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Abstract—We describe our experience of building an
industrial-strength cryptographic vulnerability detector, which
aims to detect cryptographic API misuses in JavaTM1. Based on
the detection algorithms of the academic tool CryptoGuard, we
integrated the detection into the Oracle internal code scanning
platform Parfait. The goal of the Parfait-based cryptographic
vulnerability detection is to provide precise and scalable crypto-
graphic code screening for large-scale industrial projects. We
discuss the needs and challenges of the static cryptographic
vulnerability screening in the industrial environment.

Index Terms—cryptographic vulnerability detection, static an-
alyzer, industrial environment

I. INTRODUCTION

Cryptographic vulnerabilities that are caused by improper

or flawed cryptography implementation have become one

of the most serious threats [1]–[5]. Because of insufficient

security expertise, developers face challenges to understand the

implicit security rules behind the cryptographic APIs, such as

Java Cryptography Architecture (JCA) and Java Cryptography

Extension (JCE) libraries [6], [7]. Misuses of these crypto-

graphic APIs could result in various security vulnerabilities,

such as exposing secrets (e.g., password, key), bypassing

authentication [8], [9].

To aid this situation, static analysis is widely used to screen

the code and expose cryptographic vulnerabilities. Many tools,

such as CryptoLint [4], FixDroid [10], CogniCrypt [11],

CryptoGuard [12], are presented for this purpose. Despite the

progress, the acceptance and prevalence of these tools in the

industrial community are still low [13], which suggests a gap

between the state-of-the-art tools and the industrial demands.

In this work, we focus on an industrial-strength cryptographic

vulnerability detector. We realize the high-precision detection

algorithm presented by an academic tool CryptoGuard [12]

on the support of Parfait [14], an Oracle internal static

code analysis platform designed for large-scale codebases.

Our Parfait-based cryptographic vulnerability detection shows

nearly perfect precision and excellent scalability on large-scale

industrial projects.

II. INDUSTRIAL-STRENGTH PRECISION AND SCALABILITY

Most of the cryptographic vulnerabilities we focus on

can be attributed to assigning improper values to certain

1Java is a registered trademark of Oracle and/or its affiliates.

security-critical parameters used with cryptographic API calls.

For example, a cryptographic API call new PBEKeySpec(

password) (an API method that generates a cryptographic

key from a given password) accepts a hard-coded password.

The detection requires a backward dataflow analysis to figure

out the values assigned to the security-critical parameters.

Our backward dataflow analysis follows the interprocedural,

finite, distributive subset (IFDS) analysis algorithm presented

by Reps et al. [15]. We briefly introduce our technical enablers

for the high precision and scalability. Please check the full

paper [16] for the details.

High Precision. The technical enabler for our high precision

is the refined slicing algorithm presented in CryptoGuard [12].

When detecting the hard-coded security-critical parameters

(e.g., secret key, password), the precision challenge is caused

by a phenomenon, referred to as pseudo-influences [12].

Pseudo-influences are the constants captured by the back-

ward dataflow analysis, however, have non-security impacts.

For example, a file location constant is used to retrieve

a cryptographic key. With the refinement insights given in

CryptoGuard [12], we are able to remove five language-

specific scenarios that involve pseudo-influences without re-

sulting in hard-coded values. These pseudo-influences include

state indicators, resource identifiers, and bookkeeping indices

to retrieve the value. The contextually incompatible constants,

and constants in infeasible paths are also removed by the

refinement insights. Table I shows the detection results with

and without the refinement insights on a well-known crypto-

graphic vulnerability benchmark, CryptoAPI-Bench [17], [18].

The refinement insights are able to reduce all false positives

except for the test cases that require path sensitivity to detect.

Scalability. Industrial projects are usually at a large scale,

which results in a higher requirement for scalability. Our

Parfait-based cryptographic vulnerability detection achieves

excellent scalability by two designs, the layered scheduler for

caller methods, and the summarization for callee methods. An

interprocedural analysis might go across multiple methods,

which makes the analysis take too much time. Instead of

running the analyses one after another, Parfait offers a layered

framework to optimize the execution order. The interprocedu-

ral analyses are broken down into several layers and scheduled

layer by layer. In this way, the analyses requiring less time
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TABLE I
FALSE POSITIVE REDUCTION DERIVED FROM APPLYING THE REFINEMENT

INSIGHTS (RIS). WE COMPARE PARFAIT CRYPTOGRAPHIC

VULNERABILITY DETECTION WITH ITS INTERMEDIATE VERSION WITHOUT

THE REFINEMENT INSIGHTS.

Type Vulnerabilities
FPs

(w/o RIs)/(w RIs)

Basic 24 1/0

Multiple Methods 56 3/0

Multiple Classes 18 1/0

Field Sensitivity 18 2/0

Path Sensitivity 0 19/19

Heuristics 9 12/0

Total 125 38/19

can be finished first. It guarantees that more vulnerabilities

can be reported within less time. Another design improving

the scalability is the summarization mechanism for the callee

methods. When a callee method is explored by the analysis, we

generate the summary edges for the callee method and store

them for future usage to avoid re-exploration. We scan 11 real

world projects provided by Oracle. Our detector achieves an

average runtime 338.8s for the 11 projects with average 395.4k

line of code. Besides, our detector reports 42 vulnerabilities

with 0 false positives, achieving 100% precision.

1 public class DesEncrypter{

2 private byte[] salt = { (byte) 0xC9, (byte) 0xDB

, (byte) 0xA3, (byte) 0x52, (byte) 0x56, (byte)

0x35, (byte) 0xE8, (byte) 0xB0};

3 private int iterationCount = 20;

4 public DesEncrypter(final String passPhrase){

5 initDesEncrypter(passPhrase);}

6 private void initDesEncrypter(final String

passPhrase){

7 ...

8 AlgorithmParameterSpec paramSpec = new

PBEParameterSpec(salt,iterationCount);}}

Listing 1. A real-world vulnerability about using constant salt and insufficient
iteration count (We modified the code to make the codebase unidentifiable.)

Listing 1 shows vulnerabilities of using constant salt and

insufficient iteration count as PBE parameters. This case

represents the most common vulnerable pattern of the sensitive

cryptographic materials (e.g., passwords, salts, IVs, etc) to be

hard-coded in the initialization.

III. FUTURE WORK

Based on our interaction with developers, there are many

future directions required to do to close the gap between

industrial demands and state-of-the-arts. One direction is to

generate more useful fixing suggestions. Many developers

pointed out that the fixing suggestions generated by the current

tools are too simple and not useful enough. Developers have

difficulties correcting the cryptographic code even though the

vulnerabilities are noticed [19]. Another interesting direction is

the context-aware cryptographic vulnerability detector. Many

developers pointed out that the alerts generated by the state-

of-the-art tools ignore the context of the cryptographic APIs,

which may overestimate the security threats.
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[11] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
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