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ABSTRACT 

Stereovision systems can extract full-field three-dimensional (3D) displacements of structures by processing the images 

collected with two synchronized cameras. To obtain accurate measurements, the cameras must be calibrated to account 

for lens distortion (i.e., intrinsic parameters) and compute the cameras’ relative position and orientation (i.e., extrinsic 

parameters). Traditionally, calibration is performed by taking photos of a calibration object (e.g., a checkerboard) with the 

two cameras. Because the calibration object must be similar in size to the targeted structure, measurements on large-scale 

structures are highly impractical. This research proposes a multi-sensor board with three inertial measurement units and a 

laser distance meter to compute the extrinsic parameters of a stereovision system and streamline the calibration procedure. 
In this paper, the performances of the proposed sensor-based calibration are compared with the accuracy of the traditional 

image-based calibration procedure. Laboratory experiments show that cameras calibrated with the multi-sensor board 

measure displacements with 95% accuracy compared to displacements obtained from cameras calibrated with the 

traditional procedure. The results of this study indicate that the sensor-based approach can increase the applicability of 3D 

digital image correlation measurements to large-scale structures while reducing the time and complexity of the calibration. 
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1. INTRODUCTION 

Traditional contact-based measurements for structural health monitoring (SHM) come with some drawbacks, the most 

important one being the inability to provide full-field measurements. On the contrary, computer vision (CV) and 

photogrammetry methods inherently overcome this limitation and are gaining popularity in the SHM community 1,2. 

Among the available photogrammetry techniques, three-dimensional (3D) digital image correlation (DIC) has been 

increasingly used in the SHM community to extract shapes, displacements, and strain profiles from pictures acquired using 

synchronized stereo cameras 3, 4. 3D-DIC has shown accuracy comparable to traditional contact-bases sensors when  used 

to perform measurements in a plethora of engineering domains 5-9and scales 10 with cameras both fixed and embedded on 

moving platforms 11,12. 

3D-DIC works by identifying the 2D projection of a 3D point P onto the retinal planes of the cameras composing the 

stereovision system. The 3D location of point P is reconstructed by using triangulation, and then tracked in time across a 

set of synchronized pictures captured as the point moves with respect to the two cameras (see Figure 1a). However, 

triangulation is only possible if the cameras’ internal parameters (i.e., intrinsic parameters), relative position and relative 

orientation (i.e., extrinsic parameters) are known beforehand. The process to obtain said parameters is called stereo 

calibration 13. For a field of view (FOV) up to ~ 2 meters, calibration is traditionally performed by acquiring a set of 

synchronized pictures of calibration objects containing traceable optical targets whose positions are well-known (see 

Figure 1b). From those pictures, an algorithm called bundle adjustment computes the full set of camera intrinsic and 

extrinsic parameters 14. However, once the cameras are calibrated, their relative position cannot be altered to prevent 



 

 
 

 

measurement errors due to loss of calibration. As such, cameras are rigidly mounted to a stiff bar or fixed on stable tripods, 

which limits the applicability of 3D-DIC for SHM.  

 

 

Figure 1: Overview of the principles behind 3D-DIC: a) representation of the physical meaning of intrinsic and extrinsic parameters, 
with an example of object tracking in 3D space and b) example of calibration cross (arm length: 1800 mm) used to calibrate stereovision 
systems, with coded optical targets highlighted in green. 

 
To properly calibrate the cameras, the size of the targeted structure must be comparable with the size of the calibration 

object. This means that the calibration object must have approximately the same size of the FOV of the stereovision system. 

As the size of the FOV increases beyond ~2 meters, a different calibration procedure, known as large-area calibration, 

must be performed 9.  This procedure requires custom-made calibration objects, larger mounting bars to ensure the cameras 

are locked in position, and multiple hours of work due to the increased complexity. All those constraints limit the use of 

3D-DIC for monitoring of large-scale structures.  

For these reasons, multiple approaches are being developed as an alternative to traditional  calibration methods. Due to the 

separability of a stereovision system’s intrinsic and extrinsic parameters, researchers are currently looking for alternative 
ways to compute the extrinsic parameters. Some examples include using a single image of multiplanar 15 or cylinder-

shaped 16 calibration objects, collecting multiple images of a scale bar 17,  measuring the phase-shift of active targets 18,19, 

and relying on the detection of single feature points 20.  However, those procedures are still affected by the drawbacks of 

a traditional image-based calibration, such as the loss of calibration after the cameras are moved relatively to each other. 

To reduce the complexity and increase the flexibility of calibration, the use of sensors has been proposed. However, these 

approaches still require images of a calibration object, as the sensor data are only used to complement the image data 21.  

Recently, a new approach to compute the extrinsic parameters using data coming exclusively from sensors, without using 

images of a calibration object, has been proposed 22 -25. This paper describes the validation experiments performed to 

characterize the accuracy of a newly proposed multi-sensor system to extract the extrinsic calibration parameters needed 

to perform 3D-DIC measurements. In this research, 3D-DIC measurements obtained with cameras calibrated with the 

traditional image-based approach are compared to measurements performed with cameras calibrated using the proposed 

sensor-based approach. An extensive laboratory campaign on medium-sized FOVs (i.e., 3 – 5 m) shows how the sensor-

based method yield results that are comparable to the traditional approach with an accuracy ~95%.  

 

2. PROPOSED CALIBRATION METHOD AND MATHEMATICAL FRAMEWORK 

A schematic of the proposed multi-sensor board is shown in Figure 2. The schematic shows the type of data acquired by 

each sensor and how the data is transported to Master Station for processing. Based off the schematic in Figure 2, a 

prototype of the multi-sensor board was built. The prototype used in this research to measure the extrinsic parameters of 

the stereovision system consists of two Basler puA1600-60uc cameras26, fitted with 12 mm lenses, three LPMS-IG1 inertial 

measurement units (IMUs) manufactured by LP Research27, one M88B laser module manufactured by JRT Measure28, and 



 

 
 

 

two Raspberry Pi 4. The two boards of the prototype are shown in Figure 3, while a characterization of the noise floor of 

the multi-sensor board is shown in previous papers from the authors 24,25. 

 

Figure 2. Schematic of the multi-sensor system’s prototype used in this research to measure the extrinsic parameters of a stereovision 
system. 

 

 

     Figure 3: Prototype of the multi-sensor system, with indication of the components: a) view of Board #1 and b) view of Board #2. 

 
In the proposed method, the IMUs and the laser module are used to estimate the cameras’ extrinsic parameters through 

their rotation matrices Ri and translation vector T. IMU #1 and IMU #2 are connected to the cameras and used to measure 

the roll αi, pitch βi, and yaw γi angles and compute the i-th camera Ri using Equation (1):  

𝑹𝑾,𝒊 = 𝑹𝒛(𝛾𝑖) 𝑹𝒚(𝛽𝑖) 𝑹𝒙(𝛼𝑖) = [
𝑐𝑜𝑠(𝛾𝑖) − 𝑠𝑖𝑛(𝛾𝑖) 0

𝑠𝑖𝑛(𝛾𝑖) 𝑐𝑜𝑠(𝛾𝑖) 0
0 0 1

] [
𝑐𝑜𝑠(𝛽𝑖) 0 𝑠𝑖𝑛(𝛽𝑖)

0 1 0
− 𝑠𝑖𝑛(𝛽𝑖) 0 𝑐𝑜𝑠(𝛽𝑖)

] [

1 0 0
0 𝑐𝑜𝑠(𝛼𝑖) − 𝑠𝑖𝑛(𝛼𝑖)

0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖)
]      (1) 

 

where the subscript i identifies the camera’s number (i.e., 1 or 2 in the proposed approach). The IMU #3 and the laser are 

rigidly mounted together onto a pan-tilt mechanism connected to Camera #1. Because all three IMUs measure angles 

relative to the user-defined global frame of reference W, the translation vector TW is computed using the following 

equation: 

𝑻𝑾 = (∏ 𝑯𝒏
𝒏−𝟏

𝒏 ) ∗ [

0
0
ρ
1

]       (2) 

where ρ is the relative distance between the cameras, measured by the laser, and 𝑯𝒏
𝒏−𝟏   is the homogeneous transformation 

that uses the Denavit-Hartenberg (DH) parameters29 to estimate the position of the laser sensor with respect to the optical 



 

 
 

 

center of Camera #1. Given that the laser sensor is mounted on a pan-tilt mechanism, the lengths and orientations of the 

links composing the pan-tilt mechanism constitute the DH parameters. As a result, the vector TW computed with Equation 

(2) represents the translation vector between the optical center of Camera #1 and the optical center of Camera #2 expressed 

in the global frame of reference W. Once RW, 1, RW, 2, and TW are obtained, they must be expressed into Camera #1’s frame 

of reference to be used as extrinsic parameters for the stereovision system. This transformation is achieved using Equation 

(3): 

{
𝑹𝟏𝟐 = 𝑹𝑾,𝟏

𝑻 𝑹𝑾,𝟐

𝑻𝟏𝟐 = 𝑹𝑾,𝟏
𝑻  𝑻𝑾

      (3) 

where R12  is the relative rotation matrix between Camera #2 and Camera #1 expressed in the frame of reference of Camera 

#1 while T12 is the translation vector between Camera #1 and Camera #2 expressed in the frame of reference of Camera 

#1.  

Once all the terms of Equation (3) are computed, the full set of extrinsic parameters of the stereo camera system is 

determined and can be used to perform a 3D-DIC analysis. 

 

3. EXPERIMENTAL SETUP 

Two experiments were conducted to validate the accuracy of the proposed calibration method. In both tests, the cameras 

were calibrated using both the image-based and the sensor-based procedures. For the traditional calibration, multiple stereo 

images of a checkerboard calibration object were collected and used to extract the intrinsic and the extrinsic parameters of 

the stereovision system in the configuration used during the tests. For the sensor-based method, the intrinsic parameters 

were calibrated by taking pictures of a small checkerboard calibration object placed in front of the cameras focused on the 

targeted object, while the extrinsic parameters were extracted using the procedure described in Section 2 using the data 

from the IMUs and the laser sensor. The resulting calibration files (i.e., one from the traditional image-based method and 

one from the proposed sensor-based approach) were then used to process the stereo images collected during the two 

experiments and extract the 3D displacement of the objects being tested.   

In Test #1, a laboratory-scale wind turbine blade with length equal to 2.3 m was quasi-statically deformed in the out-of-

plane direction and the two cameras were used to extract the Z-displacement of the structure. The cameras were placed to 

have a working distance of  3 m from the blade, a camera separation distance of 1.4 m, and a camera separation angle of 

26.2°, which resulted in a calibrated volume of ~ 3 x 1.5 x 3 m.  

 

Figure 4: Overview of the experimental setup used to measure the out-of-plane displacement of a laboratory-scale wind turbine blade. 

As shown in Figure 4, that represents an overview of the experimental setup used during Test #1, the surface of the blade 

was painted with a stochastic speckle pattern to allow the use of 3D-DIC. In addition, eleven optical targets were attached 

on the centerline of the blade to allow extracting the out-of-plane displacement and compare the measurements obtained 

with the cameras calibrated with traditional and sensor-based procedures at specific locations. In particular, Point 1 is the 

optical target closer to the root of the blade, while Point 11 is the one towards the tip of the blade. Before starting the tests, 
five images of the blade at rest (i.e., without any force applied to it) were collected and used to evaluate the noise floor 



 

 
 

 

(NF) of the measurement. Subsequently, the blade’s tip was displaced by finite increments in the out-of-plane direction 

and, for each incremental displacement, five stereo images were captured.  During Test #1, a total of eleven displacements 

were applied to the blade (i.e., five loading and five unloading).  

 

In Test #2, a 0.8 x 0.6 m planar object with an applied stochastic pattern  was moved in a 3D space with dimension of 4.0 
x 3.0 x 3.5 m. Because Test #2 aimed at assessing the performance of the sensor-based calibration for larger FOVs, the 

cameras were placed to have a working distance of 6.5 m from the planar object, a cameras’ separation distance of 4.4 m, 

and a cameras’ separation angle of 38°. An overview of the setup is shown in Figure 5.  

 
Figure 5: Overview of the experimental setup used to measure the 3D displacements of the planar object: a) cameras and master station 
used to trigger the multi-sensor boards, b) sample image of the planar object (seen from the left camera’s perspective) with indication 

of the frame of reference used for 3D-DIC, and c) sample image of the planar object (seen from the right camera’s perspective). 

For Test #2, the same testing procedure used for Test #1 was adopted. Once the cameras were calibrated, five initial stereo 

images of the planar object at full rest were captured to estimate the NF of the 3D-DIC measurements. Then, the planar 

object was displaced by applying an oscillatory motion in the Y-direction defined in Figure 5b, while being also rigidly 

moved in the X-direction and images were acquired with the two synchronized cameras. 

 

4. ANALYSIS OF THE RESULTS 

For both tests, the open-source software Digital Image Correlation Engine (DICe) 30 was used to process the collected 
images and extract the displacement of the test objects when the stereovision system is calibrated using i) the traditional 

image-based method and ii) the proposed sensor-based calibration based on the measurement performed with the multi-

sensor board. This section summarizes the results of the two tests performed. 

 

4.1 Results of tests performed on lab-scale wind turbine blade 

Figure 6 shows the NF of the two measurements when the only difference in the procedure is the type of calibration used. 



 

 
 

 

 

Figure 6: Comparison of the measurements obtained when the calibration is performed using the traditional image-based method and 
the multi-sensor board for Test#1: a) out-of-plane (i.e., Z-displacement) noise floor computed with traditional calibration, b) out-of-
plane (i.e., Z-displacement) noise floor computed with sensor-based calibration, and c) distribution of the noise floor computed using 
the two methods. 

It can be seen from Figure 6 that the NF of the measurement obtained  when the cameras are calibrated using the proposed 
sensor-based method (see Figure 6b) visually matches the NF of the measurement that is obtained when the cameras are 

calibrated using a traditional image-based method (see Figure 6a). Additionally, the NF distributions follow a Gaussian 

distribution and qualitatively show a significant overlap. From a quantitative standpoint, it is possible to assess the 

correlation between the two NFs  by computing the Kullback-Leibler (K-L) Divergence 31 of the two distributions (see 

Figure 6c). For the case-study discussed in this paper, the K-L divergence between the NFs of the two measurements is 

3.3, indicating extremely high similarity. 

When the results of the measurements done to quantify the out-of-plane displacement applied to the blade are processed, 

the results shown in Figure 7 are obtained. When discrepancies between the results obtained using the two different 

calibrations are analyzed in Figure 7a, it is observed that the largest difference is always smaller than 0.14 mm at the point 

of maximum displacement (i.e., Point 11 – tip of the blade). Figure 7b shows that the relative difference between the two 

sets of data is consistently below 5%, with relative errors smaller than 1% for the point of maximum displacement.  

 

Figure 7: Difference between the out-of-plane displacements computed with the traditional calibration and the proposed sensor-based 
calibration: a) absolute difference and b relative difference. 



 

 
 

 

These results prove the accuracy of the proposed sensor-based approach when data retrieved using the prototype shown in 

Figure 3 is used for 3D-DIC measurement on medium-sized objects. 

 

4.2 Results of tests performed on planar object 

For Test #2, the results of the in-plane and out-of-plane NFs obtained from cameras calibrated using the two methods  are 
shown in Figure 8. Similarly to the results of Test #1, the NF of Test #2 shows good agreement between the measurements 

obtained with the traditional calibration and the proposed sensor-based calibration (see Figure 9). As can be observed from 

the figure, the NF distributions have similar trend and comparable overlap with those shown in Figure 6c. When the 

similarity between the distributions obtained from the traditional and sensor-based calibrations are quantified, the K-L 

divergences have values equal to 2.97, 1.77 and 7.06 for the NF in the X, Y and Z directions, respectively. 

 

 
Figure 8: Noise floors of the measurements performed on the planar object, computed with the  traditional image-based calibration 
and  the proposed sensor-based calibration: a) in-plane X displacement from traditional calibration, b) in-plane X displacement from 
sensor-based calibration, c) in-plane Y displacement from traditional calibration, d) in-plane Y displacement from sensor-based 
calibration, e) out-of-plane Z displacement from traditional calibration, and f) out-of-plane Z displacement from sensor-based 

calibration.  



 

 
 

 

 

 

 
Figure 9: Histograms of the noise floors for the measurements performed for Test #2 for: a) X-direction displacement, b) Y-direction 
displacement, and c) Z-direction displacement. 

 
Figure 10: 3D trajectories of the planar object’s 49 reference points; a) in-plane X displacement from traditional calibration, b) in-
plane X displacement from sensor-based calibration, c) difference  between the in-plane X displacement computed with both traditional 
and sensor-based calibration, d) in-plane Y displacement from traditional calibration, e) in-plane Y displacement from sensor-based 
calibration, f) difference between the in-plane Y displacement computed with both traditional and sensor-based calibration, g) out-of-
plane Z displacement from traditional calibration, h) out-of-plane Z displacement from sensor-based calibration, and i) difference 
between the out-of-plane Z displacement computed with both traditional and sensor-based calibration. 



 

 
 

 

Before processing the images, it should be pointed out that 49 reference points in a 7x7 grid were identified on the surface 

of the planar object and tracked through the images collected during Test #2 to quantify the displacement of the object of 

interest. The trajectory of the planar object over time measured from the images processed using the two different 

calibrations is shown in Figure 10. In particular, the first two columns of Figure 10 show the X, Y, and Z-direction 

displacements obtained with the traditional calibration (see Figure 10a, Figure 10d, and Figure 10g) and the sensor-based 
calibration (see Figure 10b, Figure 10e, and Figure 10h). The last column in Figure 10 shows the difference between the 

two datasets. From the analysis of those results it is possible to observe that the maximum difference in the out-of-plane 

direction (i.e., ~8 mm) is on the same order of magnitude the maximum difference in the in-plane direction (~12 mm) 

despite the in-plane displacements being 5 times larger. The percentage difference between the methods amount to ~ 0.65% 

in the in-plane direction and ~2% in the out-of-plane direction. Additionally, it can be observed that all 49 reference points 

appear to move by the same amount along the same trajectory computed with either calibration, with discrepancies in the 

magnitudes of the motion that are almost unnoticeable for the in-plane displacements (see Figure 10a, Figure 10b, Figure 

10d, and Figure 10e) and that start being noticeable for the out-of-plane displacements (see Figure 10g and Figure 10h). 

However, even though the difference between the two calibration methods is larger in magnitude at larger displacements, 

the relative difference in percentage is significantly small, thus confirming that the sensor-based calibration produces 3D-

DIC measurements in very good agreement with those produced by a traditional calibration. 

 

5. CONCLUSIONS 

This research proposes a novel method to measure the extrinsic parameters of a stereovision system for 3D-DIC. By 

measuring the orientation of two synchronized cameras using three (IMUs, their relative distance using a laser, the 

proposed method computes a full set of extrinsic parameters to calibrate the stereovision system. Laboratory tests were 

performed to characterize the accuracy and viability of the proposed method. When measuring the out-of-plane 

deformations imparted to a lab-scale wind turbine blade, the proposed approach is able to provide extrinsic parameters 

such that the measurement obtained with the proposed calibration and measurements obtained with a traditional image-

based calibration differ by less than 5% overall, and less than 1% at the point of maximum displacement. Similarly, when 

used to quantify the 3D displacements of a planar object in a large-area experiment (i.e., 4 x 3 x 3.5 m), the measurements 
obtained with the proposed calibration differ from the measurements obtained with a traditional image-based calibration 

by less than 1% in the in-plane directions  and ~2% in the out-of-plane direction. This research validates how the proposed 

method is a viable alternative to image-based calibration methods and can extend the usability of 3D-DIC to larger fields 

of view, thus opening the possibility to use this technique for long-term monitoring of large-scale structures. 
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