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ABSTRACT: Atomically dispersed catalysts such as single-atom
catalysts have been shown to be effective in selectively oxidizing
methane, promising a direct synthetic route to value-added
oxygenates such as acetic acid or methanol. However, an important
challenge of this approach has been that the loading of active sites
by single-atom catalysts is low, leading to a low overall yield of the
products. Here, we report an approach that can address this issue.
It utilizes a metal−organic framework built with porphyrin as the
linker, which provides high concentrations of binding sites to
support atomically dispersed rhodium. It is shown that up to 5 wt%
rhodium loading can be achieved with excellent dispersity. When
used for acetic acid synthesis by methane oxidation, a new
benchmark performance of 23.62 mmol·gcat−1·h−1 was measured.
Furthermore, the catalyst exhibits a unique sensitivity to light, producing acetic acid (under illumination, up to 66.4% selectivity) or
methanol (in the dark, up to 65.0% selectivity) under otherwise identical reaction conditions.

■ INTRODUCTION
As an abundant natural resource, methane (CH4) is an
appealing feedstock for the synthesis of value-added oxygen-
ates such as methanol (CH3OH) and acetic acid
(CH3COOH).1−3 However, due to the difficulties in
selectively activating the first C−H bond without overoxidizing
CH4, it has been exceedingly challenging to achieve the
synthesis of these oxygenates through direct CH4 oxidation.

4,5

Existing industrial processes instead rely on reforming CH4 to
first produce syngas, a route that is indirect, energy intense,
and highly polluting.2,6 The issues are exemplified by state-of-
the-art production of CH3COOH, which requires CH3OH as a
precursor, the synthesis of which involves first oxidizing CH4
to syngas.7,8 In principle, the synthesis of CH3COOH can be
greatly simplified by directly activating CH4, followed by
oxidative carbonylation. Indeed, this route has attracted
significant research attention lately. It has been found that
when atomically dispersed catalysts such as rhodium single-
atom catalysts (Rh SACs) are used, selective activation of CH4
can be achieved for the direct production of CH3COOH.9,10

Nevertheless, the performance as measured by yield per
catalyst weight remains low, limiting its prospect for practical
applications. An important reason for the relatively low yield
by Rh SACs lies in the nature of the catalyst itself. It is
reported that selective CH4 activation is only favored when the
Rh active center is atomically dispersed; the presence of Rh

clusters would favor CH4 overoxidation.11,12 To date, the
highest performing Rh SACs were obtained on a zeolite
support (ZSM-5), onto which a low loading (up to 0.5 wt %)
of dispersed Rh SACs is possible.9 It has been argued that the
low loading is due to the relatively weak binding between Rh
atoms and zeolites; further increasing the Rh loading would
result in aggregated Rh clusters and, hence, a lower yield of
CH3COOH formation.13,14 In fact, how to maximize SAC
loading represents a broader challenge that has been actively
studied recently. The most successful demonstrations to date
have been achieved on carbon-based support for electro-
catalytic applications,15,16 in which the binding sites often
involve N heteroatoms. Inspired by advances in these parallel
fields, here, we report a method to prepare high-loading Rh
SACs for the synthesis of CH3COOH by direct CH4
transformation. Our strategy takes advantage of the high
concentration of porphyrin functional groups in a metal−
organic framework (MOF) support. These porphyrin sites are
effective in dispersing Rh atoms, allowing for up to 5 wt %
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loading of Rh SACs. The resulting catalysts exhibited
outstanding performance in converting CH4 to CH3COOH,
increasing the previous benchmark record by more than 2-fold
to 71.27 mmol·gcat−1 for a typical 3 h reaction. Moreover, the
catalyst showed a unique sensitivity to light. Under otherwise
identical reaction conditions, it favored CH3COOH formation
(up to 66.4% selectivity) under illumination but CH3OH
formation (up to 65.0% selectivity) in the dark. Importantly,
the selectivity switch is highly reversible by tuning the light on
and off.

■ RESULTS AND DISCUSSION
The preparation of porphyrin-based MOF (denoted as pMOF
hereafter) followed a previous report,22 and the resulting
product was a rod-shaped crystal (Figures S1 and S2).
Afterward, Rh was loaded into tetrakis(4-carboxyphenyl)
porphyrin (TCPP) binding pockets through a wet impregna-
tion method with rhodium chloride (RhCl3) as the precursor
(Figures S2 and S3). It was found that up to 5.04 wt % Rh
loading could be achieved by repeating the impregnation
process 5 times. This loading is close to the theoretical limit of
7.73 wt % (see the Supporting Information for more
discussions). This result represents a more significant increase
of Rh loading than Rh SACs on ZSM-5.9,10

Our next task was to confirm that Rh was atomically
dispersed in pMOF. For this purpose, we first carried out
extended X-ray absorption fine structure (EXAFS) character-
ization. As shown in Figures S4, S5 and Table S1, no Rh−Rh
bonding was detected, while the coordination between Rh and
N, as well as that between Rh and Cl, was apparent. This
finding serves as direct evidence that no measurable Rh
clusters were formed, and Rh atoms were anchored at the
porphyrin binding pockets. Further supporting this under-

standing was the carbon monoxide-based diffuse reflectance
infrared Fourier transform spectroscopy (CO-DRIFTS). No
absorption peaks of CO were measured in the region between
1800 and 1950 cm−1 (Figure S6), which suggests the absence
of Rh clusters.23 The sample was also examined by aberration-
corrected high-angle annular dark field scanning transmission
electron microscopy (AC HAADF-STEM), and no apparent
Rh clusters were observed (Figure S3). Together, these data
provide strong evidence that atomically dispersed Rh atoms
were obtained on pMOF. The information helped us propose
the coordination environment of Rh (vide inf ra).
With the structure and stability of the Rh1/pMOF

established, we next studied the competency of the system to
catalyze CH3COOH synthesis. For this purpose, we also tested
the thermostability of the catalyst by thermogravimetric
analysis (TGA). No apparent phase transition or decom-
position was observed below 400 °C (Figure S7). In a typical
experiment of CH3COOH synthesis, 20 mg of Rh1/pMOF was
dispersed in 20 mL of deionized H2O in a pressurized reactor
(capacity: 3 oz; see the Supporting Information for more
details). The reactor was then pressurized with 15 bar CH4, 5
bar CO, and 4 bar O2. It was heated to 150 °C in a silicone oil
bath and kept at this temperature for 3 h. With illumination by
a solar simulator (Solar Light, model 16S-300-3-AM, at 100
mW/cm2 intensity), 1.42 mmol of CH3COOH was measured;
other detectable products included 0.11 mmol of CH3OH,
0.17 mmol of formic acid (HCOOH), and 0.47 mmol of
carbon dioxide (CO2) (Figures 1a and S8 and S9). The
calculated conversion of CH4 in a typical 3 h reaction was ca.
5.22% (Table S2). The normalized rate of 23.62 mmol·gcat−1·
h−1 for CH3COOH production represents a significant
increase of the previous benchmark under similar conditions
but without light illumination (Figure 1b). The total selectivity

Figure 1. (a) Catalytic performance in light (left) and dark (right) showing the dominant products of CH3COOH and CH3OH, respectively, in a 3
h reaction. (b) Literature comparison of the formation rate of CH3COOH by CH4 oxidation on heterogeneous catalysts. References are as follows:
Au-ZSM-5;17 Cu-mordenite;18 Fe-BN/ZSM-5;19 Rh/ZSM-5;10 0.5 wt % Rh-ZSM-5;9 Rh NP-ZSM-5;20 and Rh/HCBV-30.21 (c) Reversible
selectivity switch between CH3COOH and CH3OH in light and dark, respectively, with the same batch of catalyst. Each run was conducted for 3 h.
Reaction conditions: 20 mg of Rh1/pMOF, 4 bar O2, 5 bar CO, 15 bar CH4, 20 mL of water, 150 °C as the reaction temperature. Light: 100 mW/
cm2, AM 1.5G. Error bars represent the standard deviations of at least three repeated experiments under the same conditions.
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toward liquid products (83.81%) is also among the highest in
the literature. When normalized to per Rh atom, a higher
activity (74.97 mol·molRh−1·h−1) was obtained on Rh1/pMOF
with a lower loading (0.5 wt %), which is comparable to that
reported in ref 9. The value for high-loading Rh1/pMOF was
48.24 mol·molRh−1·h−1, which is lower than that by low-loading
Rh catalysts presumably due to mass transport limitations of
the reactants or the products or both. Future research will be
needed to further optimize the loading to maximize both the
overall and normalized activities. Lastly, to understand the
mechanisms and identify the source of carbon in the products,
we performed 13CH4 and 13CO isotope-labeled synthesis
(Figure S10). These results suggest that CH4 mainly
contributes to the formation of methyl in the product
CH3COOH, whereas CO forms the carbonyl function group.
As an initial effort to optimize the reaction conditions for the

synthesis of CH3COOH, the partial pressures of the three key
reactants were independently varied (Figures S11−S17). As
shown in Figure 2a, when the CH4 pressure (PCHd4

) was
changed between 5 and 15 bar, the reaction rate exhibited a
second-order dependence on PCHd4

(Figure S11). Similarly,
when the O2 pressure (POd2

) was changed between 1 and 4 bar,
the reaction rate showed a first-order dependence on POd2

.
Further increasing POd2

beyond 4 bar, however, led to
overoxidation of CH4 and to an obvious decrease of the
CH3COOH yield (Figure S12). While a similar trend of the
reaction rate with CO pressure (PCO) was observed between
PCO = 1 and 5 bar, the dependence was significantly lower
(with an apparent order of 0.73) than the expected second-
order relationship as predicted by the stoichiometry, suggesting
that the catalyst may already be saturated with CO. Further
increasing PCO beyond 5 bar resulted in a dramatic increase of
CO2 production at the expense of selectivity toward
CH3COOH, presumably due to the blocking of active sites
by the oversaturation of CO (Figure S13). The reaction
temperature was also varied (Figure S18). The general trend
was that the higher the temperature, the higher the rate of
CH3COOH production. An apparent activation barrier of 22.3
kJ/mol was calculated based on this set of data (Figure S19).

The lowest temperature at which CH3COOH was detectable
was 70 °C. Further increasing the temperature beyond 150 °C
led to an increase of CO2 production and an apparent decrease
of selectivity toward CH3COOH (Figure S20).
To study the effects of light on the reaction, a similar process

was carried out under identical conditions but without light.
Substantially different selectivity of products was measured,
65% of which was CH3OH, and only 14.8% of the product was
CH3COOH (Figure 1a). The striking change of selectivity
with and without illumination is highly unique. A similar
phenomenon has not been reported in the literature, to the
best of our knowledge. Critically, such a switch is highly
reversible. As evidence, we show in Figure 1c that the change
of selectivity (ca. 64.7% average selectivity to CH3COOH in
light and ca. 63.5% average selectivity to CH3OH in dark) was
reproducible on the same batch of catalysts for at least 6 cycles.
This group of experiments also revealed the stability of the
catalyst for extended reaction times. Indeed, control experi-
ments showed that similar performance of CH3COOH
production (with light) was measured on Rh1/pMOF for at
least 7 cycles with 3 h reaction for each cycle (Figure S21).
Likewise, comparable production of CH3OH (without light)
was obtained for at least 7 cycles (Figure S22). It is worth
noting that similar rates and selectivity were measured for
single-step reactions with duration up to 20 h (Figures S23 and
S24). Also supporting the stability of the catalyst were the CO-
DRIFTS spectra, which revealed minimum aggregation of Rh
atoms after catalysis (Figure S6). This conclusion is consistent
with other spectroscopic and electroscopic characterizations of
the catalysts, as well (Figures S2, S4, and S25−S28).
While the high performance of Rh1/pMOF in the

CH3COOH synthesis by direct CH4 oxidation may be
expected owing to the high density of atomically dispersed
Rh sites, the switch of product selectivity between CH3COOH
and CH3OH with and without light, respectively, is new and
intriguing. To gain insights into the possible origin of this
switch, we next turned to density functional theory (DFT)
calculations. In doing so, we examined two reported
coordination environments of Rh in a porphyrin binding site
(Figure S29),24 namely, the in-plane geometry (Figure S30)

Figure 2. (a) Relationship between partial pressures of reactants and the yield of CH3COOH for a fixed duration of 45 min plotted in logarithmic
scales. Reaction conditions: 20 mg of Rh1/pMOF, varying partial pressures of O2, CO, and CH4, where the total pressure was maintained at 24 bar
by using Ar as a balancing gas, 20 mL of water, 150 °C as the reaction temperature. Light: 100 mW/cm2, AM 1.5G. (b) Relationship between the
formation rate of CH3COOH (red) and CH3OH (blue) with varying light intensities. Reaction conditions: 20 mg of Rh1/pMOF, 4 bar O2, 5 bar
CO, 15 bar CH4, 20 mL of water, 150 °C as the reaction temperature, 1 h as the reaction time. Error bars represent the standard deviations of at
least three repeated experiments under the same conditions.
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and the out-of-plane one (Figure S6). Our calculations suggest
that the in-plane Rh1 site favors CH3OH formation, whereas
CH3COOH production is favored by the out-of-plane Rh1 site.
As shown in Figures S31 and S32, the difficulty of CH3COOH
formation at the in-plane Rh1 site lies in the high activation
energy of CO coadsorption next to CH3 on Rh1 in preparation
for the insertion step (TS10 in Figure 3a). For the out-of-plane
Rh1 site, the key differentiating step between CH3OH
formation and that of CH3COOH is methyl migration, as
shown in Figure 3b (see also Figures S33 and S34), where
CH3COOH production is favored. It is further noted that the
DFT calculations were conducted with simplifications, and the
activation barriers reported here should be treated qualitatively
for the purpose of comparing different product selectivities
(see the Supporting Information for more discussions). While
additional research will be required to fully understand the
process, we hypothesize that light-induced ligand-to-metal
charge transfer (LMCT) is the key factor that leads to the
changes of the Rh coordination environment under reaction
conditions.25−27 LMCT was indeed observed by transient
ultraviolet−visible (UV−vis) absorption spectroscopy (Figure
S35). Moreover, the selectivity is dependent on light intensity
in a monotonic fashion, as shown in Figure 2b, suggesting that
the portion of active sites that adopts the out-of-plane
coordination environment is proportional to light intensities.

■ CONCLUSIONS
In summary, we have developed a strategy to maximize Rh
SAC loading for a new benchmark in acetic acid synthesis by
selective methane oxidation. This approach takes advantage of
the binding sites of porphyrin in a MOF support. Uniquely, the
catalysts showed stark selectivity differences with or without
light, producing predominantly acetic acid or methanol,
respectively. The results opened a new door toward methane
valorization.
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