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Abstract—Advances in flexible and printable sensor tech-
nologies have made it possible to use posture classification
for providing timely services in digital healthcare, especially
for bedsores or decubitus ulcers. However, managing a large
amount of sensor data and ensuring accurate predictions can be
challenging. While lossy compressors can reduce data volume,
it is still unclear whether this would lead to losing important
information and affect downstream application performance. In
this paper, we propose LCDNN (Lossy Compression using Deep
Neural Network) to reduce the size of sensor data and evaluate
the performance of posture classification models. Our sensors,
placed under hospital beds, have a thickness of just 0.4mm and
collect pressure data from 28 sensors (7 by 4) at an 8 Hz cycle,
categorizing postures into 4 types from 5 patients. Our evaluation,
which includes reduced datasets by LCDNN, demonstrates that
the results are promising.

Index Terms—Flexible and Printable Sensor, Posture Monitor-
ing, IoT Monitoring, Pressure Sensor, Classification

I. INTRODUCTION

In digital healthcare, effectively exploiting actionable
knowledge extracted from a steady stream of sensor data can
offer helpful information for timely services. For example, in
the case of patients with dementia or critically ill patients who
have difficulty moving on their own, there is a high possibility
of severe health disease, bedsores, or decubitus ulcers, caused
by remaining in a long time in the same posture. Pressure
ulcers or bedsores due to a lack or less changing posture could
result in a partial or complete blood flow obstruction in soft
tissue, leading to damage in the skin or underlying tissue [5].
Preventing these health diseases requires a change periodically
in the patient’s posture by the nursing staff or others. The
predictive alarm using adequately captured patient posture
data can enable more efficient proactive steps. However, the
growing demand for recording pressure signals to improve
the effectiveness of preventing serious health diseases such
as bedsores is contributing large amounts of sensor datasets,
which is cost prohibitive.

This study demonstrates the feasibility of using a few
pressure sensors or even small extracted features for patient
posture monitoring, suggesting research directions for design-
ing a cost-effective application. Pressure sensors would be
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ideal candidates for measuring postural information, which
indicates identifying a patient’s lying posture. However, the
volume of sensor signals increased at an unprecedented rate to
be practically feasible. Several data-aware lossy compression
algorithms have been proposed to overcome such a burden
by aiming to meet higher compression ratios with lesser
information loss [7], [9].

We apply lossy compression to explore the possibility of
using a small number of pressure sensors for patient posture
classification. The insight of this paper is to develop a lossy
model to extract features, namely, the LCDNN (Lossy Com-
pression using Deep Neural Network), which can significantly
reduce the amount of data. Since LCDNN would suffer from
irreversible information loss, evaluating the tradeoff between
volume reduction and information loss is crucial.

In our experiment, we reduce from 28 sensor data to 3
features to obtain an 89.3% reduction ratio. We then apply four
different supervised machine-learning techniques to recognize
the postures of each patient and evaluate their prediction
performance. Our results show that the optimized RF (random
forest) classifier outperforms the other classifiers with an
average classification accuracy of 96.29% and 95% in the
case of data reduction by LCDNN and the heuristic-selected
sensors, respectively.

II. RELATED WORKS

Matar et al. [5] estimated the posture using body pressure
distribution images of 4 postures (supine, left, right, and
prone). In [11], they used two pressure mats made by XSEN-
SOR technology corporation with a resolution of 42 by 44.
They showed that the random forest (RF) outperformed others
like support vector machine (SVM) and multilayer perceptron
(MLP) [12]. The automatic classification of position and the
duration of the position for the lying patient on the bed is
essential. Several studies proposed a monitoring system for
recognizing and correcting the importance of sitting posture
using these pressure sensors [2], [3]. Lee et al. [4] presented
a method for identifying sleep postures using an intelligent
fabric pad with 14 pressure sensors placed on top of a mattress
that can detect the pressure distribution of a person’s body
during sleep. However, the accuracy of the proposed fabric pad
depends on the pressure distribution patterns and the person’s
body shape and height.
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Fig. 1: (a) Specification of an individual cell comprising two
pressure sensors. (b) The layout of pressure sensors deployed
on the test bed.
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Fig. 2: The input stream format of pressure sensor data.

III. MATERIALS AND METHODS

A. Data Acquisition

Fig. 1a shows the specification of sensory cells (from A to
N) containing two pressure sensors: 33.5 cm in length, 5.5 cm
in width, 0.4 mm in thickness, and 10 µs of response time. Due
to this thin thickness, it causes minimal or no inconvenience
and discomfort to patients or users. We attach 14 cells (7 rows
and 4 columns) to a mat and collect data in 00-FF hexadecimal
(or 0-255 in decimal) format at 8 Hz (or 8 cycles/second).
Fig. 2 shows the data format for the collected data for a 1-
second duration from Cell A, which contains 40 data points.
Columns labeled Sen 1 and Sen 2 in Fig. 2 are the average
values collected at 8 Hz, and we use them as representative
values of Cell A. We follow the same method to extract data
from Cells B to N.

B. Data Preprocessing

We gather the patient’s posture data, corresponding to one of
the four predefined postures (supine, left lateral, right lateral,
and head elevation), at 2-hour intervals. For instance, the
caregivers record their patient’s posture every 2 hours, and then
the final posture information labeled uses this information. We
also impute sensor data since measurement error is inevitable
due to potential malfunctioning in communication/network,
hardware/sensor, or power/battery [1]. Imputation is, in gen-
eral, filling missing values with estimated values. Our imputa-
tion method performs every three seconds and uses sensor data
values around the missing value. We use the average value if
the middle cell is missing; otherwise, we use the closest sensor
value.

Even though we collect pressure sensor data 8 times per
second from our in-Bed sensors, the observed patient’s posture
information is rare and not synchronized due to the 2-hour
intervals of posture. Therefore, to construct data for learning
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Fig. 3: Overview of the proposed posture classification system.

prediction models using the observed data collected at two-
hour intervals, we assume that there is no change in posture
within 10 minutes from the time of posture recording. Through
this process, we construct 17,600 posture learning data and
use them as input sensor streams to our posture classification
system, as shown in Fig. 3. Fig. 4 shows the characteristics
of pressure sensor data, such as max, mean, standard devia-
tion, and 75% values. These characteristics show that values
collected at each pressure sensor vary greatly.

C. LCDNN Data Compression

In developing IoT applications with posture classification
models, ordinary methods using entire pressure sensor data can
be wasteful and resource-consuming. Several recent studies
demonstrated that errors introduced by lossy compressors
could be controlled to meet user-defined bounds [6], [8].
In this paper, we design LCDNN, an approach based on
lossy compression adopted by deep learning networks (DNN),
especially autoencoders. The autoencoder is a type of DNN
that consists of an encoder and a decoder where the en-
coder modulates input data into a lower-dimensional space.
In contrast, the decoder reconstructs the original input from
the compressed representation. We first model the encoder
and decoder suitable for our pressure sensor and extract the
developed encoder module to apply lossy compression. Fig. 5
shows the sequences of LCDNN, which extracts 3 features
from 28 sensors (i.e., the original 7 by 4) to reduce the amount
of collected data and to classify the posture of lying patients
using them. When reconstructing with 3 features, the error (in
RMSE) between the original and the reconstructed datasets is
3.53, which is very small and means that the original and the
reconstructed ones are almost similar.

D. Design of the Classification Model

After the preprocessing and data reduction through LCDNN,
which involves balancing the class distribution of given data,
normalization, and missing value analysis, selecting an ap-
propriate classification model is essential since determining
a general yet superior algorithm is not feasible. Therefore,
we evaluate four representative classification methods: DT
(decision tree), RF (random forest), AB (adaptive boosting),
and MLP (multi-layer perceptron). These methods prove their
superior performances in various real-world applications [10].
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Fig. 4: Characteristics of collected pressure sensor data.
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Fig. 5: Our proposed LCDNN architecture.

IV. EVALUATIONS

A. Datasets

In our evaluation, we define three data groups derived from
the obtained pressure sensor datasets from patients.

• Group 1: The datasets using all 28 sensors (Fig. 1).
• Group 2: The heuristically selected five sensors (F2, H2,

H3, I2, L2) datasets from Fig. 3 and Fig. 4.
• Group 3: The 3 feature datasets extracted by our lossy

compression algorithm described in Section III-C.

B. Performance Metrics

The following metrics are measured, primary indicators
of how well the proposed scheme performs in prediction
performance and data reduction/quality.

• We measure the prediction performance using Accuracy,
Precision, Recall, and F1 score.

• We measure the compression performance using Com-
pression Ratio (CR) and Error Rate (ER), which are given

by CR = (1− |X̂|
|X| )× 100%, ER =

mean(
∑√

(X−X̂)2)
max(X)−min(X) ,

where |X| is the size of X , |X̂| is the reduced size by
LCDNN compressor. X and X̂ represent the original and
reconstructed data, respectively.

TABLE I: Comparison of classification performance.
Data Group 1 Group 2 Group 3

DT RF MLP AB DT RF MLP AB DT RF MLP AB
accuracy 0.98 0.99 0.97 0.64 0.95 0.95 0.86 0.79 0.95 0.96 0.88 0.74
precision 0.98 0.99 0.97 0.65 0.95 0.96 0.86 0.81 0.95 0.96 0.88 0.75

recall 0.98 0.99 0.97 0.63 0.95 0.95 0.86 0.79 0.95 0.96 0.88 0.74
F1-score 0.98 0.99 0.97 0.64 0.95 0.95 0.86 0.79 0.95 0.96 0.88 0.73

C. Results

We first evaluate the performance of LCDNN in terms
of CR and ER. The experiments showed LCDNN could
generate CR of 89.38% and ER of 0.049, indicating that
the reconstructed data using a small portion of original data
(less than 10%) almost coincides with the original data. We
next use machine learning libraries from scikit-learn [10] to
validate the performance of our posture classification using the
collected pressure datasets. Specifically, we train and evaluate
four machine learning algorithms: DT, RF, AB, and MLP. The
main hyper-parameters for these classification methods are as
follows. DT uses the Gini index to tree split, and AB uses
n estimators=50. MLP uses RELU and Adam for activation
and weight optimization, respectively. RF employs parameters
of max features=3 and n estimators=70. We set 70% of the
data for training and the remaining 30% for testing. Also,
we select less number of sensors to evaluate the sensor’s
sensitivity in the case of low resolution. Table I shows the
experimental results for the four classification algorithms we
tested for three groups: entire sensor datasets (Group 1), the
heuristic-selected datasets (Group 2), and 3-features datasets
extracted by LCDNN (Group 3). As we can see, RF offers the
best performance among all four models in all metrics. Lastly,
RF, DT, and MLP outperform AdaBoost in all groups of data
sets. That is, the accuracy of RF is improved by 1.5 times that
of AdaBoost in the case of Group 1.

V. CONCLUSION

This paper proposed a posture monitoring system for bedrid-
den patients to prevent bedsores in critically ill patients
using a flexible printing pressure sensor. We used a pressure
sensor manufactured by a flexible printing process technique
to measure the pressure loaded on the body. We collected
pressure data at an 8 Hz cycle from a pressure mat composed
of 28 (7 rows and 4 columns) pressure sensors and classified
postures into four types: supine, left/right lateral postures, and
upper body raised posture (head elevation). To understand the
influence of posture classification when the sensor resolution
deployed in the test bed gets reduced, we designed three data
groups, entire sensors, the selected sensor group, and the three
featured sensors by our lossy compression. We validated their
effectiveness with four classification algorithms. Our results
demonstrated that LCDNN could achieve about 89.3% of
compression ratios and 96.29 of the prediction performances
with Random Forest. Consequently, successful predictions can
be made with a small amount of compressed information. In
our future work, we plan to further reduce the number of
sensors to enable a model to operate in edge nodes with less
computation and storage capabilities.
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