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Key Points

e  With COVID-19 restrictions, carbon dioxide levels on Los Angeles freeways were

reduced by 119 ppm (or 60%) in July 2020 relative to 2019

e Plant radiocarbon analysis captured a 5 ppm reduction in Los Angeles’ fossil fuel carbon

dioxide levels during the Stay-At-Home order

e Mobile and plant-based measurements of fossil fuel carbon dioxide can help quantify

decarbonization progress in cities
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Abstract

Fossil fuel CO; emissions (ffCO») constitute the majority of greenhouse gas emissions
and are the main determinant of global climate change. The COVID-19 pandemic caused wide-
scale disruption to human activity and provided an opportunity to evaluate our capability to
detect ffCO; emission reductions. Quantifying changes in ffCO; levels is especially challenging
in cities, where climate mitigation policies are being implemented but local emissions lead to
spatially and temporally complex atmospheric mixing ratios. Here, we assess ffCO, emission
patterns associated with pandemic-induced changes to human activity using direct observations
of on-road CO2 mole fractions in the Los Angeles (LA) urban area and analyses of the
radiocarbon (1*C) content of annual grasses collected by community scientists throughout
California, USA. With COVID-19 mobility restrictions in place in 2020, we observed a
significant reduction in ffCO> levels across California, especially in urban centers. In Los
Angeles, on-road CO; enhancements were 60 + 16% lower than the corresponding period of
2019 and rebounded to pre-pandemic levels by 2021. Plant '*C analysis indicated ffCO>
reductions of 5 + 10 ppm in 2020 relative to pre-pandemic observations in LA. However, ffCO,
emission trajectories varied substantially by region and sector as COVID-related restrictions
were relaxed. Further development of these techniques could aid efforts to monitor
decarbonization in cities, especially in developing countries without established CO2 monitoring

infrastructure.
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Plain language summary

Cities emit large amounts of greenhouse gases, especially fossil fuel-derived carbon
dioxide (ffCO>), and thus contribute to climate change. Reducing ffCO, emissions is challenging
because it is difficult to quantify the many and variable ffCO> sources of individual
neighborhoods and cities. Here, we measured ffCO; reductions during the COVID-19 pandemic,
demonstrating that two measurement approaches are sensitive enough to detect changes in ffCO,
at fine spatial scales. We measured CO> levels on Los Angeles freeways using a mobile
laboratory and analyzed the radiocarbon content in plant species collected by community
scientists across the state of California. Both analyses indicate substantial reductions in ffCO;
emissions in 2020 during California’s pandemic-related shift to remote work and varying degrees
of emission rebounds by 2021. We found that measurements of radiocarbon in plants is
particularly sensitive to local-scale changes in human activity. Our results demonstrate that
measuring the radiocarbon content of plants can serve as a useful approach to quantify local
changes in cities’ ffCO» patterns and monitor decarbonization as climate agreements take effect.
Further development and implementation of these methods could significantly improve our
shared capacity to address climate change, particularly in cities in developing countries which

often lack CO» monitoring infrastructure.
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1 Introduction

Carbon dioxide (CO») emissions associated with fossil fuel consumption (ffCO,) are the
dominant cause of climate change (IPCC, 2022). Hence, there is an urgent need to quantify
ffCO; emissions to support the success of climate change mitigation efforts. Urban areas account
for 30-84% of global ffCO; emissions (Seto et al., 2014), despite encompassing less than 1% of
the Earth’s land area (Zhou et al., 2015). While being disproportional contributors to climate
change, cities are also at the forefront of climate change mitigation actions (Rosenzweig et al.,
2010), making them a top priority for quantifying and monitoring ffCO; emission reduction

efforts.

Satellite-borne instruments can detect CO; enhancements (i.e., 6 ppm above background)
over large cities (Kiel et al., 2021; Schwandner et al., 2017), and urban tower networks
continuously measure CO> levels in a small selection of cities in more economically developed
countries. However, these atmospheric observation systems are limited in their ability to detect
trends in ffCO, at the neighborhood scale (~1 km?) that is needed to inform local policy makers

on the outcome of mitigation actions (Duren & Miller, 2012).

The abrupt halt of economic activity at the beginning of the coronavirus disease
pandemic (COVID-19), with strictest regulations in place in the U.S. from March to May of
2020, provided an unplanned experiment on the sensitivity of atmospheric greenhouse gas
(GHG) observations to changes in human behavior. Restrictions intended to prevent the spread
of the virus caused a wide scale disruption of human activities and consequently the largest
reduction in global ffCO, emissions than has ever been observed, inducing rapid emission
reductions larger than any historical human crisis or climate agreement (Le Quéré et al., 2021).
These emission reductions provide insight on potential climate mitigation strategies, such as
decreasing transportation emissions through increased flexibility in remote work. Several studies
quantified emission reductions during the pandemic using activity-based models (“bottom up”
estimates) that scale sector-based activity and consumption data with CO, emission coefficients.
One study calculated a 17% (11 to 25%) reduction in daily global ffCO; emissions in April 2020
relative to 2019, based on a compilation of activity data and information on the intensity of
mandated lockdowns (Le Quéré et al., 2020). Hourly to daily activity data indicated an overall
global ffCO> decline of 8% in the first half of 2020 relative to 2019 (Liu et al., 2020).
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Pandemic related emission reductions have also been assessed using atmospheric
observations (“top-down” estimates). For instance, several cities have established in situ tower
observation networks that continuously measure the total CO, mixing ratio. One such study
reported a 30% reduction in the San Francisco Bay Area’s CO; levels during the first six weeks
of California’s statewide Stay-At-Home Order (March 22 to May 4, 2020) relative to the six
weeks before the order (Turner et al., 2020a). Similar reductions were reported for the Los
Angeles (34 + 6%) and Washington DC/Baltimore metropolitan areas (33 = 11%) in April 2020
relative to the previous two years (Yadav et al., 2021). Alternative ground-based atmospheric
measurements were also used to assess ffCO> emission reductions during the pandemic. Strong
reductions in CO; fluxes (-5 to -87%) were observed during lockdown periods relative to the
same times in previous years in 11 European cities using eddy-covariance measurements of CO»
exchange (Nicolini et al., 2022). Atmospheric oxygen measurements were applied as novel
tracers for ffCO; emissions in the United Kingdom and detected a 23% (14 to 32%) ffCO»
reduction in 2020 annual emissions relative to a modeled scenario without the COVID-19

pandemic (Pickers et al., 2022).

Pandemic-related emission reductions were also observed in some remotely sensed data.
One study combined bottom-up estimates and observations of nitrogen oxides (NOx, pollutants
that are co-emitted with CO» during fossil fuel combustion) from the Tropospheric Monitoring
Instrument (TROPOMI) to calculate a 12% decline in China’s CO emissions in the first four
months of 2020 relative to 2019 (Zheng et al., 2020). However, studies analyzing data from CO»-
observing satellites (such as OCO-2 and GOSAT) could not conclusively detect pandemic-
related emission reductions because of sparse data retrievals, low resolution, and weak signals

(Buchwitz et al., 2021; Chevallier et al., 2020).

Quantifying ffCO; emission reductions (i.e., isolating fossil fuel contributions from the
total CO> signal) remains a key challenge for climate change mitigation efforts, especially at
localized spatial scales. This is because ffCO, emissions are superimposed on large and poorly
constrained fluxes from land ecosystems (e.g., photosynthesis and respirations of plants and soil
microorganisms) that vary seasonally and interannually in response to temperature, the timing
and amount of precipitation, drought, fire, plant life stage, and management (irrigation, harvest)
as well as emissions from biofuel combustion and human metabolism (e.g., respiration, sewage).

Recent work in the LA metropolitan area revealed that biospheric fluxes contribute a significant
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proportion (up to 30%) to the excess level of CO; observed in the urban atmosphere (Miller et
al., 2020). Thus, an effective ffCO> monitoring system requires a direct way to isolate fossil fuel
sources from other entangled CO> fluxes, high spatial resolution, and accessibility to global

cities.

One high resolution, sector-specific approach is the deployment of mobile GHG
observatories that map fine scale patterns in ffCO» emissions from vehicle sources on urban
roads (Bush et al., 2015). Such mobile measurements offer distinct sensitivity to traffic-related
ffCO; emissions since the signal is dominated by nearby vehicle emissions and ambiguity related
to transported air mixtures from other sources is reduced. During the COVID-19 pandemic, one
mobile study observed dramatic reductions in on-road enhancements of CO; (-41 ppm or a 63%

reduction) relative to a period before lockdowns in Beijing, China (Liu et al., 2021).

Radiocarbon analysis of plants is another promising approach for quantifying urban
ffCO, trends at the local scale. Radiocarbon ('*C, a radioactive carbon isotope with a half-life of
5,730 years) is a unique tracer for ffCO» because fossil fuel-derived CO, is millions of years old
and devoid of '*C due to radioactive decay, while other sources of CO» have C signatures
similar to the current atmosphere (Graven et al., 2020; Turnbull et al., 2006; Levin et al., 2003).
Currently, an input of 1 ppm of ffCO; into the atmosphere results in a depletion of ambient
AM™CO; by 2.4%.. Since plants assimilate CO, during photosynthesis, plant *C reflects the *CO
signature of the surrounding atmosphere integrated over the period when the plants are
photosynthetically active. Where ffCO» emissions dilute '*C in the atmosphere, plants are
depleted in *C (appear older in '*C age). Thus, plants offer a natural and efficient network of '*C
observations and can be used to map fine-scale spatial patterns in ffCO, in places without
established CO> monitoring infrastructure (Hsueh et al., 2007; Riley et al., 2008; Santos et al.,
2019; Wang & Pataki, 2010).

Several studies have measured the '“C of ambient air to quantify ffCO> trends in urban
areas (Miller et al., 2020; Newman et al., 2016; Turnbull et al., 2011); however, plants offer
time-integrated monitoring of '*C that could more feasibly be used to monitor ffCO, spatial
patterns in global cities than deploying air sampling stations at the same scale. Preparation for
14C analysis is significantly faster for plant samples and can be done with just 4 mg of plant

tissue since plants are approximately 40% C, while air samples (< 0.04% C) require expensive
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canisters and larger volume samples (approximately 5 L) and longer processing times to get a
large enough '*C sample for AMS analysis. This means that more '*C samples can be analyzed
leading to higher spatial resolution urban ffCO, datasets than with air samples. During COVID-
19 lockdowns in New Zealand, the “C of weekly-sampled grasses tracked changes in local
ffCO, emissions that coincided with the stringency of COVID-related restrictions and detected a
75% =+ 3 peak reduction in ffCO; emissions (Turnbull et al., 2022).

Here, we quantify changes in ffCO, emissions during select periods of the COVID-19
pandemic (spring and summer of 2020 and 2021) in California, USA, with a focus on the state’s
two largest urban areas: the LA metropolitan area and the San Francisco Bay Area (SFBA). The
State of California is the world’s fifth largest economy (based on the state’s GDP of 3.36 trillion
USD in 2021, bea.gov) and has enacted landmark climate action legislation. Statewide policies
that restricted mobility likely altered ffCO> emission patterns during the pandemic, such as the
Stay-At-Home order that required the closing of all “non-essential” businesses from March 19 to
May 4, 2020 (Executive Order N-33-20). To examine the impacts of these policies on ffCO»
emissions, we use two approaches that can isolate CO» derived from fossil sources, are spatially
resolved, and do not require establishment of CO> monitoring infrastructure. First, we measured
the mixing ratio of CO» on freeways in the LA area using a mobile GHG observatory. Second,
we analyzed the '*C content of annual grasses collected by community scientists across the state.
Together, our data offer a unique insight into anthropogenic ffCO, emissions in California’s
urban regions during the COVID-19 pandemic and support the further use of plant '*C analysis

to evaluate decarbonization efforts in other cities.
2 Methods

2.1 On-road CO2 measurements

We measured the on-road mixing ratios of CO2 in the LA metropolitan area using a
cavity ringdown spectrometer (G2401, Picarro) installed inside a mobile laboratory (2016
Mercedes Sprinter cargo van). The same platform has been used by previous studies to observe
GHG and pollutant concentrations (Carranza et al., 2022; Thiruvenkatachari et al., 2020).
Ambient air was continuously pumped into the Picarro from an inlet on the roof of the van

behind the driver’s seat, approximately 3 m above the road surface. We simultaneously collected
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position and meteorological data using a global satellite positioning device (GPS 16X, Garmin)
and a compact weather sensor (METSENS500, Campbell Scientific) that were mounted on the
roof of the vehicle.

Measurements were collected on freeways during daytime hours on weekdays in July
2019, 2020, and 2021. We filtered the datasets from each year to only include locations that
overlapped with the 2020 dataset, focusing the analysis on approximately 750 km of road. To
minimize meteorological effects on our results, we only used data collected between 11 AM to 4
PM local time, when the planetary boundary layer is well-developed and surface layer air is well-
mixed (Ware et al., 2016). These times exclude typical rush hour traffic periods and make our
analysis conservative since rush hour emissions were likely the most strongly reduced in 2020 as
commuters switched to working from home. We also filtered out data from days that were
overcast and otherwise experienced similar weather conditions during all three surveys. Different

filtering strategies would be required for cities that experience different meteorology than LA.

We calibrated the analyzer before and after each survey using gas cylinders with CO»
mixing ratios that have been corrected against the NOAA WMO-CO2-X2007 scale. For each
calibration, the analyzer inlet was directed to sample air from compressed gas cylinders with
known mixing ratios of CO, for three minutes. We used two standard tanks that spanned the
range of CO> mixing ratios we observed on the road (Table S1). We then applied a two-point
correction to the data based on the linear relationship between the known and measured values.
The measurements are precise to <l ppm for all surveys based on the standard deviation of the
calibration runs. The calibrated data was aggregated into 5-second intervals and gridded into
100-m road segments to synchronize trace gas, weather, and position measurements.

Urban CO; enhancements (COays) were calculated by subtracting a background that
represents the CO2 mole fraction of air coming into the LA area before it is enhanced by local
emissions. For urban studies, background characterization generally depends on latitude,
seasonal wind patterns, and topography. Previous studies in other cities have used CO»
measurements from upwind rural areas or a high elevation site to represent the background
(Turnbull et al., 2019; Mitchell et al., 2018). Since westerlies prevail in LA in July, a suitable
background can be represented by the inflowing marine air that originates in the Pacific Ocean
(Newman et al., 2016; Verhulst et al., 2017). Thus, we characterized the CO, background using
flask sample data from NOAA’s Global Monitoring Division’s site at Cape Kumukahi, Hawaii
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(19.54°N, 154.82°W, 15 m elevation). The NOAA GMD data is publicly available at
https://gml.noaa.gov/ (Dlugokencky et al., 2021), and hosts a network of over 50 sites that
monitor trace gas concentrations around the world. Previous work has found that Cape
Kumukahi’s CO; levels are similar to the local LA background for summer months (Hopkins et
al., 2016). Based on the July average of all flask measurements at Cape Kumukahi, we estimate
the CO» background was 411.0 = 2.0 ppm in 2019, 412.9 + 1.2 ppm in 2020, and 416.7 £ 1.7
ppm in 2021. On July 31, 2020, we measured similar CO> mixing ratios (413 + 1.4 ppm) in the
in-flowing marine air at Dockweiler Beach (33.94°N, -118.44°E), which supports the application
of Cape Kumukabhi as an adequate LA background.

We assume that the observed CO, enhancements are solely derived from on-road
emissions. It is possible that some of these enhancements are influenced by biosphere fluxes and
wildfire emissions. However, we expect that these contributions are relatively small and do not

affect the results.

2.2 Radiocarbon analysis of plants

We measured the “C content of invasive annual grasses to map ffCO, trends across the
state of California. The typical growing season of these species lasts from March to May, which
coincided with California’s statewide Stay-At-Home Order (March 19 to May 4, 2020) and made
them useful bio-monitors of fossil fuel emission-reductions during the period of strictest
COVID-19 measures in this area.

Because plant '“C reflects the CO, assimilated from the atmosphere during
photosynthesis, differences in '*C depletion between plant samples are driven by local
differences in ambient *CO, composition and particularly the amount of fossil fuel influence.
Studies around the world have mapped ffCO- patterns using a variety of plant species
appropriate for their study area including tree rings in LA (e.g., Djuricin et al., 2012), evergreen
tree leaves in Italy (Alessio et al., 2002), corn leaves in the United States (Hsueh et al., 2005) and
Beijing, China (Xi et al., 2011), annual grasses in California (Riley et al., 2008; Wang & Pataki,
2010), ipé leaves in Rio de Janeiro (Santos et al., 2019), turfgrasses in New Zealand (Turnbull et
al., 2022), and wheat crops in India (Sharma et al., 2022). Thus, cities can apply this technique to
quantify ffCO» patterns by sampling a commonly found plant species that is photosynthetically

active during the time integration period of interest. Unlike stable isotope signatures, plant '*C
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content does not vary based on photosynthetic pathway, water use efficiency or other growth
factors. Such factors are corrected for since the measured plant '*C/!*C ratios are normalized to a
313C value of -25%o. Other than fossil fuel influence, the biggest drivers of “C differences
between plant species would be from the usage of stored carbon in perennial plants (Vargas et
al., 2009) and from local topographic conditions (i.e., photosynthetic fixation of soil-respired

CO2> in depressions).

We recruited community scientists to collect plant samples from their neighborhoods. We
distributed a packet that contained scientific background information, sampling/mailing
instructions, and photos to aid with plant identification. We also held informational webinars,
gave presentations at community college classrooms, and uploaded videos online demonstrating
how to collect and mail the samples. Nearly 400 plant samples were submitted for the study.
Most samples were collected on residential properties or along roadsides in public areas. The
plant samples were mailed in paper envelopes along with the species, latitude, longitude, and
date of collection. Collection dates for the samples ranged from late spring through the summer.
Most plants were Bromus tectorum L. (cheatgrass), Bromus diandrus ROTH. (ripgut brome),
Avena fatua L. (wild oat), or Avena barbata POTT EX LINK (slender oat). We inventoried all
samples and information, confirmed their species (if identifiable), and recorded whether they
were green or senesced. We also photographed all samples, focusing on their identifying
features. These species represent a lower limit on annual ffCO; values since their growth period
follows winter rain and wind events that cleanse pollution from the atmosphere.

We analyzed the '*C content of 188 samples from the 2020 growing season and 82
samples from the 2021 growing season. We excluded plants that were not annual species, did not
contain flowers, and any that showed signs of decay (rot, mold). We prioritized analysis of
samples that were expected to have high ffCO; signals (urban areas) and were collected at
similar locations in both years. To prepare the samples for '*C analysis, we weighed out
approximately 4 mg of plant tissue, focusing on flowers to target carbon fixed from the
atmosphere during March to May. Samples were then sealed into pre-combusted quartz tubes
with cuprous oxide, evacuated and combusted at 900°C for 3 h. The resulting CO> was purified
cryogenically on a vacuum line, quantified manometrically, and converted to graphite using a
sealed-tube zinc reduction method (Xu et al., 2007). The graphite was analyzed for '“C at the W.
M. Keck Carbon Cycle Accelerator Mass Spectrometer facility (NEC 0.5MV 1.5SDH-2 AMYS) at
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the University of California, Irvine alongside processing standards and blanks. The measurement

uncertainty ranged from 1.4 to 2.1%o. We use the A'*C notation (%o) for presentation of results

[Eq. 1],

1950 -y)_ i Eq. 1

14 = . .
A™C =1000 - (FM exp( e

where y is the year of sampling, FM is the fraction modern calculated as the *C/'?C ratio of the
sample divided by 95% of the '*C/!*C ratio of the oxalic acid (OX) I standard measured in 1950,
8267 years is the mean lifetime of '“C, and 1950 is the reference year for “modern”. Mass-
dependent isotopic fractionation of the sample is accounted for in the fraction modern term
(Trumbore et al., 2016). This “C notation includes a correction for the decay of the OX I
standard since 1950, giving the absolute '*C content of our samples during the year they were

collected.

We used a mass balance approach (Santos et al., 2019; Turnbull et al., 2011) to quantify
the fossil fuel contribution to the local CO» signal (Cyr) at each sample location. In the following
equations, C; terms denote CO; mixing ratios (units of ppm) from each contributing source and

A terms denote the corresponding '*C signature for each source in units of per mil (%o).

Cobs = Cogt Cr Eq.2
Cobs Aobs = CpgApgt CrrAge Eq. 3
(Apg = Dobs)

*8 (A, - Arp)

Here, we assume the observed mixing ratio of CO> (units of ppm) at a location is the sum of two
contributions: the CO; background (Cpg) and a fossil fuel contribution (Csr) [Eq. 2]. The
isoproduct for each CO, source must also be conserved [Eq. 3]. Combining Equations 2 and 3,
we can calculate Csr for each sample [Eq. 4]. All other values are known: Agps is the measured
14C content of the plant sample. For Cye we use the average CO> mixing ratio measured at Cape
Kumukahi (Dlugokencky et al., 2021) between March and May. Cpg was 416.7 £ 1.1 ppm for the
2020 and 419.4 + 0.8 ppm for the 2021 growing season, respectively. The A'*C of background
air (Apg) is characterized by monthly-integrated air samples collected in a remote location Pt.
Barrow, Alaska (X. Xu, Pers. Comm., 2021) and was -2.8 &+ 1.3%o for the 2020 and -6.2 £+ 1.7%o

for the 2021 growing season, respectively. A is -1000%o, the known fossil fuel “C signature.
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Based on the average standard deviation of replicate plant samples and error propagation of the
measurement uncertainty, the uncertainty in a Csr estimate is 1 ppm. Our equations assume
biogenic C inputs (such as from fires or heterotrophic respiration) are small enough to be
neglected in the mass balance budget. Previous work has shown that this effect is constant and
relatively small (Newman et al., 2016). The plant growing season (March to May) is outside of
California’s wildfire season, so we do not expect wildfire emissions to affect the plant '*C
signatures. We also assume that the samples were not affected by '*C emissions from nuclear
power plants since there is only one such facility that is active in California (the Diablo Canyon
Power Plant in San Luis Obispo County). The nearest plant sample was approximately 17 km
northeast of the facility, which is not in the path of the area’s dominant wind direction and is
likely too far to intercept the emissions.

We expect that meteorology had minimal impact on our '4C analysis since the plant
samples experienced similar meteorological conditions across both study years, and because our
plants only assimilate CO; during daytime hours. Thus, sampling excludes periods of strong
atmospheric stability such as nighttime and early mornings that have increased CO; levels that
are not driven by changes in ffCO; emissions (Verhulst et al., 2017; Newman et al., 2016;
Djuricin et al., 2010).

3 Results and Discussion

3.1 Reduced CO: enhancements on Los Angeles freeways

We observed substantial reductions in on-road CO> enhancements (COxxs) in the LA
metropolitan area during the pandemic (Fig. 1). The mean COaxs value (= SD) on LA freeways
was 119 £ 50 ppm lower in July 2020 compared to July 2019 (Table 1), a -60 + 16% change
with COays reductions observed universally across all sampled freeways. By July 2021, COVID-
related changes in behavior were reduced and COxxs rebounded by 153 + 40 ppm compared to
2020 (Table 1). This equates to a 17 + 29% increase in COxys levels in July 2021 relative to July
2019. The 2021 COyxs increases were not uniformly distributed. Many freeways still had COays
values that were lower relative to 2019, although not nearly as low as in 2020. Heavily trafficked
areas had COaxs levels as much as 40% higher than 2019 (Fig. S1). Furthermore, COaxs values
were less variable in 2020 (interquartile range of 33 ppm) and 2021 (interquartile range of 43
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ppm) compared to 2019 (58 ppm), indicating more homogeneous CO2xs on roadways during the

pandemic (Fig. S2).

} : 1A “ yo o L. _
118.5° W 18w 117.5°W  1185°W 18° W 1M7.5°W 118.5°W 1M8°W 117.5°W

Figure 1. On-road COays observed near midday on Los Angeles freeways before (2019) and
during the COVID-19 pandemic (2020 and 2021). Choropleth maps show COxys observations in
(a) July 2019, (b) July 2020, and (c) July 2021. Green triangles show locations of plant '“C
samples collected in 2020 and 2021. Basemap shows topography for elevations >300 m as
hillside shading based on a Digital Elevation Model from USGS.

Changes in traffic patterns during the pandemic are likely the main cause of the changes
in on-road COxxs values we observed. In addition to the number of cars on road, previous work
has shown that on-road CO> mixing ratios are sensitive to traffic conditions such as speed,
distance between cars and road grade (Maness et al., 2015). In July 2020, schools and businesses
were operating in a remote or hybrid work model and many commercial facilities were closed,
leading to substantial traffic reductions. Data from the California Department of Transportation’s
Performance Measurement System (PeMS) indicates that the vehicle miles traveled (VMT) on
Southern California freeways was on average 12% lower in July 2020 compared to July 2019
(Caltrans, 2021). With fewer vehicles on the road in July 2020, there were wider distances

between cars, fewer traffic jams, and fewer CO; emissions.

Nationwide studies conducted during the same period deduced that ffCO, emissions
started recovering after reaching minima in March or April of 2020, and that by July of 2020
(our study period), the reductions had largely diminished (Harkins et al., 2021; Le Quéré et al.,
2020; Liu et al., 2020). Daily ground transportation emissions in the U.S. were estimated to only
be reduced by 7-8% in July 2020 compared to 2019 (Harkins et al., 2021; Liu et al., 2020).
Interestingly, our LA observations indicate much larger reductions to on-road CO> emissions

during that period (~60%). This is likely because our measurements were collected in an area
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where emissions are dominated by passenger vehicles. In California and in LA, the
transportation sector is the largest source of ffCO» emissions (45% of total), so changes in traffic
patterns during the pandemic were more likely to have a discernable impact on this region’s
ffCO; budget. A 60% decrease in on-road emissions is consistent with a previous estimate that
the LA area’s total emissions were reduced by 30% in the spring of 2020 relative to 2018-2019
(Yadav et al., 2021). A budget balance calculation with a 30% reduction in total LA emissions in
2020 equates to a 67% reduction in on-road emissions if we assume non-vehicle ffCO; sources
were held constant and the on-road sector accounted for 45% of LA’s ffCO; emissions before the
pandemic. However, previous studies have shown that the pandemic-related emission reductions
are not completely attributable to changes in traffic (Liu et al., 2020; Yadav et al., 2021), so our
~60% reduction result is still higher than what other studies estimated. On-road CO>
measurements are likely to detect the transportation-sector emission changes with higher
sensitivity than tower- and space-based observations since signal detection is not as dependent
on atmospheric transport.

Table 1
Changes in [fCO:; levels during the COVID-19 pandemic in California based on on-road mobile
surveys and observations of '*C in plants and/or air

Region Pre-pandemic 2020 2021 COVID-19* Rebound”

COzxs (ppm) via on-road mobile surveys

LA 199 + 42¢ 80 +27 233 +£29 -119 £ 50* 153 £40*

ffCO; (ppm) based on '“C in plants and/or air

CA 4+54 4+4 5+5 0+6 1+6
co-located n.a. 5+5 5+6 n.a. 0+8

LA 11+9¢ 6+£5 9+7 -5+ 10* 3+9
co-located n.a. 9+9 11+10 n.a. 2+1]3

Pasadena 23 +4f 3 13+2 220 + 4% 10 +£ 2%

Irvine 7 + 48 6 4+1 -1+4 241

Notes: Asterisk (*) indicates the means were significantly different based on Welch’s t-test. Further details for these calculations are in Table S2.
Uncertainties are standard deviations. Values that do not have uncertainties indicate a sample size of 1. For these cases, the uncertainty in the
ffCO, estimate is assumed to be 1 ppm based on the differences in replicated plant samples. Values in regular font represent all the samples
collected in that year, while values in italicized font represent only co-located plant samples that were collected in both 2020 and 2021 less than
150 m apart.

*Calculated as the difference between the 2020 (intense physical distancing measures and mobility restrictions) and pre-pandemic columns. The
pre-pandemic observations are based on datasets from various years and are described in the subsequent footnotes and Table S2.

°Calculated as the difference between 2021 and 2020 (relaxation of physical distancing measures and mobility restrictions)

“July 2019 on-road mobile measurements.

42005 plant '“C observations (Riley et al., 2008).

*Based on 2005 plant '“C observations (Wang & Pataki, 2010) and 2015-2016 air '“C samples (Miller et al., 2020).

fPredicted value based on a linear extrapolation of 2006-2013 air '*C samples (Newman et al., 2016) assuming the trend continued and there had
been no pandemic.

#2019 air '*C samples (Xu, pers. Comm., 2020).
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While our data revealed striking reductions in CO, mixing ratios, it is not trivial to
translate changes in on-road CO; mixing ratios into reductions in CO> emissions. One reason for
this is confounding effects of changes in vehicle speeds on CO; emissions. There is a nonlinear
relationship between vehicle speeds and emission rates, such that vehicles emit more CO> at very
low and very high speeds (Fitzmaurice et al., 2022). In 2020, our average speed was 9 km h!
faster than 2019 and 12 km h™! faster than 2021, which suggests a decrease in congestion in
2020. Within the range of our average speeds (64 to 76 km/hr), there is not expected to be a
substantial change in CO; emission rates (Fitzmaurice et al., 2022). However, these averages do
not capture the non-constant speeds during periods of congestion that make vehicles less
efficient and increase both CO» emissions (Barth and Boriboonsomsin, 2008) and roadway
enhancements. Faster speeds produce more CO; emissions because vehicle engines are doing
more work and using more fuel, but they also create more turbulence near the road that
effectively mixes vehicle emissions, thereby reducing on-road CO; enhancements. Nonetheless,
we did not find a significant relationship between our measurements of COaxs and vehicle speed
(Fig. S3). We estimated how much vehicle speed would affect our measurements using a model
where on-road COaxxs levels scale with vehicle speed to a power of -/5 (Baker, 1996; Maness et
al., 2015). Assuming that total highway emissions (Q) are related to COaxs and vehicle speed (v)
by Equation 5 where « is a constant of proportionality based on theoretical atmosphere and
traffic conditions, a 9 km/hr increase in speed as observed in 2020 only causes total emissions to
increase by less than 5%. Thus, we attribute the measured COaxxs reductions to the smaller
number of cars on the road, not the changes in speed.

COp=k Qv k.’

Interestingly, our on-road observations did not scale proportionally with vehicle miles
traveled (VMT), a metric that has been used to infer ffCO> emissions from the transportation
sector (Gurney et al., 2020; Gately et al., 2015). While we observed a 60 + 16% reduction in
COaxs in July 2020 relative to July 2019, VMT in the LA area was only reduced by 12% during
the same time periods (CalTrans, 2021). VMT does not adequately capture the strong CO; signal
we observed because it does not account for the effects of driving behavior, congestion, vehicle
speeds, and fleet composition on CO» emissions (Rao et al., 2017), all of which likely changed

during 2020. While relationships between emissions and speed are incorporated in some models,
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less work has incorporated the effects of stop-and-go driving, which is likely to produce higher
CO» emissions. Less congestion in 2020 could have reduced CO, emissions in ways that have
not been fully explored. Other studies also reported large discrepancies between ffCO> emission
estimates based on governmental traffic data, fuel-based models, and novel cell phone-based
mobility datasets (Gensheimer et al., 2021; Harkins et al., 2021; Oda et al., 2021). Future work is
needed to consolidate these different metrics for estimating transportation ffCO; emissions and

to better understand what information each of these datasets represents.

Assuming the measured 60% reduction in on-road COxys translates into a 60% reduction
in annual interstate ffCO, emissions (7.6 Mt C yr'! in 2012; Rao et al., 2017), given that
interstates are the primary road type included in this analysis, this equates to an avoided 4.6 Mt
C. The estimated total emissions for the LA area was 47.2 £ 5.2 Mt C yr'! in 2015 (Gurney et al.,
2019). This would imply that LA’s total ffCO, emissions were reduced by 10% if all the
pandemic-induced reductions in 2020 were solely due to changes to on-road interstate emissions
(neglecting ffCO, changes in other sectors, such a residential, industry, and non-interstate roads).
Interstate emissions constitute only 40% of LA’s on-road emissions (Rao et al., 2017). If we
instead assume the COVID-induced traffic reductions resulted in a 60% reduction in ffCO> for
the entire on-road sector (including all road types), then ffCO, emissions were reduced by 11.4

Mt C, or 24% of LA’s total ffCO, emissions.

3.2 Reduced ffCO2 emissions during the Stay-At-Home order

14C analyses of plant species were used to map ffCO, patterns, whereby lower A'*C
values indicate higher ffCO; inputs (Fig. 2). In 2020, the average A*C (= SD) was -11.3 £ 8.6%o
(n=188) statewide, and -15.9 £ 12.5%o (n=53) in the LA area, -10.2 £ 5.5%o (n=91) in the SFBA,
and -10.3 £ 5.6%o (n=12) in the San Joaquin Valley. This equates [Eq. 4] to average fossil fuel
contributions of 4 + 5 ppm statewide, and 6 + 5 ppm in the LA area, 3 + 2 ppm in the SFBA, and
3 + 2 ppm in the San Joaquin Valley. The cleanest samples were found in California’s northern
coast (AMC of -5.3 £ 3.7%o, n = 5). Generally, A'*C of plants collected in urban areas were more
depleted and more variable than in non-urbanized regions, indicating higher and locally variable
emissions of ffCO; (Fig. 2). Sample collection was biased toward urban areas, with 77% of
samples collected either in the LA area or SFBA, leading to higher uncertainty in predictions in

other regions of the state (Fig. S4). However, we expect rural and remote areas such as northern
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California and the Sierra Nevada Mountains to have similar '*C values as the background and
little variability (Riley et al., 2008). Thus, while we do not have a lot of plant samples in these

areas, we do not expect to see substantial COVID-effects on ffCO; levels.
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Figure 2. The A™C (%o) of annual grass samples collected in California, USA and the
corresponding Cyr values in 2020. Blue points indicate locations where plants were collected in
both 2020 and 2021, while pink points indicate 2020-only locations. Background colors were
mapped using an ordinary kriging interpolation of 2020 plant A'*C values using the Spatial
Analyst toolbox in ESRI’s ArcMap software. The uncertainty in the kriging prediction is
presented in Fig. S4.

To assess our 2020 plant '“C observations in the context of long-term trends in the region,
we compared our data to existing records of '*C in plants and/or air from Irvine, CA (a coastal

city south of LA) and Pt. Barrow, AK (a remote location far from ffCO, sources) (Fig. 3).
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Figure 3. A record of A'*C measurements from 2003-2021. Average plant '“C from various
studies are shown as green points with error bars showing the standard deviation. Green circles
represent statewide data (this study and Riley et al. 2008) while triangles represent only the Los
Angeles metropolitan area (this study and Wang & Pataki, 2010). Air-based '“C observations are
shown as gray lines (X. Xu, Pers. Comm., 2021) and blue triangles (Miller et al., 2020). Shaded
green bars represent the typical annual grass growing season in California (March to May).

We infer urban ffCO, emission reductions during the 2020 Stay-At-Home order relative
to the '*C records shown in Fig. 3 based on two metrics: variability in “C (standard deviation of
mean) and the difference in *C from the hemispheric background (Pt. Barrow, Alaska). Reduced
variability in '*C indicates reduced ffCO, levels since emissions lead to anomalous and spatially
variable '*C values. The standard deviations of plant A*C samples collected in the LA
metropolitan area were 25.4%o in 2005 (n=79, Wang & Pataki, 2010), 12.5%o in 2020 (n=53),
and 15.4%o in 2021 (n=27). Thus, plant '*C was less variable during California’s 2020 Stay-At-

Home order.

Furthermore, 2020 samples were more similar to the hemispheric background than in
other years. Compared to Pt. Barrow, LA area '*C samples were depleted by 26 £ 3%o in 2005
(plant samples; Wang & Pataki, 2010), 25 & 2%o in 2015, 30 £ 4%o in 2016 (flask samples;
Miller et al., 2020), 13 + 2%o in 2020, and 19 + 3%o in 2021 (this study’s plant samples; average
depletion =+ standard error of the mean). The mean 2020 depletion is significantly smaller than

pre-pandemic years to a 95% confidence interval, indicating that ffCO; levels were reduced in
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2020. Translating the '*C depletion from background into fossil fuel-sourced CO, enhancements
[Eq. 4], the mean Csrin LA during pre-pandemic years ranged from 10-13 ppm (Table S2).
However, during the pandemic the mean Cyr reduced to 6 + 5 ppm (Table 1). Thus, we calculate

ffCO, levels were reduced by 5 + 10 ppm relative to pre-pandemic observations.

These samples reflect varying locations within the Los Angeles region, and hence we are
assuming that both prior and current plant samples as well as previous flask samples are
similarly representative of the region. To minimize the impact of these assumptions, we also
estimated ffCO; emission reductions in one location, Pasadena, a city in the northeast LA basin
that receives polluted air from the LA region during afternoon hours (Newman et al., 2008).
Based on a linear extrapolation of the Pasadena air record (Newman et al., 2016), the mean A!*C
during the 2020 growing season (March to May) would have been -55.5 & 8.8%o had there been
no pandemic, translating to a local enhancement of 23 + 4 ppm CO> above background [Egq. 4],
but a plant sample collected in 2020 approximately 4 km away had an enhancement of only 3 + 1
ppm CO: (Fig. 4). This difference indicates a reduction of 20 & 4 ppm ffCO, in Pasadena during
the 2020 Stay-At-Home order. In 2021, plants were sampled in this location again and had an
average A'C of -35.7 + 4.5 %o (n=6), an enhancement of 13 + 2 ppm CO». This value is closer
to, but still significantly different from, the predicted 2021 mean value (-60 = 9.4%o or 24 + 5
ppm CO; enhancement), indicating a partial but not complete rebound to the pre-pandemic
emissions trend. In summary, we found that plant '*C data was able to capture interannual

changes in local ffCO; during the pandemic.
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Figure 4. Growing season A'*C of ambient CO» in Pasadena, CA, a city within the northeast Los
Angeles basin. The blue circles show the average growing season (March to May) A'*C of
ambient CO; at Caltech [Newman et al., 2016], with error bars showing the minimum and
maximum A'C measurements. The line is a linear regression of these data with shading
indicating the 95% confidence intervals. The green triangles show the measured A'*C of plant
samples collected approximately 4 km away from the Caltech site in 2020 (n=1) and 2021 (n=6,
error bars show standard deviation).

3.3 Changes in ffCO: during the rebound period (2020 to 2021)

Although the pandemic continued into the 2021 growing season, virus-restricting
mandates were relaxed and California’s vehicle miles traveled were 30% higher than the same
period in 2020 (Caltrans, 2021). We observed large spatial variations and heterogeneity in '“C
during the second spring and summer of the pandemic. Based on a subset of samples collected at
similar locations (< 150 m away) in both 2020 and 2021, we find that ffCO, levels did not
change significantly between 2020 and 2021 at the statewide scale, with a mean change of 0 + 8
ppm (Table 1). This average belies significant local variability in changes in A'*C between 2020
to 2021 (Fig. S5). The disparity in ffCO2 emission rebounds in 2021 could be related to
variations in pandemic responses as the economy recovered after the Stay-At-Home Order. We
observed larger emission rebounds in LA than SFBA (Figs. 5 & S6). SFBA had more instances
of A'*C values that either increased or only decreased as much as the long-term global *C trend

between 2020 and 2021. The SFBA had a slower relaxation of COVID-19 prevention measures
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than other regions of California. Here, and also in Orange County in the LA area, many people

continued to work from home into 2021, which may explain why emission reductions generally

persisted even after lockdown restrictions were lifted (blue areas in Fig. 5a,b). In LA

neighborhoods, working from home was not an option for many “essential” workers, which

might contribute to samples showing a stronger emission rebound in 2021 (red areas in Fig. 5b).

These neighborhoods also have a greater density of freeways.

San Francisco Bay Area

Los Angeles Metropolitan Area
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Figure 5. The difference in Csr values from 2020 to 2021 between plant samples repeatedly

collected in California’s urban areas: (a) the San Francisco Bay Area and (b) the Los Angeles
metropolitan area. Points show sample locations colored by their change in Cs. Redder colors
indicate ffCO» emission increases in 2021 compared to 2020. Background colors were calculated
using an Ordinary Kriging interpolation of C¢r in ESRI’s ArcMap software. Cyr changes by land

use class are shown in (c).
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534 We used city land use data to further investigate the ffCO, emission sectors represented
535 by plant samples collected in the LA area and SFBA (45 sample pairs, Fig. 5¢). We found that
536  the majority of plants were collected in areas classified as residential (58% of paired samples) or
537  open space/recreation (29%). While there is large variation in '*C within each category and

538  results indicate that heterogeneity within regions/sectors was larger than the COVID-induced
539  changes, there is a small trend toward higher ffCO; emissions in residential, open

540  space/recreation and industrial areas, and a trend toward lower emissions from educational and
541  public spaces. This is consistent with a return to normal of many activities, whereas schools in
542  California stayed closed through the 2021 growing season and many government sector

543  employees continued work from home. These sector-averaged trends are larger when all data is
544  used (Fig. S7) but are on the order of £1-2 ppm, which is not much larger than the uncertainty in
545  our Cyrestimates (£1 ppm).

546 The heterogeneity in year-to-year changes elucidates the highly localized sensitivity of
547  plant '*C and indicates that this approach is a simple, yet effective method to monitor interannual
548  changes in the ffCO> burden at the neighborhood scale. Thus, this approach could effectively
549  track changes in local emissions if plants are periodically collected in direct proximity (< 20 m)
550  from ffCO; emission sources. For instance, the Great Highway, a major north-south thoroughfare
551  on San Francisco’s western edge, was closed to vehicles from April 2020 to August 2021. The
552 road was converted into a car-free active transportation route, with access permitted only to

553 pedestrians and bicyclists. Vehicle traffic was rerouted to 19" Avenue, a portion of CA State

554  Route 1 less than 3 km east of the Great Highway. In 2020, plants collected along these two

555  roads had very similar A"C values (0.8%o difference, which is within the measurement

556  uncertainty). In 2021, a plant collected on the Great Highway was still statistically

557  indistinguishable from the 2020 samples (0.7%o difference), while a plant sample collected on
558 19" Avenue was significantly more depleted relative to the 2020 sample (-24.8%o difference,
559  equivalent to an increase of 10 ppm Cg). This indicates higher ffCO2 emissions on 19" Avenue
560  where traffic increased in 2021, while ffCO; emission reductions near the Great Highway

561  persisted while the roadway remained closed to vehicles.

562 All in all, we observed varying degrees of ffCO, reductions and rebound during the

563  COVID-19 pandemic at various domains and spatiotemporal scales (Table 1). Year-to-year
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differences were more evident in urban domains (i.e., LA, Pasadena) than in statewide means or

in coastal samples (e.g., Irvine).

3.4 Best practices and recommendations for future plant radiocarbon studies

Future work should conduct strategic experiments to better understand the
correspondence between plant '“C and other ffCO, atmospheric monitoring metrics. This will
improve the applicability of plant “C analysis as a tool for monitoring decarbonization in cities
around the world. Plant '*C analysis reflected trends in ambient A*CO,, with plant values having
reasonable correspondence with air records from Irvine, CA and Pt. Barrow, AK (Fig. 3).
However, our plant '*C-based results contrast with our on-road COoxs observations where we
observed a return to pre-pandemic conditions by July 2021. This is because the two datasets
represent different emission sources and geographic regions. While the COys data specifically
represents the LA area’s on-road sector, our plant samples are mainly representative of statewide
residential, open space and recreational areas, which showed a more heterogeneous response to
the lifting of COVID-related restrictions. No plant samples were collected within 500-m of the
roads surveyed with the mobile observatory (Fig. 1), so the two datasets were not directly
comparable. A more strategic sampling approach could reveal the relationship between these two
approaches and the capacity of plants to monitor changes in transportation-sector emissions.

The spatial sensitivity (“footprint) of a plant is expected to be very localized (<100 m)
but may vary for each sample depending on the local topography and air ventilation conditions.
Previous work has shown that plants are predominantly influenced by emissions within 20 to 40
m (Lichtfouse et al., 2005; Turnbull et al., 2022). In contrast, atmospheric CO, measurements
from rooftop/tower sites integrate signals over larger spatial scales (~10 km) since the inlet is
higher above the ground (Kort et al., 2013). This makes tower sites well-suited for continuous
monitoring of net ffCO» trends over an entire city using the CO- differential between a set of
inflow- and outflow-representative sites. However, the localized spatial sensitivity of plants
could be advantageous for studies seeking to investigate emissions at the neighborhood scale or
from specific ffCO> sources (i.e. individual facilities or roads). Such analyses would require a
strategic sampling design, targeting specific emission sources such as major roads (Turnbull et
al., 2022). Without such targeted sampling, aggregated plant '*C results in complex urban

environments can be difficult to interpret since they represent highly local ffCO; emissions that
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may vary based on individual and immeasurable factors (i.e., human behaviors) within a
neighborhood. With appropriately targeted sample pairs, however, plant '“C can effectively
reveal ffCO; reduction outcomes of local decarbonization measures (e.g., the Great Highway
case described in Section 3.3). Plant-based monitoring of ffCO> emissions could also potentially
be an appropriate proxy for exposure to co-emitted air pollutants such as from vehicle traffic and
may be able to elucidate environmental justice concerns between neighborhoods. Future

investigations are needed to assess this.

It is important to constrain the timing of carbon uptake as much as possible to distinguish
spatially driven changes from temporal changes. Atmospheric “CO, undergoes large temporal
oscillations (Fig. 5) with the amplitude and seasonality driven by the timing of *C production
and descendance into the troposphere, natural and anthropogenic CO; fluxes, and seasonal
meteorology (wind and air mixing conditions). While the timing of flask sample collection is
well-known, the timing of CO» uptake by plants is more uncertain. However, plant samples
compensate for that by integrating over daytime hours of their photosynthetic period, hence,
reducing significant short-term variability observed in flask samples (e.g., Miller et al., 2020) to

yield a seasonal average ffCO,.

By sampling annual grasses, we have assumed that our A'*C analysis represents the
growing season of these species in the region. We verified this assumption using downscaled
remotely sensed observations of solar induced fluorescence (SIF, Fig. S8) (Turner et al., 2020b)
from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite. Using the date of
maximum SIF observance to represent the timing of peak growth, we found that all senesced
plants had peak growth dates from March to May. We also observed some temporal agreement
between plant A*C and ambient A*CO, measured in Irvine, CA (Figs. S8 & S9), indicating
potential applications of plant '“C at the sub-seasonal scale. However, many A“C values did not
coincide with the Irvine trend and were more strongly driven by their distance to major roads
(Fig. S8c), showing that the main driver of the samples’ '*C content is proximity to ffCO»
emissions, with seasonality a secondary driver. SIF observations can help constrain the timing of
plant growth for future studies to disentangle the spatial and temporal drivers of plant '*C. Future
studies could also potentially use purposely grown plants to monitor ffCO; (i.e., turfgrasses, Fig.

S9), and actively manage the growing period to the timing of interest, which would allow similar
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analyses at smaller time scales and for other times of the year besides the annual grass growing

s€ason.

4 Conclusions

We quantified changes in fossil fuel consumption during the COVID-19 pandemic when
California implemented aggressive mitigation measures, that included Stay-At-Home and work-
from-home orders, travel limitations, and experienced widespread economic shutdown. On-road
surveys of excess CO2 demonstrated a drastic but temporary reduction in ffCO> emissions on LA
freeways, with only about half the typical ffCO; emissions in July of 2020 and a return to pre-
pandemic levels by July 2021. The analysis of '*C in annual plants also revealed a measurable
reduction in LA’s ffCO, emissions in the spring of 2020 and 2021, indicated by a smaller offset
between plant '*C and '“C of well-mixed northern hemispheric CO,, and less variation in plant

14C compared to previous years.

Our complementary approaches captured the heterogeneous reality of mandated and
voluntary movement restrictions in California during the pandemic. Our study focused on a
region rich in high quality datasets (i.e., previous '*C records, a neighborhood scale bottom-up
inventory, and an in-situ tower network) which allowed us to assess ffCO; emission reductions
in the context of long-term trends. Mobile surveys can detect year-to-year differences in ffCO,
trends from the on-road sector with high confidence, but further work is needed to relate on-road
CO; enhancements to vehicle emissions and their drivers. Future research to constrain the spatial
and temporal representation of periodically surveyed plants can support the tracking of
decarbonization outcomes in cities and neighborhoods without investment in energy- and
maintenance-demanding infrastructure. To account for the extreme variability of emissions
sources in urban environments, however, plant-based ffCO, monitoring should focus on
temporally-repeated sampling of active plants in well-ventilated areas in the direct vicinity of

specific emission sources.
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