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1. Introduction

We consider Artinian complete intersection algebras

H* = Qx1,...,x¢)/(u1s. .., ug)

over the rationals with a grading concentrated in even degrees. Examples include the rational cohomol-
ogy of positively elliptic topological spaces, so for simplicity we refer to these algebras as positively elliptic
algebras (see Section 2 for definitions).

Positively elliptic spaces play an important role in rational homotopy theory. In fact, they are the
subject of a 1976 conjecture of Halperin that is listed as the first of seventeen open problems in [11,
Chapter 39]. In 1982 Meier [25] proved that this conjecture can be reformulated algebraically as follows:

Conjecture (Halperin Conjecture). If H* is a positively elliptic algebra, then H* does not admit a
nontrivial derivation of negative degree.

The conjectured nonexistence of derivations of negative degree arises in other contexts, including
singularity theory where one has the conjectures of Wahl (see [5, 14, 30]) and Yau (see [8, 31]). For
additional context, we refer to the survey [17], the papers [18-20], and references therein.

Evidence for Halperin’s conjecture includes proofs under geometric assumptions such as when H* is
the rational cohomology algebra of a Kahler manifold (see [4, 24]), a homogeneous space (see [28]), or a
non-negatively curved Riemannian manifold with large symmetry (see [12, 13, 15, 27]). It has also been
verified under algebraic assumptions such when H* at most three generators (see [6, 21]), relations of
sufficiently large degree (see [9]), or formal dimension at most 16 (see [2]). In this article, we expand on
the latter result by shortening the proof and extending it as follows:

Theorem. Halperin’s conjecture holds in formal dimensions at most 20.

CONTACT Lee Kennard @ Itkennar@syr.edu @ Department of Mathematics, Syracuse University, Syracuse, NY, 13244, USA.
© 2023 Taylor & Francis Group, LLC
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The proof simplifies and extends [2], which covers dimensions up to 16. In fact, by adopting the
algebraic setup of [6, 9, 26] (see Sections 2 and 3) and proving two new lemmas, we can efficiently prove
all cases in dimensions up to 16 and all but six exceptional cases in dimensions 18 and 20 (see Sections 4
and 5). The proof of those six cases, and therefore of our main theorem, is completed in Section 6.

2. Preliminaries

Let A = QIx1, ..., xk] denote the polynomial ring over the rationals on k variables. Assume moreover
that each x; has a positive, even degree assigned to it that is denoted by |x;|. This induces a graded
algebrastructureon A = €,y A" where the subspace A" is spanned by monomials Xt xzk satisfying
ai|xi| + -+ aklxp| = n.

Next let I = (uy, .. .,ux) denote the ideal generated by homogeneous polynomials u; € A“!, where
|u;| denotes the degree of u;. Recall that the u; form a regular sequence if u; € A is nonzero and if the
image of u; in A/(uy, ..., u;—1) is not a zero divisor forall 2 < i < k.

Definition 2.1. A positively elliptic algebra is the quotient Q[xi,...,xxl/(u1,...,ux) of a graded
polynomial ring over the rationals on generators with positive, even degrees by an ideal generated by
a regular sequence uy, . . ., ux of homogeneous polynomials.

Example 2.2. Singly generated algebras Q[x;]/(x{) are positively elliptic. Doubly generated algebras
can be positively elliptic or not, as can be seen from the examples Q[x;,x2]/ (x% — x%,xlxz) or
Qlx1,x21/ (x%, x1x2). In the latter case, the image of x;x2 in Q[x1, x21/ (x%) is a zero divisor, so the ideal
is not generated by a regular sequence.

Example 2.3. Positively elliptic algebras arise as the rational cohomology algebras of simply connected,
rationally elliptic topological spaces F with positive Euler characteristic (see [11, Proposition 32.10]).
Such spaces are called Fy spaces or positively elliptic spaces (see [1, 3, 22]), and they were conjectured
by Halperin in 1976 to satisfy the following: For any orientable fibration with fiber F, the Serre spectral
sequence degenerates at the E;-page (see [11, Chapter 39]).

In 1982, Meier [25, Theorem A] proved that Halperin’s conjecture can be reformulated entirely
algebraically in terms of negative degree derivations.

Definition 2.4. Given a positively elliptic algebra H*, a derivation is a linear map § : H* — H* that
increases degree by some integer |§| € Z and satisfies the Leibniz rule, that is, behaves on products of
homogeneous elements as follows:

8(xy) = 80y + (—D)PHx5(y).

Example 2.5. The graded algebra H* = Q[xl,xz]/(x% — Ax%,xlxz) with |x1] = |x2] = 2and A €
Q \ {0} is a positively elliptic algebra and admits a nontrivial derivation § of degree 2. Indeed, if we
define §(x1) = x% and §(x2) = 0 and extend the definition by linearity and the Leibniz rule, we obtain a
well defined derivation on Q[x1, x,]. In addition, § (x% - )»x%) and 8 (x1x;) are in the ideal (x% —)»x%, X1%2),
50 8 descends to a well defined derivation on H*.

This example demonstrates the way we work with derivations on H*. They correspond to derivations
on Q[xy,...,x] that map the ideal (uy,...,ux) into itself. Throughout this article, we use the same
notation for the generators of Q[x, . .., xx] and their images in H*.

This example also shows the necessity of the condition that § have negative degree. We recall Meier’s
reformulation of Halperin’s conjecture from the introduction for easy reference:
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Conjecture (Halperin Conjecture). Positively elliptic algebras do not admit nontrivial derivations of
negative degree.

We close this preliminary section with two basic results (see [2, Lemmas 11.1 and 11.3]). Together
they imply Thomas’ result that the Halperin Conjecture holds when H* is generated by at most two
elements (see [29]).

Lemma 2.6 (Land in Zero Lemma). Fori > 0, a derivation of degree —i vanishes on H'.

Lemma 2.7 (k — 1 Lemma). If§ is a derivation of negative degree on H* such that §(x;) = 0 for k — 1 of
the k generators x;, then § = 0.

3. Degree type, formal dimension, and splittings

Given a positively elliptic algebra H* = Q[x, . .., xk]/(u1, . . ., ux), the degree type of H* is the sequence
of even, positive integers denoted by

(etls - oo Ikl luals - o s Jug]).

As Example 2.5 shows, the degree type (2,2;4,4) can be realized in infinitely many ways, even up to
isomorphism. This is a general feature. Nevertheless, it is helpful to sort positively elliptic algebras
according to their degree types. In this section, we summarize previous work on degree types as they
relate to Halperin’s conjecture. In addition, we define pure models, formal dimension, and splittings.
The first basic result is the following. It is motivated by, but not explicitly stated in, [11, Section 32]:

Theorem 3.1 (Pure model). Given a nonzero positively elliptic algebra H*, there exist variables x; of
positive, even degrees |x;| and homogeneous polynomials

ui € Q7[x1,...,x¢] = span{x{’ - - x{* [ ay + - + ax > 2)

such that H* = Qlxi,...,xkl/(u1,...,ux). Moreover these choices can be made to satisfy all of the
following:

Lx] <. < gl
2. Jug| < e < fugl
3. |ui| = 2|x| foralll <i <k

In addition, the formal dimension

n
fAH* = (luil — |xl)
k=1
is independent of the choice of presentation.

Such a presentation of H* is called a pure model, and we assume from now on that our presentations
of positively elliptic algebras are pure models.

Remark 3.2. The presentation (i.e., choice of generators and relations) is not unique. For example, a
linear change of variables in generators of the same degree does not affect the property of being a pure
model or the degree type, nor does it change the fact that the relations form a regular sequence. Somewhat
more generally, we may add a polynomial of generators of lower degree to another generator, so long as
we preserve the homogeneity of the generators. Similar comments apply to changes in our choice of
relations.

Proof. By definition, there is some presentation of H* = Q[x,...,x¢]/(u1, ..., ux) with k > 1. We may
assume that k is minimal.
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Clearly the u; do not have constant terms, since otherwise the ideal I = (u1,...,ux) is the
entire polynomial algebra. Moreover, if some u; has a linear term equal to a multiple of x;, then the
automorphism of Q[x1, . .., xx] that replaces x; by u; is an isomorphism. Taking the quotient by I gives
rise to a presentation of H* on k — 1 generators. This contradicts the minimality of k, so we have that
each uj € QZ2[xy,. .., x].

Next, we may relabel the generators and relations so that |x;] < --- < |xx| and |u1| < -+ < |ugl.
The final condition that |u;| > 2|x;| for all i follows by the result of Friedlander and Halperin below
(Theorem 3.4). Indeed, this result implies that some relation (and hence u;) has degree at least twice
| x|, that at least two relations (and hence ux_; and uy) have degree at least twice |x;_; |, and so on.

For the last claim, we note that H* satisfies Poincaré duality (see [16, Section 8]). This means that there
exists n > 0 such that H' = 0 for i > nand H" = Q and that the product map H' x H"~ — H" = Qis
anon-degenerate bilinear pairing for all 0 < i < n. This integer n is called the formal dimension (or socle
degree) and is denoted by fd H* (cf. [7]). For our purposes, we note that H” is generated by the Jacobian
det (8 uj/ ij) (see, for example, the remarks following Theorem B in [28]). Therefore, the formula in the
theorem equals 7 and is therefore an invariant of the positively elliptic algebra. O

Example 3.3. The positively elliptic algebra H* = Q[x1, x2]/ (x% — X7, xg) with |x1| = 2and |x;| = 4 can
be more efficiently presented as H* = Q[x]/ (x%). Indeed, an isomorphism is given by mapping x; — x

and x; > x2.

A consequence of Theorem 3.1 is that any given formal dimension only allows for finitely many degree
types. Indeed,

k k
fAH =) fwl = |xil = ) Ixil = 2k,
i=1 i=1

sok < % td H*, the possible degrees |x;| are similarly bounded, and therefore the possibilities for the |u;]
are finite.

A further restriction on the degree types is the following result due to Friedlander and Halperin (see
[10, Corollary 1.10] or [11, Proposition 32.9]):

Theorem 3.4 (Characterization of degree types). A sequence
(Al’ .. ’Ak;Bla .. Bk)

of positive, even integers arises as the degree type of some positively elliptic algebra if and only if the following
holds: Forall1 <l <kandl <i; <--- < iy <k, thereexist1 <j; <--- <jj < ksuch thatle,...,le
can be expressed as linear combinations of the form M1 A; +- - -+ A;, with non-negative integer coefficients
satisfying Ay + - -+ + A > 2.

To illustrate, the degree type (A1, A2; B, B2) = (2,4;4, 10) does not satisfy this condition since A, =
4 does not properly divide any of the B;. Similarly, the degree type (2,2,4,4;4, 6, 8, 10) does not satisfy
the condition and therefore does not arise as the degree type of a positively elliptic algebra.

Definition 3.5. A sequence (Aj,...,Ax;B1,...,Bx) as in Theorem 3.4 satisfies the condition
SAC(Ajy, ..., Ay) if there exist Bjj, . . ., Bj as in the theorem.

In [10], the condition that SAC(A;,, . . ., Aj;) holds for all possible subsequences1 <i; < --- < i <k
is called the Strong Arithmetic Condition (SAC). The examples after the theorem fail the SAC(4) and
the SAC(4,4), respectively, and therefore fail the SAC.

Next we discuss Markl’s result, which is crucial to our inductive arguments over the formal dimension.
One result we need in the proof of the main theorem is Lemma 3.8.
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Definition 3.6 (Split positively elliptic algebras). A positively elliptic algebra H* splits if it has a
presentation as a pure model
H* = Q[x1,....xk]/(u1s. .., ug)

such that, for some 0 < I < k, the polynomials u, . .., u; only depend on xy, . . ., x;.

Note that, in this definition, H* has a positively elliptic subalgebra

K* Z Qlx1,....x1/ (U1, ..., up)

and a positively elliptic quotient algebra Q* = H*/K* defined by Q" = H"/(K*H*)", where K™ H*
denotes the vector subspace spanned by products of an element of K* of positive degree and an element
of H*. Note that

Q" = Qlx115- - > X1/ (Wig1s - - - Uk)s

where the bars denote images under the projection map H* — Q*. Also note that
fdH* = fdK* + fd Q*

and that both K* and Q* have formal dimension strictly less than fd H*.

In the proof of the Halperin conjecture up to dimension 20, we will proceed by induction over the
formal dimension. In particular, the following is an important tool for dealing with the split case (see
[23, Theorem 1]):

Theorem 3.7 (Markl’s theorem). Let H* be a positively elliptic algebra with a nonzero derivation of
negative degree. If H* splits as above, then K* or Q* also has a nonzero derivation of negative degree.

Markl’s theorem holds in greater generality, but this statement is all we need. As the proof also
simplifies somewhat in this case, we include it here.

Proof. Assume that H* = Q[x1,...,xk]/(u1,...,ux) is a pure model for a positively elliptic alge-
bra H* with the property that uy,...,u; € Q[x,...,x] for some 0 < [ < k. Let K*¥ =
QIx1, ..., x11/(u1, . .., u;), and suppose that neither K* nor Q* = H*/K* admit a nonzero derivation of
negative degree. Finally, let § be a derivation of negative degree on H*, and note that our task is to show
that§ = 0.

First, since the degrees of the x; are increasing, the derivation § restricts to a derivation on K*. By the
assumption on K*, we have

8(x))=---=38(x) =0.
Next, fix any vector space basis {£,} for K* consisting of monic polynomials &, in the variables
X1,...,x. For y € H*, there exist polynomials 8, (y) in x4, . . ., Xk such that

5O =Y Eubu(y).

We claim that each of the maps
8« : H*/JK* — H*/K*
y = 8 (y)
is a well defined linear map. )
If this claim holds, then it is straightforward to see that 3 is a derivation of negative degree on H*/K*
and hence vanishes by assumption. In particular, §,(y) = 84(¥) = 0 for all «, which implies that 54 (y)

is both a polynomial in xj41, . . ., X, and in the ideal (x1, .. ., x;) for all .. It follows that §, = 0 for all
and hence that § = 0, as required.
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It suffices to prove the claim, and for this it suffices to show that §, maps the ideal (x1, .. ., x;) to zero.
Fix

I
zZ = E XiZi
i=1

in this ideal. Applying 8 to both sides of this equation and noting that § is a derivation on H* that vanishes
on xi,. . ., X}, we obtain

1
D Eabal@d) =) xi ) Epdp(z).
o i=1 B

Extracting the coefficients of &, on both sides, we obtain

8y (2) = Z 38(ai) (2i)s
Xiléa

where the sum runs over 1 < i < [ such that x; divides &,, and where B(«, i) is the index for which
Xi€p(a.i) = Ea-

If « is the index corresponding to the constant monomial &, = 1, then the sum on the right-hand side
is trivial and we find that §4(z) = 0. As z was arbitrary, this proves that §, maps the ideal (x,...,x))
to zero for this particular value of . Proceeding by induction over the degree of &,, we note that the
right-hand side once again vanishes by the induction hypothesis since £g(q,i) has smaller degree than
&y Hence 84(z) = 0, and so by induction we conclude that §, vanishes on the ideal (x1,...,x)), as
required. O

In the proof of our main theorem, we induct over the formal dimension. By Markl’s theorem, the
result holds when H* splits since the result holds inductively for smaller formal dimensions. Therefore
it is useful to have conditions that imply the existence of splittings.

Lemma 3.8 (Degree Inequality). Let H* = Qlxy,...,xk]/(u1,. .., ux) be a positively elliptic algebra that
does not split. The following hold:

L Ifi < k, then |u;| > |x1| + |xit1].
2. If6(x2) = AxY # 0 for some A € Q, where § is a derivation on H* with negative degree, then |u;| >
1] + [x3].

Proof. The first claim is a restatement of [2, Lemma 11.4]. It follows since |u;| < |x1]| + |xit1]| for
some i implies that us,...,u; € Q>2[x,...,xx] are polynomials in x;, . . ., x; for degree reasons. Hence
X1, ..., X; generate a nontrivial subalgebra, a contradiction.

The second claim is implicit in the proof of [2, Lemma 11.5]. Suppose that § (xz) = Ax{ # 0 for some
A € Qand @ > 1. Suppose for the purpose of contradiction that |u;| < |x;| + |x3|. As in the previous
paragraph, we conclude that u; is a polynomial in x; and x,. Write u; = Z;:O pi(xl)x;. Since 8(uy) is
in the ideal (u, . .., ux) and has degree less than any of the u;, we have 8 (1;) = 0. On the other hand,

r r
S(u) =Y pilen)(h) =Y ipiCer) () x5,
i=0 i=1

so pi(x1) = 0 forall i > 1. Hence, u; = po(x1), x1 generates a nontrivial subalgebra of H*, and we have
a contradiction. O

We close this section with a proposition showing how the Degree Inequality and the other preliminary
facts we have established work together with the upper bound on the formal dimension to rule out a large
number of cases.
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Proposition 3.9. Let H* = Q[x1,...,xkl/(u1,...,ux) be a positively elliptic algebra with no nontrivial
subalgebra and fd H* < 20. If there exists a nonzero derivation of negative degree and |xx_1| + |xx| > 12,
then the degree type is

(2,4,6,6;6,8,12,12) or (2,2,6,6;4,8,12,12).

Proof. First, suppose that k < 3. By the Land in Zero Lemma, §(x;) = 0, so we may assume k >
2. Moreover by the k — 1 Lemma, we may assume that k = 3 and that §(x2) and §(x3) are linearly
independent since otherwise we could choose new generators so that §(x,) = 0. In particular, it follows
for degree reasons that |x;| < |x3] < |x3|. On one extreme, these degrees could be 2, 4, and 6, but this
contradicts the assumption that |xx_;| + |xx| > 12. We may assume therefore that |x3| > 8. We put
this into the formula for the formal dimension in Theorem 3.1 and we estimate the summands using the
Degree Inequality (Lemma 3.8):

3

fdH" = Z (il = 1xil) = |x3| + max(lx1| + |x3] — [x2], [x2]) + |x3].

i=1

Since the maximum is at least the average, this implies f{d H* > 20, a contradiction.
Next, suppose that k > 4 and |xx| > 8. Using the Degree Inequality to estimate |u;| for i < k — 1 and

the estimate |ug| > 2|xi|, we obtain

k—1

fdH" > Z (o] 4+ Ixip1| = |xi) + [kl = (k = 2)|x| + 2|xx| = 20.

i=1
Hence equality holds everywhere, and we have k = 4, |x;| = 2, |x4| = 8, and |uz| = |x1]| + |x4] = 10.
Now |x3| < %|u3|, s0 |x3] < 4. Since additionally |x3| > 4 by the Land in Zero and k — 1 Lemmas, we
have |x3| = 4. Using equality in the above estimate once more, we have |uz| = |x1| + |x3] = 6, so we
have a contradiction to the SAC(4, 8) condition since u4 is the only relation properly divisible by four.

Finally, suppose that k > 4 and |xx| < 6. By the assumption in the proposition, we have |xx_;| =

|xx| = 6. Estimating as in the previous case, except replacing the estimate for the i = k — 1 term by the
estimate |ug_1| > 2|xk—1|, we see that

fdH* > (k — 3)|x1| + 2|x—1| + [xx| = 2 + 3(6) = 20.
Hence equality holds, and the degree type is of the form
(2,A3,6,6;2 4+ A,,8,12,12)

where A, € {2,4}. These two possibilities correspond to the two degree types in the conclusion of the
proposition, so the proof is complete. O

4. The Large Relations Lemma

In this section, we prove the Large Relations Lemma and Proposition 4.2, which verifies the Halperin
conjecture in formal dimensions up to 20 in all but three exceptional cases when the degrees of the two
largest generators satisfy |xx_;| + |xx| < 8.

Lemma 4.1 (Large Relations Lemma). Let H* = Ql[x,. .., xx]/(u1, . .., ug) be a positively elliptic algebra
that does not split. Assume that H* admits a derivation § of degree —2 such that the map § : H* — H?
has rank m > 1.

Let g; denote the number of generators with degree i, and let rj denote the number of relations with degree
j. The following hold:

L Ifge+ g0+ gia+---=0, then
ra+rie+ - > (k— g — ga) + max(l,m — ry).
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2. Ifge+gio +g1a+--- > 1and §*(H®) = 0, then
ro+ra+-o- = (k—g —ga) + max(l,m —ry).

In particular, |ug| > 12 in the first case and |ux_,| > 10 in the second.

Proof. We prove the claims simultaneously. By the Land in Zero Lemma, we may assume that §(x;) = 0
for 1 < i < g. In addition, we may change basis so that

% if 1<i<m
8(xg2+z')—{ 0 if m<i<g

Finally, if x, is a generator in degree six, then the condition §2(H®) = 0 implies that §(x;,) has no xg, 1
termwith1 <i < m.
Let {uj|j € J} denote the relations with degree 8. Write each of these as

Uj = Pj(Xgyt1s - Xgom) + g

where p; is a quadratic polynomial and where g; is in the ideal

Io = (x1,. . Xg) + (Xgybmt15 - - > Xgytgy)-

Fix J' C J such that {p; | j € J'} is a basis for the span of {p; | j € J}.

We claim that |J'| < m — 1, and we prove this by contradiction. Note that §(H?) = 0 and §2(H*) = 0
by the Land in Zero Lemma. In addition, §2(H®) = 0 by assumption in Case (2) of the lemma and for
degree reasons in Case (1) since there are no generators in degree six. Noting next that § vanishes on the
generators of the ideal Iy, we have 82 (gj) = 0 and hence

82 (1)) = 2pj(x1,. . . Xm)

forj € J'. Now 82(uj) has degree four and lies in the ideal (uy, . . ., ux). Hence pj(x1, . . ., xp) lies in the r4-
dimensional span of {u; | |u;| = 4}. Since the polynomials p; with j € J are linearly independent, we may
perform a change of basis on the degree-four relations ; such that {u1, ..., uyy|} = {pj(x1,...,xm) |j €
JLIE|J| = m, then uy, ..., uy € Q[x1,...,%,] and hence that x1, . . ., x,, generate a subalgebra K*.
Since moreover 1 < m < '5‘, we see that H* splits, and we have a contradiction to the assumptions of the
lemma.

We may assume now that |J'| < m — 1. By the argument in the previous paragraph, |J'| < min(m —
1, r4) by choice of J’. We can perform a change of basis on the u; for j € J so that pj = 0forje J\ J'.

To finish the proof of Claim 1, consider the ideal

I=Io+ ({ujlje]}) + ({u | Iyl € {12,16,...}).

If a relation u; has degree less than eight or not divisible by four, then it lies in I for degree reasons since
there are no generators in degrees 6, 10, etc. If |u;| = 8, then it lies in Iy + ({uj |je I’}) by choice of J'.
Finally it is clear that u; € I for all other relations u;. Hence H* projects onto Q[x, . . ., xx]/I. Since H*
is finite-dimensional, I must have at least k generators. Therefore

@ +g—m+minim—1Lry)+G+re+--) >k

which implies the desired bound in Claim 1.
To finish the proof of Claim 2, we use a similar argument with I replaced by

I=Io+ ({ujlje]}) + ({u| Iyl € {10,12,...}).

It is clear that relations of degree four or degree eight or larger lie in I. Relations of degree six are also
in Iy and hence in I because they are polynomials in Q=2[xy, . . ., xx] (see Theorem 3.1). Hence again all
relations are in I, and the claim follows as before. O

Next, we apply Lemma 4.1 to prove our main theorem when |xx_;| + |xx| < 8 in all but three
exceptional cases.
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Proposition4.2. Let H* be a positively elliptic algebra that does not split. If H* admits a nonzero derivation
of negative degree and |xx_1| + |xi| < 8, then either {d H* > 20 or the degree type is one of the following:

(2,2,4,4;4,6,8,12),(2,2,4,4;4,8,8,12), or (2,2,2,4,4;4,4,6,8,12),

Proof. By the Land in Zero and k — 1 Lemmas (2.6 and 2.7), we may assume that |x;_;| > 4 since
otherwise § vanishes on the first k — 1 generators and hence on all of them. By the assumptions of the
proposition, we have |x,_;| = |xx| = 4. Similarly, we may assume that § has degree —2 and that the map
8 : H* — H? has rank m > 2.

By Lemma 4.1, |ux| > 12, and this forces the formal dimension

k
fAH* =) (luil — |xl)
i=1

to be large. Indeed, let g4 > m be the number of generators of degree four. We have |x;| = 2 fori < k—gy
and |x;| = 4 otherwise. Additionally the Degree Inequality (Lemma 3.8) implies

luil = Ixil = |x1] + [xig | — |xil
forall 1 <i <k — g4, and Theorem 3.1 implies
luil — |xi| = |xi| = 4
for i > k — g4. Putting these into the above formula and summing gives the estimate
fdH* > (2k — 2g4 +2) + (4g4 — 4) + (12 — 4) = 2k + 2g4 + 6.

If g4 > 3,thenk > m + g4 > 5 and hence fd H* > 20. This is what we wish to show, so we may
assume that g4 = m = 2. The degree type is of the form

(2,...,2,4,4;B1,...,Bp)

with B; > 2|x;| = 4for1 <i < k—3,Br_» > |x1| + |xk—1] = 6, Bx_1 > 2|xx_1] = 8, and By > 12.
Going back to the estimate on fd H*, we see that k € {4, 5}.

If k = 4, then fd H* = Z?Zl B; — 12 > 18. Since we may assume that fd H* < 20, it follows either
that we have equality in all four of the lower bounds on the B; or that we have equality in three of the four
bounds and we are off by two in the fourth. This gives rise to five possibilities for the degree type. Two
of these are ruled out by the SAC(4,4) condition, one is ruled out by the bound r12 +rig+--- > m—ry
from Lemma 4.1, and the remaining two appear in the conclusion of the proposition.

If instead k = 5, then we estimate as above: fd H* = Z?=1 B; — 14 > 20. Hence equality holds in all
five of the lower bounds on the B;, and we find that the degree type is the last one shown in statement of
the proposition. O

5. The Top-to-Bottom Lemma

In this section, we prove the Top-to-Bottom Lemma and use it to prove Proposition 5.2, which verifies
the Halperin conjecture for formal dimensions up to 20 in all but one exceptional case when the largest
two generator degrees satisfies |xx_;| + |xx| = 10.

Lemma 5.1 (Top-to-Bottom Lemma). Let H* = Q[x1,...,xx]/(u1,. .., ux) bea positively elliptic algebra
that does not split and that satisfies |ux| < 3|xk|. If there exists a derivation § on H* and | > 1 such that
the map

ol gl . glxl

exists and is nonzero, then in fact this map has rank at least two.
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This lemma is reminiscent of the k — 1 Lemma, which states that a derivation with negative degree is
nonzero only if it has rank at least two.

Proof. Without loss of generality, we may assume that |§| divides |xx| — |x;], and we may fix [ > 1 such
that 8" maps H*! into H*1|. We may also assume that this map has rank exactly one and change basis,
if necessary, so that 8 (x;) = x; and that 8'(x;) = 0 fori < k.

Consider the ideal in H* generated by x1, . . ., x¢—;. Since H* is finite-dimensional, there exists some
relation u; not in this ideal. Since |u;| < 3|xx|, we must have

U= Axi +xf + ¢

for some nonzero A € Q and some f,g € Q[xi,...,xk—1]. By scaling u;, we may assume A = 1, and
then completing the square and replacing xx by xx + % -f, we may assume f = 0.

We apply 82 to this equation. On the left-hand side, we see that 82l (u;) is in the ideal (1, . . ., ux) and
has (minimal) degree 2|x; |. In particular, 82!(u;) is a rational linear combination of the uj with minimal

degree. Hence either it is zero or it is u; after possibly replacing u; by this linear combination.
On the right-hand side, note that

21 2 21
821(x]2() = (l) ((Slxk) = <l>x%

If it is the case that 821(g) = 0, then we have that u; € QQ[x;], a contradiction to the assumption that H*
does not split. Hence, we may assume that §%(g) # 0.
Now g is a polynomial in xi, . . ., xk—1, so there exists a monomial x;, - - - x;, appearing in g such that

8% xiy -+ x3,) # 0.
Furthermore, by the Leibniz rule, there exists j; + - - - + j, = 2l such that
&1 (xiy) - - 8% (x5,) # 0.

Each term in this product is nonzero and hence has degree at least |x;|. Summing, we have
pmusUmJ+ﬁwD+-~+(mm+@wD=2mu+zmr=amL

Hence p < 2. At the same time, x; has maximal degree among the generators, so p = 2 and equality
holds in the estimate above. It follows that some 8! (x;) # 0 with x; # x, and this implies a contradiction
to our choice of basis at the beginning of the proof. O

Using the Top-to-Bottom Lemma, we can nearly prove the theorem under the condition |xx_;| +
|| = 10. The exceptional case given in Proposition 5.2 is proved in Section 6.

Proposition 5.2. Let H* be a positively elliptic algebra that does not split. If there exists a nonzero derivation
of negative degree and |xx_1| + |xx| = 10, then either {d H* > 20 or the degree type is equal to

(2,2,2,4,6;4,4,6,10,12).

Proof. Since |xx_1| and |xx| are positive, even numbers summing to 10, and since |x;_;| # 2 by the Land
in Zero and k — 1 Lemmas, we may assume that |x;_;| = 4 and |xx| = 6. In addition, we may assume
that

8(xk—1) = x1
up to a change in basis. Note also that k > 3.
First suppose that |ux| > 12. By the condition SAC(6), there is a relation whose degree is properly
divisible by six. In particular, |u_1| > 12 or |ux| > 18, and hence
k
> (wil = xil) = |ug—1| + lugl — 10 > 16.
i=k—1
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Note also that
[uk—a| — |xk—2| = max (|xk—2l, lx1] + |[Xk—1] — |xk—2l) .
Since the maximum is at least the average, and since the left-hand side is even, this is at least four.
Substituting these estimates into the formula for the formal dimension and applying the Degree
Inequality, we have
k
fAH* > > (juil — [xi]) > 20.
i=k—2

Since we may assume that fd H* < 20, we have equality everywhere. In particular, k = 3and |u; | —|x;| =
4. But the k — 1 Lemma implies that §(x2) = Ax; # 0, so Part 2 of the Degree Inequality implies that
|ui| > |x1] + |x3]. This is a contradiction, and we may assume that |ux| = 12.

The Top-to-Bottom Lemma implies that §%(x;) = 0. After replacing x; by something of the form
Xk — I(x1, . . ., Xk—2)Xk—1, We may assume that

d(xx) = p(er e Xk—2) # 0.
In particular, k # 3, since otherwise this expression implies that §(x3) = 0, a contradiction to the k — 1
Lemma. Assume then that k > 4.
The condition §2(x;) = 0 also means that we can apply the second part of Large Relations Lemma
(Lemma 4.1). Hence, |ux_1| > 10.
Suppose first that k > 5. Since |ug—1| — |xk—1| > 6 and |ug| — |xx| = 6, we can estimate the formal
dimension as above to obtain

fdH* > (k — 3)|x1| + 4+ 6 + 6 > 20.
Hence we may assume that equality holds in these estimates. It follows that the degree type is of the form
(2,A7,A3,4,6;2 4+ Ay, 2 + A3,6,10,12).

But now the bounds |u;| > 2|x;| for all i imply that A3 = 2 and A, = 2, so this is the exceptional case
given in the conclusion of the proposition.
We may assume therefore that k = 4. In particular,

8(x3) = x1 and §(x4) = p(x2),
where p is linear if |x;| = 4 and quadratic if |x;| = 2.
Since H* is finite-dimensional, not all of the u; lie in the ideal I = (x1, x3, x4), since otherwise

H* projects onto the infinite-dimensional algebra Q[x;, . .., x4]/I. Hence there exists a relation (up to
scaling) of the form

ui=x§+qorui=x§+q
for some q € I. For degree reasons, the structure of § implies that ¢ € ker(§?) in the first case or
q € ker(8°) in the second. Applying §2 or &%, we see that
2% = 8%(u;) or 6x3 = 8 (uy).

Since § preserves the ideal (u1,. .., us), the right-hand side of each expression lies in this ideal. In the
first case, we may perform a change of basis on the degree four ; to obtain u; = 2x2. This gives rise to
a splitting by the subalgebra generated by x;, a contradiction to the assumptions of the proposition.

Similarly, the second case gives rise to a contradiction if it is possible to change basis so that some
uj = 6x3. Therefore we may assume that

3
6x] = Z liu;

where the J; are linear polynomials in the degree two generators and the u; are degree four relations. Now
if u) is the only one degree four relation, then u; is a multiple of x}, which is again a contradiction. But
then we must have that |u;| = |uz| = 4, so we have that |uz| < 6 = |x1|+|x3]. By the Degree Inequality,
it follows that x; and x;, generate a subalgebra of H* that induces a splitting. This is a contradiction, so
the proof is complete. O
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6. Proof of the main theorem

In this section, we finish the proof of the Halperin Conjecture for formal dimensions at most 20. We are
given a positively elliptic algebra

H* = Q[x1,...,xk]/(u1s. .., ug)

as in Theorem 3.1, and we assume the existence of a nonzero derivation § on H* of negative degree. We
seek a contradiction.

If the formal dimension is two, then Theorem 3.1 implies that k = 1 and the Land in Zero Lemma
implies that § = 0, a contradiction. Hence we may inductively assume that 2 < fd H* < 20 and the
Halperin Conjecture holds for formal dimensions less than fd H*.

By Markl’s theorem, we may assume that H* does not split. In particular, Propositions 3.9, 4.2, and
5.2 apply, and together they imply that the degree sequence of H* must fall into one of six exceptional
cases. To finish the proof, therefore, it suffices to prove Halperin’s conjecture in each of these six cases.

We first consider the three exceptional cases that arose in the case |xx_;| + |xx|] = 8 (see
Proposition 4.2):

Proposition 6.1. If H* is a positively elliptic algebra that does not split and has degree type

(2,2,4,4;4,6,8,12),(2,2,4,4;4,8,8,12), or (2,2,2,4,4;4,4,6,8,12),

then there does not exist a nonzero derivation with negative degree.

Proof. We adopt the notation from Lemma 4.1, with a slight modification. We may assume
8(xk—1) = x1 and 8 (xk) = x2

and that 6 (x;) = 0 for 1 < i < k — 2. In addition, after possibly swapping the two degree eight relations
in the second case, we may assume that

Ug—1 = Pr—1(Xk—1>X%) + Gr—1

withpx_; # Oandgx—; € (x1,...,xk—2). Indeed, if py_; = 0 (and px—, = 0inthe second case), then H*
admits a quotient map onto Q[x1,...,xxl/(x1,...,Xk—2, k), a contradiction to finite-dimensionality.
Applying 82 as in the proof of Lemma 4.1, we find that

Pr—1(x1,X2) = U3

after possibly changing basis in the degree four relations. In addition, in the case where uy_, also has
degree eight, we find that pyx_, is a multiple of u;, where ux_y = pr—2(xk—1,xk) + gk—2 and gqx_» €
(x1, . .., xk—2). In this case, we can replace uy_, by ux_, — pug_; for some € Q so that py_, = 0.In
any case, we have shown that

Ul ooy U2 € (X5 e v s Xk—2).
We extend the argument from Lemma 4.1 by considering the degree 12 relation uy. Write
uk = pr(Xk—1, %K) + gk

for some cubic polynomial p; and some gx € (x1, ..., xx_2). For degree reasons, we have that §%(qx) = 0
and hence that

6pk(x1,%2) = 8% (ug) € (uy,. .., ug).

Note that pi(x1, x2) has degree six and can be expressed as

k
prxrx0) =Y hi

i=1
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where h; € Q[x1,...,xk] is a linear polynomial in the first k — 2 variables if |u;| = 4, where h; € Q if
|u;| = 6, and where h; = 0 if |u;| > 8.

We further claim that h; = 0 when |u;| = 6. Indeed, otherwise we can replace u; by the expression
> hju;sothatu; = pi(x1, x2). For the degree types under consideration, this implies that x;, x, . . ., Xg_2
generate a subalgebra K* that induces a splitting of H*, a contradiction. We may therefore assume that
Pr(x1,%2) = hyu in the first two cases and that pi(x1, x2) = hiu; + hau, in the third.

To derive a contradiction in the first two cases (where k = 4), recall that u; = p3(x1, x2) and hence
that p4(x3, x4) is in the ideal

I = (x1,%2, p3(x3,x4)).

For degree reasons, it follows that I contains all four of the u; and hence that there exists a projection of
H* onto Q[x, . . ., x4]/I. Since the latter space has infinite dimension, this is a contradiction.
To derive a contradiction in the last case (where k = 5), we consider the expression

P5(x1,x2) = hiuy + hauo.

Write h; = [;(x1, x2) +kix3 for some linear polynomials /; and some k; € Q, and write uy = uy0(x1,x2)+

x3u3,1 (X1, X2, X3). We break the proof into cases.

o Suppose uy; = 0. This implies that u; is a polynomial in x; and x;. Since u; = p4(x1,x2) as well, we
see that x; and x;, generate a subalgebra that induces a splitting of H*, a contradiction.

o Suppose hy = 0. This implies that u; = p4 divides ps. Hence the ideal

I = (x1, %2, x3, p4 (x4, X5))

contains all of the u;, a contradiction to finite-dimensionality of H*.
« Suppose instead that u5; # 0 and that i, # 0. Comparing coefficients of x3 and xj in the above
equation, we see that i, = I # 0. Similarly, comparing coefficients of x3, we find that k; # 0.
Now [, divides ps — h;ps4, which can be written as

(ps — hps) — x3 (kips) -
It follows that I, divides both ps — I;p4 and k;p4 and hence p4 and p5 as well. Hence the ideal
I = (x1, %2, %3, [ (x4, X5))

contains all five of the relations u;, and we once again have a contradiction to the finite-dimensionality
of H*.

We have derived a contradiction in all cases, so the proof is complete. O
Next we consider the exceptional case arising in the case where |xx_;| + |xx] = 10 (see Proposi-
tion 5.2):

Proposition 6.2. Let H* = Q[x1,...,x¢]/(u1,...,ux) be a positively elliptic algebra that does not split.
If the degree type is

(2,2,2,4,6;4,4,6,10,12),

then H* does not admit a nonzero derivation of negative degree.

Proof. As in the proof of Proposition 5.2, we may assume that
8(x4) = x1 and §(x5) = p(x2,x3).

Consider the ideal I = (x1,x2, X3, us5). For degree reasons, u; € I for all j # 4. Since H* is finite-
dimensional, it follows that uy ¢ I. After scaling uy, if necessary, we have

Ug = X4X5 + g4

with g4 € 1.



COMMUNICATIONS IN ALGEBRA® (&) 3619

Note that g4 has degree ten. For degree reasons, it is a polynomial in Q=3[xy,...,x5]. Note that 8
preserves this subspace. Since, in addition, x48 (x5) = x4p(x2, x3) is in this subspace, we have that

§(uyg) € x1x5 + QZ3[)C1, ... X5].

On the other hand, 8(uy) is a degree eight element of the ideal (uy, ..., us). For degree reasons, this
implies that

3
S(ug) =Y hiu
i=1

with h; € QZ![xy,...,xs5]. But each u; is an element of Q=%[x1,...,x5], s0 8(uj) is as well. Hence this
equation shows that §(uy) € Q=3[xy, ..., x5], a contradiction. O]

Finally, we consider the remaining two exceptional cases, which arise in the case where |xx_1|+|xx| >
12 (see Proposition 3.9). Note that, for the first time, the possibility that § has degree —4 is nontrivial.
Indeed, in all previous cases, it is immediate to see that § having degree —4, —6,...implies that § is zero
on at least k — 1 generators for degree reasons and hence that § = 0 by the k — 1 Lemma.

The first of the two remaining cases is simpler and uses ideas similar to previous proofs.

Proposition 6.3. If H* = Q[xi,...,xk]/(u1,...,ux) is a positively elliptic algebra with no nontrivial
subalgebra and degree type
(2,4,6,6;6,8,12,12),
then H* does not admit a nonzero derivation with negative degree.
Proof. Suppose first that §(x2) = x, after possibly rescaling. By the Top-to-Bottom Lemma, we see that

8(x) = Aix% for some A; € Q for i € {3,4}. Replacing x; by x; — X;x1x2, we find that x1, x3, x4 € ker(§)
in contradiction to the k — 1 Lemma. Hence, we may assume that

8(x1) =0and 8(xy) = 0.

Furthermore, we may assume that §(x3) and §(x4) are linearly independent elements in degree four.
In particular, § cannot have degree —4 (or smaller), so § has degree —2. After choosing a suitable basis,
we may assume that

8(x3) = x% and 8(xg) = x;.
Write
uj = pj(x3,x4) + qj
for j € {3,4}, where gj € (x1,x2). Note that 82(qj) = 0 for degree reasons, so
2pi(x1,%2) = 8%(wj) € (ur, ..., ua).
This is an equation in degree eight, so we have
2pj(x%,x2) = axiu; + buy

for some a,b € Q. Note that b = 0, since otherwise u; and u, are polynomials in x; and x;, which
contradicts the assumption that H* does not have a nontrivial subalgebra.

Since b = 0, we find that x; divides pj(x, x,) for j € {3,4}. This implies that x{ divides p;(x, x,), and
hence both p3(x3, x4) and p4(x3, x4) are divisible by x3. It follows that

Ul ..., Us € (x1,X2,3),

which is a contradiction to the finite-dimensionality of H*. O
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Finally, we prove the last exceptional case. We wish to highlight that the proof in this case differs from
all of the previous arguments. Specifically, we do not choose our basis in order to simplify the action of
8, as this does not appear to help us. Rather we choose our basis in order to simplify the form of the
relations.

Proposition 6.4. If H* = Q[x1,...,xkl/(u1,...,ux) is a positively elliptic algebra with no nontrivial
subalgebra and degree type

(2,2,6,6;4,8,12,12),

then H* does not admit a nonzero derivation with negative degree.

Proof. Suppose § is a nonzero derivation of negative degree, and note that § has degree —2 or —4 by the
Land in Zero Lemma. For j € {3, 4}, write

uj = pj(x3,x4) + qj

where g; € (x1,x2). Since gj has degree 12 and hence at most one x3 or x4 in each of its monomials,
gj € ker(82).

Note that p3 and p4 are coprime polynomials. Indeed, if g(x3, x4) were a non-constant common factor,
then all relations u; are in the ideal I = (x1, X2, g(x3, x4)) and H* projects onto the infinite-dimensional
space Q[x1, . ..,x4]/I, a contradiction.

Since p3(x3,x4) and pa(x3,x4) are coprime, quadratic polynomials, we can choose bases of
span{xs, x4} and span{us, u4} such that one of the following cases occurs:

1. p3 = x% and py = x3, or
2. p3 = x% - Axﬁ and p4 = x3x4 for some A # 0.

Indeed, up to relabeling and scaling, we may assume that p3 contains an x3 term. Completing the square
and replacing x3 by something of the form x3 + x4, we find that p; = x3 — Axj for some » € Q.
Subtracting a multiple of u3 from uy corresponds to subtracting the same multiple of p3 from p4. We can
do this so that ps = pxsxs + vxf1 for some u,v € Q. If u = 0, the claim follows by rescaling u4 and
subtracting a multiple of uy from us. If © # 0, we may replace x3 by px3 +vxyg. This results in ps = x3x4.
Subtracting now a multiple of 14 from u3 and scaling u3 once more, we find that we are in the second
case of the claim. Note here that A # 0 because p3 and p4 are coprime.
Returning to the expressions for u;, we apply 82 to get

2pi(8(x3),8(xa)) = 8> (1)) € (un,...,us).

Suppose first that § has degree —4, so that § (x;) € span{xi, x,} forj € {3, 4}. Withoutloss of generality,
we may assume §(x3) = x1 and 8(xx4) = x». Since p3 and p4 are coprime polynomials, so are

8(u3) = 2p3(x1,x2)  and  S(us) = 2pa(x1, x2).
But §(u3), 8 (us) € span{u,}, so we have a contradiction.

Suppose instead that § has degree —2. Since the expressions for p;(§(x3),(x4)) are in degree eight,
we have equations of the form

2p;j(8(x3),8(xa)) = Li(x1, x2)u1 + kjuz

for j € {3,4}, where the l] are linear polynomials and the kj e Q.

If some k; # 0, we may replace u; by [;(x1, x2)u1 + kjuz and conclude that u; and u; are polynomials
in x; and x,. This implies the existence of nontrivial subalgebra, a contradiction.

We may assume that k3 = k4 = 0, so that u; divides both p3(§(x3),8(x4)) and p4(8(x3), 8(x4)). Using
the simple formulas for p3 and p4, we see that one of the following happens:

1. u; divides both §(x3)2 and 8 (x4)2.
2. uy divides both 8(x3)? — A8(x4)? and 8(x3)8(x4) for some & € Q \ {0}.
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In either case, if u; is irreducible, it follows that ©; divides both & (x3) and § (x4). Since all of these elements
have degree four, we find that §(x3) and §(x4) are linearly dependent. After changing basis once more,
we find a contradiction to the k — 1 Lemma.

Next if u; = I1] is a product of coprime irreducibles, then each irreducible factor divides both §(x3)
and §(x4) by a similar argument. Moreover, since I; and I, are coprime, it follows that 4; divides both of
these elements, and we again have a contradiction.

Finally, if neither of these cases occurs, then u; = A% for some A € Q and some linear polynomial / =
I(x1, x2). But now we can replace x; or x; by I(x1, x2) and derive the existence of a nontrivial subalgebra
of H*, so we again have a contradiction. O
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