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ABSTRACT

A 1976 conjecture of Halperin on positively elliptic spaces has been confirmed
in formal dimensions up to 16. In this article, we shorten the proof and extend
the result up to formal dimension 20. We work with Meier’s algebraic charac-
terization of the conjecture, so the proof is elementary in that it involves only
polynomial algebras, ideals, and derivations.
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1. Introduction

We consider Artinian complete intersection algebras

H∗ = Q[x1, . . . , xk]/(u1, . . . , uk)

over the rationals with a grading concentrated in even degrees. Examples include the rational cohomol-
ogy of positively elliptic topological spaces, so for simplicity we refer to these algebras as positively elliptic
algebras (see Section 2 for definitions).

Positively elliptic spaces play an important role in rational homotopy theory. In fact, they are the
subject of a 1976 conjecture of Halperin that is listed as the first of seventeen open problems in [11,
Chapter 39]. In 1982Meier [25] proved that this conjecture can be reformulated algebraically as follows:

Conjecture (Halperin Conjecture). If H∗ is a positively elliptic algebra, then H∗ does not admit a
nontrivial derivation of negative degree.

The conjectured nonexistence of derivations of negative degree arises in other contexts, including
singularity theory where one has the conjectures of Wahl (see [5, 14, 30]) and Yau (see [8, 31]). For
additional context, we refer to the survey [17], the papers [18–20], and references therein.

Evidence for Halperin’s conjecture includes proofs under geometric assumptions such as when H∗ is
the rational cohomology algebra of a Kähler manifold (see [4, 24]), a homogeneous space (see [28]), or a
non-negatively curved Riemannian manifold with large symmetry (see [12, 13, 15, 27]). It has also been
verified under algebraic assumptions such when H∗ at most three generators (see [6, 21]), relations of
sufficiently large degree (see [9]), or formal dimension at most 16 (see [2]). In this article, we expand on
the latter result by shortening the proof and extending it as follows:

Theorem. Halperin’s conjecture holds in formal dimensions at most 20.
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The proof simplifies and extends [2], which covers dimensions up to 16. In fact, by adopting the
algebraic setup of [6, 9, 26] (see Sections 2 and 3) and proving two new lemmas, we can efficiently prove
all cases in dimensions up to 16 and all but six exceptional cases in dimensions 18 and 20 (see Sections 4
and 5). The proof of those six cases, and therefore of our main theorem, is completed in Section 6.

2. Preliminaries

Let A = Q[x1, . . . , xk] denote the polynomial ring over the rationals on k variables. Assume moreover
that each xi has a positive, even degree assigned to it that is denoted by |xi|. This induces a graded
algebra structure onA =

⊕

n≥0 A
n where the subspaceAn is spanned bymonomials xa11 · · · x

ak
k satisfying

a1|x1| + · · · + ak|xk| = n.
Next let I = (u1, . . . , uk) denote the ideal generated by homogeneous polynomials ui ∈ A|ui|, where

|ui| denotes the degree of ui. Recall that the ui form a regular sequence if u1 ∈ A is nonzero and if the
image of ui in A/(u1, . . . , ui−1) is not a zero divisor for all 2 ≤ i ≤ k.

Definition 2.1. A positively elliptic algebra is the quotient Q[x1, . . . , xk]/(u1, . . . , uk) of a graded
polynomial ring over the rationals on generators with positive, even degrees by an ideal generated by
a regular sequence u1, . . . , uk of homogeneous polynomials.

Example 2.2. Singly generated algebras Q[x1]/(x
α
1 ) are positively elliptic. Doubly generated algebras

can be positively elliptic or not, as can be seen from the examples Q[x1, x2]/(x
2
1 − x22, x1x2) or

Q[x1, x2]/(x
2
1, x1x2). In the latter case, the image of x1x2 in Q[x1, x2]/(x

2
1) is a zero divisor, so the ideal

is not generated by a regular sequence.

Example 2.3. Positively elliptic algebras arise as the rational cohomology algebras of simply connected,
rationally elliptic topological spaces F with positive Euler characteristic (see [11, Proposition 32.10]).
Such spaces are called F0 spaces or positively elliptic spaces (see [1, 3, 22]), and they were conjectured
by Halperin in 1976 to satisfy the following: For any orientable fibration with fiber F, the Serre spectral
sequence degenerates at the E2-page (see [11, Chapter 39]).

In 1982, Meier [25, Theorem A] proved that Halperin’s conjecture can be reformulated entirely
algebraically in terms of negative degree derivations.

Definition 2.4. Given a positively elliptic algebra H∗, a derivation is a linear map δ : H∗ → H∗ that
increases degree by some integer |δ| ∈ Z and satisfies the Leibniz rule, that is, behaves on products of
homogeneous elements as follows:

δ(xy) = δ(x)y + (−1)|δ||x|xδ(y).

Example 2.5. The graded algebra H∗ = Q[x1, x2]/(x
2
1 − λx22, x1x2) with |x1| = |x2| = 2 and λ ∈

Q \ {0} is a positively elliptic algebra and admits a nontrivial derivation δ of degree 2. Indeed, if we
define δ(x1) = x21 and δ(x2) = 0 and extend the definition by linearity and the Leibniz rule, we obtain a
well defined derivation onQ[x1, x2]. In addition, δ(x

2
1−λx22) and δ(x1x2) are in the ideal (x

2
1−λx22, x1x2),

so δ descends to a well defined derivation on H∗.

This example demonstrates the way we work with derivations onH∗. They correspond to derivations
on Q[x1, . . . , xk] that map the ideal (u1, . . . , uk) into itself. Throughout this article, we use the same
notation for the generators ofQ[x1, . . . , xk] and their images in H∗.

This example also shows the necessity of the condition that δ have negative degree. We recall Meier’s
reformulation of Halperin’s conjecture from the introduction for easy reference:
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Conjecture (Halperin Conjecture). Positively elliptic algebras do not admit nontrivial derivations of
negative degree.

We close this preliminary section with two basic results (see [2, Lemmas 11.1 and 11.3]). Together
they imply Thomas’ result that the Halperin Conjecture holds when H∗ is generated by at most two
elements (see [29]).

Lemma 2.6 (Land in Zero Lemma). For i > 0, a derivation of degree −i vanishes on Hi.

Lemma 2.7 (k − 1 Lemma). If δ is a derivation of negative degree on H∗ such that δ(xi) = 0 for k − 1 of
the k generators xi, then δ = 0.

3. Degree type, formal dimension, and splittings

Given a positively elliptic algebraH∗ = Q[x1, . . . , xk]/(u1, . . . , uk), the degree type ofH
∗ is the sequence

of even, positive integers denoted by

(|x1|, . . . , |xk|; |u1|, . . . , |uk|).

As Example 2.5 shows, the degree type (2, 2; 4, 4) can be realized in infinitely many ways, even up to
isomorphism. This is a general feature. Nevertheless, it is helpful to sort positively elliptic algebras
according to their degree types. In this section, we summarize previous work on degree types as they
relate to Halperin’s conjecture. In addition, we define pure models, formal dimension, and splittings.
The first basic result is the following. It is motivated by, but not explicitly stated in, [11, Section 32]:

Theorem 3.1 (Pure model). Given a nonzero positively elliptic algebra H∗, there exist variables xi of
positive, even degrees |xi| and homogeneous polynomials

ui ∈ Q≥2[x1, . . . , xk] = span{xa11 · · · x
ak
k | a1 + · · · + ak ≥ 2}

such that H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk). Moreover these choices can be made to satisfy all of the
following:

1. |x1| ≤ · · · ≤ |xk|.
2. |u1| ≤ · · · ≤ |uk|.
3. |ui| ≥ 2|xi| for all 1 ≤ i ≤ k.

In addition, the formal dimension

fdH∗ =

n
∑

k=1

(|ui| − |xi|)

is independent of the choice of presentation.

Such a presentation ofH∗ is called a pure model, and we assume from now on that our presentations
of positively elliptic algebras are pure models.

Remark 3.2. The presentation (i.e., choice of generators and relations) is not unique. For example, a
linear change of variables in generators of the same degree does not affect the property of being a pure
model or the degree type, nor does it change the fact that the relations forma regular sequence. Somewhat
more generally, we may add a polynomial of generators of lower degree to another generator, so long as
we preserve the homogeneity of the generators. Similar comments apply to changes in our choice of
relations.

Proof. By definition, there is some presentation ofH∗ = Q[x1, . . . , xk]/(u1, . . . , uk)with k ≥ 1.Wemay
assume that k is minimal.
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Clearly the uj do not have constant terms, since otherwise the ideal I = (u1, . . . , uk) is the
entire polynomial algebra. Moreover, if some uj has a linear term equal to a multiple of xi, then the
automorphism of Q[x1, . . . , xk] that replaces xi by uj is an isomorphism. Taking the quotient by I gives
rise to a presentation of H∗ on k − 1 generators. This contradicts the minimality of k, so we have that
each uj ∈ Q≥2[x1, . . . , xk].

Next, we may relabel the generators and relations so that |x1| ≤ · · · ≤ |xk| and |u1| ≤ · · · ≤ |uk|.
The final condition that |ui| ≥ 2|xi| for all i follows by the result of Friedlander and Halperin below
(Theorem 3.4). Indeed, this result implies that some relation (and hence uk) has degree at least twice
|xk|, that at least two relations (and hence uk−1 and uk) have degree at least twice |xk−1|, and so on.

For the last claim,we note thatH∗ satisfies Poincaré duality (see [16, Section 8]). Thismeans that there
exists n ≥ 0 such thatHi = 0 for i > n andHn ∼= Q and that the product mapHi ×Hn−i → Hn ∼= Q is
a non-degenerate bilinear pairing for all 0 ≤ i ≤ n. This integer n is called the formal dimension (or socle
degree) and is denoted by fdH∗ (cf. [7]). For our purposes, we note thatHn is generated by the Jacobian
det

(

∂ui/∂xj
)

(see, for example, the remarks following Theorem B in [28]). Therefore, the formula in the
theorem equals n and is therefore an invariant of the positively elliptic algebra.

Example 3.3. The positively elliptic algebraH∗ = Q[x1, x2]/(x
2
1−x2, x

3
2)with |x1| = 2 and |x2| = 4 can

be more efficiently presented asH∗ ∼= Q[x]/(x6). Indeed, an isomorphism is given by mapping x1 �→ x
and x2 �→ x2.

A consequence of Theorem3.1 is that any given formal dimension only allows for finitelymany degree
types. Indeed,

fdH∗ =

k
∑

i=1

|ui| − |xi| ≥

k
∑

i=1

|xi| ≥ 2k,

so k ≤ 1
2 fdH

∗, the possible degrees |xi| are similarly bounded, and therefore the possibilities for the |ui|
are finite.

A further restriction on the degree types is the following result due to Friedlander and Halperin (see
[10, Corollary 1.10] or [11, Proposition 32.9]):

Theorem 3.4 (Characterization of degree types). A sequence

(A1, . . . ,Ak;B1, . . .Bk)

of positive, even integers arises as the degree type of some positively elliptic algebra if and only if the following
holds: For all 1 ≤ l ≤ k and 1 ≤ i1 < · · · < il ≤ k, there exist 1 ≤ j1 < · · · < jl ≤ k such that Bj1 , . . . ,Bjl
can be expressed as linear combinations of the form λ1Ai1+· · ·+λlAil with non-negative integer coefficients
satisfying λ1 + · · · + λl ≥ 2.

To illustrate, the degree type (A1,A2;B1,B2) = (2, 4; 4, 10) does not satisfy this condition since A2 =

4 does not properly divide any of the Bj. Similarly, the degree type (2, 2, 4, 4; 4, 6, 8, 10) does not satisfy
the condition and therefore does not arise as the degree type of a positively elliptic algebra.

Definition 3.5. A sequence (A1, . . . ,Ak;B1, . . . ,Bk) as in Theorem 3.4 satisfies the condition
SAC(Ai1 , . . . ,Ail) if there exist Bj1 , . . . ,Bjl as in the theorem.

In [10], the condition that SAC(Ai1 , . . . ,Ail) holds for all possible subsequences 1 ≤ i1 < · · · < il ≤ k
is called the Strong Arithmetic Condition (SAC). The examples after the theorem fail the SAC(4) and
the SAC(4,4), respectively, and therefore fail the SAC.

Nextwe discussMarkl’s result, which is crucial to our inductive arguments over the formal dimension.
One result we need in the proof of the main theorem is Lemma 3.8.
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Definition 3.6 (Split positively elliptic algebras). A positively elliptic algebra H∗ splits if it has a
presentation as a pure model

H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk)

such that, for some 0 < l < k, the polynomials u1, . . . , ul only depend on x1, . . . , xl.

Note that, in this definition, H∗ has a positively elliptic subalgebra

K∗ ∼= Q[x1, . . . , xl]/(u1, . . . , ul)

and a positively elliptic quotient algebra Q∗ = H∗/K∗ defined by Qn = Hn/(K+H∗)n, where K+H∗

denotes the vector subspace spanned by products of an element of K∗ of positive degree and an element
of H∗. Note that

Q∗ ∼= Q[x̄l+1, . . . , x̄k]/(ūl+1, . . . , ūk),

where the bars denote images under the projection map H∗ → Q∗. Also note that

fdH∗ = fdK∗ + fdQ∗

and that both K∗ and Q∗ have formal dimension strictly less than fdH∗.
In the proof of the Halperin conjecture up to dimension 20, we will proceed by induction over the

formal dimension. In particular, the following is an important tool for dealing with the split case (see
[23, Theorem 1]):

Theorem 3.7 (Markl’s theorem). Let H∗ be a positively elliptic algebra with a nonzero derivation of
negative degree. If H∗ splits as above, then K∗ or Q∗ also has a nonzero derivation of negative degree.

Markl’s theorem holds in greater generality, but this statement is all we need. As the proof also
simplifies somewhat in this case, we include it here.

Proof. Assume that H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a pure model for a positively elliptic alge-
bra H∗ with the property that u1, . . . , ul ∈ Q[x1, . . . , xl] for some 0 < l < k. Let K∗ =

Q[x1, . . . , xl]/(u1, . . . , ul), and suppose that neither K
∗ norQ∗ = H∗/K∗ admit a nonzero derivation of

negative degree. Finally, let δ be a derivation of negative degree onH∗, and note that our task is to show
that δ = 0.

First, since the degrees of the xi are increasing, the derivation δ restricts to a derivation on K∗. By the
assumption on K∗, we have

δ(x1) = · · · = δ(xl) = 0.

Next, fix any vector space basis {ξα} for K∗ consisting of monic polynomials ξα in the variables
x1, . . . , xl. For y ∈ H∗, there exist polynomials δα(y) in xl+1, . . . , xk such that

δ(y) =
∑

α

ξαδα(y).

We claim that each of the maps

δ̄α : H∗/K∗ → H∗/K∗

ȳ �→ δα(y)

is a well defined linear map.
If this claim holds, then it is straightforward to see that δ̄α is a derivation of negative degree onH∗/K∗

and hence vanishes by assumption. In particular, δα(y) = δ̄α(ȳ) = 0 for all α, which implies that δα(y)
is both a polynomial in xl+1, . . . , xk and in the ideal (x1, . . . , xl) for all α. It follows that δα = 0 for all α
and hence that δ = 0, as required.
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It suffices to prove the claim, and for this it suffices to show that δα maps the ideal (x1, . . . , xl) to zero.
Fix

z =

l
∑

i=1

xizi

in this ideal. Applying δ to both sides of this equation and noting that δ is a derivation onH∗ that vanishes
on x1, . . . , xl, we obtain

∑

α

ξαδα(z) =

l
∑

i=1

xi
∑

β

ξβδβ(zi).

Extracting the coefficients of ξα on both sides, we obtain

δα(z) =
∑

xi|ξα

δβ(α,i)(zi),

where the sum runs over 1 ≤ i ≤ l such that xi divides ξα , and where β(α, i) is the index for which
xiξβ(α,i) = ξα .

If α is the index corresponding to the constantmonomial ξα = 1, then the sum on the right-hand side
is trivial and we find that δα(z) = 0. As z was arbitrary, this proves that δα maps the ideal (x1, . . . , xl)
to zero for this particular value of α. Proceeding by induction over the degree of ξα , we note that the
right-hand side once again vanishes by the induction hypothesis since ξβ(α,i) has smaller degree than
ξα . Hence δα(z) = 0, and so by induction we conclude that δα vanishes on the ideal (x1, . . . , xl), as
required.

In the proof of our main theorem, we induct over the formal dimension. By Markl’s theorem, the
result holds when H∗ splits since the result holds inductively for smaller formal dimensions. Therefore
it is useful to have conditions that imply the existence of splittings.

Lemma 3.8 (Degree Inequality). Let H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra that
does not split. The following hold:

1. If i < k, then |ui| ≥ |x1| + |xi+1|.
2. If δ(x2) = λxα

1 	= 0 for some λ ∈ Q, where δ is a derivation on H∗ with negative degree, then |u1| ≥

|x1| + |x3|.

Proof. The first claim is a restatement of [2, Lemma 11.4]. It follows since |ui| < |x1| + |xi+1| for
some i implies that u1, . . . , ui ∈ Q≥2[x1, . . . , xk] are polynomials in x1, . . . , xi for degree reasons. Hence
x1, . . . , xi generate a nontrivial subalgebra, a contradiction.

The second claim is implicit in the proof of [2, Lemma 11.5]. Suppose that δ(x2) = λxα
1 	= 0 for some

λ ∈ Q and α ≥ 1. Suppose for the purpose of contradiction that |u1| < |x1| + |x3|. As in the previous
paragraph, we conclude that u1 is a polynomial in x1 and x2. Write u1 =

∑r
i=0 pi(x1)x

i
2. Since δ(u1) is

in the ideal (u1, . . . , uk) and has degree less than any of the ui, we have δ(u1) = 0. On the other hand,

δ(u1) =

r
∑

i=0

pi(x1)δ(x
i
2) =

r
∑

i=1

ipi(x1)
(

λxα
1

)

xi−1
2 ,

so pi(x1) = 0 for all i ≥ 1. Hence, u1 = p0(x1), x1 generates a nontrivial subalgebra of H
∗, and we have

a contradiction.

We close this sectionwith a proposition showing how theDegree Inequality and the other preliminary
facts we have establishedwork together with the upper bound on the formal dimension to rule out a large
number of cases.
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Proposition 3.9. Let H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra with no nontrivial
subalgebra and fdH∗ ≤ 20. If there exists a nonzero derivation of negative degree and |xk−1| + |xk| ≥ 12,
then the degree type is

(2, 4, 6, 6; 6, 8, 12, 12) or (2, 2, 6, 6; 4, 8, 12, 12).

Proof. First, suppose that k ≤ 3. By the Land in Zero Lemma, δ(x1) = 0, so we may assume k ≥

2. Moreover by the k − 1 Lemma, we may assume that k = 3 and that δ(x2) and δ(x3) are linearly
independent since otherwise we could choose new generators so that δ(x2) = 0. In particular, it follows
for degree reasons that |x1| < |x2| < |x3|. On one extreme, these degrees could be 2, 4, and 6, but this
contradicts the assumption that |xk−1| + |xk| ≥ 12. We may assume therefore that |x3| ≥ 8. We put
this into the formula for the formal dimension in Theorem 3.1 and we estimate the summands using the
Degree Inequality (Lemma 3.8):

fdH∗ =

3
∑

i=1

(|ui| − |xi|) ≥ |x3| + max(|x1| + |x3| − |x2|, |x2|) + |x3|.

Since the maximum is at least the average, this implies fdH∗ > 20, a contradiction.
Next, suppose that k ≥ 4 and |xk| ≥ 8. Using the Degree Inequality to estimate |ui| for i ≤ k− 1 and

the estimate |uk| ≥ 2|xk|, we obtain

fdH∗ ≥

k−1
∑

i=1

(|x1| + |xi+1| − |xi|) + |xk| = (k − 2)|x1| + 2|xk| ≥ 20.

Hence equality holds everywhere, and we have k = 4, |x1| = 2, |x4| = 8, and |u3| = |x1| + |x4| = 10.
Now |x3| ≤ 1

2 |u3|, so |x3| ≤ 4. Since additionally |x3| ≥ 4 by the Land in Zero and k − 1 Lemmas, we
have |x3| = 4. Using equality in the above estimate once more, we have |u2| = |x1| + |x3| = 6, so we
have a contradiction to the SAC(4, 8) condition since u4 is the only relation properly divisible by four.

Finally, suppose that k ≥ 4 and |xk| ≤ 6. By the assumption in the proposition, we have |xk−1| =

|xk| = 6. Estimating as in the previous case, except replacing the estimate for the i = k − 1 term by the
estimate |uk−1| ≥ 2|xk−1|, we see that

fdH∗ ≥ (k − 3)|x1| + 2|xk−1| + |xk| ≥ 2 + 3(6) = 20.

Hence equality holds, and the degree type is of the form

(2,A2, 6, 6; 2 + A2, 8, 12, 12)

where A2 ∈ {2, 4}. These two possibilities correspond to the two degree types in the conclusion of the
proposition, so the proof is complete.

4. The Large Relations Lemma

In this section, we prove the Large Relations Lemma and Proposition 4.2, which verifies the Halperin
conjecture in formal dimensions up to 20 in all but three exceptional cases when the degrees of the two
largest generators satisfy |xk−1| + |xk| ≤ 8.

Lemma4.1 (LargeRelations Lemma). LetH∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra
that does not split. Assume that H∗ admits a derivation δ of degree −2 such that the map δ : H4 → H2

has rank m ≥ 1.
Let gi denote the number of generators with degree i, and let rj denote the number of relations with degree

j. The following hold:

1. If g6 + g10 + g14 + · · · = 0, then

r12 + r16 + · · · ≥
(

k − g2 − g4
)

+ max(1,m − r4).
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2. If g6 + g10 + g14 + · · · ≥ 1 and δ2(H6) = 0, then

r10 + r12 + · · · ≥
(

k − g2 − g4
)

+ max(1,m − r4).

In particular, |uk| ≥ 12 in the first case and |uk−1| ≥ 10 in the second.

Proof. We prove the claims simultaneously. By the Land in Zero Lemma, we may assume that δ(xi) = 0
for 1 ≤ i ≤ g2. In addition, we may change basis so that

δ(xg2+i) =

{

xi if 1 ≤ i ≤ m
0 if m < i ≤ g4

Finally, if xh is a generator in degree six, then the condition δ2(H6) = 0 implies that δ(xh) has no xg2+i

term with 1 ≤ i ≤ m.
Let {uj|j ∈ J} denote the relations with degree 8. Write each of these as

uj = pj(xg2+1, . . . , xg2+m) + qj

where pj is a quadratic polynomial and where qj is in the ideal

I0 = (x1, . . . , xg2) + (xg2+m+1, . . . , xg2+g4).

Fix J′ ⊆ J such that {pj | j ∈ J′} is a basis for the span of {pj | j ∈ J}.
We claim that |J′| ≤ m−1, and we prove this by contradiction. Note that δ(H2) = 0 and δ2(H4) = 0

by the Land in Zero Lemma. In addition, δ2(H6) = 0 by assumption in Case (2) of the lemma and for
degree reasons in Case (1) since there are no generators in degree six. Noting next that δ vanishes on the
generators of the ideal I0, we have δ2(qj) = 0 and hence

δ2(uj) = 2pj(x1, . . . , xm)

for j ∈ J′. Now δ2(uj) has degree four and lies in the ideal (u1, . . . , uk). Hence pj(x1, . . . , xm) lies in the r4-
dimensional span of {ui | |ui| = 4}. Since the polynomials pj with j ∈ J′ are linearly independent, wemay
perform a change of basis on the degree-four relations ui such that {u1, . . . , u|J′|} = {pj(x1, . . . , xm) | j ∈

J′}. If |J′| ≥ m, then u1, . . . , um ∈ Q[x1, . . . , xm] and hence that x1, . . . , xm generate a subalgebra K∗.
Since moreover 1 ≤ m ≤ k

2 , we see thatH
∗ splits, and we have a contradiction to the assumptions of the

lemma.
We may assume now that |J′| ≤ m − 1. By the argument in the previous paragraph, |J′| ≤ min(m −

1, r4) by choice of J
′. We can perform a change of basis on the uj for j ∈ J so that pj = 0 for j ∈ J \ J′.

To finish the proof of Claim 1, consider the ideal

I = I0 +
(

{uj | j ∈ J′}
)

+
(

{uj | |uj| ∈ {12, 16, . . .}
)

.

If a relation ui has degree less than eight or not divisible by four, then it lies in I0 for degree reasons since
there are no generators in degrees 6, 10, etc. If |ui| = 8, then it lies in I0 +

(

{uj | j ∈ J′}
)

by choice of J′.
Finally it is clear that ui ∈ I for all other relations ui. Hence H

∗ projects ontoQ[x1, . . . , xk]/I. Since H
∗

is finite-dimensional, I must have at least k generators. Therefore

(g2 + g4 − m) + min(m − 1, r4) + (r12 + r16 + · · · ) ≥ k,

which implies the desired bound in Claim 1.
To finish the proof of Claim 2, we use a similar argument with I replaced by

I = I0 +
(

{uj | j ∈ J′}
)

+
(

{uj | |uj| ∈ {10, 12, . . .}
)

.

It is clear that relations of degree four or degree eight or larger lie in I. Relations of degree six are also
in I0 and hence in I because they are polynomials inQ≥2[x1, . . . , xk] (see Theorem 3.1). Hence again all
relations are in I, and the claim follows as before.

Next, we apply Lemma 4.1 to prove our main theorem when |xk−1| + |xk| ≤ 8 in all but three
exceptional cases.
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Proposition 4.2. LetH∗ be a positively elliptic algebra that does not split. If H∗ admits a nonzero derivation
of negative degree and |xk−1| + |xk| ≤ 8, then either fdH∗ > 20 or the degree type is one of the following:

(2, 2, 4, 4; 4, 6, 8, 12), (2, 2, 4, 4; 4, 8, 8, 12), or (2, 2, 2, 4, 4; 4, 4, 6, 8, 12),

Proof. By the Land in Zero and k − 1 Lemmas (2.6 and 2.7), we may assume that |xk−1| ≥ 4 since
otherwise δ vanishes on the first k − 1 generators and hence on all of them. By the assumptions of the
proposition, we have |xk−1| = |xk| = 4. Similarly, wemay assume that δ has degree−2 and that the map
δ : H4 → H2 has rankm ≥ 2.

By Lemma 4.1, |uk| ≥ 12, and this forces the formal dimension

fdH∗ =

k
∑

i=1

(|ui| − |xi|)

to be large. Indeed, let g4 ≥ m be the number of generators of degree four.We have |xi| = 2 for i ≤ k−g4
and |xi| = 4 otherwise. Additionally the Degree Inequality (Lemma 3.8) implies

|ui| − |xi| ≥ |x1| + |xi+1| − |xi|

for all 1 ≤ i ≤ k − g4, and Theorem 3.1 implies

|ui| − |xi| ≥ |xi| ≥ 4

for i > k − g4. Putting these into the above formula and summing gives the estimate

fdH∗ ≥
(

2k − 2g4 + 2
)

+ (4g4 − 4) + (12 − 4) = 2k + 2g4 + 6.

If g4 ≥ 3, then k ≥ m + g4 ≥ 5 and hence fdH∗ > 20. This is what we wish to show, so we may
assume that g4 = m = 2. The degree type is of the form

(2, . . . , 2, 4, 4;B1, . . . ,Bk)

with Bi ≥ 2|xi| = 4 for 1 ≤ i ≤ k − 3, Bk−2 ≥ |x1| + |xk−1| = 6, Bk−1 ≥ 2|xk−1| = 8, and Bk ≥ 12.
Going back to the estimate on fdH∗, we see that k ∈ {4, 5}.

If k = 4, then fdH∗ =
∑4

i=1 Bi − 12 ≥ 18. Since we may assume that fdH∗ ≤ 20, it follows either
that we have equality in all four of the lower bounds on the Bi or that we have equality in three of the four
bounds and we are off by two in the fourth. This gives rise to five possibilities for the degree type. Two
of these are ruled out by the SAC(4,4) condition, one is ruled out by the bound r12 + r16 + · · · ≥ m− r4
from Lemma 4.1, and the remaining two appear in the conclusion of the proposition.

If instead k = 5, then we estimate as above: fdH∗ =
∑5

i=1 Bi − 14 ≥ 20. Hence equality holds in all
five of the lower bounds on the Bi, and we find that the degree type is the last one shown in statement of
the proposition.

5. The Top-to-Bottom Lemma

In this section, we prove the Top-to-Bottom Lemma and use it to prove Proposition 5.2, which verifies
the Halperin conjecture for formal dimensions up to 20 in all but one exceptional case when the largest
two generator degrees satisfies |xk−1| + |xk| = 10.

Lemma5.1 (Top-to-BottomLemma). LetH∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra
that does not split and that satisfies |uk| < 3|xk|. If there exists a derivation δ on H∗ and l ≥ 1 such that
the map

δl : H|xk| → H|x1|

exists and is nonzero, then in fact this map has rank at least two.
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This lemma is reminiscent of the k− 1 Lemma, which states that a derivation with negative degree is
nonzero only if it has rank at least two.

Proof. Without loss of generality, we may assume that |δ| divides |xk| − |x1|, and we may fix l ≥ 1 such
that δl maps H|xk| into H|x1|. We may also assume that this map has rank exactly one and change basis,
if necessary, so that δl(xk) = x1 and that δl(xi) = 0 for i < k.

Consider the ideal inH∗ generated by x1, . . . , xk−1. SinceH
∗ is finite-dimensional, there exists some

relation ui not in this ideal. Since |ui| < 3|xk|, we must have

ui = λx2k + xkf + g

for some nonzero λ ∈ Q and some f , g ∈ Q[x1, . . . , xk−1]. By scaling ui, we may assume λ = 1, and
then completing the square and replacing xk by xk + 1

2 f , we may assume f = 0.

We apply δ2l to this equation. On the left-hand side, we see that δ2l(ui) is in the ideal (u1, . . . , uk) and
has (minimal) degree 2|x1|. In particular, δ2l(ui) is a rational linear combination of the uj with minimal
degree. Hence either it is zero or it is u1 after possibly replacing u1 by this linear combination.

On the right-hand side, note that

δ2l(x2k) =

(

2l

l

)

(

δlxk

)2
=

(

2l

l

)

x21.

If it is the case that δ2l(g) = 0, then we have that u1 ∈ Q[x1], a contradiction to the assumption thatH∗

does not split. Hence, we may assume that δ2l(g) 	= 0.
Now g is a polynomial in x1, . . . , xk−1, so there exists a monomial xi1 · · · xip appearing in g such that

δ2l(xi1 · · · xip) 	= 0.

Furthermore, by the Leibniz rule, there exists j1 + · · · + jp = 2l such that

δj1(xi1) · · · δjp(xip) 	= 0.

Each term in this product is nonzero and hence has degree at least |x1|. Summing, we have

p|x1| ≤
(

|xi1 | + j1|δ|
)

+ · · · +
(

|xip | + jp|δ|
)

= 2|xk| + 2l|δ| = 2|x1|.

Hence p ≤ 2. At the same time, xk has maximal degree among the generators, so p = 2 and equality
holds in the estimate above. It follows that some δl(xi) 	= 0 with xi 	= xk, and this implies a contradiction
to our choice of basis at the beginning of the proof.

Using the Top-to-Bottom Lemma, we can nearly prove the theorem under the condition |xk−1| +

|xk| = 10. The exceptional case given in Proposition 5.2 is proved in Section 6.

Proposition 5.2. LetH∗ be a positively elliptic algebra that does not split. If there exists a nonzero derivation
of negative degree and |xk−1| + |xk| = 10, then either fdH∗ > 20 or the degree type is equal to

(2, 2, 2, 4, 6; 4, 4, 6, 10, 12).

Proof. Since |xk−1| and |xk| are positive, even numbers summing to 10, and since |xk−1| 	= 2 by the Land
in Zero and k − 1 Lemmas, we may assume that |xk−1| = 4 and |xk| = 6. In addition, we may assume
that

δ(xk−1) = x1

up to a change in basis. Note also that k ≥ 3.
First suppose that |uk| > 12. By the condition SAC(6), there is a relation whose degree is properly

divisible by six. In particular, |uk−1| ≥ 12 or |uk| ≥ 18, and hence

k
∑

i=k−1

(|ui| − |xi|) = |uk−1| + |uk| − 10 ≥ 16.
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Note also that

|uk−2| − |xk−2| ≥ max
(

|xk−2|, |x1| + |xk−1| − |xk−2|
)

.

Since the maximum is at least the average, and since the left-hand side is even, this is at least four.
Substituting these estimates into the formula for the formal dimension and applying the Degree
Inequality, we have

fdH∗ ≥

k
∑

i=k−2

(|ui| − |xi|) ≥ 20.

Sincewemay assume that fdH∗ ≤ 20, we have equality everywhere. In particular, k = 3 and |u1|−|x1| =

4. But the k − 1 Lemma implies that δ(x2) = λx1 	= 0, so Part 2 of the Degree Inequality implies that
|u1| ≥ |x1| + |x3|. This is a contradiction, and we may assume that |uk| = 12.

The Top-to-Bottom Lemma implies that δ2(xk) = 0. After replacing xk by something of the form
xk − l(x1, . . . , xk−2)xk−1, we may assume that

δ(xk) = p(x2, . . . , xk−2) 	= 0.

In particular, k 	= 3, since otherwise this expression implies that δ(x3) = 0, a contradiction to the k− 1
Lemma. Assume then that k ≥ 4.

The condition δ2(xk) = 0 also means that we can apply the second part of Large Relations Lemma
(Lemma 4.1). Hence, |uk−1| ≥ 10.

Suppose first that k ≥ 5. Since |uk−1| − |xk−1| ≥ 6 and |uk| − |xk| = 6, we can estimate the formal
dimension as above to obtain

fdH∗ ≥ (k − 3)|x1| + 4 + 6 + 6 ≥ 20.

Hence wemay assume that equality holds in these estimates. It follows that the degree type is of the form

(2,A2,A3, 4, 6; 2 + A2, 2 + A3, 6, 10, 12).

But now the bounds |ui| ≥ 2|xi| for all i imply that A3 = 2 and A2 = 2, so this is the exceptional case
given in the conclusion of the proposition.

We may assume therefore that k = 4. In particular,

δ(x3) = x1 and δ(x4) = p(x2),

where p is linear if |x2| = 4 and quadratic if |x2| = 2.
Since H∗ is finite-dimensional, not all of the ui lie in the ideal I = (x1, x2, x4), since otherwise

H∗ projects onto the infinite-dimensional algebra Q[x1, . . . , x4]/I. Hence there exists a relation (up to
scaling) of the form

ui = x23 + q or ui = x33 + q

for some q ∈ I. For degree reasons, the structure of δ implies that q ∈ ker(δ2) in the first case or
q ∈ ker(δ3) in the second. Applying δ2 or δ3, we see that

2x21 = δ2(ui) or 6x
3
1 = δ3(ui).

Since δ preserves the ideal (u1, . . . , u4), the right-hand side of each expression lies in this ideal. In the
first case, we may perform a change of basis on the degree four ui to obtain u1 = 2x21. This gives rise to
a splitting by the subalgebra generated by x1, a contradiction to the assumptions of the proposition.

Similarly, the second case gives rise to a contradiction if it is possible to change basis so that some
uj = 6x31. Therefore we may assume that

6x31 =
∑

ljuj

where the lj are linear polynomials in the degree two generators and the uj are degree four relations. Now
if u1 is the only one degree four relation, then u1 is a multiple of x21, which is again a contradiction. But
then wemust have that |u1| = |u2| = 4, so we have that |u2| < 6 = |x1|+|x3|. By the Degree Inequality,
it follows that x1 and x2 generate a subalgebra of H

∗ that induces a splitting. This is a contradiction, so
the proof is complete.
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6. Proof of themain theorem

In this section, we finish the proof of the Halperin Conjecture for formal dimensions at most 20. We are
given a positively elliptic algebra

H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk)

as in Theorem 3.1, and we assume the existence of a nonzero derivation δ onH∗ of negative degree. We
seek a contradiction.

If the formal dimension is two, then Theorem 3.1 implies that k = 1 and the Land in Zero Lemma
implies that δ = 0, a contradiction. Hence we may inductively assume that 2 < fdH∗ ≤ 20 and the
Halperin Conjecture holds for formal dimensions less than fdH∗.

By Markl’s theorem, we may assume that H∗ does not split. In particular, Propositions 3.9, 4.2, and
5.2 apply, and together they imply that the degree sequence of H∗ must fall into one of six exceptional
cases. To finish the proof, therefore, it suffices to prove Halperin’s conjecture in each of these six cases.

We first consider the three exceptional cases that arose in the case |xk−1| + |xk| = 8 (see
Proposition 4.2):

Proposition 6.1. If H∗ is a positively elliptic algebra that does not split and has degree type

(2, 2, 4, 4; 4, 6, 8, 12), (2, 2, 4, 4; 4, 8, 8, 12), or (2, 2, 2, 4, 4; 4, 4, 6, 8, 12),

then there does not exist a nonzero derivation with negative degree.

Proof. We adopt the notation from Lemma 4.1, with a slight modification. We may assume

δ(xk−1) = x1 and δ(xk) = x2

and that δ(xi) = 0 for 1 ≤ i ≤ k− 2. In addition, after possibly swapping the two degree eight relations
in the second case, we may assume that

uk−1 = pk−1(xk−1, xk) + qk−1

with pk−1 	= 0 and qk−1 ∈ (x1, . . . , xk−2). Indeed, if pk−1 = 0 (and pk−2 = 0 in the second case), thenH∗

admits a quotient map ontoQ[x1, . . . , xk]/(x1, . . . , xk−2, uk), a contradiction to finite-dimensionality.
Applying δ2 as in the proof of Lemma 4.1, we find that

pk−1(x1, x2) = u1

after possibly changing basis in the degree four relations. In addition, in the case where uk−2 also has
degree eight, we find that pk−2 is a multiple of u1, where uk−2 = pk−2(xk−1, xk) + qk−2 and qk−2 ∈

(x1, . . . , xk−2). In this case, we can replace uk−2 by uk−2 − μuk−1 for some μ ∈ Q so that pk−2 = 0. In
any case, we have shown that

u1, . . . , uk−2 ∈ (x1, . . . , xk−2).

We extend the argument from Lemma 4.1 by considering the degree 12 relation uk. Write

uk = pk(xk−1, xk) + qk

for some cubic polynomial pk and some qk ∈ (x1, . . . , xk−2). For degree reasons, we have that δ
3(qk) = 0

and hence that

6pk(x1, x2) = δ3(uk) ∈ (u1, . . . , uk).

Note that pk(x1, x2) has degree six and can be expressed as

pk(x1, x2) =

k
∑

i=1

hiui
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where hi ∈ Q[x1, . . . , xk] is a linear polynomial in the first k − 2 variables if |ui| = 4, where hi ∈ Q if
|ui| = 6, and where hi = 0 if |ui| ≥ 8.

We further claim that hi = 0 when |ui| = 6. Indeed, otherwise we can replace ui by the expression
∑

hiui so thatui = pk(x1, x2). For the degree types under consideration, this implies that x1, x2, . . . , xk−2

generate a subalgebra K∗ that induces a splitting of H∗, a contradiction. We may therefore assume that
pk(x1, x2) = h1u1 in the first two cases and that pk(x1, x2) = h1u1 + h2u2 in the third.

To derive a contradiction in the first two cases (where k = 4), recall that u1 = p3(x1, x2) and hence
that p4(x3, x4) is in the ideal

I = (x1, x2, p3(x3, x4)).

For degree reasons, it follows that I contains all four of the ui and hence that there exists a projection of
H∗ ontoQ[x1, . . . , x4]/I. Since the latter space has infinite dimension, this is a contradiction.

To derive a contradiction in the last case (where k = 5), we consider the expression

p5(x1, x2) = h1u1 + h2u2.

Write hi = li(x1, x2)+kix3 for some linear polynomials li and some ki ∈ Q, andwrite u2 = u2,0(x1, x2)+
x3u2,1(x1, x2, x3). We break the proof into cases.
• Suppose u2,1 = 0. This implies that u2 is a polynomial in x1 and x2. Since u1 = p4(x1, x2) as well, we

see that x1 and x2 generate a subalgebra that induces a splitting of H
∗, a contradiction.

• Suppose h2 = 0. This implies that u1 = p4 divides p5. Hence the ideal

I = (x1, x2, x3, p4(x4, x5))

contains all of the uj, a contradiction to finite-dimensionality of H∗.
• Suppose instead that u2,1 	= 0 and that h2 	= 0. Comparing coefficients of x23 and x33 in the above

equation, we see that h2 = l2 	= 0. Similarly, comparing coefficients of x3, we find that k1 	= 0.
Now l2 divides p5 − h1p4, which can be written as

(

p5 − l1p4
)

− x3
(

k1p4
)

.

It follows that l2 divides both p5 − l1p4 and k1p4 and hence p4 and p5 as well. Hence the ideal

I = (x1, x2, x3, l2(x4, x5))

contains all five of the relations uj, andwe once again have a contradiction to the finite-dimensionality
of H∗.
We have derived a contradiction in all cases, so the proof is complete.

Next we consider the exceptional case arising in the case where |xk−1| + |xk| = 10 (see Proposi-
tion 5.2):

Proposition 6.2. Let H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra that does not split.
If the degree type is

(2, 2, 2, 4, 6; 4, 4, 6, 10, 12),

then H∗ does not admit a nonzero derivation of negative degree.

Proof. As in the proof of Proposition 5.2, we may assume that

δ(x4) = x1 and δ(x5) = p(x2, x3).

Consider the ideal I = (x1, x2, x3, u5). For degree reasons, uj ∈ I for all j 	= 4. Since H∗ is finite-
dimensional, it follows that u4 	∈ I. After scaling u4, if necessary, we have

u4 = x4x5 + q4

with q4 ∈ I.
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Note that q4 has degree ten. For degree reasons, it is a polynomial in Q≥3[x1, . . . , x5]. Note that δ

preserves this subspace. Since, in addition, x4δ(x5) = x4p(x2, x3) is in this subspace, we have that

δ(u4) ∈ x1x5 + Q≥3[x1, . . . , x5].

On the other hand, δ(u4) is a degree eight element of the ideal (u1, . . . , u5). For degree reasons, this
implies that

δ(u4) =

3
∑

i=1

hiui

with hi ∈ Q≥1[x1, . . . , x5]. But each uj is an element of Q≥2[x1, . . . , x5], so δ(uj) is as well. Hence this
equation shows that δ(u4) ∈ Q≥3[x1, . . . , x5], a contradiction.

Finally, we consider the remaining two exceptional cases, which arise in the case where |xk−1|+|xk| ≥

12 (see Proposition 3.9). Note that, for the first time, the possibility that δ has degree −4 is nontrivial.
Indeed, in all previous cases, it is immediate to see that δ having degree −4, −6,…implies that δ is zero
on at least k − 1 generators for degree reasons and hence that δ = 0 by the k − 1 Lemma.

The first of the two remaining cases is simpler and uses ideas similar to previous proofs.

Proposition 6.3. If H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a positively elliptic algebra with no nontrivial
subalgebra and degree type

(2, 4, 6, 6; 6, 8, 12, 12),

then H∗ does not admit a nonzero derivation with negative degree.

Proof. Suppose first that δ(x2) = x1, after possibly rescaling. By the Top-to-Bottom Lemma, we see that
δ(xi) = λix

2
1 for some λi ∈ Q for i ∈ {3, 4}. Replacing xi by xi − λix1x2, we find that x1, x3, x4 ∈ ker(δ)

in contradiction to the k − 1 Lemma. Hence, we may assume that

δ(x1) = 0 and δ(x2) = 0.

Furthermore, we may assume that δ(x3) and δ(x4) are linearly independent elements in degree four.
In particular, δ cannot have degree −4 (or smaller), so δ has degree −2. After choosing a suitable basis,
we may assume that

δ(x3) = x21 and δ(x4) = x2.

Write

uj = pj(x3, x4) + qj

for j ∈ {3, 4}, where qj ∈ (x1, x2). Note that δ
2(qj) = 0 for degree reasons, so

2pj(x
2
1, x2) = δ2(uj) ∈ (u1, . . . , u4).

This is an equation in degree eight, so we have

2pj(x
2
1, x2) = ax1u1 + bu2

for some a, b ∈ Q. Note that b = 0, since otherwise u1 and u2 are polynomials in x1 and x2, which
contradicts the assumption that H∗ does not have a nontrivial subalgebra.

Since b = 0, we find that x1 divides pj(x
2
1, x2) for j ∈ {3, 4}. This implies that x21 divides pj(x

2
1, x2), and

hence both p3(x3, x4) and p4(x3, x4) are divisible by x3. It follows that

u1, . . . , u4 ∈ (x1, x2, x3),

which is a contradiction to the finite-dimensionality of H∗.
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Finally, we prove the last exceptional case.We wish to highlight that the proof in this case differs from
all of the previous arguments. Specifically, we do not choose our basis in order to simplify the action of
δ, as this does not appear to help us. Rather we choose our basis in order to simplify the form of the
relations.

Proposition 6.4. If H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a positively elliptic algebra with no nontrivial
subalgebra and degree type

(2, 2, 6, 6; 4, 8, 12, 12),

then H∗ does not admit a nonzero derivation with negative degree.

Proof. Suppose δ is a nonzero derivation of negative degree, and note that δ has degree −2 or −4 by the
Land in Zero Lemma. For j ∈ {3, 4}, write

uj = pj(x3, x4) + qj

where qj ∈ (x1, x2). Since qj has degree 12 and hence at most one x3 or x4 in each of its monomials,
qj ∈ ker(δ2).

Note that p3 and p4 are coprime polynomials. Indeed, if g(x3, x4)were a non-constant common factor,
then all relations uj are in the ideal I = (x1, x2, g(x3, x4)) and H∗ projects onto the infinite-dimensional
spaceQ[x1, . . . , x4]/I, a contradiction.

Since p3(x3, x4) and p4(x3, x4) are coprime, quadratic polynomials, we can choose bases of
span{x3, x4} and span{u3, u4} such that one of the following cases occurs:

1. p3 = x23 and p4 = x24, or
2. p3 = x23 − λx24 and p4 = x3x4 for some λ 	= 0.

Indeed, up to relabeling and scaling, we may assume that p3 contains an x
2
3 term. Completing the square

and replacing x3 by something of the form x3 + μx4, we find that p3 = x23 − λx24 for some λ ∈ Q.
Subtracting a multiple of u3 from u4 corresponds to subtracting the samemultiple of p3 from p4. We can
do this so that p4 = μx3x4 + νx24 for some μ, ν ∈ Q. If μ = 0, the claim follows by rescaling u4 and
subtracting amultiple of u4 from u3. Ifμ 	= 0, wemay replace x3 byμx3+νx4. This results in p4 = x3x4.
Subtracting now a multiple of u4 from u3 and scaling u3 once more, we find that we are in the second
case of the claim. Note here that λ 	= 0 because p3 and p4 are coprime.

Returning to the expressions for uj, we apply δ2 to get

2pj(δ(x3), δ(x4)) = δ2(uj) ∈ (u1, . . . , u4).

Suppose first that δ has degree−4, so that δ(xj) ∈ span{x1, x2} for j ∈ {3, 4}.Without loss of generality,
we may assume δ(x3) = x1 and δ(x4) = x2. Since p3 and p4 are coprime polynomials, so are

δ(u3) = 2p3(x1, x2) and δ(u4) = 2p4(x1, x2).

But δ(u3), δ(u4) ∈ span{u1}, so we have a contradiction.
Suppose instead that δ has degree −2. Since the expressions for pj(δ(x3), δ(x4)) are in degree eight,

we have equations of the form

2pj(δ(x3), δ(x4)) = lj(x1, x2)u1 + kju2

for j ∈ {3, 4}, where the lj are linear polynomials and the kj ∈ Q.
If some kj 	= 0, we may replace u2 by lj(x1, x2)u1 + kju2 and conclude that u1 and u2 are polynomials

in x1 and x2. This implies the existence of nontrivial subalgebra, a contradiction.
Wemay assume that k3 = k4 = 0, so that u1 divides both p3(δ(x3), δ(x4)) and p4(δ(x3), δ(x4)). Using

the simple formulas for p3 and p4, we see that one of the following happens:

1. u1 divides both δ(x3)
2 and δ(x4)

2.
2. u1 divides both δ(x3)

2 − λδ(x4)
2 and δ(x3)δ(x4) for some λ ∈ Q \ {0}.
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In either case, ifu1 is irreducible, it follows thatu1 divides both δ(x3) and δ(x4). Since all of these elements
have degree four, we find that δ(x3) and δ(x4) are linearly dependent. After changing basis once more,
we find a contradiction to the k − 1 Lemma.

Next if u1 = l1l2 is a product of coprime irreducibles, then each irreducible factor divides both δ(x3)
and δ(x4) by a similar argument. Moreover, since l1 and l2 are coprime, it follows that u1 divides both of
these elements, and we again have a contradiction.

Finally, if neither of these cases occurs, then u1 = λl2 for some λ ∈ Q and some linear polynomial l =
l(x1, x2). But now we can replace x1 or x2 by l(x1, x2) and derive the existence of a nontrivial subalgebra
of H∗, so we again have a contradiction.
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