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Abstract—Stereophotogrammetry is a well-recognized technique for
structural health monitoring. Before performing any quantitative
stereophotogrammetry measurement, the cameras must be calibrated
to obtain the intrinsic and extrinsic parameters of the stereovision
system. However, when large-sized structures are to be monitored, the
calibration process is challenging and limits the use of
stereophotogrammetry. In this research, a sensor-based calibration
method for determining the extrinsic parameters of a stereovision
system is presented and validated. A multi-sensor board has been
developed that synchronizes inertial measurement units (IMUs) and a
laser on a single board computer to measure the spatial orientation and
the distance of two paired cameras and compute the extrinsic
parameters of the stereovision system. The effectiveness of the sensor-
based calibration is evaluated through both analytical studies to

Extrinsic parameters of the stereovision system

quantify the effects of performance degradation caused by the sensors’ noise as well as laboratory tests. Results show
that the sensor-based calibration is effective in quantifying displacement with errors below 3% when compared to
measurements performed using a stereovision system calibrated with the traditional image-based procedure.

Index Terms— Camera calibration, digital image correlation, inertial measurement unit, laser, stereophotogrammetry.

|.  Introduction

system needs to be calibrated to obtain the relative spatial

TEREOPHOTOGRAMMETRY has become a popular tool
for non-destructive inspection and structural health
monitoring thanks to progress made in image-processing
algorithms [1, 2] and advantages that this approach provides to
overcome some of the limitations of traditional contact-based
methods (e.g., discrete and limited number of measurement
points, sensor power requirements and data transmission,
installation challenges, and durability) [3, 4]. To perform
stereophotogrammetry measurements using techniques such as
three-dimensional digital image correlation (3D-DIC), a set of
image pairs is taken during an experiment with two
synchronized cameras. The first pair of images is used as the
reference to which all subsequent photos are compared [5]. By
tracking the pixel motion of each feature identified in the image
set, the in-plane and out-of-plane strain as well as the shape,
deformation, and displacement of the targeted structure can be
measured [6]. Over the years, stereophotogrammetry has been
used successfully to monitor several types of structures in the
civil [7-9], transportation [10, 11], mechanical [12], and energy
[13] engineering domains.
Before performing stereophotogrammetry, the stereovision
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position (i.e., extrinsic parameters) of the two cameras [14, 15]
and account for the internal distortion of each lens (i.e., intrinsic
parameters) [16]. For this reason, a sequence of images of a
calibration object containing optical targets or a pattern whose
features or locations are well-known is captured with the
cameras at different positions and orientations [17] prior to
performing calibration using a method described by Zhang [18].
By identifying the location of corresponding points from the
calibration object in both images, the extrinsic and intrinsic
parameters are extracted using the bundle adjustment [19].
Some examples for determining the intrinsic and extrinsic
parameters include the use of 3D calibration objects such as
multiplanar targets [20], cylinders [21], scale bars [22], active
phase targets [23], single feature points [24, 25]. While those
approaches proved to be effective at calibrating a stereovision
system, once the last image of the calibration object is recorded,
the cameras’ relative position cannot change, otherwise a loss
of calibration will occur. For this reason, cameras are mounted
to a rigid bar or a set of fixed camera mounts to prevent any
relative motion. Furthermore, to generate a calibrated
measurement volume, the dimensions of the calibration object
need to be comparable with the size of the system being tested.
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For example, for a field of view (FOV) larger than 3 m, a large-
area calibration procedure is performed that requires building a
customized calibration object which can make the process
lengthy, complicated, and requires multiple person-hours of
work [26]. Alternatively, the cameras can also be calibrated
using a set of scale bars on the object of interest, however if the
object is large, the scale bars can be difficult to measure.
Regardless, for both approaches, if the cameras are moved, the
calibration will contain gross spatial measurement errors.

The difficulties involved in the traditional image-based
calibration =~ summarized above make  quantitative
stereophotogrammetry measurements on large-sized structures
difficult or impractical and provide the motivation for this
research. In this study, a multi-sensor system with three inertial
measurement units (IMUs) and a laser sensor has been
developed and installed on the cameras of a stereovision system
to determine their extrinsic parameters. The accuracy of the
proposed system is validated analytically to quantify the effects
of performance degradation caused by the IMU and laser
sensors’ noise. In addition, the efficacy of the proposed system
in performing 3D-DIC measurements is compared with the
results obtained from a stereovision system calibrated using a
traditional image-based procedure.

In this paper, the mathematical foundation of
stereophotogrammetry calibration and how the framework is
extended for sensor-based calibration are reviewed within
Section II. Section III describes the experiments performed to
characterize the noise floor of the IMU and laser sensors used
to extract the extrinsic parameters. The results of the analytical
simulation used to quantify the effects of performance
degradation caused by the sensors’ noise are summarized in
Section IV. Section V presents the back-to-back comparison
between a measurement performed using the sensor-based
calibration and a 3D-DIC measurement performed using
traditional image-based calibration. Finally, with Section VI
future work and conclusions are presented. To the authors’ best
knowledge, the work presented in this paper is the first
successful attempt at computing the full set of extrinsic
parameters of a stereovision system using only data extracted
from sensors, without having to rely on images.

[I. PRINCIPLES OF STEREOPHOTOGRAMMETRY CALIBRATION

Photogrammetry is based on the pinhole camera model that
relies on the projection of a 3D point P with coordinates P =
(Py, Py, P.)Ty into a 2D point p = (p,, py)'T in the pixel
coordinates on the camera’s retinal plane [27, 28]. This 3D-to-
2D transformation requires a knowledge of the camera intrinsic
and extrinsic parameters as expressed in:

Du fr 0 Ryy ny Ry, Ty i’f
[pv] = [O fy Cy Ryx Ryy RJ/Z Ty Py (1)
1 0 0 1HRu Ry R T, ||

where py and py are the pixel coordinates of point p, f; and f;
are intrinsic parameters such that f; = F-S; and f, = F-S), where
F is the camera’s focal length in mm and S; and S, are the
sensors’ scale factors in pixels/mm in the x and y directions,

respectively. In Eq. 1, ¢: and ¢, are the optical center of the
image sensor, 6 the skew factor of the image, and R;; and 7; the
components of the rotation matrix R and the translation vector
T in the global frame of reference #[16]. While R and T define
the extrinsic parameters of the camera, £, f;, cx, ¢y, and 6 define
the camera’s intrinsic parameters.

When a stereovision system is considered, two pinhole
cameras look at the same scene from slightly different
perspectives. The 3D point P is projected to two 2D points p;,
one for each camera’s retinal plane [i.e., p; = (pus, pvi) and p, =
(Pu2, p2)]. To perform the 3D reconstruction of a point P in W,
Eq. 2 can be used when the projections of point P in the retinal
planes p; and p; are known:

Pgt = Ry Pg. = RY[(M"M)™' M" b] 2

where PY. is the reconstructed point in space in the global
frame of reference W, RYis the rotation matrix of camera 1 in
the global frame of reference, and PZ, is the reconstructed point
in space in the frame of reference of camera 1. As expressed in
Eq. 2, P3, can be calculated by determining M and b using a
linear least squares method. Both M and b are function of the
intrisic and extrinsic parameters as defined by equation (9.2) in
[29].

Because the coordinates of point P are triangulated using its
projections p; and p», it is fundamental to know the relative
position, orientation, and settings of the two cameras by
determining their extrinsic and intrinsic parameters. For a
stereovision system, intrinsic and extrinsic parameters can be
decoupled and computed indipendently. In particular, the
measurement of the intrinsic parameters for two cameras
focused at the hyper-focal distance is a one-time operation and
its complexity is independent of the FOV of the targeted object.
For this reason, this research focuses on developing a more
time-efficient way to estimate the extrinsic parameters and
potentially saving hours of work when stereophotogrammetry
is performed on large-scale structures (e.g, greater than ~3 m).

To determine R and T, traditional calibration requires taking
pictures of a calibration object. Because the complexity of this
operation is function of the FOV of the targeted object, novel
approaches that rely on sensors have been proposed. However,
those approaches still require pictures to estimate some of the
extrinsic parameters [30] or evaluate only a subset of them
without requiring pictures [31, 32]. A more recent solution
involves creating a virtual calibration target having the size of
the desired FOV after measuring a subset of the extrinsic
parameters with two IMUs and three laser sensors attached to
the cameras [33]. Using a virtual calibration target still requires
a new calibration every time cameras are moved. In addition,
the approach described in [33] constrains the cameras’ baseline
to be parallel to the ground, limiting the flexibility of the
method. The solution presented in this paper relies on a multi-
sensor system which includes three IMUs and a laser sensor
embedded on two RaspberryPi 4 installed on the cameras of the
stereovision system (see Figure 1a). The core components of
the multi-sensor board include:

e an ultra-low noise 9-axis LPMS-IGl IMU by LP-

Research that includes a 3-axis gyroscope, a 3-axis
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accelerometer, and a 3-axis magnetometer with the
possibility to i) use a Madgwick [34]or a Kalman filter,
ii) activate/deactivate the magnetometer, and iii)
activate/deactivate the gyroscope’s auto-calibration
functionality to remove the yaw’s drift [35];

e a M88B laser module by JRT Meter Technology [36];

e a2 Megapixel Basler puA1600-60uc camera with pixel
size of 4.5x4.5 um [37];

e a Master Station that takes care of the

synchronization and data acquisition.

As shown in Figure 1b, IMU 1 and IMU 2 are used to
measure the cameras’ orientation (i.e., roll o;, pitch £, and yaw
y; of camera 1 and camera 2), while IMU 3 and the laser evaluate
the distance between the cameras. The components of the
rotation matrix R of the i’ camera can be calculated in the
global frame of reference W from the angles a;, i, and y;
measured with IMU 1 and IMU 2 using:

se€nsor

RY = R,(y) Ry(B) Ry(a;) =
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Fig. 1. Proposed multi-sensor board: a) block-diagram showing
components and signal flow and b) schematic representation of the
developed sensor-based calibration method used to measure the
extrinsic parameters.

By using IMU 3 and the laser, the translation vector TY, is
determined in spherical coordinates [p, y3, B5]7, where p is the
distance measured with the laser, y; is the laser’s azimuth and
B3 is the lasers’ elevation. As a result, T¥% can then be expressed
in Cartesian coordinates using:

p sin(y3) cos(B3)
T1; = |p sin(ys) cos(Bs) “4)
pcos(ys)

The use of IMU 3 and the laser allows performing
stereophotogrammetry without any limitations on the position
of camera 2 in the 3D space, thus removing the constraint of
requiring a rigid connection between the two cameras. As
opposed to the approach presented in [33], in the current
approach the baseline of the two cameras does not need to be
parallel to the ground. Because all IMUs evaluate the Euler
angles in the global frame of reference W, TY, must be
expressed in camera 1’s frame of reference as T?, to be used for
stereophotogrammetry. This can be done with:

Ry = RY)"RY

where (RY)T is the transpose of the rotation matrix that
identifies the orientation of camera 1 in W (i.e., RY) computed
from the IMU 1 data using Eq. 3, RY the rotation matrix
calculated from the data measured by IMU 2 in W, and R} the
rotation matrix of camera 2 in the frame of reference of camera
1. It should be noted that Eq. 5 describes a case in which the
coordinate systems of all sensors attached to camera 1 are
centered in the camera’s frame of reference. The decision to
position the origin of camera 1 in the origin of /¥ and the origin
of the laser in the origin of camera 1 is to simplify the
computational load. In contrast, the coordinate system of IMU
2 corresponds to the frame of reference of camera 2. When
working with actual sensors with non-negligible physical sizes,
the relative translations and rotations between the different
sensors can be calculated using a chain of homogeneous
transformations computed with the Denavit-Hartenberg (DH)
parameters [38]: as the camera 1-to-laser assembly includes a
pan-tilt mechanism and is not unlike a robotic arm, the use of
equations pertaining to robotics is justified. Once the extrinsic
parameters are measured, Eq. 2 is used to reconstruct the 3D
position of point P given its projections in the retinal plane of
the two cameras.

I1l. EXPERIMENTAL CHARACTERIZATION OF THE MULTI-
SENSOR BOARD

By using the setup shown in Figure 1, it is possible to extract
the extrinsic parameters of the stereovision system. Because
those parameters are affected by the sensors’ noise, laboratory
experiments were performed to quantify the effect of the IMUs
and laser’s noise floor on the accuracy of the calibration. Figure
2 shows the setups used for characterizing the sensors while the
results of the tests are discussed in this section.

A. IMU characterization

The experiments performed on the LPMS-IG1 consisted of
static measurements to determine the noise floors of the IMU at
rest when different configurations (i.e., combinations of
enabled/disabled magnetometer and gyroscope) are used.
During the tests, the IMU was mounted on a heavy block (see
Figure 2a) to minimize the effect of ambient vibrations, data
was collected for five minutes at a sampling rate of 100 Hz, and
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the test was performed 12 times for repeatability. The five-
minute interval was chosen as a reasonable period for allowing
statistical analysis of the sampled data, considering that a
significantly shorter time interval (e.g., 2 seconds) is enough to
extract the extrinsic parameters of the stereovision system for
calibration. Eight IMU configurations were tested, but only two
are shown in this paper for the sake of brevity.

Reflective target

Fig. 2. Experimental setup for the characterization tests of the multi-
sensor board: a) IMU setup to identify the noise floor and b) laser setup
comparing to a reference laser measure and tape measure.

In particular, Configuration #1 had the auto-calibration
enabled and magnetometer disabled, Configuration #2 had the
auto-calibration and magnetometer both enabled. A complete
description of the eight configurations is shown in [39]. The
comparison between the two selected configurations in terms of
signal standard deviation (o) is shown in Figure 3, which plots
the angular outputs of the IMU over time.
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Fig. 3: Comparison of two different IMU’s settings on the accuracy of

the estimated angles: a) roll, b) pitch, and c) yaw, for Configurations 1
and 2.

It should be noted that the first 100 seconds of the
measurement have been omitted for a better comparison
between the two selected configurations, as the magnetometer
used in Configuration #2 takes time to orient around the East-
North-Up (ENU) frame of reference. The results in Figure 3
show how the magnetometer introduces extra noise in the yaw
angle estimation most likely due to electromagnetic
interference and orthogonality errors caused by the assembly of
the sensor. In particular, the auto-calibration allows for a drift
of 4.5x10* deg over five minutes, as opposed to a value of
~5x10? deg when the magnetometer is enabled. Because of the
superior performance of the IMU when no magnetometer is
used, the noise floor ranges determined for Configuration #1
that represents the precision of the measurement (i.e., 6, =
+4.32x103 deg.; op = +£3.83x107 deg.; and o, = +£0.75x107
deg.), will be used as error ranges to analyze how the accuracy
of the calibration is affected by the IMU noise.

B. Laser characterization

A comparison was performed with a commercially available
laser measure GLM400C by Bosch to quantify the accuracy of
the M88B laser sensor embedded on the multi-sensor board.
The two devices were mounted on a support placed on a slider
rail pointing perpendicular towards a reflective target to make
sure both sensors were able to detect the retro reflected spot (see
Figure 2b). During the test, the support with the two laser
sensors was moved away from the reflective target at ~0.5 m
increments. For each distance, twenty-five measures were taken
with each sensor. The data collected with the M88B were
averaged at each distance and used to determine the noise floor
of the measurement by computing the average standard
deviation between the distance calculated using the M88B laser
ant the regression line of the points measured using the

reference GLM400C (see Figure 4).
1.0 : : . ‘ .

0.0

Residuals from the regression (mm)

-1.0

0 500 1000 1500 2000 2500 3000 3500 4000
Reference Distance (mm)
Fig. 4: Residuals of the M88B laser from the regression line calculated

from the distances measured using the reference GLM400C.

From the data shown in Figure 4, it is estimated that the noise
floor of the M88B laser, Giaser is equal to 4.6x10* m when
compared to the GLM400C laser used as a reference. For this
case, the standard deviation was calculated using the [1/(N-1)]
definition and its value modified using the unbiased estimator
correction factor to account for a sample size of N=6. Similarly
to what is done for the results obtained for the IMU, Gjaser Will
be used as the error range to analyze how the accuracy of the
calibration is affected by inaccuracies in the laser
measurements.
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IV. ANALYTICAL EVALUATION OF SENSORS’ NOISE ON
CALIBRATION ACCURACY

An analytical study was performed to quantify the effect of the
sensors’ noise floor on the extrinsic parameters of a stereovision
system. The accuracy of the sensor-based calibration is
evaluated in terms of reconstruction error ez and reprojection
error ggp,. Figure 5 provides a graphical representation of ez and
erp for easier visualization. According to the literature, &g,
below 0.5 pixels [40-43] and &g, equal to ~1/100 pixel in the in-
plane direction and ~1/30 pixel in the out-of-plane direction
[44] are acceptable for most stereophotogrammetry
measurements. As discussed in Section II, when a point P with
known 3D coordinates is projected onto the cameras’ retinal
planes, two points p; and p, are generated.

P=_—~" & Y P=(P.P,.PJly
(Pl sl s P ‘
i “~Retinal plane
u,
v,
_: {“Rp‘ I 4.
¢ G,

Fig. 5: Representation of the reconstruction and reprojection errors
caused by the IMU and laser’s noise affecting the extrinsic parameters.

The pixel coordinates (p.:, pvr) and (pu2, pv2) of those points,
combined with the orientation and position of the two cameras
obtained from the sensors’ data are used to reconstruct the 3D
coordinates of point P* using Eq. 2. Because of errors in the
reconstruction of the cameras’ orientation and positions caused
by noise in the IMU and laser as well as lens distortion, point
P" will be offset from the true point P by a factor equal to &,
Once P" is calculated, it is reprojected onto the cameras’ retinal
plane using the same estimated extrinsic parameters. This
reprojection yields points p;* and p,*, which can be compared
with the corresponding true values p; and p,. The Euclidean
distance in pixel between these two sets of data is &g, [45].

A. Details of the analytical study

To evaluate the feasibility of the proposed sensor-based
calibration and understand the effect of sensor’s noise on
performance degradation, a stereovision system having a pair
of 2 Megapixel Basler puA1600-60uc cameras fitted with 12.5
mm focal length lenses was considered for the analytical
simulation. As shown in Figure 6, the cameras were set to have
a separation angle y;+ y> of 25°, base distance p equal to 0.75
m, and a working distance of 1.8 m. The cameras were assumed
to be planar, thus with a and f equal to 0° (i.e., no roll or pitch).
The simulated stereovision system results in a FOV of 0.6 x 0.8
m, where each pixel on the image corresponds to ~1.4 x10~ m
in the global frame of reference. Given the specification of the
cameras and the obtained FOV, a theoretical in-plane accuracy
of ~14 x10® m and an out-of-plane accuracy of ~46 x10° m is
expected. Those values are used as a reference for ez and &g,
when the extrinsic parameters are calculated using the sensors’
data.

Camera 2

as®
,%/';\cs c
,.x/é'\%u)

c

Fig. 6: Stereovision system setup pointing at a planar object used to
simulate a 3D-DIC measurement and validate the effect of sensor’s
noise on the accuracy of the calibration.

In the simulation, the i) intrinsic parameters of the
stereovision system and ii) the coordinates of the points P; on
the surface of the targeted planar object were assumed to be
perfectly known and with zero variance noise. The extrinsic
parameters were considered to be affected by the random noise
of the IMU and laser sensors used to measure the position and
orientation of the stereovision system. To generate a series of
camera parameters and reconstruct the coordinates of points P;”,
100 readings from the IMUs and ten from the laser were
generated by randomly varying o, 5, y and p in the noise range
+o; calculated in Section III (i.e., G4, Op, Oy, Oluser). TO provide
a statistically significant sample, this operation was repeated
100 times. A total of 10,000 IMU and 1,000 laser values were
then used in Egs. 3 and 4 to compute the extrinsic parameters
affected by noise and obtain P;* by solving Eq. 2. Table I
summarizes the orientations and positions of cameras 1 and 2
used in the analytical study and the ranges in which the extrinsic
parameters were varied, while Figure 7 shows the workflow
used to compute &g and &gy

TABLE |
REFERENCE VALUES OF CAMERA ORIENTATION AND POSITION AND NOISE
RANGES USED IN THE ANALYTICAL STUDY

a(®) BO) () o (m)
Camera 1 0.0 0.0 -10.0 0.0
Reference Camera 2 0.0 0.0 15.0 0.75
Laser’s IMU 0.0 0.0 -90.0 -
Noise +o; (x107) 43 3.8 0.7 0.5
a=0%p=0°
1=25%p=0.75m
(from simulated setup) Tr‘l':*vul‘r;g;j‘ll':*vﬂl 'ﬁfﬁ RY: R, and T," P from (2)
¢ 15T ] [
G,. Gy, G, O] (randomly generated) (from (3) and (4)) py'and py’ from (1)
i Ops Oy Tlggy S
(from characterization tests)

Fig. 7: Workflow of the analytical study used for computing &r. and &gp.

B. Results of the analytical study

Once the position and orientation of the cameras affected by
the sensors’ noise is calculated, by using Eq. 1 it is possible to
reproject the coordinates of points P;" onto the retinal planes to
obtain p;". The result of the reprojection is shown in Figure 8,
which represents the reprojection error maps for the two images
recorded with camera 1 and camera 2.
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Fig. 8: Reprojection error maps on the retinal plane showing errors on
the order of 1072 pixels: a) camera 1 and b) camera 2.

From Figure 8, it is observed that ¢z, is on average equal to
1.3x10?% pixel and always below the 4x10? pixel threshold
required for stereophotogrammetry. In addition, the mean in-
plane accuracy is equal to 3x10°® m, while the out-of-plane
accuracy is equal to 16x10° m. It should be noted that because
RY is affected by the noise of IMU 1, &g, of camera 1 is not
zero.

To complete the characterization of the sensor-based
calibration approach, a sensitivity analysis was performed by
considering the effects of increasing noise levels in the IMUs
and laser. For this reason, an analytical simulation was run by
considering sensors’ noise level varying in the 1o;, 20;, and 3c;
ranges. The reconstruction and reprojection errors were
evaluated by keeping constant the noise range of one of the two
sensors and increasing the noise range of the other. For
example, during the first simulation, the noise floor of the IMU
was kept constant to 1o, while the noise floor of the laser was
increased from 1 to 3o. Then the noise level for the IMU was
increased to 2c and the operation was repeated. The goal of this
simulation was to observe how different levels of sensors’ noise
affect er, and ez. and how those values compare to the
thresholds available the literature [39, 43]. Figure 9 provides a
summary of the sensitivity analysis compared to the theoretical
thresholds for accurate measurements on a 0.6x0.8 m FOV (i.e.,
dotted lines). In the figure, noise floors generating values to the
left of or below the dotted lines have reprojection and
reconstruction errors smaller than the threshold.

In-plane &, Out-of-plane g, Egp
m (x 106) m(x 109) Pixel (x 102)
|| HEE e | _aaaa— |
510 1520 25 30 20 60 100 140 180 15 25 35

IMU ¢

2 2
Lasero Lasero

2
Lascro

(a) (b (c)

Fig. 9: Results of the sensitivity analysis showing that the multi-sensor
system provides sufficient accuracy for stereophotogrammetry for an
IMU noise floor up to 3o and laser noise floor up to 2¢: a) in-plane
reconstruction error, b) out-of-plane reconstruction error, and c)
reprojection error.

From Figure 9a and Figure 9b, it can be observed that . is
more sensitive to degradation in the laser data than in the IMU.

However, for the majority of the cases simulated, ez is below
the thresholds required for accurate measurements. Only when
the laser noise floor is above 20, then &g. is higher than the
theoretical accuracy limits. For what concerns &gy, this
parameter is always below the 0.5-pixel limit and only when the
IMU noise is in the 3o range the error is above 4x107 pixel (see
Figure 9c¢).

V. EXPERIMENTAL VALIDATION OF THE PROPOSED
SENSOR-BASED CALIBRATION

A laboratory test was performed to validate the accuracy of the
sensor-based calibration approach for 3D-DIC when the
extrinsic parameters of a stereovision systems are extracted
using the proposed multi-sensor board. Figure 10a shows a
prototype of the proposed system that consists of two 2
Megapixel Basler puA1600-60uc cameras fitted with 12 mm
lenses, three LPMS IG1 IMUSs, one M88B laser distance sensor,
and two Raspberry Pi 4. The Raspberry Pi’s are used for data
synchronization and acquisition. Because the settings selected
for the IMUs disable the magnetometers (see Section II1.A), the
sensors do not measure angles in the ENU global coordinate
system. Instead, the coordinate system depends on the initial
position of each individual IMU. For this reason, before
measuring the extrinsic parameters, all IMUs must be initialized
to a user-defined global coordinate system using the calibration
zeroing block shown in Figure 10a. The block provides a
perpendicular square edge that enables the pitch and yaw
signals of the IMUs to be zeroed prior to measurement and
thereby share the same coordinate system when moved.

To validate the accuracy of the multi-sensor system, a 3D-
DIC measurement was performed using the setup shown in
Figure 10b. The experiment replicates the setup shown in
Figure 6 used for the analytical study with two cameras placed
in front of a ~0.6 x 0.8 m planar object, which was moved in
the negative x-direction from zero to 1x10 m at increments of
0.5x107 m. The planar object is speckled with a random black-
and-white pattern to allow correlating the left and right images
and performing 3D-DIC. During the test, five images were
acquired with both cameras for each displacement location of
the planar object to allow for data averaging.

_ — -

Fig. 10: Experimental validation of the sensor-based calibration method:
a) components of the system, and b) setup used for back-to-back
comparison of 3D-DIC measurements.

Before performing the 3D-DIC measurement, the two
cameras were calibrated using two different procedures. The
first one was a traditional image-based calibration approach
where several images of a calibration object (i.e., checkerboard)
were collected with both cameras simultaneously to extract the
intrinsic and extrinsic parameters of the stereovision system.
The second approach is based on the developed multi-sensor
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system to measure the cameras’ relative orientation and
position and extract the extrinsic parameters and collect two
individual sets of pictures of a calibration object to determine
the intrinsic parameters of the system. It should be noted that
determining the intrinsic parameters for the sensor-based
calibration is a one-time operation and it can be performed at
any time as long the focal length, focus, and diaphragm aperture
of the two cameras does not change during a test. The extrinsic
parameters were computed by recording twenty seconds of data
from the IMUs and laser sensor, while the DH transformations
[38] were used to convert the computed distance from the laser
frame of reference into camera 1 frame of reference. The
intrinsic (i.e., optical centers ¢, and ¢, and focal length f; and f,)
and extrinsic parameters (i.e., angles a;, fi, 7, and the
components of the translation vector T) obtained with the
traditional image-based calibration and the proposed sensor-
based approach are summarized in Table II.

TABLE Il
CAMERA PARAMETERS COMPUTED WITH TRADITIONAL AND SENSOR-
BASED CALIBRATIONS

Traditional Sensor-based

Cam 1 Cam 2 Cam 1 Cam 2

o (pixel)  788.13 825.29 785.85 827.71

Intrinsic cy (pixel)  587.68 562.48 588.93 560.82

Parameters  f; (pixel) 2812.70  2824.30 2809.98  2822.10

/v (pixel)  2803.20  2811.80 2800.20  2809.70
a (°) -0.2708 -0.0290
Extrinsic £ 0.8319 0.7530
Parameters y(°) 19.9886 20.4916
(Relative to 7y (mm) -627.09 -628.17
Camera 1) Ty (mm) -3.8106 -6.3882
T, (mm) 107.47 109.68

It can be observed that the intrinsic parameters differ on
average by ~2 pixels, while the difference in the extrinsic
parameters is on the order of millimeters for T and fractions of
a degree for the Euler angles when the two methods are
considered. Once the intrinsic and extrinsic parameters are
determined, two calibration files are generated and used to
perform 3D-DIC with the open-source software Digital Image
Correlation Engine (DICe) [46]. To begin, five images were
collected without moving the planar object to determine the
noise floor of the measurement (see Figure 11a and Figure
11b).
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Fig. 11: 3D-DIC noise floor when stereo images were processed using
the calibrations obtained with the two methods: a) traditional calibration,
b) sensor-based calibration, and c) histograms showing the noise floor
distribution with the two calibrations, where the ideal value is zero.

In Figure 11c, the displacement histograms showed a high
amount of overlap: the K-L Divergence [47] of the two
histograms is 3.25, demonstrating a good agreement in the noise

floor of the 3D-DIC measurement when the two calibration
methods were used. In particular, the in-plane noise floor of the
measurement ranges between -20x10° m and 40x10° m for
both measurements. In addition, the mean value is equal to
11.6x10° m when the sensor-based calibration is considered
compared to a value of 11.4x10° m when the traditional
calibration is used. To finish, the planar object is displaced
horizontally towards the left and the displacement results are
shown in Figure 12.
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Fig. 12: Back-to-back comparison of 3D-DIC measurements obtained
from the two calibrations: a) average measured displacements’ values
computed at each stage and b) average displacements’ absolute
difference.

Figure 12a shows the average displacement values
computed by each method compared to the nominal
displacement applied to the planar object. As observed, both
methods yield a linear trend with the sensor-based approach
showing an increasing difference between the measured values
and the nominal ones, as shown in Figure 12b. The relative
difference in the displacement computed when the 3D-DIC
analysis is performed using the sensor-based calibration and the
one computed using the traditional method is lower than 3%
(i.e., 260 pm over a displacement of 10 mm) for all
displacements, confirming the quality of the proposed multi-
sensor system.

VI. CONCLUSIONS

This paper describes the characterization of a multi-sensor
system for extracting the extrinsic parameters of a pair of
stereo-cameras  necessary  for  performing  accurate
stereophotogrammetry calibration as an alternative to the
traditional image-based procedure. The proposed system is
based on one laser sensor to measure the distance between the
cameras, and two IMUs to measure the roll, pitch, and yaw
angles of the two cameras. A third IMU is also used to
overcome the spatial limitations of previously proposed sensor-
based calibration methods. Laboratory tests performed to
characterize the noise floor of the selected sensors have shown
that the precision of the IMUs is on the order of 10~ degree,
while the precision of the laser is ~5x10* m. The IMU and
laser’s noise floors were then used in an analytical study to
understand the effect of sensor noise on the performance
degradation of the sensor-based calibration procedure. A
simulation of a 3D-DIC measurement on a 0.6x0.8 m planar
object showed how the sensor-based method effectively
calibrates stereovision cameras yielding reprojection and
reconstruction errors below the threshold considered acceptable
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for stereophotogrammetry. An experimental evaluation was
also performed by comparing the results of a 3D-DIC
measurement obtained when the stereo cameras are calibrated
using the traditional image-based and the proposed sensor-
based calibration. The results of the back-to-back comparison
show that the multi-sensor system developed in this study can
accurately compute the extrinsic parameters and compute the
rigid displacements of a speckled object with an error below 3%
when compared to measurements obtained from a traditional
calibration. Because the multi-sensor system allows recording
the cameras’ relative position every time an image is acquired,
each image has its own calibration file, making the whole
process insensitive to the cameras’ relative movement and
independent of the size of the targeted structure. As aresult, the
multi-sensor board described in this paper can extend the
applicability of 3D-DIC and open the door for an expedited
approach for long-term monitoring of large-scale structures.
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