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 Abstract—Stereophotogrammetry is a well-recognized technique for 
structural health monitoring. Before performing any quantitative 
stereophotogrammetry measurement, the cameras must be calibrated 
to obtain the intrinsic and extrinsic parameters of the stereovision 
system. However, when large-sized structures are to be monitored, the 
calibration process is challenging and limits the use of 
stereophotogrammetry. In this research, a sensor-based calibration 
method for determining the extrinsic parameters of a stereovision 
system is presented and validated. A multi-sensor board has been 
developed that synchronizes inertial measurement units (IMUs) and a 
laser on a single board computer to measure the spatial orientation and 
the distance of two paired cameras and compute the extrinsic 
parameters of the stereovision system. The effectiveness of the sensor-
based calibration is evaluated through both analytical studies to 
quantify the effects of performance degradation caused by the sensors’ noise as well as laboratory tests. Results show 
that the sensor-based calibration is effective in quantifying displacement with errors below 3% when compared to 
measurements performed using a stereovision system calibrated with the traditional image-based procedure.  

 
Index Terms— Camera calibration, digital image correlation, inertial measurement unit, laser, stereophotogrammetry. 

 

 

I. Introduction 

TEREOPHOTOGRAMMETRY has become a popular tool 

for non-destructive inspection and structural health 

monitoring thanks to progress made in image-processing 

algorithms [1, 2] and advantages that this approach provides to 

overcome some of the limitations of traditional contact-based 

methods (e.g., discrete and limited number of measurement 

points, sensor power requirements and data transmission, 

installation challenges, and durability) [3, 4]. To perform 

stereophotogrammetry measurements using techniques such as 

three-dimensional digital image correlation (3D-DIC), a set of 

image pairs is taken during an experiment with two 

synchronized cameras. The first pair of images is used as the 

reference to which all subsequent photos are compared [5]. By 

tracking the pixel motion of each feature identified in the image 

set, the in-plane and out-of-plane strain as well as the shape, 

deformation, and displacement of the targeted structure can be 

measured [6]. Over the years, stereophotogrammetry has been 

used successfully to monitor several types of structures in the 

civil [7-9], transportation [10, 11], mechanical [12], and energy 

[13] engineering domains.  

 Before performing stereophotogrammetry, the stereovision 
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system needs to be calibrated to obtain the relative spatial 

position (i.e., extrinsic parameters) of the two cameras [14, 15] 

and account for the internal distortion of each lens (i.e., intrinsic 

parameters) [16]. For this reason, a sequence of images of a 

calibration object containing optical targets or a pattern whose 

features or locations are well-known is captured with the 

cameras at different positions and orientations [17] prior to 

performing calibration using a method described by Zhang [18]. 

By identifying the location of corresponding points from the 

calibration object in both images, the extrinsic and intrinsic 

parameters are extracted using the bundle adjustment [19]. 

Some examples for determining the intrinsic and extrinsic 

parameters include the use of 3D calibration objects such as 

multiplanar targets [20], cylinders [21], scale bars [22], active 

phase targets [23], single feature points [24, 25]. While those 

approaches proved to be effective at calibrating a stereovision 

system, once the last image of the calibration object is recorded, 

the cameras’ relative position cannot change, otherwise a loss 

of calibration will occur. For this reason, cameras are mounted 

to a rigid bar or a set of fixed camera mounts to prevent any 

relative motion. Furthermore, to generate a calibrated 

measurement volume, the dimensions of the calibration object 

need to be comparable with the size of the system being tested. 
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For example, for a field of view (FOV) larger than 3 m, a large-

area calibration procedure is performed that requires building a 

customized calibration object which can make the process 

lengthy, complicated, and requires multiple person-hours of 

work [26]. Alternatively, the cameras can also be calibrated 

using a set of scale bars on the object of interest, however if the 

object is large, the scale bars can be difficult to measure. 

Regardless, for both approaches, if the cameras are moved, the 

calibration will contain gross spatial measurement errors. 

 The difficulties involved in the traditional image-based 

calibration summarized above make quantitative 

stereophotogrammetry measurements on large-sized structures 

difficult or impractical and provide the motivation for this 

research. In this study, a multi-sensor system with three inertial 

measurement units (IMUs) and a laser sensor has been 

developed and installed on the cameras of a stereovision system 

to determine their extrinsic parameters. The accuracy of the 

proposed system is validated analytically to quantify the effects 

of performance degradation caused by the IMU and laser 

sensors’ noise. In addition, the efficacy of the proposed system 

in performing 3D-DIC measurements is compared with the 

results obtained from a stereovision system calibrated using a 

traditional image-based procedure. 

In this paper, the mathematical foundation of 

stereophotogrammetry calibration and how the framework is 

extended for sensor-based calibration are reviewed within 

Section II. Section III describes the experiments performed to 

characterize the noise floor of the IMU and laser sensors used 

to extract the extrinsic parameters. The results of the analytical 
simulation used to quantify the effects of performance 

degradation caused by the sensors’ noise are summarized in 

Section IV. Section V presents the back-to-back comparison 

between a measurement performed using the sensor-based 

calibration and a 3D-DIC measurement performed using 

traditional image-based calibration.  Finally, with Section VI 

future work and conclusions are presented. To the authors’ best 

knowledge, the work presented in this paper is the first 

successful attempt at computing the full set of extrinsic 

parameters of a stereovision system using only data extracted 

from sensors, without having to rely on images. 

II. PRINCIPLES OF STEREOPHOTOGRAMMETRY CALIBRATION 

Photogrammetry is based on the pinhole camera model that 

relies on the projection of a 3D point P with coordinates P = 

(Px, Py, Pz)T
W into a 2D point p = (pu, pv)T in the pixel 

coordinates on the camera’s retinal plane [27, 28]. This 3D-to-

2D transformation requires a knowledge of the camera intrinsic 

and extrinsic parameters as expressed in: 
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where pu and pv are the pixel coordinates of point p, fx and fy 

are intrinsic parameters such that fx = F·Sx and fy = F·Sy, where 

F is the camera’s focal length in mm and Sx and Sy are the 

sensors’ scale factors in pixels/mm in the x and y directions, 

respectively. In Eq. 1, cx and cy are the optical center of the 

image sensor, θ  the skew factor of the image, and Rij and Ti the 

components of the rotation matrix R and the translation vector 

T in the global frame of reference W [16]. While R and T define 

the extrinsic parameters of the camera, fx, fy, cx, cy, and θ define 

the camera’s intrinsic parameters.  

When a stereovision system is considered, two pinhole 

cameras look at the same scene from slightly different 

perspectives. The 3D point P is projected to two 2D points pi, 

one for each camera’s retinal plane [i.e., p1 = (pu1, pv1) and p2 = 

(pu2, pv2)]. To perform the 3D reconstruction of a point P in W, 

Eq. 2 can be used when the projections of point P in the retinal 

planes p1 and p2 are known: 

 

  𝑃𝑅𝑐
𝑊 =  𝑹1

𝑊  𝑃𝑅𝑐
1 =  𝑹1

𝑊[(𝑴𝑇𝑴)−1 𝑴𝑇 𝒃]       (2) 

  

 where 𝑃𝑅𝑐
𝑊  is the reconstructed point in space in the global 

frame of reference W,  𝑹1
𝑊is the rotation  matrix of camera 1 in 

the global frame of reference, and 𝑃𝑅𝑐
1   is the reconstructed point 

in space in the frame of reference of camera 1. As expressed in 

Eq. 2, 𝑃𝑅𝑐
1  can be calculated by determining M and b using a 

linear least squares method. Both M and b are function of the 

intrisic and extrinsic parameters as defined by equation (9.2) in 

[29]. 

Because the coordinates of point P are triangulated using its 

projections p1 and p2, it is fundamental to know the relative 

position, orientation, and settings of the two cameras by 

determining their extrinsic and intrinsic parameters. For a 
stereovision system, intrinsic and extrinsic parameters can be 

decoupled and computed indipendently. In particular, the 

measurement of the intrinsic parameters for two cameras 

focused at the hyper-focal distance is a one-time operation and 

its complexity is independent of the FOV of the targeted object. 

For this reason, this research focuses on developing a more 

time-efficient way to estimate the extrinsic parameters and 

potentially saving hours of work when stereophotogrammetry 

is performed on large-scale structures (e.g, greater than ~3 m). 

To determine R and T, traditional calibration requires taking 

pictures of a calibration object. Because the complexity of this 

operation is function of the FOV of the targeted object, novel 
approaches that rely on sensors have been proposed. However, 

those approaches still require pictures to estimate some of the 

extrinsic parameters [30] or evaluate only a subset of them 

without requiring pictures [31, 32]. A more recent solution 

involves creating a virtual calibration target having the size of 

the desired FOV after measuring a subset of the extrinsic 

parameters with two IMUs and three laser sensors attached to 

the cameras [33]. Using a virtual calibration target still requires 

a new calibration every time cameras are moved. In addition, 

the approach described in [33] constrains the cameras’ baseline 

to be parallel to the ground, limiting the flexibility of the 
method. The solution presented in this paper relies on a multi-

sensor system which includes three IMUs and a laser sensor 

embedded on two RaspberryPi 4 installed on the cameras of the 

stereovision system (see Figure 1a). The core components of 

the multi-sensor board include: 

 an ultra-low noise 9-axis LPMS-IG1 IMU by LP-

Research that includes a 3-axis gyroscope, a 3-axis 
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accelerometer, and a 3-axis magnetometer with the 

possibility to i) use a Madgwick [34]or a Kalman filter, 

ii) activate/deactivate the magnetometer, and iii) 

activate/deactivate the gyroscope’s auto-calibration 

functionality to remove the yaw’s drift [35]; 

 a M88B laser module by JRT Meter Technology [36]; 

 a 2 Megapixel Basler puA1600-60uc camera with pixel 

size of 4.5x4.5 μm [37]; 

  a Master Station that takes care of the  sensor 

synchronization and data acquisition. 

As shown in Figure 1b, IMU 1 and IMU 2 are used to 

measure the cameras’ orientation (i.e., roll αi, pitch βi, and yaw 

γi of camera 1 and camera 2), while IMU 3 and the laser evaluate 

the distance between the cameras. The components of the 

rotation matrix 𝑹 𝑖
𝑊 of the ith camera can be calculated in the 

global frame of reference W from the angles α i, β i, and γi 

measured with IMU 1 and IMU 2  using: 
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Fig. 1. Proposed multi-sensor board: a) block-diagram showing 
components and signal flow and b) schematic representation of the 
developed sensor-based calibration method used to measure the 

extrinsic parameters. 

By using IMU 3 and the laser, the translation vector 𝑻12
𝑊  is 

determined in spherical coordinates [, γ3, β3]T, where  is the 

distance measured with the laser, γ3 is the laser’s azimuth and 

β3 is the lasers’ elevation. As a result, 𝑻12
𝑊  can then be expressed 

in Cartesian coordinates using: 

 𝑻12
𝑊 = [

  𝑠𝑖𝑛(𝛾3) 𝑐𝑜𝑠(𝛽3)

  𝑠𝑖𝑛(𝛾3) 𝑐𝑜𝑠(𝛽3)
 𝑐𝑜𝑠(𝛾3)

] (4) 

 

The use of IMU 3 and the laser allows performing 

stereophotogrammetry without any limitations on the position 
of camera 2 in the 3D space, thus removing the constraint of 

requiring a rigid connection between the two cameras. As 

opposed to the approach presented in [33], in the current 

approach the baseline of the two cameras does not need to be 

parallel to the ground. Because all IMUs evaluate the Euler 

angles in the global frame of reference W, 𝑻12
𝑊  must be 

expressed in camera 1’s frame of reference as 𝑻12
1  to be used for 

stereophotogrammetry. This can be done with: 
 

  {
𝑻12

1 = (𝑹1
𝑊)𝑻   𝑻12

𝑊

𝑹2
1 = (𝑹1

𝑊)𝑻 𝑹2
𝑊   (5) 

 

where  (𝑹1
𝑊)𝑻 is the transpose of the rotation matrix that 

identifies the orientation of camera 1 in W (i.e., 𝑹1
𝑊) computed 

from the IMU 1 data using Eq. 3, 𝑹2
𝑊 the rotation matrix 

calculated from the data measured by IMU 2 in W, and 𝑹2
1 the 

rotation matrix of camera 2 in the frame of reference of camera 

1. It should be noted that Eq. 5 describes a case in which the 

coordinate systems of all sensors attached to camera 1 are 
centered in the camera’s frame of reference. The decision to 

position the origin of camera 1 in the origin of W and the origin 

of the laser in the origin of camera 1 is to simplify the 

computational load. In contrast, the coordinate system of IMU 

2 corresponds to the frame of reference of camera 2. When 

working with actual sensors with non-negligible physical sizes, 

the relative translations and rotations between the different 

sensors can be calculated using a chain of homogeneous 

transformations computed with the Denavit-Hartenberg (DH) 

parameters [38]: as the camera 1-to-laser assembly includes a 

pan-tilt mechanism and is not unlike a robotic arm, the use of 
equations pertaining to robotics is justified. Once the extrinsic 

parameters are measured, Eq. 2 is used to reconstruct the 3D 

position of point P given its projections in the retinal plane of 

the two cameras. 

III. EXPERIMENTAL CHARACTERIZATION OF THE MULTI-
SENSOR BOARD 

By using the setup shown in Figure 1, it is possible to extract 

the extrinsic parameters of the stereovision system. Because 
those parameters are affected by the sensors’ noise, laboratory 

experiments were performed to quantify the effect of the IMUs 

and laser’s noise floor on the accuracy of the calibration. Figure 

2 shows the setups used for characterizing the sensors while the 

results of the tests are discussed in this section. 

A. IMU characterization 

The experiments performed on the LPMS-IG1 consisted of 

static measurements to determine the noise floors of the IMU at 

rest when different configurations (i.e., combinations of 

enabled/disabled magnetometer and gyroscope) are used. 

During the tests, the IMU was mounted on a heavy block (see 

Figure 2a) to minimize the effect of ambient vibrations, data 

was collected for five minutes at a sampling rate of 100 Hz, and 
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the test was performed 12 times for repeatability. The five-

minute interval was chosen as a reasonable period for allowing 

statistical analysis of the sampled data, considering that a 

significantly shorter time interval (e.g., 2 seconds) is enough to 

extract the extrinsic parameters of the stereovision system for 
calibration. Eight IMU configurations were tested, but only two 

are shown in this paper for the sake of brevity. 

 
Fig. 2. Experimental setup for the characterization tests of the multi-

sensor board: a) IMU setup to identify the noise floor and b) laser setup 
comparing to a reference laser measure and tape measure. 

In particular, Configuration #1 had the auto-calibration 

enabled and magnetometer disabled, Configuration #2 had the 

auto-calibration and magnetometer both enabled. A complete 

description of the eight configurations is shown in [39]. The 

comparison between the two selected configurations in terms of 

signal standard deviation (σ) is shown in Figure 3, which plots 
the angular outputs of the IMU over time.  

 
Fig. 3: Comparison of two different IMU’s settings on the accuracy of 
the estimated angles: a) roll, b) pitch, and c) yaw, for Configurations 1 
and 2. 

It should be noted that the first 100 seconds of the 

measurement have been omitted for a better comparison 

between the two selected configurations, as the magnetometer 

used in Configuration #2 takes time to orient around the East-

North-Up (ENU) frame of reference. The results in Figure 3 
show how the magnetometer introduces extra noise in the yaw 

angle estimation most likely due to electromagnetic 

interference and orthogonality errors caused by the assembly of 

the sensor. In particular, the auto-calibration allows for a drift 

of 4.5x10-4 deg over five minutes, as opposed to a value of 

~5x10-2 deg when the magnetometer is enabled. Because of the 

superior performance of the IMU when no magnetometer is 

used, the noise floor ranges determined for Configuration #1 

that represents the precision of the measurement (i.e., α = 

±4.32x10-3 deg.; β = ±3.83x10-3 deg.; and γ = ±0.75x10-3 

deg.), will be used as error ranges to analyze how the accuracy 

of the calibration is affected by the IMU noise. 

B.  Laser characterization 

A comparison was performed with a commercially available 

laser measure GLM400C by Bosch to quantify the accuracy of 

the M88B laser sensor embedded on the multi-sensor board. 

The two devices were mounted on a support placed on a slider 

rail pointing perpendicular towards a reflective target to make 

sure both sensors were able to detect the retro reflected spot (see 

Figure 2b). During the test, the support with the two laser 
sensors was moved away from the reflective target at ~0.5 m 

increments. For each distance, twenty-five measures were taken 

with each sensor. The data collected with the M88B were 

averaged at each distance and used to determine the noise floor 

of the measurement by computing the average standard 

deviation between the distance calculated using the M88B laser 

ant the regression line of the points measured using the 

reference GLM400C (see Figure 4). 

 
Fig. 4: Residuals of the M88B laser from the regression line calculated 

from the distances measured using the reference GLM400C. 

From the data shown in Figure 4, it is estimated that the noise 

floor of the M88B laser, laser is equal to 4.6x10-4 m when 

compared to the GLM400C laser used as a reference. For this 

case, the standard deviation was calculated using the [1/(N-1)] 

definition and its value modified using the unbiased estimator 

correction factor to account for a sample size of N=6. Similarly 

to what is done for the results obtained for the IMU, laser will 

be used as the error range to analyze how the accuracy of the 

calibration is affected by inaccuracies in the laser 

measurements. 
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IV. ANALYTICAL EVALUATION OF SENSORS’ NOISE ON 

CALIBRATION ACCURACY 

An analytical study was performed to quantify the effect of the 

sensors’ noise floor on the extrinsic parameters of a stereovision 

system. The accuracy of the sensor-based calibration is 

evaluated in terms of reconstruction error εRc and reprojection 

error εRp. Figure 5 provides a graphical representation of εRc and 

εRp for easier visualization. According to the literature, εRp 

below 0.5 pixels [40-43] and εRc equal to ~1/100 pixel in the in-

plane direction and ~1/30 pixel in the out-of-plane direction 

[44] are acceptable for most stereophotogrammetry 

measurements. As discussed in Section II, when a point P with 

known 3D coordinates is projected onto the cameras’ retinal 
planes, two points p1 and p2 are generated.  

 
Fig. 5: Representation of the reconstruction and reprojection errors 

caused by the IMU and laser’s noise affecting the extrinsic parameters. 
 

 The pixel coordinates (pu1, pv1) and (pu2, pv2) of those points, 

combined with the orientation and position of the two cameras 

obtained from the sensors’ data are used to reconstruct the 3D 

coordinates of point P* using Eq. 2. Because of errors in the 

reconstruction of the cameras’ orientation and positions caused 

by noise in the IMU and laser as well as lens distortion, point 

P* will be offset from the true point P by a factor equal to εRc. 

Once P* is calculated, it is reprojected onto the cameras’ retinal 

plane using the same estimated extrinsic parameters. This 

reprojection yields points p1
* and p2

*, which can be compared 
with the corresponding true values p1 and p2. The Euclidean 

distance in pixel between these two sets of data is εRp [45].  

A.  Details of the analytical study 

To evaluate the feasibility of the proposed sensor-based 

calibration and understand the effect of sensor’s noise on 

performance degradation, a stereovision system having a pair 
of 2 Megapixel Basler puA1600-60uc cameras fitted with 12.5 

mm focal length lenses was considered for the analytical 

simulation. As shown in Figure 6, the cameras were set to have 

a separation angle γ1+ γ2 of 25°, base distance  equal to 0.75 

m, and a working distance of 1.8 m. The cameras were assumed 

to be planar, thus with α and β equal to 0° (i.e., no roll or pitch). 

The simulated stereovision system results in a FOV of 0.6 x 0.8 

m, where each pixel on the image corresponds to ~1.4 x10-3 m 

in the global frame of reference. Given the specification of the 

cameras and the obtained FOV, a theoretical in-plane accuracy 

of ~14 x10-6 m and an out-of-plane accuracy of ~46 x10-6 m is 

expected. Those values are used as a reference for εRc and εRp 

when the extrinsic parameters are calculated using the sensors’ 
data.  

 
Fig. 6: Stereovision system setup pointing at a planar object used to 
simulate a 3D-DIC measurement and validate the effect of sensor’s 

noise on the accuracy of the calibration. 

In the simulation, the i) intrinsic parameters of the 
stereovision system and ii) the coordinates of the points Pi on 

the surface of the targeted planar object were assumed to be 

perfectly known and with zero variance noise. The extrinsic 

parameters were considered to be affected by the random noise 

of the IMU and laser sensors used to measure the position and 

orientation of the stereovision system. To generate a series of 

camera parameters and reconstruct the coordinates of points Pi
*, 

100 readings from the IMUs and ten from the laser were 

generated by randomly varying α, β, γ and ρ in the noise range 

±i calculated in Section III (i.e., α, β, γ, laser). To provide 

a statistically significant sample, this operation was repeated 

100 times. A total of 10,000 IMU and 1,000 laser values were 

then used in Eqs. 3 and 4 to compute the extrinsic parameters 
affected by noise and obtain Pi

* by solving Eq. 2. Table I 

summarizes the orientations and positions of cameras 1 and 2 

used in the analytical study and the ranges in which the extrinsic 

parameters were varied, while Figure 7 shows the workflow 

used to compute εRc and εRp. 

 
TABLE I 

REFERENCE VALUES OF CAMERA ORIENTATION AND POSITION AND NOISE 

RANGES USED IN THE ANALYTICAL STUDY 

  α (°) β (°) γ (°)   (m) 

Reference 

Camera 1 0.0 0.0 -10.0 0.0 

Camera 2 0.0 0.0 15.0 0.75 

Laser’s IMU 0.0 0.0 -90.0 - 

Noise ±i (x10-3) 4.3 3.8 0.7 0.5 

 

 
Fig. 7: Workflow of the analytical study used for computing εRc and εRp. 

B. Results of the analytical study 

Once the position and orientation of the cameras affected by 

the sensors’ noise is calculated, by using Eq. 1 it is possible to 

reproject the coordinates of points Pi
* onto the retinal planes to 

obtain pi
*. The result of the reprojection is shown in Figure 8, 

which represents the reprojection error maps for the two images 

recorded with camera 1 and camera 2.  
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Fig. 8: Reprojection error maps on the retinal plane showing errors on 
the order of 10-2 pixels: a) camera 1 and b) camera 2. 

From Figure 8, it is observed that εRp is on average equal to 

1.3x10-2 pixel and always below the 4x10-2 pixel threshold 

required for stereophotogrammetry. In addition, the mean in-

plane accuracy is equal to 3x10-6 m, while the out-of-plane 

accuracy is equal to 16x10-6 m. It should be noted that because 

𝑹 𝑖
𝑊 is affected by the noise of IMU 1, εRp of camera 1 is not 

zero. 

To complete the characterization of the sensor-based 

calibration approach, a sensitivity analysis was performed by 

considering the effects of increasing noise levels in the IMUs 

and laser. For this reason, an analytical simulation was run by 

considering sensors’ noise level varying in the 1i, 2i, and 3i 
ranges. The reconstruction and reprojection errors were 

evaluated by keeping constant the noise range of one of the two 

sensors and increasing the noise range of the other. For 

example, during the first simulation, the noise floor of the IMU 

was kept constant to 1, while the noise floor of the laser was 

increased from 1 to 3. Then the noise level for the IMU was 

increased to 2 and the operation was repeated. The goal of this 

simulation was to observe how different levels of sensors’ noise 

affect εRp and εRc and how those values compare to the 

thresholds available the literature [39, 43]. Figure 9 provides a 

summary of the sensitivity analysis compared to the theoretical 

thresholds for accurate measurements on a 0.6x0.8 m FOV (i.e., 

dotted lines). In the figure, noise floors generating values to the 

left of or below the dotted lines have reprojection and 

reconstruction errors smaller than the threshold. 

 
Fig. 9: Results of the sensitivity analysis showing that the multi-sensor 
system provides sufficient accuracy for stereophotogrammetry for an 

IMU noise floor up to 3 and laser noise floor up to 2: a) in-plane 
reconstruction error, b) out-of-plane reconstruction error, and c) 
reprojection error. 

From Figure 9a and Figure 9b, it can be observed that εRc is 

more sensitive to degradation in the laser data than in the IMU. 

However, for the majority of the cases simulated, εRc is below 

the thresholds required for accurate measurements. Only when 

the laser noise floor is above 2σ, then εRc is higher than the 

theoretical accuracy limits. For what concerns εRp, this 

parameter is always below the 0.5-pixel limit and only when the 
IMU noise is in the 3σ range the error is above 4x10-2 pixel (see 

Figure 9c).  

V. EXPERIMENTAL VALIDATION OF THE PROPOSED 

SENSOR-BASED CALIBRATION 

A laboratory test was performed to validate the accuracy of the 

sensor-based calibration approach for 3D-DIC when the 
extrinsic parameters of a stereovision systems are extracted 

using the proposed multi-sensor board. Figure 10a shows a 

prototype of the proposed system that consists of two 2 

Megapixel Basler puA1600-60uc cameras fitted with 12 mm 

lenses, three LPMS IG1 IMUs, one M88B laser distance sensor, 

and two Raspberry Pi 4. The Raspberry Pi’s are used for data 

synchronization and acquisition. Because the settings selected 

for the IMUs disable the magnetometers (see Section III.A), the 

sensors do not measure angles in the ENU global coordinate 

system. Instead, the coordinate system depends on the initial 

position of each individual IMU. For this reason, before 
measuring the extrinsic parameters, all IMUs must be initialized 

to a user-defined global coordinate system using the calibration 

zeroing block shown in Figure 10a.  The block provides a 

perpendicular square edge that enables the pitch and yaw 

signals of the IMUs to be zeroed prior to measurement and 

thereby share the same coordinate system when moved.   

 To validate the accuracy of the multi-sensor system, a 3D-

DIC measurement was performed using the setup shown in 

Figure 10b. The experiment replicates the setup shown in 

Figure 6 used for the analytical study with two cameras placed 

in front of a ~0.6 x 0.8 m planar object, which was moved in 

the negative x-direction from zero to 1x10-2 m at increments of 
0.5x10-3 m. The planar object is speckled with a random black-

and-white pattern to allow correlating the left and right images 

and performing 3D-DIC. During the test, five images were 

acquired with both cameras for each displacement location of 

the planar object to allow for data averaging. 

 
Fig. 10: Experimental validation of the sensor-based calibration method: 
a) components of the system, and b) setup used for back-to-back 

comparison of 3D-DIC measurements. 

 Before performing the 3D-DIC measurement, the two 

cameras were calibrated using two different procedures. The 

first one was a traditional image-based calibration approach 

where several images of a calibration object (i.e., checkerboard) 

were collected with both cameras simultaneously to extract the 

intrinsic and extrinsic parameters of the stereovision system. 

The second approach is based on the developed multi-sensor 
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system to measure the cameras’ relative orientation and 

position and extract the extrinsic parameters and collect two 

individual sets of pictures of a calibration object to determine 

the intrinsic parameters of the system. It should be noted that 

determining the intrinsic parameters for the sensor-based 
calibration is a one-time operation and it can be performed at 

any time as long the focal length, focus, and diaphragm aperture 

of the two cameras does not change during a test. The extrinsic 

parameters were computed by recording twenty seconds of data 

from the IMUs and laser sensor, while the DH transformations 

[38] were used to convert the computed distance from the laser 

frame of reference into camera 1 frame of reference. The 

intrinsic (i.e., optical centers cx and cy and focal length fx and fy) 

and extrinsic parameters (i.e., angles αi, βi, γi, and the 

components of the translation vector T) obtained with the 

traditional image-based calibration and the proposed sensor-

based approach are summarized in Table II.  
 

TABLE II 
 CAMERA PARAMETERS COMPUTED WITH TRADITIONAL AND SENSOR-

BASED CALIBRATIONS 

  Traditional Sensor-based 

  Cam 1 Cam 2 Cam 1 Cam 2 

Intrinsic 

Parameters 

cx (pixel) 788.13 825.29 785.85 827.71 

cy (pixel) 587.68 562.48 588.93 560.82 

fx (pixel) 2812.70 2824.30 2809.98 2822.10 

fy (pixel) 2803.20 2811.80 2800.20 2809.70 

Extrinsic 

Parameters 

(Relative to 

Camera 1) 

α  (°) -0.2708 -0.0290 

β (°) 0.8319 0.7530 

γ (°) 19.9886 20.4916 

TX  (mm) -627.09 -628.17 

TY  (mm) -3.8106 -6.3882 

TZ  (mm) 107.47 109.68 

 

 It can be observed that the intrinsic parameters differ on 

average by ~2 pixels, while the difference in the extrinsic 

parameters is on the order of millimeters for T and fractions of 

a degree for the Euler angles when the two methods are 

considered. Once the intrinsic and extrinsic parameters are 

determined, two calibration files are generated and used to 

perform 3D-DIC with the open-source software Digital Image 

Correlation Engine (DICe) [46]. To begin, five images were 

collected without moving the planar object to determine the 
noise floor of the measurement (see Figure 11a and Figure 

11b).  

 
Fig. 11: 3D-DIC noise floor when stereo images were processed using 

the calibrations obtained with the two methods:  a) traditional calibration, 
b) sensor-based calibration, and c) histograms showing the noise floor 
distribution with the two calibrations, where the ideal value is zero. 

 In Figure 11c, the displacement histograms showed a high 

amount of overlap: the K-L Divergence [47] of the two 

histograms is 3.25, demonstrating a good agreement in the noise 

floor of the 3D-DIC measurement when the two calibration 

methods were used. In particular, the in-plane noise floor of the 

measurement ranges between -20x10-6 m and 40x10-6 m for 

both measurements. In addition, the mean value is equal to 

11.6x10-6 m when the sensor-based calibration is considered 
compared to a value of 11.4x10-6 m when the traditional 

calibration is used. To finish, the planar object is displaced 

horizontally towards the left and the displacement results are 

shown in Figure 12. 

 
Fig. 12: Back-to-back comparison of 3D-DIC measurements obtained 
from the two calibrations: a) average measured displacements’ values 
computed at each stage and b) average displacements’ absolute 

difference. 

Figure 12a shows the average displacement values 
computed by each method compared to the nominal 

displacement applied to the planar object. As observed, both 

methods yield a linear trend with the sensor-based approach 

showing an increasing difference between the measured values 

and the nominal ones, as shown in Figure 12b. The relative 

difference in the displacement computed when the 3D-DIC 

analysis is performed using the sensor-based calibration and the 

one computed using the traditional method is lower than 3% 

(i.e., 260 μm over a displacement of 10 mm) for all 

displacements, confirming the quality of the proposed multi-

sensor system. 

VI. CONCLUSIONS 

This paper describes the characterization of a multi-sensor 

system for extracting the extrinsic parameters of a pair of 

stereo-cameras necessary for performing accurate 

stereophotogrammetry calibration as an alternative to the 

traditional image-based procedure. The proposed system is 

based on one laser sensor to measure the distance between the 

cameras, and two IMUs to measure the roll, pitch, and yaw 
angles of the two cameras. A third IMU is also used to 

overcome the spatial limitations of previously proposed sensor-

based calibration methods. Laboratory tests performed to 

characterize the noise floor of the selected sensors have shown 

that the precision of the IMUs is on the order of 10-3 degree, 

while the precision of the laser is ~5x10-4 m. The IMU and 

laser’s noise floors were then used in an analytical study to 

understand the effect of sensor noise on the performance 

degradation of the sensor-based calibration procedure. A 

simulation of a 3D-DIC measurement on a 0.6x0.8 m planar 

object showed how the sensor-based method effectively 

calibrates stereovision cameras yielding reprojection and 
reconstruction errors below the threshold considered acceptable 
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for stereophotogrammetry. An experimental evaluation was 

also performed by comparing the results of a 3D-DIC 

measurement obtained when the stereo cameras are calibrated 

using the traditional image-based and the proposed sensor-

based calibration. The results of the back-to-back comparison 
show that the multi-sensor system developed in this study can 

accurately compute the extrinsic parameters and compute the 

rigid displacements of a speckled object with an error below 3% 

when compared to measurements obtained from a traditional 

calibration. Because the multi-sensor system allows recording 

the cameras’ relative position every time an image is acquired, 

each image has its own calibration file, making the whole 

process insensitive to the cameras’ relative movement and 

independent of the size of the targeted structure. As a result, the 

multi-sensor board described in this paper can extend the 

applicability of 3D-DIC and open the door for an expedited 

approach for long-term monitoring of large-scale structures. 
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