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1 Introduction

This paper is concerned with the construction of special toroidal compactifications of
heterotic string theory and their dual descriptions. These compactifications are special
because they have interesting subgroups of the Conway group that preserve supersymmetry
and act on the spectrum of BPS states. This work extends that of [1], which was motivated
by Mathieu moonshine and mainly focused on orbifold constructions leading to dual pairs
involving heterotic string on K3× T 2 and IIA string on Calabi-Yau manifolds. See also [2]
where the lattice techniques used in [1] are used to relate hyperkähler isometry groups of
K3 manifolds to subgroups of the Conway group.

Our focus here is directly on special toroidal heterotic compactifications and a detailed
study of their dual description in terms of type IIA string on K3 sigma models. There
are several motivations for this work. First, while duality between heterotic string on T 4

and type IIA string on K3 is now well understood on a general level, there are not many
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examples where a detailed matching has been carried out, particularly for examples with
large supersymmetry preserving automorphism groups. Second, there are conjectures in the
literature that exact symmetries of string theory are gauge rather than global symmetries.
See the introduction to [3] for a discussion as well as references to earlier literature and [4]
for a discussion in the context of AdS/CFT. However, the arguments for these conjectures
in the case of finite groups are not very strong and to our knowledge few attempts have
been made to demonstrate this in explicit examples, for example by demonstrating that
there is a point in moduli space where the finite group is embedded into a continuous gauge
group or by constructing the co-dimension two defects required by this claim. The examples
constructed here should provide a useful testing ground for these conjectures.

Following this introduction, section 2 provides the necessary lattice theoretic background
for construction of special lattices and describes several explicit Narain lattices with
Conway subgroup symmetry. We also provide a description of how to use the associated
supplementary Mathematica package to construct these and other similar lattices. Section 3
is concerned with dual descriptions of these heterotic theories. We make a few brief
remarks about F-theory duals and then turn to type IIA duals involving special K3
surfaces. We provide evidence that specific orbifold limits of K3 surfaces arise in the dual
descriptions and provide evidence for this based on the study of the cohomology lattice of
the dual K3. We also describe a supplementary Mathematica package which is useful for
computing the lattice Heven(X,Z) for our K3 surfaces X. Finally, appendix A contains
additional details on the lattice constructions we use and describes the algorithms used
in the supplementary Mathematica package associated with this paper, followed up by
appendix B with a demonstration of a lattice construction to show how the data provided
by the supplementary package is utilized.

Acknowledgments

We would like to thank M. Gaberdiel and R. Volpato for helpful discussions and corre-
spondence. JH thanks G. Moore and W. Taylor for discussions on the construction of
the Narain lattice resulting from the HM44 sublattice of the Leech lattice and we thank
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2 Construction of Narain lattices with Conway subgroup symmetry

Consider the heterotic string compactified on the torus T 8−d. It is known that the het-
erotic model on T 8−d is characterized by an even unimodular lattice Γ with signature
(24− d, 8− d) [5, 6]. The torus models we investigate are those that arise from a lattice Γ
constructed by gluing together the orthogonal complement of a sublattice FL of the Leech
lattice Λ with that of an isometric E8 sublattice.

1Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
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2.1 Lattice theory review

2.1.1 Definitions

First, we present a short review of the relevant lattice theory definitions from [7–9]. A
lattice (L, 〈, 〉) is a freely generated abelian group L equipped with a bilinear form

〈, 〉 : L× L→ R (2.1)

or equivalently with a quadratic form

q : L→ R

such that
〈x, y〉 := 1

2[q(x+ y)− q(x)− q(y)] (2.2)

is a bilinear form, and for all x ∈ L,

q(x) = 〈x, x〉 . (2.3)

Note that starting with either a bilinear form or a quadratic form, we can obtain the other
using (2.2) or (2.3). We will sometimes suppress the bilinear form or the quadratic form of
the lattice L. We will use L(n) to denote the lattice with its quadratic form multiplied by
n. We will refer to the minimal number of generators that generate the group as the rank
of the lattice.

A lattice L is integral if the bilinear form 〈, 〉 takes values in Z, and it is even if the
quadratic form takes values in 2Z. Notice that evenness implies integrality by (2.2). The
signature (n0, n−, n+) of the quadratic form q denotes the indices of inertia of the bilinear
form considered as a symmetric square matrix on some choice of generators. We will be
only considering nondegenerate forms, i.e. n0 = 0. Quadratic forms with n− = 0 (resp.
n+ = 0) are positive definite (resp. negative definite), and those with both n− 6= 0 and
n+ 6= 0 are indefinite.

An isometry ψ between two lattices (L, q) and (L′, q′) is a group isomorphism such that
the following diagram commutes.

L

R

L′

ψ

q

q′
(2.4)

Isometric lattices are denoted as L ∼= L′.
The dual lattice L∨ of a lattice L is the set of v in the Q-span of L such that 〈v, x〉 ∈ Z

for every element x ∈ L. The lattice L∨ is endowed with the Q-linear extension of the
bilinear form 〈, 〉 on L. If the lattice is dual to itself, it is called unimodular or self-dual.

Notice that when L is integral, we have L ⊂ L∨. In fact, v+L is a subset of L∨ for any
v ∈ L∨. In this case, a natural question to ask is how many v there are in L∨ that generate
distinct subsets v + L ⊂ L∨. In other words, how should one glue copies of L to get L∨?
The answer to this question is given by the discriminant group, defined as

D(L) := L∨/L . (2.5)
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We fix a glue vector r ∈ L∨ from each equivalence class [r] ∈ D(L) with r ∈ [r]. With a
choice of glue vectors, we can express L∨ in terms of L as

L∨ =
∐

[r]∈D(L)
(r + L) . (2.6)

Let L be an even lattice. Then we can endow D(L) with a quadratic form q̄ which
descends from that on L∨ by

q̄ : D(L)→ Q/2Z ,

q̄([v]) := 〈v, v〉 (mod 2) , (2.7)

where [v] denotes the equivalence class of v ∈ L∨ in D(L). Notice that the quadratic form
q̄ is well defined, since for x ∈ L and v ∈ L∨, we have

q(v + x) = 2〈v, x〉+ q(v) + q(x) ≡ q(v) (mod 2)

by definition of L∨ and evenness of L.
The orthogonal complement of a sublattice G ⊂ L is defined as

G⊥ := { y ∈ L | 〈y, x〉 = 0 for all x ∈ G } . (2.8)

A sublattice G ⊂ L is primitive if L/G as an abelian group is free. In other words, if L is a
rank d lattice, then a primitive rank k sublattice G is such that L can be generated by G

and d− k many elements in L−G.

2.1.2 Useful facts

An integral lattice L does not always decompose orthogonally as G ⊕ G⊥ for primitive
sublattices G. However, it is possible to obtain a generalization by considering the sublattice
G⊕G⊥ ⊂ L. For all x ∈ L, we have x = x1 + x2, where x1 and x2 are in G∨ and (G⊥)∨
since L is integral. Furthermore, when L is unimodular, there is a correspondance between
the equivalence classes [x1] and [x2].

Theorem 1 ([8, chapter 4, theorem 1]). If the sublattice G of an even unimodular lattice
(L, q) is primitive, then there is an isometry

ψ̄ : (D(G), q̄)→ (D(G⊥),−q̄) (2.9)

such that
L ∼=

∐
[r]∈D(G)

(
(r, ψ̄(r)) + G⊕G⊥

)
, (2.10)

where r ∈ [r] and ψ̄(r) ∈ ψ̄([r]).2

Conversely, one can start with two even lattices and construct an even unimodular
lattice by the gluing construction.

2Note that by ψ̄(r), we denote a choice of a glue vector from the equivalence class ψ̄([r]).
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Lemma 1 (Gluing lemma [10, section 3], also see [11]). If (L1, q1) and (L2, q2) are even
lattices with an isometry

ψ̄ : (D(L1), q̄1)→ (D(L2), q̄2) , (2.11)

then the lattice
Γ := { (x, y) | ψ̄([x]) = [y] } ⊂ L∨1 ⊕ L∨2 (2.12)

equipped with the quadratic form

q(x, y) := −q1(x) + q2(y) (2.13)

is even and unimodular.

Proof. Consider the lattices (L∨1 , q1) and (L∨2 , q2) together with an isometry

ψ̄ : (D(L1), q̄1)→ (D(L2), q̄2) . (2.14)

Construct the lattice Γ by gluing L∨1 and L∨2 along their isometric glue vectors as follows:

Γ :=
∐

[r]∈D(L1)

(
(r, ψ̄(r)) + L1 ⊕ L2

)
⊂ L∨1 ⊕ L∨2 , (2.15)

and equip it with the quadratic form

q(x, y) := −q1(x) + q2(y) . (2.16)

We show the equivalence of the two definitions (2.12) and (2.15) for Γ. Starting
with (2.15), for all (x, y) := (r, ψ̄(r)) + (v1, v2) with v1 ∈ L1, v2 ∈ L2, we have [x] = [r] and
[y] = ψ̄([r]). Conversely, starting with (2.12), any (x, y) with ψ̄([x]) = [y] can be written as
(x, y) = (r1, r2) + (v1, v2) with r1 ∈ [x], r2 ∈ [y] = ψ̄([x]) and v1 ∈ L1, v2 ∈ L2.

Next, we show that q is even by construction. Choose an arbitrary (x, y) ∈ Γ, which
can be written as

(x, y) = (r, ψ̄(r)) + (v1, v2) (2.17)

with some v1 ∈ L1, v2 ∈ L2, and [x] = [r]. Then,

q(x, y) ≡ −q̄1([r]) + q̄2(ψ̄([r])) = 0 (mod 2) . (2.18)

To show that Γ is unimodular, fix (u, v) ∈ Γ∨ ⊂ (Q⊗L1)⊕(Q⊗L2). Then, for all (x, y) ∈ Γ,
we have

〈(u, v), (x, y)〉 = −〈u, x〉+ 〈v, y〉 ∈ Z , (2.19)

where the bilinear product is induced by q. Taking x (resp. y) to be zero in (2.19) implies
v ∈ L∨2 (resp. u ∈ L∨1 ). Therefore, we get Γ∨ ⊂ L∨1 ⊕ L∨2 . Now we can use the bilinear
product taking values in Q/Z, induced by q̄ on D(Γ) as

− 〈[u], [x]〉+ 〈[v], [y]〉 ≡ 0 (mod 1) . (2.20)

The isometry ψ̄ and the quadratic forms commute, so we can apply ψ̄ to the first summand
and get

− 〈ψ̄([u]), [y]〉+ 〈[v], [y]〉 = 〈−ψ̄([u]) + [v], [y]〉 ≡ 0 (mod 1) . (2.21)
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Since (2.21) is true for all y ∈ L∨2 , the elements in the equivalence class −ψ̄([u]) + [v] must
be contained in (L∨2 )∨ = L2. Therefore −ψ̄([u]) + [v] = [0], hence ψ̄([u]) = [v]. We conclude
that Γ∨ = Γ.

The classification of even unimodular lattices helps us determine the lattice obtained
by the gluing construction. In particular, indefinite even unimodular lattices are unique up
to isometry.

Theorem 2 ([12, chapter 5, theorem 5]). If L is an indefinite even unimodular lattice with
signature (n−, n+), then n+ − n− ≡ 0 (mod 8), and

L ∼= E8(±1)⊕
|n+−n−|

8 ⊕ U⊕min(n+,n−) =: IIn−,n+ , (2.22)

where (±1) = sign(n+ − n−), and U is the hyperbolic lattice with the bilinear form
(

0 1
1 0

)
defined on some choice of generators that we call the standard basis of U .

The classification of positive definite even unimodular lattices is not as precise except
for low rank where we have the following result. These lattices can only have rank that
is a multiple of 8. We have the E8 lattice for rank 8, E2

8 and D+
16 for rank 16, and the 24

Niemeier lattices in rank 24 in which the Leech lattice Λ is the only one with no roots [13].
Lastly, we describe a procedure for obtaining a natural set of generators for integral

lattices making their discriminant group structure manifest. Since for integral lattices we
have L ⊂ L∨, one can express the generators xi of L as a Z-linear combination of generators
vi of L∨. Let L be a rank n lattice, then we can define

X :=


x1
...
xn

 , V :=


v1
...
vn

 , (2.23)

so that
X = GV (2.24)

for some matrix G with integer entries. In fact, G is the Gram matrix G := XXT of the
basis {x1, . . . , xn}, where multiplication of the matrix elements is given by the bilinear form.
Furthermore, we will use the following algebraic fact.

Proposition 1 (Smith Decomposition [14, article 14], also see [15, theorem II.9]). If M is
a matrix with integer entries, then there are unimodular (Z-invertible) matrices P,Q such
that D = PMQ is a diagonal matrix with integer entries. Furthermore, denoting the ith
diagonal element of D by di, we have di | di+1 for all i.

Using proposition 1 as applied to eq. (2.24), we get

PX = (PGQ)(Q−1V ) (2.25)
X̃ = DṼ , (2.26)

– 6 –
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where X̃ = PV and Ṽ = Q−1V are new bases for L and L∨ respectively, since the unimodular
matrices P,Q−1 act as a basis change on X and V . Another way of stating (2.26) is that
for all integral lattices L, one can find a set of generators x̃i of L and a set of generators ṽi
of L∨ such that x̃i is an integer multiple of ṽi:

x̃i = diṽi , di ∈ Z . (2.27)

The form (2.26), or equivalently the basis {ṽ1, . . . , ṽn} in (2.27), is called the Smith Normal
Form of the lattice. The relationship between the generators of the lattice and its dual
immediately implies that the discriminant group D(L) is

D(L) ∼= Zd1 × · · · × Zdn . (2.28)

Indeed, representing a lattice L with its Smith Normal Form is the most natural way to
make the discriminant group structure explicit.

2.2 Construction of Narain lattices

We now describe the construction of the even unimodular lattice Γ with signature (24−
d, 8 − d), starting with a primitive rank d sublattice FL ⊂ Λ and an isometric primitive
copy FR ⊂ E8. We follow [1] in our review.

Suppose we are given the isometry

ψLR : (FL, qL)→ (FR, qR) (2.29)

between primitive sublattices FL ⊂ Λ and FR ⊂ E8, with their quadratic forms given by
the embeddings Λ ↪→ R24 and E8 ↪→ R8 respectively.3 We can linearly extend ψLR to an
isometry of the duals, which factors through and gives an isometry of the discriminant
groups, ψ̄LR : (D(FL), q̄L)→ (D(FR), q̄R).

Using theorem 1, we also get isometries between the discriminant groups of the orthog-
onal lattices

ψ̄L : (D(F⊥L ), q̄L)→ (D(FL),−q̄L) ,
ψ̄R : (D(FR),−q̄R)→ (D(F⊥R), q̄R) .

(2.30)

Notice that ψ̄LR equivalently induces an isometry with the signs of both quadratic forms
inverted. We can compose all of these isometries to get an isometry of discriminant groups
of orthogonal complements of FR,FL as

ψ̄ := ψ̄R ◦ ψ̄LR ◦ ψ̄L : (D(F⊥L ), q̄L)→ (D(F⊥R), q̄R) . (2.31)

Now that we have two even lattices F⊥L and F⊥R with isometric discriminant groups, we
can glue them as described in lemma 1 and (2.15) to get the even unimodular lattice

Γ :=
∐

[r]∈D(F⊥L )

(
(r, ψ(r)) + (F⊥L ,F⊥R)

)
. (2.32)

3We could generalize the construction by only requiring an isometry of discriminant groups.
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Notice that since the lattice Γ is contained in
(
F⊥L

)∨
⊕
(
F⊥R

)∨
, it is embedded in R24−d,0 ⊕

R0,8−d through the embeddings F⊥L ↪→ R24−d and F⊥R ↪→ R8−d. Therefore, Γ has signature
(24− d, 8− d) and is isometric to II24−d,8−d.

The embedding of Γ in R24−d,8−d is special in the way that it contains the O(n)
automorphisms of Λ and E8 that fix FL and FR, respectively. We denote these subgroups
as Fix(FL) ⊂ Co0 and Fix(FR) ⊂ W (E8), where Co0 is the automorphism group of the
Leech lattice and W (E8) is the Weyl group of the E8 lattice, generated by the reflections in
the hyperplanes orthogonal to its roots.

Take x ∈
(
F⊥L

)∨
and gL ∈ Fix(FL). By theorem 1, there is an x′ ∈ F∨L such that

x+ x′ ∈ Λ. Since gL fixes x′,

gL · x− x = gL · (x+ x′)− (x+ x′) ∈ Λ . (2.33)

Also by considering gL as a map in F⊥L and extending it to the dual lattice we have

gL · x− x ∈
(
F⊥L

)∨
. (2.34)

Therefore gL · x− x belongs to the intersection
(
F⊥L

)∨
∩ Λ,

gL · x− x ∈ F⊥L . (2.35)

This means that gL preserves which copy of F⊥L our x belongs to in
(
F⊥L

)∨
, i.e. gL([x]) = [x].

Similar arguments apply for the right side with y in
(
F⊥R

)∨
and gR ∈ Fix(FR). We conclude

that gL × gR induces an action on Γ and

Fix(FL)× Fix(FR) ⊂ Aut(Γ) . (2.36)

Inspired by (2.36), the points in the heterotic Narain moduli space that correspond to
Γ are called Conway Subgroup Symmetric Compactifications, or CSS compactifications for
short [1]. We refer to the lattices Γ as CSS lattices, and sometimes by the Leech sublattice
HM# from which they were constructed (see section 2.3).

2.3 Computation using fixed-point sublattices

In this section, we provide an overview of our supplementary Mathematica package for
computing concrete examples of CSS lattices.

Our starting point is to find a sublattice FL of the Leech lattice Λ with some nontrivial
Fix(FL) ⊂ Co0. Thanks to Höhn and Mason [16], all sublattices with nontrivial fix groups
have been classified up to conjugacy. They show that there are 290 such classes, and provide
an invariant lattice FL and a coinvariant lattice F⊥L from each class in their supplemental
MAGMA program. We refer to their invariant lattices as HM# where # stands for the
number of the lattice in table 1 of their paper.

The only obstruction to the construction of CSS lattices is when FL has no primitive
embedding in E8. Using the algorithm described in appendix A, we have found a primitive
embedding for all the rank d < 5 Leech sublattices of Höhn and Mason, so there is a CSS
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construction on Tn with n > 3 for all cases. For rank d = 5 sublattices (corresponding to
T 3), we have found a primitive embedding only for HM69, HM70, HM72, HM73, HM74,
HM76, HM77, HM82, HM84, HM85, HM87. For rank d = 6 (corresponding to T 2), we have
found an embedding only for HM44. For rank d = 7 (corresponding to S1), we have found
no primitive embeddings for any of the sublattices.

In fact, we can prove that there is no other primitive embedding at d = 5, 6, 7 except
the ones we listed. In particular, [7, theorem 1.12.2] states that if L is a rank d lattice that
can be primitively embedded in E8 and the discriminant group D(L) has minimal number
of generators `, then 8−d ≥ `. The embeddings we found were precisely those that satisfied
this condition, implying the converse.

Proposition 2. A rank d Höhn-Mason sublattice L of the Leech lattice Λ can be primitively
embedded in E8 if and only if D(L) has minimal number of generators ` ≤ 8− d.

In our supplementary Mathematica package, the command

CSSLattice[dim,#]

returns the generators of the desired CSS lattice as vectors in R24,8, where the first input
dim is the rank of the sublattice, and # is the number of the lattice starting counting from
the first lattice of the same rank in table 1 of the Höhn-Mason paper. For example, for
HM101 we have dim = 4, # = 3.

The command is not an algorithm but a database query, as some of the E8 embeddings
are computationally difficult to find in real time. We also provide the details of the construc-
tion such as the choice of FR, and isometries between discriminant groups through various
commands in the supplementary Mathematica package to make the construction of Γ explicit.
Refer to appendix A for the specifics of the computations. Also, see appendix B for an exam-
ple CSS lattice computation that utilizes the data provided by the supplementary package.

3 Duals of heterotic string with Conway subgroup symmetry

In this section we consider dual descriptions of the Conway subgroup symmetric compacti-
fications constructed in the previous section. There are no CSS compactifications on S1

and a single one on T 2 constructed from the embedding of the HM44 lattice in the Leech
lattice. The dual description of heterotic string on T 2 is F-theory on an elliptically fibered
K3 surface and we discuss this in the first subsection below. CSS compactifications exist for
compactifications on Tn for all n ≥ 4 for all of the sublattices in [16]. We focus on the case
n = 4 where the dual description is type IIA string theory on a K3 surface. The second
subsection describes twelve examples in which we have obtained a detailed description
of the dual theory and checked the duality both by comparison of the supersymmetry
preserving symmetries and by comparison of the Narain lattice on the heterotic side with
the cohomology lattice of the K3 surface on the type II side.

In this section, we use ATLAS notation [17] to denote the group structure, where G :H
denotes the semidirect product and G.H is a group with a normal subgroup G such that
G.H/G ∼= H.
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3.1 Heterotic/F-theory dual

Among rank 6 sublattices of the Leech lattice, there is a primitive embedding in E8 only for
HM44. Constructing the CSS lattice Γ corresponding to HM44 as explained in appendix B,
we get a heterotic theory on T 2, which is dual to F-theory on an elliptically fibered K3
surface. To get the supersymmetry preserving symmetries, we consider the subgroup of
automorphisms GR ⊂ Aut(Γ) that fixes the right side of the Narain lattice, which turns out
to be A5.4

The A5 symmetry we found on the heterotic side should correspond in the dual theory
to a symplectic action on the K3 surface X, i.e. the automorphism g ∈ Aut(X) should
act trivially on the nowhere vanishing holomorphic 2-form ωX that the K3 surface X has
by definition, as g∗ωX = ωX . Using Xiao’s list [18, table 2] of all possible symplectic
automorphism groups of K3 surfaces, we can determine some candidate K3 surfaces for the
duality.5 The symplectic K3 groups that contain A5 together with their numbers in Xiao’s
table are as follows: A5 (#55), S5 (#70), A6 (#79), and M20 = 24 :A5 (#81).

We can discard surfaces with S5 (#70) or A6 (#79) symplectic symmetry group since
the action of A5 in those is only a subgroup of all automorphisms, and they have no
counterpart on the heterotic side of the duality. We also tentatively discard surfaces with
the symplectic automorphism group 24 :A5 (#81) where the A5 acts on a group isomorphic
to 24, for which we could not find a counterpart on the heterotic side.6

Our arguments lead us to only consider K3 surfaces admitting an A5 (#55) symplectic
symmetry group. The symplectic symmetries do not uniquely choose a surface, but their
extension to a faithful action on the surface does. The following theorem classifies all such
extensions.

Theorem 3 ([21, theorem A]). Suppose G acts on a K3 surface X faithfully and A5 E G

symplectically. Then G is isomorphic to one of the following groups: A5, S5 = A5.Z2,

A5 × Z2. Each of these groups is realizable for some K3 surface.

Here, the Z2 factor describes the action on ωX : under the map G→ G/A5 ∼= Z2, if the
element g is mapped to 1 ∈ Z2, then g∗ωX = ωX , and if g is mapped to −1 ∈ Z2, then
g∗ωX = −ωX . The faithful action group G determines the surface uniquely [22, section 4].
Also, by [21, lemma 1.1], Picard number of these surfaces satisfy ρ(X) ≥ 19, ensuring that
they are elliptic due to the fact that K3 surfaces with ρ(X) ≥ 5 are elliptic [23, proposition
11.1.3].

We now mention the candidate surfaces dual to the heterotic theory corresponding to
HM44. One explicit surface is obtained by considering the intersection of an S5 symmetric
quadric and a cubic, which is the K3 surface

X =
{ 4∑
i=0

X2
i =

4∑
i=0

X3
i = 0

}
⊂ P4 . (3.1)

4Note that automorphisms of Γ that fix the right side form a group containing Fix(FL) and is possibly
larger. In our case though, a calculation in MAGMA shows that GR = Fix(FL) ∼= A5.

5Xiao’s list is a stronger classification than Mukai’s theorem [19, theorem 0.6].
6The reader can refer to [20] for the classification of such surfaces.
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The group A5 acts on the surface symplectically by permuting the coordinates, and
S5 = A5.Z2 acts faithfully. To see that A5 acts symplectically and S5 does not, one
can use [19, lemma 2.1].

Different elliptic fibrations of the same surface can give rise to different physics, so the
choice of an elliptic fibration is also an important part of the F-theory data. The elliptic
fibrations we should consider have to respect the absence of gauge enhancement on the
heterotic side, as there are no lattice vectors (pL, 0) with p2

L = 2. This means that the
allowed singular fibers can only be of Kodaira type I0, I1, or II [24].

If the Picard lattice Pic(X) of the surface is computable, one can use the correspon-
dance between the null vectors and elliptic fibrations. Specifically, there is a bijective
correspondance between the primitive divisors E ∈ Pic(X) that lie in the nef cone with
vanishing self-intersection E ·E = 0 and the distinct elliptic fibrations. Moreover, the lattice
W of (-2)-vectors inside the null vector’s orthogonal complement E⊥ ⊂ Pic(X) describe the
singular fibers. Therefore, in order to find a fibration that has no gauge enhancement, one
should find a null vector E such that its orthogonal complement has root lattice of type An1
for some n.

An explicit elliptically fibered K3 with an A5 action can be given by the Weierstrass
model [25]

X : y2 = x3 + t11 − 11t6 − t . (3.2)

This surface is obtained by placing cusp fibers (y2 = x3) at the vertices of an icosahedron
inscribed inside P1 ∼= S2, and having A5 act symplectically by shuffling the singular fibers.
Notice that it is necessarily one of the surfaces classified in theorem 3. In order to determine
which one it is, one would look for the non-symplectic symmetries of the surface.

There are 12 cuspidal fibers of Kodaira type II on the surface (3.2), and therefore there
is no gauge enhancement as expected. These properties make (3.2) a good candidate for
the F-theory dual.

However, note that our arguments do not uniquely pick out one surface, but by virtue of
theorem 3 and the fact that there are only finitely many non-isomorphic elliptical fibrations
of a surface, we can at least conclude that there are only finitely many candidates for
the dual K3 surface. We presented two such explicit examples (although they might be
isomorphic) and showed techniques that may be helpful in finding others. In order to find
the dual, further matchings need to be carried out so that a unique surface with a fibration
can be chosen out of the finitely many cadidates.

3.2 Heterotic/type IIA duals

In this section, we consider the type IIA duals of CSS heterotic string compactifications
with d = 4. Specifically, heterotic string theory on T 4 is dual to type IIA string theory on a
K3 surface. On the type IIA side of this duality we will only consider geometric orbifolds
T 4/ZN that can be blown up to a K3 surface. We report our findings in table 1. We adopt
the somewhat unusual convention that α′ = 1 in this section in order to more easily use
results from [26].
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We can describe the moduli space of non-linear sigma models on the K3 surface X by
a choice of positive definite 4-dimensional plane x in R20,4 modulo lattice automorphisms
of Γ20,4 ∼= II20,4, where Γ20,4 is the even homology lattice Heven(X,Z) equipped with the
intersection form. The embedding of this lattice in R20,4 is given by Poincaré duality
Γ20,4 ∼= Heven(X,Z) ∼= Heven(X,Z) ⊂ Heven(X,R) ∼= R20,4, where the even cohomology ring
is equipped with the cup product as its bilinear form. In short, the moduli space is

O(Γ20,4) \ T 20,4 , (3.3)

where T 20,4 is the Grassmanian of positive definite 4-planes. We identify the dual of a
heterotic CSS model by choosing the R-span of F⊥R to be the positive definite 4-plane
x ⊂ Heven(X,R). Then the automorphisms of the orthogonal complement x⊥ ∩ Γ20,4

correspond to the symmetries that preserve the N = (4, 4) superconformal algebra. This
way, we can detect the type II duals by comparing their N = (4, 4) symmetry groups to
Fix(FL). However, only some points in the moduli space of non-linear sigma models on K3
are solvable, among these are torus sigma model orbifolds, Gepner models, and orbifolds
thereof. There are some such examples in the literature that we can identify with their
HM# duals: D4/Z2 with HM99 [27], A4

1/Z2 with HM107, (1)6 Gepner with HM101, (2)4

Gepner with HM116 [28], and A4/Z5 with HM122 [29].
We describe our procedure for obtaining such duals, with which we reproduce some

of the mentioned results above. We will be mainly working with K3 surfaces obtained by
blowing up the singularities of a torus orbifold T 4/ZN . See [30] for a discussion of torus
orbifold K3 surfaces suitable for physicists.

The torus models we quote from [31] are classified according to their N = (4, 4)
symmetry groups. We borrow the naming convention for such tori in loc. cit. For example,
A2

1A2 is the torus model corresponding to the choice of the positive definite plane x that
contains the root lattice of su(2)⊕2 ⊕ su(3) in the even D-brane charge lattice Heven(T 4,Z),
see (3.43) and the preceding discussion.

With our procedure we are able to specify some of the symmetry groups in the Höhn-
Mason paper [16] whose group structure was not specified. We reason as follows. After
ZN -orbifolding, one can argue that the symmetry group contains the extraspecial group
N1+k for some k and find which torus symmetries survive the orbifolding. However, this
analysis by itself does not always determine the full symmetry group. Therefore, we compute
the cohomology or D-brane charge lattice to confirm the duality to the corresponding CSS
lattice and also determine the symmetry group structures.

3.2.1 The A2
1A2/Z3 model

We first consider the A2
1A2 model from section 4.4.5 of [31] and use it to state some relevant

concepts and facts. Consider the following torus model with its lattice L represented as a
matrix with columns l1, . . . , l4 as its generators and vanishing B-field.

L =
√

2
31/4


1 1

2 0 0
0
√

3
2 0 0

0 0 1 1
2

0 0 0
√

3
2

 , B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.4)
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The winding-momentum lattice is given by

Γ4,4
w-m =

{ 1√
2

(m−Bl + l,m−Bl − l) | l ∈ L,m ∈ L∨
}

(3.5)

= 3−1/4
(
spanZ

[
(1, 1), (i,−i), (e2πi/3, e2πi/3), (ie2πi/3,−ie2πi/3)

]
⊕ spanZ

[
(j,−j), (k,k), (je2πi/3,−je2πi/3), (ke2πi/3,ke2πi/3)

] )
,

(3.6)

where i, j,k are quaternionic elements. The N = (4, 4) symmetries of this model can be
written as

G = (U(1)4 ×U(1)4).G0 , (3.7)

where
G0 ∼= 〈(e2πi/3, e2πi/3), (−j, j), (−i, i)〉 ∼= Z2.(Z2 × S3) . (3.8)

To understand how the symmetries act on the model, recall that a torus CFT is defined
in terms of currents ja(z), fermions ψa(z), as well as their right-moving analogs, and the
vertex operators Vλ(z, z̄) for λ ∈ Γ4,4

w-m. The U(1)4 ×U(1)4 part of the symmetry group is
generated by the zero modes j0, j̃0. Therefore the interesting part of the symmetry group is
G0, whose elements g = (gL, gR) ∈ G0 act on the CFT as

j1 + j2i + j3j + j4k −→ gL · (j1 + j2i + j3j + j4k) ,
ψ1 + ψ2i + ψ3j + ψ4k −→ gL · (ψ1 + ψ2i + ψ3j + ψ4k) ,

Vλ −→ ξg(λ)Vg−1·λ ,

(3.9)

where the action in every case is quaternionic left multiplication and ξg(λ) = ±1. Similar
actions are defined on the right with gR and j̃a, ψ̃a.

Consider orbifolding the torus theory by the symmetry g = (e2πi/3, e2πi/3) with g3 = 1.
This produces a K3 model by calculations on the elliptic genus. It has been shown in [29]
that a consistent T 4/Z3 orbifold contains the symmetry subgroup 31+4 :Z2, where Z2 is
induced by the involution (−1,−1) of the underlying torus model. We now summarize the
description in [29, section 6] of this symmetry group. The extraspecial part 31+4 is the
algebra of operators defined as

lim
z→0

Vλ(z) |m, k〉 = e
(k)
λ |m, k〉 , k ∈ Z3 , (3.10)

where k denotes the gk-twisted sector, m is some index in that sector, and the symmetries
act on the vertex operators Tm,k of the orbifolded theory by conjugation. It was shown that
there are elements x1, x2, y1, y2 ∈ Γ4,4/(1− g)Γ4,4 ∼= Z4

3 such that the symmetry group 31+4

is generated by e(k)
x1 , e

(k)
x2 , e

(k)
y1 , e

(k)
y2 satisfying the relations

e(k)
xi
e(k)
yj

= ζkδije(k)
yj
e(k)
xi
, (3.11)(

e(k)
xi

)3
= 1 =

(
e(k)
yi

)3
, (3.12)
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where ζ = e2πi/3. Each twisted sector H(k) is a 9 dimensional representation of 31+4, and
one can choose the eigenvectors of e(k)

xi as a basis for this space so that

e(k)
xi
|m1,m2, k〉 = ζmi |m1,m2, k〉 (3.13)

e(k)
yi
|m1,m2, k〉 = |m1 + kδ1i,m2 + kδ2i, k〉 . (3.14)

Now, we come back to our A2
1A2 model and describe its symmetry group using the

formalism of [29]. Let hi = (−i, i), hj = (−j, j), and hk = (k,k) = hihj. Then we have

h−1
i ghi = g ,

h−1
j ghj = g−1 ,

h−1
k ghk = g−1 .

(3.15)

Therefore these symmetries survive the orbifolding. Furthermore, (3.15) implies that hi
preserves each twisted sector and hj, hk maps gk-twisted sector to the g3−k-twisted sector.
We conclude that the symmetry group is 31+4 :Q8 = 31+4 :Z2.Z2

2, where the Z2 normal
subgroup is generated by the involution, {(1, 1), (−1,−1)} / Q8.

3.2.2 The A4/Z2 model

It is known that the D4 torus has the largest symmetry group as a torus model. When
orbifolded by Z2, it gives the largest symmetry group possible [27] in the GHV classification
of K3 sigma model symmetries [28], that is 28 :M20 = Fix(HM99). It is natural to expect
that the Z2 orbifold of the A4 torus (the torus model with the second largest symmetry
group) produces the second largest possible symmetry group [29].A5 = Fix(HM100), where
[29] is an undetermined group of order 29.

Consider the A4 model from section 4.4.2 of [31] given as

L = 51/4
√

2


1 1 1

2
1
2

0 1 1
2

1
2

0 0 1√
2 0

0 0 0 1√
2

 , B = 1√
5


0 −1 −

√
2 0

1 0 0 −
√

2√
2 0 0 1

0
√

2 −1 0

 . (3.16)

It has the N = (4, 4) symmetry group

G = (U(1)4 ×U(1)4).G0 , (3.17)
G0 ∼= Z2.A5 , (3.18)

where Z2 corresponds to the (−1,−1) involution. In a similar way, all Z2 orbifold symmetry
groups contain a 21+8 subgroup, generated by the half-period translations of the lattice L
together with half-period translations of its T-dual acting on the states with charge (pL, pR)
of the torus theory by

H(aL,aR) : (−1)2(aL,aR)·(pL,pR) , (aL, aR) ∈
(1

2Γ4,4
w-m

)
/Γ4,4

w-m
∼= Z8

2 , (3.19)

and the quantum symmetry Q fixing the untwisted sector and acting as (−1) on the twisted
sector.
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Since all symmetries in (3.18) modulo the involution survive the orbifolding, the
symmetry group of the A4/Z2 model contains 21+8 :A5. This analysis specifies the subgroup
[29] mentioned earlier.

3.2.3 K3 lattice computations

We present a review of the cohomology theory of torus orbifold K3 surfaces and how
orbifolding embeds the even cohomology lattice of T 4 in the cohomology lattice of K3. The
arguments will be cut short and mostly omitted to give just enough background to state
lemma 2 and theorem 4. For the complete treatment, the reader is referred to the original
paper [35].

The moduli space of T 4 and K3 theories are given by a choice of a positive definite
4-dimensional plane x in the even cohomology Heven(X,R) ∼= R4+δ,4 where δ = 0 for tori
and δ = 16 for K3 surfaces. The integer cohomology lattice Γ20,4 = Heven(X,Z) is embedded
in Heven(X,R) by extending the lattice from a Z-module to an R-module. From theorem 2,
we know that

Heven(X,Z) ∼= E8(−1)⊕δ/8 ⊕ U⊕4 = II4+δ,4 . (3.20)

Therefore, a theory is determined by the position of the plane x in relation to II4+δ,4, and
we may as well consider the covering T 4+δ,4 of the moduli space (3.3).

We describe the technology developed in [35]. Let us begin with a torus theory R4/L

with lattice L = spanZ(l1, l2, l3, l4) and background B. We would like to get the position
of the plane xT in relation to Γ4,4 and see how it determines the plane x in Γ20,4 after
orbifolding.7 There are two methods for obtaining xT . We could have used the SO(4, 4)
triality on Γ4,4

w-m [31], but we will use a more geometric approach: there is an isomorphism

T 3+δ,3 × R+ ×H2(X,R) ∼= T 4+δ,4 , (3.21)
(Σ, V, B) 7→ spanR(ξ(Σ), ξ4) , (3.22)

with the maps

ξ(σ) := σ − 〈σ,B〉v ,

ξ4 := v0 +B +
(
V − 〈B,B〉2

)
v ,

(3.23)

where v0 and v satisfy 〈v, v0〉 = 1, 〈v, v〉 = 〈v0, v0〉 = 0, and generate H0(X,Z) and H4(X,Z)
respectively. The positive definite 3-plane Σ is the self-dual 2-forms and is interpreted
as the choice of a volume 1 metric on the space X, V is the volume of X, and B is the
Kalb-Ramond background as an element of H2(X,R). The triplet (Σ, V, B) is called the
geometric interpretation of x.

Now we describe the procedure to obtain (ΣT , VT , BT ) given the torus lattice L and
background BT . Consider the coordinate system in terms of the generators of the lattice L as

λ1l1 + λ2l2 + λ3l3 + λ4l4 = x1e1 + x2e2 + x3e3 + x4e4 ∈ R4/L , (3.24)
7We denote objects associated to the torus theory with a subscripted T.
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where ei is the ith standard basis vector of R4. We can present the integral even cohomology
of the torus in terms of λi as

Γ4,4 = spanZ(dλ1 ∧ dλ2, dλ3 ∧ dλ4, dλ1 ∧ dλ3, dλ4 ∧ dλ2, dλ1 ∧ dλ4, dλ2 ∧ dλ3,

1, dλ1 ∧ dλ2 ∧ dλ3 ∧ dλ4)
(3.25)

with the bilinear form given by the wedge product

〈α, β〉 :=
∫
α ∧ β . (3.26)

We can see that the generators of the lattice Γ4,4 form the standard U⊕4 basis in the order
they are written in (3.25).

The metric g on the torus T 4 = R4/L is inherited from the Euclidean covering space,
therefore the induced volume form used for defining the Hodge star operator is

ω = dx1 ∧ dx2 ∧ dx3 ∧ dx4 , (3.27)

and the self-dual 2-forms forming a basis for Σ are

dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 + dx4 ∧ dx2, dx1 ∧ dx4 + dx2 ∧ dx3 . (3.28)

We choose to express all the lattice elements in terms of dλi to keep the U⊕4 structure
explicit. We find dxi in terms of dλi by taking the exterior derivative of (3.24),

dxi =
4∑
j=1

(ei · lj)dλj . (3.29)

Next, we set VT = det(L), as simply the volume of the torus. Finally, if BT is an
antisymmetric matrix as in (3.5), one needs to convert it from dxi∧dxj to dλi∧dλj basis by

B −→ LTBL , (3.30)

so that the dλi ∧ dλj component is given by the matrix element Bij .
Now that we have (ΣT , VT , BT ), we describe how geometric orbifolding by G = ZM ,

M ∈ {2, 3, 4} induces the following map:8

(ΣT , VT , BT ) 7−→ (Σ, V, B) ∈ T 20,4 × R+ ×H2(X,R) . (3.31)

To find the image of ΣT , we considerH2(T 4,Z) after orbifolding. Away from the singularities,
the orbifolding π : T 4 → X is a degree M map. Keeping the G-invariant elements of
the cohomology H2(T 4,Z)G, one would expect that the induced map is an embedding
H2(T 4,Z)G ↪→ H2(X,Z). Indeed, it was shown in [37] that

π∗
(
H2(T 4,Z)G

)
∼= H2(T 4,Z)G(|G|) , (3.32)

8All of the following statements are still true for M = 6, D̂n, n ∈ {4, 5}, and the binary tetrahedral group
T̂, but we will not consider such orbifolds.
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so that there is an isometric embedding√
|G|H2(T 4,Z) ↪→ H2(X,Z) , (3.33)

with which the map ΣT 7→ Σ is defined.
We now describe the lattice H2(X,Z). Along with the embedding of the torus 2-

cohomology, one has the Poincaré duals of the exceptional divisors E(j)
s obtained from

blowing up the singularities, where s denotes the singular point. The lattice of exceptional
divisors E|G| have the intersection form A16

1 , A
9
2, or A4

3 ⊕ A6
1, for a Z2,Z3,Z4 orbifold

respectively. We have E|G| ⊥
√
|G|H2(T 4,Z), since the exceptional divisors have volume

zero. In the case of G = Z2, the torus lattice
√
|G|H2(T 4,Z) and the exceptional divisors

are both primitive lattices, therefore one can use lemma 1 to get a lattice with signature
(19,3) isometric to H2(X,Z). However, this is not the case for other G = ZM , and one needs
to consult [35, proposition 2.1] for the set M|G| of generators not in E|G| and

√
|G|H2(T 4,Z),

as well as the set of generators of the primitive lattice Π|G| that contains E|G|.
We can extend the embedding π∗ to the whole even cohomology by similar arguments

π̂ :
√
|G|Heven(T 4,Z) ↪→ Heven(X,Z) , (3.34)

which gives the desired mapping xT → x. Though, we still need to express Heven(X,Z)
in terms of exceptional divisors and torus cohomology elements for this mapping to be
meaningful.

The element
√
|G|v still generates H4(X,Z), but

√
|G|v0 Poincaré dual to T 4 − {s |

s is singular} does not, as there are exceptional divisors that it does not take into account.
Considering a B-field induced solely by orbifolding offsets this issue. To describe the B
field we define

B|G| :
1
|G|
〈B|G|, E(j)

s 〉 = n
(j)
s

|G′|
, (3.35)

where s is a G′ ⊂ G type fixed point and ∑j n
(j)
s E

(j)
s is the highest root in the ADE type

lattice spanZ(E(j)
s ) for fixed s. Notice that this calculation only depends on G.

We define the elements dual to the point and the volume of X as

v̂ :=
√
|G|v , v̂0 := 1

|G|
v0 − 1

|G|
B|G| −

〈B|G|, B|G|〉
2|G|2

√
|G|v . (3.36)

These elements also define the translation between x and its geometric interpretation as
in (3.22). We can now finish the construction of Heven(X,Z).

Lemma 2 ([35, lemma 3.1]). The lattice Γ20,4 = Heven(X,Z) is generated as

Γ20,4 = spanZ

(
M|G| ∪ {E − 〈E, v̂0〉v̂ | E ∈ Π|G| }

)
. (3.37)

Theorem 4 ([35, theorem 3.3]). G = ZM ,M ∈ {2, 3, 4, 6} orbifolding on T 4 induces a map
on the geometric interpretation as

(ΣT , VT , BT ) −→ (Σ, V, B) , (3.38)

where Σ is found as described in (3.33), the volume is V = V
|G| , and the background is

B = 1√
|G|
BT + 1

|G|B|G| − 2v̂.
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In our supplementary Mathematica package, we have included a function that com-
putes the lattice Heven(X,Z) and returns the Gram matrix of the negative definite lattice
x⊥ ∩Heven(X,Z) by

OrbifoldLattice[L,B,M]

where L is the torus lattice, B is an antisymmetric matrix with elements given in terms of
dxi ∧ dxj ,9 and M is the order of the cyclic orbifolding symmetry taking values in {2, 3, 4}.
Note that for M = 3 and M = 4, both the choice and the order of the basis vectors for the
lattice L matters, as the orbifold symmetry generator g should act on the coordinates as

g ∈ Z3 : (λ1, λ2, λ3, λ4) 7→ (λ2 − λ1,−λ1,−λ4, λ3 − λ4) , (3.39)
g ∈ Z4 : (λ1, λ2, λ3, λ4) 7→ (λ2,−λ1,−λ4, λ3) . (3.40)

Since only the ZM -invariant part of cohomology is sent to the K3 cohomology, we need
B ∈ H2(T,R)ZM . More specifically,

Z3 : B ∈ spanR(dλ1 ∧ dλ2, dλ3 ∧ dλ4, dλ1 ∧ dλ3 + dλ4 ∧ dλ2,

−dλ1 ∧ dλ3 + dλ1 ∧ dλ4 + dλ2 ∧ dλ3) ,
(3.41)

Z4 : B ∈ spanR(dλ1 ∧ dλ2, dλ3 ∧ dλ4, dλ1 ∧ dλ4 + dλ2 ∧ dλ3,

dλ1 ∧ dλ3 + dλ4 ∧ dλ2) .
(3.42)

This is a condition required for consistent orbifolding.
In table 1, we report the geometric ZM orbifolds with M ∈ {2, 3, 4} of the torus models

in [31] whose lattices x⊥ ∩ Γ20,4 match with a Höhn-Mason coinvariant lattice F⊥L , hence
finding an explicit duality between twelve type IIA K3 models and heterotic CSS models.
We point out the following new results. We recognize two intersections in the moduli space
of torus orbifolds from the table: A4

1/Z2 and D4/Z4, as well as A2
1A2/Z4 and A4

1/Z4 meet.
Comparing with section 4 of [28], we see that D4/Z3 meets the Gepner model (1)6. We
have also further specified the structure of N = (4, 4) symmetry groups of HM100, HM103,
HM104, HM105, HM109, HM114 using arguments similar to those in section 3.2.1 and
section 3.2.2.

Lastly, we mention a method for constructing more candidate torus models using the
even cohomology formulation. Given an even lattice L of rank 4, we can use the gluing
construction described in lemma 1 on another copy of the lattice to get the even unimodular
lattice

Γ4,4 =
∐

[r]∈D(L)
((r, r) + L(−1)⊕ L) , (3.43)

which is necessarily isometric to II4,4 ∼= Heven(T 4,Z). Therefore, we can simply define x to
be the R-span of (0,L) ⊂ Γ4,4. Let the bilinear form on some basis {g1, . . . , g8} of Γ4,4 be

9The basis change to dλi ∧ dλj given in (3.30) is handled by the supplementary Mathematica program.
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HM Lattice N = (4, 4) Symmetry Group Torus Model
HM99 28 :M20 D4/Z2

HM100 21+8 :A5 A4/Z2

HM101 34 :A6 D4/Z3

HM103 21+8 :S4 A1A3/Z2

HM104 21+8 : 2.(3× 3) A2
2/Z2

HM105 21+8 : 2× S3 A2
1A2/Z2

HM107 21+8 : 23 A4
1/Z2

HM107 21+8 : 23 D4/Z4

HM109 31+4 :Q8 A2
1A2/Z3

HM114 31+4 : 4 A2
2/Z3

HM116 (2× 42) :S4 A2
1A2/Z4

HM116 (2× 42) :S4 A4
1/Z4

Table 1. First column lists all the CSS models for which we have found a geometric orbifold dual.
For each of them, in the second column we list the symmetry group fixing the N = (4, 4) algebra,
i.e. Fix(HM#). In the last column, we provide the corresponding geometric orbifold model using
the torus models from section 4.4 of [31].

given by the matrix G with Gij := 〈gi, gj〉. By our arguments, there should be a unimodular
matrix W acting as a change of basis such that

W TGW =
(

0 1
1 0

)⊕4

. (3.44)

Then xT in terms of dλi is expressed as the R-span of W−1(0,L).
We determine W with the following recipe. Choose a primitive element w1 such that

〈w1, w1〉 = 0. We know that w1 ∈ L ∩ w⊥1 by construction, so we can project it out by
considering W1 := (L ∩ w⊥1 )/w1. More concretely, we choose a basis for L ∩ w⊥1 containing
w1 and then we delete it from the set. We define w2 as the element satisfying w2 ⊥ W1
and 〈w1, w2〉 = 1. We can now see that w1, w2 form a standard basis of U and also that
spanZ(w1, w2) = U ⊥W1. We continue iteratively until we find w1, w2, . . . , w7, w8 so that
they form a standard basis of U⊕4. Then wi constitute the columns of W .

4 Conclusions and open problems

We have a presented a number of explicit constructions of dual pairs of string theories
which have supersymmetry preserving symmetry groups that are subgroups of the Conway
group. In each example we were able to not only match symmetry groups but we also
matched points in the moduli space of T 4 heterotic and K3 type II compactifications. We
also provide Mathematica code that automates the required computations.
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There are two interesting open problems that we feel it would be interesting to address.
On the heterotic side the full symmetry group of the T 4 compactification involves an
extension of the lattice automorphism group by Z24

2 . This occurs because associativity of
the vertex operator OPEs for vertex operators that create states with lattice momenta
requires the addition of cocycle factors. Essentially one must work with a projective
representation of the Narain lattice. This extension is only visible when we study products
of vertex operators involving lattice momenta, that is when we look at the addition law
for lattice momenta. On the type II side this corresponds to addition of D-brane charge
and so is not visible in perturbation theory. Duality requires that there exist a projective
representation of the cohomology lattice on the type II side that governs addition of D-brane
charge. While it is known that in general D-brane charges should be described by K-theory
rather than ordinary cohomology [38], it is not clear to us that the origin of these Z2 factors
has been understood in the literature. In particular it does not follow from twisted K-theory
since H3(X,Z) is trivial for K3 surfaces X.

A second interesting question which this work might help to address is the claim that all
exact symmetries in string theory are gauge symmetries. There are a variety of arguments
behind this claim, but, as far as we know, none of them really address the question of
whether discrete symmetries of string theory in flat space are always gauge symmetries.
This work provides dual pairs of string models with large discrete symmetry groups and
they seems like a good starting point to investigate how one would prove or disprove that
these discrete symmetries are gauge symmetries.

A Details of CSS lattice constructions

As a supplement to section 2.2, in our supplementary Mathematica package we provide
• the Gram matrix G of the lattice HM#,

• the lattices FL,FR embedded in E8,Λ, their orthogonal complements F⊥L ,F
⊥
R, and

their duals
(
F⊥L

)∨
,
(
F⊥R

)∨
,

• the discriminant group D(F) of the lattices, which is isomorphic for all lattices
considered,

• isometries between the discriminant groups D(F⊥L ),D(FL),D(FR),D(F⊥R) in terms of
the generator glue vectors ci, di, ei, fi of the discriminant groups respectively,

• the generator glue vectors (r, ψ(r)) as in (2.32).
The glue vectors are generated from (ci, ψ(ci)) with [ci] a generator of Zdi

⊂ D(F⊥R) = ∏
j Zdj

,
and ψ is found by chasing the isometries provided.

As a supplement to section 3.2.3, we provide a function which returns the Gram matrix
of the lattice x⊥ ∩Heven(X,Z) given a torus model. For a complete list of commands with
explanations, the user can run

?CSSCompactifications‘*

after the supplementary package is installed as instructed in the supplementary Mathematica
notebook.

– 20 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
2

In the rest of the appendix, we will describe our procedure in detail for computing the
CSS lattice Γ. We give an overview of the steps:

Step 1: Find an isometric embedding FR ⊂ E8 of FL by computing the Gram matrices of
sublattices of the same rank in E8.

Step 2: Check if the embedding FR ⊂ E8 is primitive.

Step 3: Put all the lattices FL,F⊥L ,FR,F⊥R in Smith Normal Form. Get the discriminant
group by (2.28) and the generators of each lattice’s discriminant groups by (2.26).

Step 4: Find isometries D(F⊥L )→ D(FL) and D(FR)→ D(F⊥R). (Recall that the isometry
D(FL)→ D(FR) is induced by FL ∼= FR.)

Step 5: Construct the generators of Γ by considering the Smith Normal Form basis ṼL
of
(
F⊥L

)∨
. Specifically, take the elements (vLi , 0) for di = 1 and (vLi , ψ(vLi )) for

di 6= 1 where vLi denotes the ith basis vector in ṼL, and take the elements (0, xRi )
where the xRi constitute a basis for the lattice F⊥R.

A.1 Finding an embedding in E8

To find an embedding of the sublattice FL in E8 with the Gram matrix G, we use two
methods according to how large FL is.

The first method is applicable if all the basis vectors in FL satisfy ‖v‖2 ≤ 8, i.e. the
diagonal entries of G are Gii ≤ 8. The advantage of this method is that it is faster than
brute force computation, but it is not applicable for all sublattices FL.

We calculate all the inner products of vectors in E8 with norm ‖v‖2 ≤ 8 with each
other, and store them in a database. We define a function

VectorData[v,m,x]

which takes in a vector v, and returns all the vectors from the database which have inner
product with v equal to x with x= 0,±1,±2,±3,±4 and has norm squared m.

Now, to find a set of vectors in E8 with the same Gram matrix G, we implement the
following algorithm:

Step 1: Choose a random vector v1 with ‖v1‖2 = G11 and add it to the list.

Step 2: Chosen vector vn−1, choose a random vector vn from the set

VectorData(v1, Gnn, G1n) ∩ · · · ∩ VectorData(vn−1, Gnn, G(n−1)n)

and add it to the list. If the set is empty, choose a different vn−1. If all such sets
are empty, choose a different vn−2 and so on.

Step 3: Repeat until the list is complete.

This way, we can find the embedding quickly if it exists.
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We use the second method only if there is a basis vector with ‖v‖2 > 8 in the Gram
matrix of FL. It is a brute force computation to find a vector set with the desired inner
products.

Step 1: Generate a random vector in the lattice such that v1 = ∑
cifi, ci ≤ k, where

{f1, . . . , f8} is a basis for E8 and k is a fixed upper bound for the coefficients
according to ‖v1‖2 = G11.

Step 2: If vector v1 has norm G11, add it to the list, and generate random vector v2.

Step 3: Chosen v1, . . . , vn−1, generate a random vector vn. If vn satisfies vi · vn = Gin for
i ≤ n, add this vector to the list. If there are no such vn, choose a different vn−1
and so on.

Step 4: Repeat until the list is complete.

For n ≥ 5 this problem becomes computationally complex. Therefore, for sublattices
with higher ranks, we compute the set of all possible triples (v1, v2, v3) that have inner
products given by Gij with i, j ≤ 3, and try random vectors for all the others until we get
the desired embedding.

A.2 Primitivity

Once we find an embedding in E8, we would like to find out whether this sublattice is
primitive or not. Recall that a rank k sublattice G is primitive in L if and only if L can
be generated by k many basis elements of G and (n − k) many elements of L − G. The
following is a more computer friendly definition we use.10

Proposition 3. Let G be a sublattice in L. Let {v1, . . . , vk} be the basis of G and
{f1, . . . , fn} be the basis of L. Write vi = ∑

cijfj, or in matrix form, V = CF where
vi and fi are rows of V and F respectively.

Then G is primitive if and only if the GCD of all k × k minors of C is equal to 1.

Proof. We use [15, theorem II.9]: the k × n matrix C can be completed to an n × n

unimodular matrix if and only if the GCD of all k × k minors of C is equal to 1.
Let D be the (n− k)× n matrix that completes C to a unimodular matrix M . Then

the n rows of MF constitute a basis for L. On the other hand, k many of those rows also
constitute CF and form the basis for G. Lastly, rows of DF provide (n− k) many basis
elements of L that are in L−G. Therefore, we conclude that G is primitive.

Conversely, suppose G is primitive. Then L can be generated with the k basis vectors
of G constituting the rows of CF together with (n− k) many vectors wi in L−G. Then
writing wi = ∑

dijfj provides the (n − k) × n matrix D = (dij) that completes C to a
unimodular matrix.

10We thank the reviewer for the correction of the statement and proof of proposition 3.
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A.3 Isometries between the discriminant groups

We would like to find an isometry

(D(L), q̄)→ (D(L⊥),−q̄) . (A.1)

Since D(L) ∼= D(L⊥), we choose an endomorphism ψ, We first check if it is an isomorphism,
and then check if q̄ = −q̄ψ.

We are looking for the automorphisms of Zd1 × · · · × Zdk
. To characterize such an

automorphism, it is enough to specify where the generators map to. We collect all the
elements with order di in set Di, and map each 1di

to some element in Di. The mapping
will take the form

1di
7→ ai11d1 + · · ·+ aik1dk

, (A.2)

where aij ∈ Z.
A priori, such a map is an endomorphism. There are two methods to check if it is

an automorphism. First, we can check if each 1di
is in the image of the mapping. We

characterize an endomorphism by putting the coefficients in a matrix

A =


a11 . . . a1k
...
ak1 . . . akk

 . (A.3)

We consider the inverse

A−1 =


p11
q11

. . . p1k
q1k...

pk1
qk1

. . . pkk
qkk

 , (A.4)

with the matrix entries rational. We take the ith row, multiply it by q = lcm(qi1, . . . , qik)
to clear out the denominator, and get

q1di
= ni11d1 + · · ·+ nik1dk

. (A.5)

If q is coprime with di, then 1di
is in the image of the endomorphism. If this is true for all

i, then this mapping is an automorphism.
The second method is a simpler computation. For each endomorphism

ψ : Zd1 × · · · × Zdk
→ Zd1 × · · · × Zdk

, (A.6)

we calculate the number of elements in the image, and then we calculate the order of each
element in the image. This characterizes the image as a unique finite abelian group, which
we compare with the preimage to see if they are the same group.

Finally, we check if the isomorphism ψ is an isometry by the straightforward computation

q̄
?= −q̄ψ , (A.7)

and repeat until we obtain an isometry.
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B Lattice construction data for HM44

In this appendix, we show explicitly how CSS lattices are constructed, using HM44 as our
guiding example. Running SSLatticeonstruction[44] in our supplementary Mathematica
package reproduces the content we present here.

We use the rows of the following matrix as the basis vectors for the E8 lattice in R8:

[E8] =



2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


. (B.1)

In our notation, we put brackets around the lattice to denote its basis vectors. For the
Leech lattice Λ, the basis vectors in R24 are given as the rows of the matrix

[Λ] = c



8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0
2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0
0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
−3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



, (B.2)

where c = 1/
√

8.
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Among rank 6 Höhn-Mason sublattices, only HM44 has an embedding FR in E8. For
the construction of the CSS lattice, we use its orthogonal complement, which is provided
by the supplementary Mathematica package as

[F⊥R] =
(

0 1 1 −2 0 1 −3 −2
0 0 2 −2 3 −1 −1 −1

)
. (B.3)

Similarly, we take the orthogonal complement of the corresponding Leech sublattice, which
has basis vectors given as

[F⊥L ] = c



0 0 0 2 −2 0 0 0 2 0 0 0 0 0 0 −2 0 0 2 0 −2 0 −2 2
−1 −1 1 −1 1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1 1 −1 −1 1 −1 1 −3
0 0 0 0 2 0 2 0 0 0 0 0 −2 0 −2 0 2 0 0 2 2 2 0 0
−2 0 0 −2 0 0 0 0 0 2 −4 2 0 0 2 2 0 0 0 0 2 0 0 −2
−1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 3 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 1 −1 −3 1 1 1 −1 1 1 −3 3
−1 −1 1 1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 1 −1 1 −1 −1 1 −3
−1 −1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 1 −1 1 1 3 −1 −1 1 −1 1
0 0 0 0 0 −2 2 0 0 0 −2 2 0 2 0 −2 0 0 0 0 0 2 −2 0
0 0 0 0 0 0 −2 2 0 −2 2 0 2 0 2 0 −2 −2 0 0 0 0 0 0
1 1 −1 −1 1 −1 1 −1 1 1 1 1 1 −1 −1 1 −1 −1 −1 3 −1 1 1 −1
0 0 0 2 −2 0 0 0 0 0 2 0 0 2 0 0 −2 0 0 0 −2 −2 2 0
−1 1 1 −1 1 1 1 1 −1 1 −1 1 −1 −1 1 1 1 1 1 1 3 1 1 −1
0 0 0 −2 2 0 0 0 0 0 −2 0 2 0 2 2 −2 0 0 0 0 0 0 −2
1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 1 −3 −1 −1 −1 1
−1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 1 1 1 −1 1 3 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2 2 2 2 2 −2 2
1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 1 −1 −3 1 1 1 −1 1 1 1 −1


.

(B.4)

In order to glue the two together as in (2.32), we need the correspondence between their
discriminant groups. Putting the lattices in Smith Normal Form as in (2.27) immediately
shows that the discriminant groups are isomorphic to Z10 × Z30. The generators that
correspond to 1 ∈ Z10 and 1 ∈ Z30 are given for each sublattice as follows:

[D(F⊥L )] =
(
c1
c2

)
= c
( 41

10
1

10
9

10 − 3
10

1
10

13
10 − 13

10 − 21
10 − 19

10 − 1
10 − 3

2
11
10

3
2

21
10

1
10 − 9

10
31
10 − 37

10
7
2

11
10

1
10 − 3

2
3
2 − 1

2
− 7

5 − 3
5 − 33

5
34
15 2 − 4

3 1 2 0 1 − 8
15

2
15 − 7

3 −4 − 14
15 − 28

15 − 27
5

8
5 − 2

15 − 38
15 2 − 1

3
8

15
8

15

)
,

(B.5)

[D(F⊥R)] =
(
f1
f2

)
=
(

0 0 1
5 −

1
5

3
10 −

1
10 −

1
10 −

1
10

0 − 1
30

1
10 −

1
15

1
5 −

1
10

1
30 0

)
. (B.6)

We found the following isometry between the two

ψ̄ : D(F⊥L )→ D(F⊥R) (B.7)
(c1, c2) 7→ (9f1, 4f1 + 19f2) . (B.8)

Using this isometry, we can obtain the glue vectors (r, ψ(r)) for the CSS lattice and finish
the construction to get

Γ =
∐

n∈Z10,
m∈Z30

(
n(c1, 9f1) +m(c2, 4f1 + 19f2) + (F⊥L ,F⊥R)

)
. (B.9)
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