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Neural Networks Based Optimal Tracking Control of a Delta Robot With
Unknown Dynamics
Akram Gholami � , Jian-Qiao Sun � , and Reza Ehsani* �

Abstract: This paper proposes a data-driven optimal tracking control scheme for unknown general nonlinear sys-
tems using neural networks. First, a new neural networks structure is established to reconstruct the unknown system
dynamics of the form ẋ(t) = f (x(t))+g(x(t))u(t). Two networks in parallel are designed to approximate the func-
tions f (x) and g(x). Then the obtained data-driven models are used to build the optimal tracking control. The
developed control consists of two parts, the feed-forward control and the optimal feedback control. The optimal
feedback control is developed by approximating the solution of the Hamilton-Jacobi-Bellman equation with neural
networks. Unlike other studies, the Hamilton-Jacobi-Bellman solution is found by estimating the value function
derivative using neural networks. Finally, the proposed control scheme is tested on a delta robot. Two trajectory
tracking examples are provided to verify the effectiveness of the proposed optimal control approach.
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1. INTRODUCTION

Optimal tracking control is a well-known method for
designing control systems. The goal of this method is to
design a control in such a way that the output optimally
tracks a reference trajectory by minimizing a predeter-
mined performance function [1-3]. The optimal tracking
control consists of two parts, a feedforward term to en-
sure the trajectory tracking and a feedback term to stabi-
lize the tracking error dynamics, designed by solving the
Hamilton-Jacobi-Bellman (HJB) equation [4-6]. The core
challenge in optimal tracking control problems is solving
the nonlinear HJB equations, for which a closed-form so-
lution does not exist in case of general nonlinear dynami-
cal systems [7,8]. Therefore, most current approaches fo-
cus on estimating the HJB equation solution numerically
[9].

The universal approximation theorem states that neural
networks with one hidden layer can arbitrarily estimate
every continuous function [10]. Thereby, neural networks
can learn the HJB equation [9]. In most studies, one net-
work is constructed to estimate the value function, called
critic, and is updated to minimize the Bellman error. An-
other network approximates the control policy, termed as
an actor, and is updated to minimize the value function
[11,12]. Although, derivative of the value function is used
to establish optimal control, all of these methods are es-

timating the value function. For instance, Vamvoudakis
and Lewis [13] proposed an online actor-critic algorithm
for learning the optimal control solution of nonlinear sys-
tems with known dynamics. In their proposed algorithm,
the value function is estimated by neural networks, then
by taking the derivative of the neural networks, optimal
control is constructed. They proved that the system states
and actor-critic neural networks errors are uniformly ulti-
mately bounded in this method.

In recent years, neural networks based optimal control
has emerged as a viable technique for solving nonlinear
optimal control problems. In most cases, the actor-critic
neural network is constructed using polynomial activa-
tion functions defined manually [4,14-21]. As an exam-
ple, Modares and Lewis [4] used neural networks with
45 activation functions containing all powers of the states
up to order four. Using polynomial activation function for
higher order system leads to huge and complicated neural
networks. There exist only a few studies using neural net-
works with non-polynomial activation functions [22-24].
However, in [23,24] each neuron’s activation function is
defined manually.

The precise dynamics are generally unknown in many
practical situations. One approach is to build a neural
networks identifier to model the unknown dynamics. As
an example, Bhasin et al. [25] developed an actor-critic-
identifier to estimate the HJB equation solution using
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three neural networks. It was demonstrated that the de-
veloped control scheme and the identifier guarantee that
the states and actor-critic weight estimation error are uni-
formly ultimately bounded. There are two main methods
for the formation of a neural network identifier, single neu-
ral network [7,20], and adaptive neural network identifier
[26-28]. Single neural network identifier does not repre-
sent the dynamics system accurately, since dynamics sys-
tem include two terms.

Based on the aforementioned discussions, this paper de-
velops a neural network-based optimal tracking control al-
gorithm for a general unknown nonlinear system. A new
neural networks structure is proposed to reconstruct the
unknown system dynamics. Then the obtained data-driven
models are used to build the optimal tracking control. The
designed control is made up of two parts, the feed-forward
control and the optimal feedback control. The optimal
feedback control is created by using neural networks to
approximate the solution of the Hamilton-Jacobi-Bellman
equation. Unlike the other optimal control approaches,
since the gradient of the value function is the one needed
for the control design, it is more efficient to construct the
critic neural network to estimate the value function deriva-
tive directly. Moreover, the Adam optimizer is used to up-
date the neural networks weight matrices.

The optimal tracking of higher-order systems is rarely
investigated in the literature because of the difficulties
coming from control design and performance analysis. In
this work, the developed optimal tracking control scheme
is applied on a delta robot, a parallel robot with three de-
grees of freedom. Our specific contributions include the
following:

1) A new neural networks structure is established to re-
construct the unknown system dynamics of the form
ẋ(t) = f (x(t))+ g(x(t))u(t). Two networks in paral-
lel are designed to approximate the functions f (x) and
g(x), which allows for a more accurate representation
of the system dynamics compared to existing meth-
ods. f (x) describes the generic system dynamics with
or without control, while g(x) is determined by hard-
ware design which dictates how controls influence the
dynamics of the system. Hence it is often called the
control influence matrix. These two functions repre-
sent very different physics, it is much better to esti-
mate them separately.

2) The optimal feedback control is constructed to
approximate the solution of the Hamilton-Jacobi-
Bellman equation by directly estimating the value
function derivative using neural networks. The neu-
ral networks activation functions are selected to be
hyperbolic tangent functions. Selecting hyperbolic
tangent functions as the activation functions elimi-
nates the manually defining activation functions done
in previous studies.

3) The simulation results are presented for a complex
system, a delta robot, to illustrate the effectiveness of
the proposed technique.

The rest of this paper organizes as follows: The formu-
lation and preliminaries of the optimal tracking control
system are given in Section 2. An effective neural net-
works model is established to reconstruct the dynamics
of nonlinear systems in Section 3. Section 4 presents the
derivation of the optimal tracking problem solution using
neural networks. Section 5 discusses the stability of the
developed control. In Section 6, we present simulation re-
sults to demonstrate the effectiveness of the proposed op-
timal tracking control scheme on a delta robot. Finally, the
conclusions are drawn in Section 7.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider a nonlinear time-invariant dynamical system
of the form

ẋ(t) = f (x(t))+g(x(t))u(t), (1)

and the initial condition

x(0) = x0, (2)

where x(t) ∈ Rn is the measurable system state vector,
u(t) ∈ Rm is the control input, f (x(t)) ∈ Rn is an un-
known vector of nonlinear functions, and g(x(t)) ∈ Rn×m

is an unknown matrix of nonlinear functions. It is assumed
that f (0) = 0 and f (x)+g(x)u is Lipschitz continuous on
Ω⊆ Rn containing the origin, and that the system is stabi-
lizable on Ω. The system is stabilizable in the sense that
there exists a continuous control u∈U that asymptotically
stabilizes the system on Ω.

The optimal tracking control objective is to find a con-
trol u?(t), that will allow the dynamical system to track
a desired trajectory, xd(t) while minimizing a predefined
performance function.

Define the tracking error as

e(t), x(t)− xd(t). (3)

The optimal control consists of the feed-forward part,
ud(t), and the optimal feedback part, ue(t).

u?(t) = ud(t)+ue(t). (4)

Assume that the desired trajectory satisfies

ẋd(t) = f (xd(t))+g(xd(t))ud(t). (5)

The feed-forward control, ud(t), can be calculated with
the knowledge of the system dynamics f (x), g(x) and the
existence of a pseudo inverse g−1(x) as

ud(t) = g−1(xd(t))
(

ẋd(t)− f (xd)
)
. (6)
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Remark 1: The desired trajectory, xd(t), must be
piece-wise continuously differentiable on Ω⊆ Rn.

The tracking error dynamics can be obtained by

ė(t) = ẋ(t)− ẋd(t)

= f (x(t))+g(x(t))u(t)− ẋd(t). (7)

The optimal feedback part ue(t) is designed to minimize
the following performance function

V (e(t)) =
∫

∞

t
r(e(τ),ue(τ))dτ, (8)

where r(e(τ),ue(τ)) = eT (τ)Qe(τ) + uT
e (τ)Rue(τ). Q ∈

Rn×n and R ∈ Rm×m are symmetric positive definite ma-
trices. This quadratic cost function makes the system state
follow the reference trajectory and causes the system con-
trol input to be close to the desired control, in order to keep
the states to their reference values. Thus, for the optimal
control problem, the state feedback control law ue(t) must
not only stabilize the system (7) on Ω but also ensure that
the value function in (8) is finite, i.e., the control law must
be admissible.

Definition 1 (Admissible control): A control ue(t) for
the given dynamical system (7) is defined to be admissi-
ble with respect to value function in (8) on Ω, denoted by
ue(t)∈Ψ(Ω), if ue(t) is continuous on Ω, ue(0) = 0, ue(e)
stabilizes the dynamical system on Ω, and V (e(0)) is finite
∀e0 ∈Ω.

For any admissible control ue(t), if the associated value
function is continuously differentiable; then, the infinitesi-
mal version of the value function known as nonlinear Lya-
punov equation can be written as

0 = r
(
e(τ),u(τ)

)
+V T

e

(
f (x(t))+g(x(t))ue(t)− ẋd(t)

)
, (9)

where Ve is the partial derivative of the value function with
respect to e. Note that the value function does not depend
explicitly on time.

The Hamiltonian function is defined as

H(e,ue,Ve) = r
(
e(τ),u(τ)

)
(10)

+V T
e

(
f (x(t))+g(x(t))ue(t)− ẋd(t)

)
.

Let V ?(e) be the optimal value function defined by

V ?(e) = min
u∈Ψ(Ω)

(∫
∞

t
r(e(τ),ue(τ))dτ

)
. (11)

The optimal value function V ?(e) satisfies the HJB
equation

0 = min
ue∈Ψ(Ω)

[H(e,ue,V ?
e )]. (12)

Assume that the solution of (12) exists and is unique,
the optimal function can be derived as

u?e(t) =−
1
2

R−1gT (x)V ?
e (e). (13)

By substituting the optimal control in the nonlinear Lya-
punov equation, the HJB equation can be written in terms
of V ?

e

0 = eT Qe+V ?T
e (e)

(
f (x)− ẋd

)
− 1

4
V ?T

e (e)g(x)R−1gT (x)V ?
e (e), (14)

and

V ?(0) = 0. (15)

In the case of a linear system with a quadratic cost
functional, this HJB equation is equivalent to the Riccati
equation. To determine the nonlinear dynamical system
optimal control solution, the HJB equation (14) must be
solved for the value function and then insert the answer
in (13) to get the optimal control. The nonlinear character
of the HJB equation makes finding a solution difficult or
impossible.

We can use the method mentioned earlier to construct
the control if the system dynamics are known. However,
getting the complete, or even partial, knowledge of non-
linear system dynamics is a complex undertaking in most
circumstances. A neural network identifier is constructed
for unknown nonlinear systems to learn the system dy-
namics.

3. ESTABLISHMENT OF THE NEURAL
NETWORKS IDENTIFIER AND

FEED-FORWARD CONTROL

In this section, a new neural networks structure is estab-
lished to reconstruct the unknown system dynamics using
available input-out data as shown in Fig. 1. Two neural
networks are used in parallel to estimate f (x) and g(x).
Let each neural network has a hidden layer and an output
layer, respectively, with p and m neurons. Thus, the neural
network model for the system is constructed as

f̂ (x) =W (2)T

f σ

(
W (1)T

f x(t)+b(1)
f

)
+b(2)f , (16)

ĝ(x) =W (2)T

g σ

(
W (1)T

g x(t)+b(1)g

)
+b(2)g , (17)

where W (2)
f , W (1)

f , W (2)
g , W (1)

g are estimated weight matri-

ces with appropriate dimensions, and b(2)
f , b(1)f , b(2)g , b(1)g

are the estimated bias vectors with suitable dimensions.
σ(·) is the neural networks activation function and se-
lected to be hyperbolic tangent function. As a result, the
estimated system dynamics can be written as

˙̂x(t) = f̂ (x)+ ĝ(x)u(t). (18)
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Fig. 1. Parallel neural networks identifier to reconstruct
the unknown nonlinear dynamics system. Two neu-
ral networks, each with a hidden layer and an out-
put layer, respectively, with p and m neurons, are
used in parallel to estimate f (x) and g(x).

The neural networks weights and biases are adjusted
using Levenberg–Marquardt backpropagation, a popular
curve-fitting algorithm, to minimize the following error

J =
1
M

M

∑
j=1

(
ẋ[ j]− ˆ̇x[ j]

)2
, (19)

where M is the total number of training data, ẋ is the actual
measurable data, and ˆ̇x is the output of the neural network.

Then, by using the estimated functions f̂ (x) and ĝ(x),
the feed-forward control input which guarantees perfect
tracking can be computed as

ud(t) = ĝ−1(xd(t))
(

ẋd(t)− f̂ (xd)
)
. (20)

4. VALUE FUNCTION DERIVATIVE
APPROXIMATION

Neural networks are adopted to solve the HJB equation.
The value function derivative can be represented as using
universal approximation capabilities of neural networks.

∂V (e)
∂e

=W (2)T
φ

(
W (1)T

e+b(1)
)
+ ε(e), (21)

where W (2) ∈ Rm×N , W (1) ∈ Rn×N are the ideal weight ma-
trices, b(1) is the ideal bias vector, φ(·) : Rn → RN is the
neural networks activation function vector, N is the num-
ber of neurons in the hidden layer, and ε(e) is the neural
networks approximation error. As the number of hidden
layer neurons N → ∞, the approximation error ε(e)→ 0
uniformly.

Remark 2: Based on HJB equation (14), V ?(0) = 0.
Therefore, the neural networks activation functions should
be selected to satisfy the condition φ(0) = 0. Hence, the
neural networks activation functions are selected to be hy-
perbolic tangent function.

The value function can be estimated as

V (e) =
∫ e

0

∂V (ζ )

∂ζ
dζ

=W (2)T
∫ e

0
φ

(
W (1)T

ζ +b(1)
)

dζ

+
∫ e

0
ε(ζ )dζ . (22)

Remark 3: It is assumed that for fixed number of neu-
rons, N, the neural networks approximation error ε(e) and∫ e

0 ε(ζ )dζ are bounded by constants on a compact set.
Based on the neural networks value function derivative

approximation in (21), the Hamiltonian equation (10) be-
comes

H(e,ue,W (i)) = r
(
e(t),ue(t)

)
+W (2)T

φ

(
W (1)T

e+b(1)
)

×
(

f̂ (x(t))+ ĝ(x(t))ue(t)− ẋd(t)
)

= εH . (23)

The residual error, εH , consists of dynamics estimation
and value function derivatives approximation errors. Un-
der the Lipschitz assumption on the dynamics, this resid-
ual error is bounded on a compact set.

4.1. Tuning and convergence of critic neural networks
The weights of the critic neural networks, W (1) and W (2)

which provide the best approximate solution for (23) are
unknown. Thus, the approximate value function derivative
is defined as

V̂e(e) = Ŵ (2)T
φ

(
Ŵ (1)T

e+ b̂(1)
)
, (24)

where Ŵ (2) and Ŵ (1) are the current estimated values of
the ideal neural networks weights W (2) and W (1). And b̂(1)

is the current estimation value of the ideal neural networks
bias b(1). The approximate nonlinear Lyapunov equation is
then

H(e,V̂e(e)) = eT Qe+V̂ T
e (e)

(
f̂ (x)− ẋd

)
− 1

4
V̂ T

e (e)ĝ(x)R−1ĝT (x)V̂e(e)

= ε. (25)

Given any admissible control policy u(t), it is desired
to select Ŵ (2)T

, Ŵ (1)T
, and b̂(1) to minimize the squared

residual error

E =
1
2

ε
T

ε. (26)

Then Ŵ (2)T →W (2)T
, Ŵ (1)T →W (1)T

, b̂(1) → b(1), and
ε → εH . We select the tuning law for the neural net-
work weights and biases using adaptive moment estima-
tion (Adam).



Neural Networks Based Optimal Tracking Control of a Delta Robot With Unknown Dynamics 5

Algorithm 1: Overview of the Adam optimizer al-
gorithm for tuning the weights and biases of the
neural network.
input : Step size, α

Exponential decay rates for the moment
estimates, β1,β2

input : Initial parameter vector, θ0

Initialize 1st moment vector, m0← 0
Initialize 2nd moment vector, v0← 0
Initialize time step, t← 0

output: Tuned parameter vector, θt

while θt not converged do
t← t +1;
mt ← β1 ·mt−1 +(1−β1) ·∂E/∂θt ;
vt ← β2 · vt−1 +(1−β2) · (∂E/∂θt)

2;
m̂t ← mt/(1−β t

1);
v̂t ← vt/(1−β t

2);
θt ← θt−1−α · m̂t/(

√
v̂t + ε);

end

Algorithm 2: Overview of the algorithm for the
critic neural networks tuning.
input : Error set, e ∈Ωe

Desired trajectory, xd(t), ẋd(t)
Q and R

input : Initial parameters, Ŵ (2)T

0 , Ŵ (1)T

0 , b̂(1)0
output: Tuned parameters, Ŵ (2)T

, Ŵ (1)T
, b̂(1)

while parameters not converged do
for i← 1 to 20 do

Select random error vector, e ∈Ωe;
x = xd + e;
Compute f̂ (x);
Compute ĝ(x) ;
Compute V̂e(e), (24);
Compute ε , (25);
Compute Ei, (26) ;

end
E = 1

20 ∑
20
j=1 E j ;

Update parameters using Adam optimizer;
end

Adam optimization [29] is a variant of stochastic gra-
dient descent, based on adaptive estimation of first-order
and second-order moments (Algorithm 1). It can be used
to update network weights more quickly than traditional
stochastic gradient descent.

Based on the above preparations, we now summarize
the critic neural networks tuning in Algorithm 2.

The block diagram of the proposed data-driven optimal
tracking control system is shown in Fig. 2. The block dia-
gram consists of a trained neural network identifier to es-
timate the unknown nonlinear dynamics system. A critic

Delta Robot

Neural Network
Identifier

Control

Optimal Control

Critic 
Neuarl Networks

u xg(x)^

^

f(x)

g(x)

^

ue

ud

xd e

xd
.

Ve
*^

f(x)

g(x)

^

Feed-forward

Fig. 2. Structure of the data-driven optimal tracking con-
trol system for a delta robot. The block diagram
consists of a trained neural network identifier, critic
neural networks, a feed-forward control, and opti-
mal feedback control.

neural networks approximates the value function deriva-
tive. A feed-forward control ensures trajectory tracking,
and optimal feedback control stabilizes the tracking error
dynamics.

5. STABILITY ANALYSIS

It has been proved that the estimation error of the neural
network can be arbitrarily small with bounded activation
functions and a sufficiently large number of hidden layer
neurons [30,31]. Considering the controlled system in (1)
with unknown system dynamics. It is assumed all system
states and control inputs are observable, and the approx-
imate optimal control can be obtained. Let the critic net-
work be given by (24) and the update law for the critic net-
work be provided by Algorithm 1. Then, based on [30-32]
it can be proved that the corresponding network weight es-
timation error are uniformly ultimately bounded by using
Lyapunov stability analysis.

6. SIMULATION RESULTS

In this section, a simulation example is given to show
the effectiveness of the proposed method. Delta robot is a
three degree of freedom parallel manipulator in which the
base platform is linked to a moving platform by three par-
allel identical kinematic chains, as shown in Fig. 3. A ro-
tary motor actuates each active arm of the delta robot. The
system state vector is x = [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]

T consisting
of active arms angles and velocities, and the control input
vector is u = [τ1 τ2 τ3]

T , the input torque to the motors.
Simulation tests are performed in MATLAB/Simulink

environment by modeling the delta robot using the Sim-
scape Multibody Toolbox. The parameters of the delta
robot are summarized in Table 1. Also, a damping co-
efficient of 0.01 Nm/(deg/s) is added to all the universal
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Base Platform

Moving Platform

Passive Arm

Active Arm
Active Joint

Fig. 3. Schematic view of the delta robot.

Table 1. Parameters of the delta robot.

Link Dimension (m) Mass (kg)
Active arm length 0.25 0.2
Passive arm length 0.52 0.6

Base platform radius 0.225 -
Moving platform radius 0.075 0.2

joints.
To begin with, the proposed neural network identifier

is established by using two three-layer neural networks,
which is chosen as 6− 30− 3 structure with 6 input neu-
rons, 30 hidden neurons, and 3 output neurons. The hidden
layer uses the hyperbolic tangent function, and the output
layer uses the linear function. The neural network iden-
tifier is trained using 2000 data samples by using MAT-
LAB neural network toolbox. Note that by choosing 30
hidden layer neurons, the neural network estimation error
is ensured to be arbitrarily small. The accuracy of the neu-
ral identifier significantly affects the feed-forward control
and the feedback control. Thus, we choose a large number
of hidden layer neurons to improve the accuracy of neural
network identifier.

We present two trajectory tacking examples to illus-
trate the implementation and control system performance
of the proposed data-driven optimal trajectory tracking ap-
proach. In the first example, a smooth path is defined as the
desired trajectory. The second trajectory is a non-smooth
but piece-wise differentiable path.

6.1. Smooth trajectory tracking
For the first reference trajectory, a spiral path is defined

as follows:
X = 0.2cos(4π× t/100),

Y = 0.2sin(4π× t/100),

Z = (−0.2× t)/100−0.4,

(27)

where t ∈ [0 100]. Using the inverse kinematics of the
delta robot, the desired active arm angles and then the
desired angular velocities and accelerations can be com-

puted. The value function is defined as (8), where Q =
diag[2 5 2 1 1 1] and R = 1.

The critic neural network is chosen as three-layer neu-
ral networks with the structure of 6− 10− 3 with 6 in-
put neurons, 10 hidden neurons and 3 output neurons. The
hyperbolic tangent function is used as the activation func-
tion. The initial weights of the critic network is all set to
be random in [−0.1 0.1]. The Adam optimizer parameters
are set as α = 0.001, β1 = 0.9, β2 = 0.999 and ε= 10−8.

Next, the trained critic network is considered as the
tracking control to make the delta robot track the refer-
ence trajectory. The results of the spiral tracking are illus-
trated in Fig. 4. In addition, tracking errors are depicted
in Fig. 5. The feed-forward, feedback optimal control in-
put, and the tracking control are given in Fig. 6. The trend
of the tracking error to zero means that the system states
successfully tracked the desired reference trajectory. The
small bounded tracking errors after 20 s in Fig. 5 might be
due to estimation errors of unknown dynamics and value
function derivative.
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Fig. 4. Delta robot tracking a smooth desired trajectory us-
ing neural network based optimal tracking control.
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Fig. 5. Delta robot tracking error in smooth trajectory
tracking using neural network based optimal track-
ing control. The tracking error is bounded, and it
tends to go to zero.
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Fig. 6. Delta robot tracking control input in smooth trajec-
tory tracking using neural network based optimal
tracking control. The optimal control, u(t), con-
sists of the feed-forward part, ud(t), and the opti-
mal feedback part, ue(t).

6.2. Non-smooth trajectory tracking

For the second reference trajectory, a non-smooth but
piece-wise differentiable trajectory is defined. Using the
inverse kinematics of the delta robot, the desired active
arm angles and then the desired angular velocities and ac-
celerations can be computed. The value function is defined
as (8), where Q = diag[3 6 2 1 1 2] and R = 1.

The critic neural network is chosen as three-layer neu-
ral networks with the structure of 6− 10− 3 with 6 in-
put neurons, 10 hidden neurons and 3 output neurons. The
hyperbolic tangent function is used as the activation func-
tion. The initial weights of the critic network is all set to
be random in [−0.5 0.5]. The Adam optimizer parameters
are set as α = 0.001, β1 = 0.9, β2 = 0.999 and ε= 10−8.

Next, the trained critic network is considered as the
tracking control to make the delta robot to track the refer-
ence trajectory. The results of the non-smooth path track-
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Fig. 7. Delta robot tracking a non-smooth desired trajec-
tory using neural network based optimal tracking
control.
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Fig. 8. Delta robot tracking error in non-smooth trajectory
tracking using neural network based optimal track-
ing control. The tracking error is bounded, and it
tends to go to zero.
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Fig. 9. Delta robot tracking control input in non-smooth
trajectory tracking using neural network based op-
timal tracking control. The optimal control, u(t),
consists of the feed-forward part, ud(t), and the op-
timal feedback part, ue(t).

ing are illustrated in Fig. 7. In addition, tracking errors
are depicted in Fig. 8. The feed-forward, feedback optimal
control input, and the tracking control are given in Fig. 9.
The simulation results demonstrate that the approximate
optimal tracking control law derived by the proposed al-
gorithm is able to provide the good control performance.
According to Fig. 8 tracking errors around the sharp edges
are higher compared to other parts of the trajectory. How-
ever, as it can be seen, the tracking error is bounded, and
it tends to go to zero.

Remark 4: In this paper, the neuron sizes of the critic
networks are chosen by experiments. We believe that for
a specific nonlinear system, several effective structures of
neural networks may exist, which can implement the de-
veloped data-driven algorithm to obtain the optimal con-
trol law.

In Table 2, the averages of the absolute tracking error in
X-, Y -, and Z-directions and the Euclidean distance error
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Table 2. Average of the absolute tracking error in trajec-
tory tracking using neural network based optimal
tracking control.

Duration
(s)

eX (mm) eY (mm) eZ (mm) e (mm)

Smooth
path

t ∈
[0 100]

6.24 2.16 2.39 7.28

t ∈
[20 100]

1.72 0.64 0.98 2.24

Non-
smooth

path

t ∈
[0 100]

1.44 0.96 1.25 2.41

t ∈
[20 100]

1.01 0.56 0.86 1.61

during the entire path are shown. Euclidean distance error
can be computed as

e =
√

e2
X + e2

Y + e2
Z , (28)

where eX , eY , and eZ are the error in X-, Y -, and Z-
directions, respectively.

7. CONCLUSIONS

In this paper, an effective optimal tracking control
scheme using neural networks is proposed for a class of
unknown nonlinear systems. First, a data-driven identi-
fier is constructed to estimate unknown functions f (x)
and g(x). Then, the feed-forward control is derived based
on the estimated dynamics. The HJB equation is solved
by estimating the value function derivative using neural
networks. By using the Lyapunov technique, the stability
of the proposed method is proved. Finally, two numerical
simulation examples on a delta robot are presented to dis-
play the effectiveness. In this work, neural networks iden-
tifier and critic neural networks are trained offline. How-
ever, in many cases, the desired trajectory is not available
beforehand. Therefore, we intend to use the proposed op-
timal tracking control online and in real-time for future
work.
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