lloo < 12/ = Zlloo + | P 0 v(2) — 2l

8¢ | b
<E+Z
< 8¢
<e€

showing that the set-theoretic union
(@) U (Re(P) o R))(0)

is an element of RG(T]%, | - lloo) forevery o € R%(T%, Il lloo)-

Contiguity at the level of simplicial maps implies that t, = Rc(P)x o R(v), in
homology, and since ¢, is surjective (Corollary 6.4), then it follows that R, (P) is also
surjective. O

The next thing to note is that Lemma 6.3 together with Lemma 6.5 yields the
following estimate for the number of toroidal persistent features in R(Xg ¢, || - [I2):

Theorem6.6 Fix 1 < n < N,andlet1 < n; < --- < ng < N be the longest
sequence for which

|F(ky)| = [F(ky)| = - - = |F(Kn,)|.
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Then, for each 1 < j < N, the multiset cardinality of
{©.0) & dgm (xx,s) | b= V3IF )1}

is greater than or equal to v j (1) + - -- + p;(n), for

. _ np — 1 ne —1
“’(”)_(j—1>+"'+(j—1>'

In order to make statements on dgm?(SWd,, Sk f), we will leverage the diagram

Q;f
/_\
(SWa Sk f. - 1I2) Xk, r 0 112) (36)
\_/

Qg f

and the estimates in Rips persistence that it implies. Here Q2  is the Vandermonde
matrix defined in Eq. (30), and Qj; is its Moore-Penrose pseudoinverse (see Ben-
Israel and Greville (2003, I11.3.4)).

Let O < omin < 0max be the smallest and largest singular values of Qg , respec-

tively. Standard singular value decomposition arguments show that

1

Omin

|2k sul, < omaclulz  and 2% v] < —Ivlz

for every u € C¥ and v € C4*+!, and thus we have induced simplicial maps

Q: Re(XK,f) — Reamax(SWd,tSKf)
Q" ¢ Rsorn SWa Sk f) — Rs(Xk f)

at the level of Rips complexes. Let

Q. p) = Omax

Omin
denote the condition number of Q 7- Then for every € < €, the diagram
Reamin (Swd,t Sk f) — Re/amin (Swd,r Sk f)
P Lo+ (37)

Reje(ak. )Xk ) — Re(Xk ) ———— Re(Xg )
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commutes. The horizontal maps are inclusions, and commutativity follows from noting
that Q} ’ is a left inverse of Qx  r. Indeed, the latter (tall skinny) matrix is full-rank
with our choice of d and 7. Taking homology in dimension j € N we get the induced
homomorphisms

HEOmine € Omin (R (SW, . Sk £): F)

J
e

H;/K(Qk,j-)a e’(R(XK’f); ]F) SN H;’e/(R(XK’f); ]F)

at the level of persistent homology groups (See Eq. (20)), where the horizontal map is
an inclusion as linear spaces. Commutativity of the diagram in Eq. (37) implies that

Hf/K(QK,f), €

: (R(Xk, 1) F) C Img (2)

which, after taking dimensions, yields the following inequality of persistent Betti
numbers (see Eq. (21)):

ﬂjamin: € Omin (R(Swd,rSKf)) > rank (Q:) > ﬂj/K(QK,f)7 e/(R(XK’f))

Letting € — 0 and using Theorem 6.6, we get the following:

Theorem 6.7 Let f(t) = F(tw) be quasiperiodic with frequency vector w € RN and
parent function F € C"(TN), r > % Fix parameters K, d, T as before.

Let omin > 0 be the smallest singular value of the Vandermonde matrix Qi ¢ (see
Eq. (30)), andfor 1 <n < N,let1 <nj; < --- < ny < N be the longest sequence
for which

|F(ky)| = [F(ky)| = - - = |F(Kn,)|.
Then, for each 1 < j < N, the multiset cardinality of
{0.0) € dgmT (sWacSk f) | b= V3IF®0)lomn|

is greater than or equal to 1 j(1) + - - - + uj(n) for

‘ _ ny—1 ne — 1
wiw = ("7 ) (M),

The Stability Theorem for Rips persistence (Eq. (26)), together with Theorem 6.7
and Corollary 3.2 yield the main result of this section.

Theorem 6.8 With the same hypotheses of Theorem 6.7, and for 1 < j,n < N, the
multiset cardinality of

{@.b) e dgm} (§Wacs) | b—a = V3IF®)lomn = 4V/d+ 1S = Sk [l
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is greater than or equal to pj(1) + - - -+ p;(n).

The extremal singular values of Vandermonde matrices with nodes in the unit
circle haven been extensively studied in the harmonic analysis and computational
mathematics literature (Aubel and Bolcskei 2019; Moitra 2015; Ferreira 1999). In
particular, the lower bound on oy, from Aubel and Boleskei (2019, Eq. (55)) implies
the following.

Corollary 6.9 With the same hypotheses of Theorem 6.7, and if

1 ‘ei(kg,a))r _ ei(km,w>r|
d > , 8w := min  — arcsin >

N W

1
bw

I<l<m=<a T

then, for each 1 < j,n < N, the multiset cardinality of

(a,b) € dgm(? (SWa,c /) b —a = V3 Pkl [d + % - 8i —4Vd+11If — st||00}

is always greater than or equal to (1) + --- + u;(n).

This brings us to the end of the theoretical quasiperiodicity analysis in this paper.
In the next section, we focus on examples and applications.

7 Experiments and applications

This section has two goals: first, to illustrate the pipeline developed in this paper
for the analysis of quasiperiodic time series data. Indeed, we will utilize a synthetic
example to review the optimization of d and t, evaluate our theoretical lower bounds
on persistence, and study the effects of noise on sliding window persistence. The
second goal is to provide an example of how quasiperiodicity can arise in naturally-
occurring time series data. Specifically, we will study a sound recording of dissonance,

and illustrate how quasiperiodicity emerges through the lens of sliding windows and
persistence.

7.1 Computational pipeline and valuation of theoretical lower bounds
Let

£(t) = 2sin(t) + 1.8sin («/3;) for 0 <t <607

with graph shown in Fig. 8 below.
We sample f at 10,000 evenly spaced points; that is, at each

3
teT:{—|n=0,...,9,999}
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-5 T T T
0 75 150
t

Fig.8 f(t) =2sin(t) + 1.8sin (ﬁt) for0 <t <607

14 — I
-=- (k,w)

-1.733 —1.000 1.000 1.733
Fig.9 Modulus of the DFT for f(T)

producing a discrete time series for which the Discrete Fourier Transform is computed
(see Fig.9 below). We note that since f is real-valued, then |f(§)| is symmetric
with respect to the origin, w = (1, \/5), ki = 1,0,k = (0,1), k3 = (—1,0),
ks = (0, —1), and that |F(k1)| = [F (k3)| = 1, [F(k2)| = [F (k4)| =~ 0.9.

The number of prominent peaks in | f(§)| is used—as described in Sect.5.1—to
select d = 4, while the peak locations (k, w) define the function I'(x) (see Eq. (32))
whose minimizer over [0, Tmax], for Tmax = %607”, yields the choice T &~ 11.9577 as
described in Sect.5.2. The value of tax is selected to guarantee that the window size
dt is less than that of the domain T over which f is evaluated.

The number of points in 7 is already large enough that computing the Rips persistent
homology of SW, . f(T), using standard software (Bauer 2016), is algorithmically
intensive. Thus, we take a maxmin subsample SWy . f (T) (see Example 5.2) by
selecting T C T with 1,000 points, and compute dgm;2 (SWa.- f(T)) in dimensions
Jj =1, 2 and coefficients in F = Z,.

Since T # R, then the lower bounds on persistence from Theorem 6.7 do not
readily apply to the diagrams dgmj-z(S Warf (T)). That said, the stability theorem
implies that the inequality can be corrected to

b—a > 3|FK)|omin —4/d + 1| f — Sk fllco — 4du (SWa,o fF(T), SWy . f)
(38)

where, for this example, the Hausdorff distance term was estimated as
dy (SWd,,f(f), SWd,,f) ~ 0.54292.
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Bounds without Hausdorff correction Bounds with Hausdorff correction
7’ ’ i 7
7’ ’ 7 7’
6 1 e e 6 7 7
7’ ’ ’ 7’
° e 4 ° e b
i 4 >’ | 7 e
5 s / 5 e / /
7’ ’ 7 7’
7’ ’ a 7’
7’ ’ 7 7’
44 s 4 e s
ya // // //
s / e S L, R
8 3 /’ 8 34 // //
[a Vs o ’ /
4 4 4
7’ 4 4
2 A 7 2 R e
7’ 7/ 7/
/’ -—- Thm6.8,n=1 ) /,’ --- Eq(38),n=1
14 ' Thm 6.8, n=2 14 ' Eq (38), n=2
4 e H; , e H;
04 H, 04 H;
4 4
0 2 4 6 0 2 4 6
Birth Birth

Fig. 10 Rips persistence diagrams of SWy 1 f (T) in dimensions Jj = 1 (blue) and j = 2 (orange), and
coefficients in F = Z,. Lower bounds on persistence are shown with dashed lines. Left: no Hausdorff
correction, and Right: Hausdorff correction (color figure online)

Figure 10 below shows the Rips persistence diagrams dgm}z(SWd,, f (T)), as well
as the estimated lower bounds in persistence with and without the correction term on
Hausdorff distance.

Next, we aim to illustrate the effect of introducing noise to a quasiperiodic signal by
examining the sliding window persistence of the resulting signal. Note that in (Tralie
and Perea 2018, Section 4.1), the authors extensively studied the effect of adding
different types and levels of noise to recurrent videos. They measured the accuracy of
abinary classification task inspired by their persistence based (quasi)periodicity scores
and showed that persistence separates recurrent and non-recurrent videos under noise

very well. Here, we use the function f(r) = 2sin(¢) + 1.8 sin <\/§t) atr e T =

35"7’8 |n=0,...,9, 999} and add random Gaussian noise to f. Then we use the

Discrete Fourier Transform to determine the frequencies. For parameter selection,
we choose d based on the number of prominent peaks and compute the optimal 7 as
described in Sect. 5.2. For each noise level, we compute the sliding window persistence
for 800 landmarks chosen via the maxmin subsampling process. In Fig. 11 (Top), we
track the maximum persistence (blue) and the second maximum persistence (purple)
in dimension 1 as we increase the Noise-to-Signal Ratio (NSR) defined as

2
NSR = [V
E[S?]

where N is the Gaussian noise, S is the signal f, and E[ - ] is the expected value.
We also show, for contrast, all other lower persistences (gray), i.e. third maximum
persistence, fourth maximum persistence, and so on. Similarly, in Fig. 11 (Bottom),
we track the maximum persistence (orange) and all other lower persistences (gray),
i.e. second maximum persistence, third maximum persistence, etc., in dimension 2.
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—— max pers, Hy
—— 2" Jargest pers, H;
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Fig. 11 Sliding Window Persistence versus Noise-to-Signal Ratio. The top figure shows the two maximum
persistences in dimension 1 and the bottom figure shows the maximum persistence in dimension 2. In both
cases, the curves for lower persistences, i.e. all other persistences are also added for contrast

7.2 Application: dissonance detection in music

In music theory, consonance and dissonance are classifications of multiple simultane-
ous tones. While the former is associated with pleasantness, the latter creates tension
as experienced by the listener. Perfect dissonance occurs when the audio frequencies
are irrational with respect to each other. One such instance is the tritone, which is
a musical interval that is halfway between two octaves. Mathematically, for a base
frequency wy, its tritone is ~/2w;. We will use the theory of sliding window embed-
ding to quantify quasiperiodicity from a dissonant sample. For the purpose of this
application, we use a 5-second audio recording of a brass horn playing the tritone. '
The signal was read using wavfile.read() and the resulting amplitude plot is shown in
Fig. 12 (Top). Like before, in order to perform sliding window analysis, we need to
choose appropriate parameters d and . We proceed exactly as before with the spectral
analysis shown in Fig. 12 (Bottom).

We then find peaks with height at least 0.04 and at least 100 radians per second apart
to detect prominent frequencies which we will use for estimation of the embedding
parameters. See Table 1.

The resulting embedding parameters are d = 8 and = 0.0285736. We use cubic
splines to compute the sliding window vectors and present the PCA representation of
the point cloud, along with the persistence diagrams computed for 1300 landmarks,
i.e. maxmin subsample as defined in Example 5.2, in Fig. 13.

1 Generously provided by Adam Huston.
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Fig.12 (Left) The plot of a dissonant music sample created on a brass horn. (Right) The amplitude-frequency
spectrum of the music sample plot using Fast Fourier Transform

Table 1 List of frequencies in the positive side of the (symmetric) amplitude-frequency spectrum: First
row: list of detected frequencies. Second row: their conversion to Hertz. Third row: ratio with respect to the

first row

Angular frequencies 1384.93 1957.83 2769.86 3911.93
Frequencies (Hz) 220.41 311.59 440.83 622.60
Proportion 1 1.4137 ~ /2 2 2.8246 ~ 2./2

22

1.0

0.8

Death
Persistence

0.6

0.4

0.2

i

Birth g

Fig. 13 (Left) PCA representation of the sliding window point cloud. (Middle) Persistence Diagrams in
homological dimensions 0, 1 and 2. (Right) The persistence scatter plot

In Fig. 13, the persistence diagrams (middle) indicate that the sliding window point
cloud has two high persistence features in dimension 1 and one high persistence
feature in dimension 2. This claim is validated with the persistence scatter plot (right).
This tell us that the point cloud fills a two dimensional torus (perhaps a very twisted
one) embedded in R®, which verifies that the dissonant music sample was indeed

quasiperiodic.
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