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INTRODUCTION

The factors driving the emergence and persistence of
diverse phenotypes have long fascinated ecologists and
evolutionary biologists (e.g. Darwin, 1859; Ewens, 1969).
Functional distinctiveness measures the functional dis-
tance of a species to the other species in a community,
with functionally distinct species being those farther
apart from other species in trait space. Although these
species can play critical roles in biodiversity dynamics,
ecosystem functioning and stability (Auber et al., 2022;
Brun et al., 2022; Dee et al., 2019; Delalandre et al., 2022;
Le Bagousse-Pinguet et al., 2021; Violle et al., 2017),
ecology has historically focused on the role that average
phenotypes play in communities (i.e. species with low
functional distinctiveness, or close to other species in
trait space). To better understand and acknowledge the
ecological significance of functionally distinct species, a
comprehensive framework is needed to pinpoint the var-
ious ecological mechanisms that can allow these species
to establish and persist in communities and ecosystems.

Here, we build a conceptual framework that encom-
passes the major ecological drivers of functional dis-
tinctiveness to help organize and inspire work in this
emerging area. As a foundation of the framework, we
adopt a widespread conception of biodiversity dynamics
in which a regional pool of organisms influences local
community composition (Cornell & Harrison, 2014;
Denelle et al., 2019; Keddy & Laughlin, 2021; Koffel
et al., 2022; Ricklefs, 2008). As such, a species that is
functionally distinct in one community may not be dis-
tinct in other communities where it occurs. In the context
of dynamic community assembly (Fukami, 2010; Weiher
& Keddy, 2001), niche-based processes such as compet-
itive exclusion and environmental filtering are often in-
voked to explain the local successes or failures of species
that disperse from a larger species pool (Hubbell, 2001;
Leibold et al., 2004). Depending on these processes,
differential rates of growth, survival and reproduction
represent fitness differences among coexisting species
determining their establishment and persistence in com-
munities (Laughlin & Messier, 2015). Therefore, the
connections between traits, fitness variation, regional

functionally distinct species. Second, sink populations with negative population
growth can deviate from local fitness peaks and be functionally distinct. Third,
species found at the margin of the fitness landscape can persist but be functionally
distinct. Fourth, biotic interactions (positive or negative) can dynamically alter
the fitness landscape. We offer examples of these four cases and guidelines to
distinguish between them. In addition to these deterministic processes, we explore
how stochastic dispersal limitation can yield functional distinctiveness. Our
framework offers a novel perspective on the relationship between fitness landscape
heterogeneity and the functional composition of ecological assemblages.

coexistence, community assembly, ecological interactions, fitness landscape, functional traits,

context and niche-based processes are an essential
starting point for understanding the emergence and
persistence of functionally more distinct species within
communities. The framework we develop below offers a
concise way to identify and test the range of purported
ecological mechanisms for the origin and persistence of
functionally more distinct species in communities. Our
framework can then better incorporate insights from
functional distinctiveness into ecology and conservation.

FUNCTIONAL DISTINCTIVENESS
THROUGH THE LENS OF THE
FITNESS LANDSCAPE

Introducing the fitness landscape

The foundation of our framework is the fitness landscape,
first introduced in evolutionary biology (Wright, 1932),
which is central to trait-based eco-evolutionary models
(reviewed in Klausmeier et al., 2020). In this approach, a
population's growth rate depends on the functional trait
values that determine its phenotype in a particular en-
vironment. We rooted our framework on a generalized
Lotka-Volterra competition model (Equation 1):

dN; - N
dr - (r(xl-) h Zj:l a(xi’xj)Nj _aself,iNi>Ni ey

with population abundance N; and trait vector X, for
each species 1 <i < N. Here for simplicity of presenta-
tion, we ignored intraspecific trait variation. The function
a (% X j) captures trait-dependent inter- and intra-specific
interactions, and the agterm models species-specific
self-limitation processes (Scheffer & van Nes, 2006).

Of particular importance is the intrinsic fitness land-
scape, given by the population growth rate in the absence
of competitors r(X;) (Figure 1b). A positive intrinsic
growth rate means a species can establish itself in a local
environment (see review by Klausmeier et al., 2020).
The functional dimensions along which intrinsic growth
rates vary reflect how species traits affect local demogra-
phy (Kandlikar et al., 2022; Laughlin et al., 2020; Wright
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FIGURE 1 Influence of abiotic environment on functional
distinctiveness through the intrinsic fitness landscape. Functional
distinctiveness of a species in a community can be calculated as the
mean functional distance to all the other species in the community
(Panel a). The intrinsic fitness landscape can be constructed by
representing how intrinsic growth varies with traits in the local
environment (Panel b). Shaded areas on the peaks represent cases
where intrinsic growth rates are positive (r>0). Combining these
perspectives, we can see that species (shown as points) may be
functionally distinct for various reasons within the same community
(Panel ¢). Three species are labelled corresponding to cases 1-3 in
Table 1: species 1 occupies a distinct peak in a heterogeneous fitness
landscape; species 2 represents a spatial or temporal sink population;
species 3 is found at the margin of the main fitness peak.

et al., 2010), and these dimensions can be used to con-
struct trait-fitness landscapes for any focal community.

Historically, community ecology has assumed that trait-
performance relationships are unimodal, centred on a local
trait optimum dictated by abiotic conditions (e.g. Davis &
Shaw, 2001; Denelle et al., 2019; Whittaker et al., 1973). Here,
we also incorporate the alternative - a fitness landscape that
can be multimodal, including separate peaks of varying
width and height (e.g. Whitlock et al., 1995) (Figure 1b).

We identified four potential ecological causes of the
emergence and persistence of functionally more distinct
species in local communities, depending on the topogra-
phy of the fitness landscape. in the absence (a (X ;, X ;) =0,
cases 1 to 3, Figure lc) or presence (a(X,,X,) # 0, case 4)
of interspecific interactions (Table 1). In case 1, a few
functionally distinct species can occupy a remote fit-
ness peak in the landscape. In case 2, the environment is
variable in space or time and entails source-sink popu-
lation dynamics, and in case 3 the strategy is less fit (but
viable) at the margin of a peak and thus less frequent
in the local environment. These cases centre on the re-
lationship between a focal species' population and abi-
otic environment through the intrinsic fitness landscape,
which can be viewed as influenced by environmental
filtering (Kraft, Adler, et al., 2015; Van Der Valk, 1981).
Figures 1-3 are conceptual figures illustrating the fitness
landscape framework and Cases 1-3. Case 4 represents
how functionally distinct species can arise from biotic in-
teractions with other species in the community. Figure 4
illustrates case 4 based on mathematical simulations.
Apart from the four fitness-dependent cases, we expose
how neutral stochastic dynamics (Vellend, 2016) can gen-
erate functional distinctiveness in a community, which
can provide a null reference (Box 1).

Case 1: Local adaptation in a multimodal
intrinsic fitness landscape

Given our understanding of the nature of trait space oc-
cupancy for many clades (Carmona et al., 2021; Diaz
et al., 2016; Mouillot et al., 2021; Pigot et al., 2020), some
trait-performance relationships can be multimodal, either
globally or within local communities, despite a historical
emphasis on unimodal relationships. Such multimodal-
ity translates into peaks in the intrinsic fitness landscape
(Figure 1) and may arise for several reasons. First, there
might be a multimodal spectrum of resources (e.g. small
and large seeds that birds with different-sized beaks spe-
cialize in) (MacArthur, 1970; Ranjan & Klausmeier, 2022).
Second, localities may be abiotically heterogeneous, com-
prised of microsites that vary in resources or stressors
(Antonovics et al., 1971; Gram et al., 2004), microclimates
(Baraloto & Couteron, 2010; Weiss et al., 1988; Zellweger
et al., 2020), or disturbance regimes (Martinez-Ramos
et al, 1988). This environmental singularity within a
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TABLE 1

Causes of functional distinctiveness in ecological communities, with suggested diagnostics for assessing each cause in terms of a

fitness landscape framework (Figure 1) and examples of the phenomena from existing ecological concepts or theories.

Case

Examples from existing concepts or
theories

Underlying mechanisms

Patterns and dynamics of distinct
species

Occupancy of
distinct peak in a
heterogeneous fitness
landscape (Case 1)

Spatial sink population
(Case 2A)

Temporal sink population
(Case 2B)

Species found at the
margin of fitness
surface (Case 3)

Species interactions (Case
4)

Microhabitat specialization within
a community; local adaptation

Mass effects, source-sink dynamics

Storage effects; shifting baselines;
paleoendemism

Constraints on adaptation;
biophysical tradeoffs in
organismal design

Resource competition theory;
mutualisms; consumer-
resource dynamics; ecosystem

Distinct species exhibit positive
population growth rates and
occupy an isolated peak of the
fitness landscape

Distinct species are found in a local
community where their fitness
is negative, while they have
high fitness in communities
connected by dispersal

Local fitness landscape changed
over time, so that species had
higher fitness in the past, and are
distinct with negative population
growth rate currently

Distinct species occupy the margin
of a fitness peak in a community

Interactions alter the local fitness
landscape and generate
functionally isolated regions

Functionally distinct species are
isolated in phenotypic space
and are steadily present in the
community over time

Functionally distinct species
are steadily present in
source communities and
infrequently present in sink
communities

Functionally distinct species
were more frequent in the
past than nowadays, and they
could be less distinct in the
past

Functionally distinct species are
at a margin of phenotypic
space and are steadily present
in the community over time

Species are functionally distinct
in the presence of interacting
species and non-distinct in

local intrinsic growth rate, r
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FIGURE 2 Spatial variation in the abiotic environment within a region is expected to produce variation in the intrinsic fitness landscape
across local communities. The union of these local fitness landscapes can be used to define the possible phenotypic space within a region
(bottom). Comparing fitness landscapes across communities within an area can reveal spatial source-sink dynamics, showing how species 2
becomes functionally distinct in communities A and B by dispersing from community C.
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FIGURE 3 A temporal variation in the abiotic environment entails variation in the fitness landscape between past, present and future.
Species that persist in the new abiotic environment without traits adapted to it may become functionally distinct, as shown for species 2 in the
present (Case 2B). Species 2 will go locally extinct because its phenotype is not adapted to present nor the future abiotic environment in the case
of directional changes but can persist in the community for some time before getting extinct (right-top) or be again well adapted under future

conditions under environmental fluctuation (right-bottom).

locality canlead to thesuccess of distinct phenotypes (Kraft
& Ackerly, 2014). Third, the distinct peaks can represent
alternative phenotypic solutions to challenges posed by a
uniform abiotic environment (Marks & Lechowicz, 2000).
For example, warm desert ecosystems are often home to
vegetation that varies widely in drought strategies ranging
from annual herbaceous, woody, drought-deciduous and
evergreen plants (Dimmitt, 2000). These different strate-
gies may be viewed as distinct alternative designs that can
all yield positive intrinsic population growth rates. For in-
stance, in freshwater fish assemblages, distinct functional
groups can coexist with alternative resource-use strate-
gies (Brind'’Amour et al., 2011). In microbial communities,
bacteria with alternative metabolic pathways can coexist
(Daims et al., 2015).

Regardless of the source of multimodality (multi-
modal resource spectra, patchy environments or alter-
native designs), the peaks in the landscape may differ
in importance and species richness. The phenomenon
can allow the emergence and persistence of functionally
more distinct species within the community when few
species occupy an eccentric peak in the fitness landscape
(Figure lc, see species 1 to illustrate case 1).

Case 2: Sink populations

There are many cases of populations with negative intrin-
sic growth rates, which are typically described as ‘sink’

populations (Pulliam, 2000) (Figure lc, see species 2 to
illustrate case 2). Both temporal and spatial variations in
environmental conditions may cause a species to occur as
a sink population in a local community (Chesson, 2000;
Levins, 1968). Such sink populations have trait combina-
tions that do not allow positive growth in the local envi-
ronmental conditions. These trait values can depart from
one or several fitness peaks including the ‘core’ species
that are well adapted, and then be functionally distinct
(Figure 2) (Enquist et al., 2015; Johansson et al., 2011;
Olden et al., 2006; Saar et al., 2012; Supp et al., 2015).

Case 2A: Spatial sink populations

The simplest case of a spatial sink population emerges
when species disperse from a locality where they have
a positive intrinsic growth rate (the ‘source’; Figure 2
Community C) to a locality where their growth is nega-
tive (the ‘sink’; Figure 2 Communities A and B). Negative
growth in the sink locations arises because of a mismatch
between species traits and local environmental condi-
tions (Gibson et al., 1999; Grime, 1998; Keddy, 1992;
Kraft, Adler, et al., 2015). A species can be consistently
part of the community, even with a negative growth
rate, if there is regular immigration of individuals from
some source populations (Koffel et al., 2022; Mouquet &
Loreau, 2003). Spatial sink populations have been a topic
of study for decades in ecology. For instance, up to 30%
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(a) No interspecific competition

trait 2

(c) Diffuse mutualism

trait 1

trait 2

trait 1

(b) Diffuse competition

trait 2

C :Dfundamental community
r(=0 .
* W realized community
. (g(®) =0) o
trait 1

(d) Trait-dependent competition

trait 2

trait 1

FIGURE 4 The effect of interspecific interactions on the realized community (trait-space with positive fitness g(?) > 0). Coexisting species
are indicated by large dots, extinct species by small dots. (a) The case of no species interactions, analogous to Figures 1-3. All species with
positive intrinsic fitness can coexist. (b) Diffuse competition (e, = 0.1) reduces the range of coexisting trait combinations while (c) diffuse
mutualism (a;,,, = — 0.01) increases it to include species outside the fundamental community. (d) Trait-dependent competition, modelled by a
Gaussian competition kernel with ¢ = 0.35 leads to more over-dispersed traits.

of the species in Judean Desert Plant communities are
maintained by immigration from adjacent communities
(Shmida & Wilson, 1985), and both birds (Veit, 2000) and
fishes (Magurran & Henderson, 2003; Pont et al., 2018)
are known to migrate to habitats outside their funda-
mental niche.

A full understanding of this mechanism would require
comparing local fitness landscapes across nearby local-
ities (Figure 2) and assessing species dispersal capacity.
Alternatively, from a metacommunity perspective, it is
possible to assess the spatial connectivity of communi-
ties and the temporal stability of populations to identify
core and satellite populations (Collins & Glenn, 1991).

Case 2B: Temporal sink populations

Changing environmental conditions can lead to cir-
cumstances where species that were well adapted are
still present in a community despite having negative
intrinsic growth rates under current conditions (ex-
tinction debt, Tilman et al., 1994). This can occur ei-
ther due to directional change in climate over time (e.g.
bristlecone pines, Kroiss & HilleRisLambers, 2015)

or temporal fluctuations (e.g. interannual variation,
Angert et al., 2009). Species having trait values that were
adapted to past conditions are expected to be function-
ally distinct in a current adaptive space with shifted
fitness peaks (Figure 3). For example, cold-adapted dia-
toms from Lake Baikal that bloom under ice have dis-
tinct thermal traits with lower temperature optima than
other species. They were widespread in the past but are
now endemic to Lake Baikal and are declining in abun-
dance due to decreasing ice cover (Wollrab et al., 2021).
Similarly, paleoecological studies suggest that trait com-
position has changed during past climate change events
(Gaiizere et al., 2020; Ordonez & Svenning, 2015, 2016).
Temporal environmental variability (rather than direc-
tional change) can also produce shifting fitness peaks
over time. Such variation can allow the persistence of
functionally distinct although less adapted species at
a given time, a phenomenon also called ‘storage effect’
(Chesson, 2000). For example, interannual variation in
the timing of rainfall in the Sonoran Desert can favour
the coexistence of annual plants with contrasting func-
tional traits (Angert et al., 2009).

Although several frameworks can be used to iden-
tify remnant or sink species in communities (Cadotte
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BOX 1 Variation in functional distinctiveness independent from the fitness landscape

The causes of functional distinctiveness detailed in cases 1 to 4 arise through deterministic trait-dependent
population dynamics. However, stochastic dynamics can modulate the observed patterns of distinctiveness in
a community. For example, dispersal limitation, spatial constraints on the packing of individuals and other
related sampling effects can prevent occupancy of fitness landscape despite positive intrinsic growth rates.
In case of purely neutral assembly, local community members can be viewed as a random sample of a larger
species pool of viable community members. Such random sampling can create local communities with func-
tionally distinct members by chance alone, despite the locally distinct species being functionally indistinct
in the larger species pool. To illustrate this situation, we simulated local communities of varying sizes, with

members sampled from a static species pool. Small sample sizes produced substantially more variability in the
average distinctiveness values of resident members relative to the regional average distinctiveness (Figure 5).
This means that small assemblages can include functionally distinct species simply by chance. Such stochastic
variation in functional distinctiveness should be quantified and used to formally test whether observed dis-
tinctiveness patterns deviate from a dispersal or sampling-based null model.

In addition, because of the stochastic extinction and colonization dynamics, we expect that many communi-
ties will have regions of the intrinsic fitness landscape that are unoccupied at certain points in time. This
can allow, for instance, functionally distinct nonnative species to invade the community (cf. Naturalization
Hypothesis, Darwin, 1859).

1,001
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FIGURE 5 Average distinctiveness in neutral communities as a function of community size, where communities are at a migration-drift
equilibrium. The dashed horizontal line is the distinctiveness in the regional pool providing immigrants. For smaller size, sampling effect
entails a wide variation of the average distinctiveness in communities. We performed the simulations using the coalesc function in ecolottery R
package (Munoz et al., 2018), with migration rate m=0.05. n is the number of simulations making the boxplot for each community size.
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& Lovett-Doust, 2007, Magurran & Henderson, 2003;
Umana et al., 2017), a formal empirical evaluation of the
link between temporal sink population and their func-
tional distinctiveness has still to emerge. The connection
between the transient nature of sink populations and
their functional distinctiveness is particularly challeng-
ing to assess because it implies characterizing the past
species composition and trait-environment relationship
of the community. Fossil data, seed bank studies, or
long-time series observations may be useful in this re-
spect (e.g. Harrison et al., 2010).

Case 3: Species at the margin of the fitness
landscape

Let us consider a fitness landscape including a major
peak in which most of the well-adapted species are
located, while some species at the margin of the peak
have a lower but still positive population growth.
The later species can be functionally distinct and
still be maintained in the community (Figure lc case
3). An instance of such case is when boundaries of
the functional space express biophysical constraints
(Niklas, 2007; Rothstein & Zak, 2001), developmental
constraints (Gould et al., 1979) and/or the ecological
costs of suboptimal design (Onoda et al., 2014). For
example, metabolic scaling theory suggests limits to
body size at both upper and lower bounds, represent-
ing viability limits and a marginal position on the fit-
ness landscape (Enquist et al., 2009; Niklas, 2007).
Similarly, because height in trees is limited by water
transport biophysics, Sequoiadendron is located at the
edge of plant phenotypic space and is functionally dis-
tinct (Diaz et al., 2016; Koch et al., 2004).

Another possible situation is when directional se-
lection is playing and modifying the fitness landscape
towards positive values in some novel areas of the func-
tional space. Distinct species can be located at the lead-
ing edge of migrating viable space during the process,
which represents a margin of the fitness landscape at
this time. Furthermore, irrespective of the existence of
biophysical constraints and directional selection, some
species can be functionally distinct simply because they
are located at the edge of the fitness landscape, as a
kind of ‘edge effect’. In any case, note that we posit here
that fewer species might be located at a marginal posi-
tion in phenotypic space, that is, in a tail of functional
trait distribution, but these species might be still locally
abundant.

Case 4: Species interactions
In cases 1-3 above, we have focused on the relation-

ship between the focal species and its abiotic environ-
ment encoded in the intrinsic fitness function r(X ). In

this perspective, species interactions do not change the
landscape (Figure 4a). However, ecology has historically
mainly focused on exploring the myriad ways species
may impact one another and affect their relative perfor-
mance (Vellend, 2016). Within our framework, we can
consider how a second species may alter the intrinsic fit-
ness landscape, by raising or reducing the height of fit-
ness peaks and deepening valleys between them, creating
new viable areas in the fitness landscape and, in general,
creating more complexity in the realized fitness land-
scape (Figure 4b—d).

In our Lotka-Volterra model (1), the realized fitness
landscape is given by g(¥;) =r(X}) - Z,A;] a(X;,X;)N;
First, in the simplest case of diffuse interactions, where
each species affects each other equally (a(X ;, X ;) = @jper
constant and independent from species traits), the real-
ized community is simply contracted by negative inter-
action (Figure 4b) and expanded by positive interactions
(mutualism, Bulleri et al., 2016) (Figure 4c). Second,
when trait-based competitive interactions favour spe-
cies with more dissimilar traits (limiting similarity), the
exclusion of species neighbouring in fitness landscape
increases functional evenness and the functional dis-
tinctiveness of persisting species (Figure 4d) (Dayan &
Simberloff, 2005; Ranjan & Klausmeier, 2022). Third,
interactions can modify specific areas of the landscape
by either enhancing or decreasing population growth
rates there. For instance, ecosystem engineers can mod-
ify the local abiotic conditions and enlarge the regions of
intrinsic landscape with positive fitness, and thus allow
novel and distinct trait combinations to establish (e.g.
cushion plants sheltering subordinate plant assemblages,
Raevel et al., 2018). Conversely, direct negative interac-
tions by consumers can create functional distinctiveness
among their resource species. A voracious consumer, or
the combined effects of multiple consumers, can lead to
the depletion and even extinction of resource species in
the range of trait values appealing to the consumer spe-
cies (Abrams et al., 2008). In many other cases, though,
the negative interactions can be indirect. For instance,
they can be mediated by introducing a parasite by non-
native fishes, which decreases the fitness of native fishes
(Gozlan et al., 2005).

Empirical tests of the influence of interactions on func-
tional distinctiveness can involve comparing species per-
formance in communities with and without the presence
of interactors (e.g. by measuring a Relative Neighbour
Effect to assess facilitation, Callaway et al., 2002).

DISCUSSION

Recent research has emphasized the important role that
functionally distinct species can play in communities,
with implications for community structure, ecosys-
tem functioning and biodiversity conservation (Brun
et al., 2022; Delalandre et al., 2022; Grenié et al., 2018;
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Loiseau et al., 2020). However, functional distinctive-
ness can arise in communities for a diversity of reasons.
We argue that it is critical to understand the causes of
functional distinctiveness and that not all causes of
functional distinctiveness matter equally. To drive re-
search on this topic forward, we develop a fitness land-
scape framework where species’ intrinsic growth rates
depend on the interaction of their traits with local abi-
otic conditions (Cases 1-3) and with biotic interactions
(Case 4).

Considering the causes of functional
distinctiveness in ecology and conservation

While it may be tempting to assume functionally dis-
tinct species play similar roles in their respective com-
munities or ecosystems, we argue that the contribution
of functionally distinct species to community dynam-
ics, ecosystem functioning and future conservation
value depends intimately on the mechanisms that have
led them to be functionally distinct. For example, a
species that is functionally distinct due to directional
climate change that has reshaped the fitness landscape
(Case 2B, Figure 3) or because of spatial source/sink
dynamics (Case 2A, Figure 2) may make unique contri-
butions to current ecosystem functioning (e.g. Fryxell,
2001; Mouquet & Loreau, 2003; Verspoor et al., 2008)
but be selected against in future conditions. Conversely,
a species that is distinct because it occurs at the margin
of a fitness landscape (Case 3, Figure 1c) or because it
is located on an isolated fitness peak (Case 1) may offer
critical insurance for future ecosystem functioning
(Violle et al., 2017), especially if ongoing environmen-
tal changes alter the local fitness landscape in favour
of the distinct phenotypes. However, in cases where the
fitness landscape depends on species interactions (Case
4), removing one species can have counterintuitive or
surprising impacts on community structure and func-
tioning. A growing body of research addresses how to
connect trait differences to the outcomes of species
interactions, which should help characterize the emer-
gence and persistence of functionally more distinct
species in this case (e.g. Fortunel et al., 2016; Kraft,
Godoy, & Levine, 2015; Kunstler et al., 2016; Litchman
& Klausmeier, 2008).

Connecting the fitness landscape to
community and ecosystem dynamics

The trait-based ecology enterprise rests on the under-
standing that species trait variation can inform differ-
ences in demographic performance (Coulson et al., 2006;
Salguero-Goémezetal., 2018; Violle et al., 2007). However,
our understanding of the functional basis of variation
in fitness is currently incomplete for most, if not all,

taxa (but see Adler et al., 2014; Kandlikar et al., 2022;
Litchman & Klausmeier, 2008; Wright et al., 2010;
Yang et al., 2018). Resolving the phenomena explored
in this paper will require a better understanding of the
fitness landscape (Figure 1) for many groups, and the
approaches for doing so are now well-established (e.g.
Klausmeier et al., 2020; Laughlin et al., 2020).

It is widely understood in functional ecology that
not all traits matter equally for all ecological processes
of interest (Diaz & Cabido, 2001; Kraft, Godoy, &
Levine, 2015). For example, traits that govern species’
demographic responses to abiotic conditions (‘response
traits’, Figure 1) might not always be the same traits that
dictate the effect that species have on ecosystem pro-
cesses (‘effect traits’). In groups where response and
effect traits are distinct, it will be essential to under-
stand the link between the functional distinctiveness of
response and effect traits to disentangle the cause and
consequences of distinctiveness in the community. Our
framework can be applied directly in the simplest cases
where response and effect traits are the same or where
functional distinctiveness in response and effect traits
are perfectly correlated. Conversely, response and effect
traits may be unrelated (Lavorel & Garnier, 2002), so
that a species with indistinct response trait values lo-
cated on a central peak of the local fitness landscape
may exhibit functionally distinct effect trait values.
Further progress in this area will require research into
the correlation structure in the distinctiveness of re-
sponses vs. effect traits within clades.

In order to make our framework applicable, one would
need to be confident enough in the trait-performance
landscape that had been measured and in the nature of
functional dimensions related to abiotic and biotic de-
terminants. This implies addressing a number of critical
issues at the core of the research agenda in functional
ecology. In particular, it requires overcoming the diffi-
culty of measuring the functional distance between spe-
cies using multiple traits, for example, when the traits
are in different units or log-transformed, categorical and
considering the effects of trait—trait covariation on func-
tional distances (Grenié et al., 2017; Mouillot et al., 2021).

The scale dependence of functional
distinctiveness

Thus far, we have focused on the ecological causes of
functional distinctiveness within local communities.
However, given the role that regional species pools play in
shaping patterns of functional distinctiveness (e.g. Case
2) as well as the role that constituent local communities
play in forming the species pool, it is also important to
consider how patterns of functional distinctiveness de-
pend on a spatial scale (Grenié et al., 2018; Mouillot
et al., 2021; Gaiizere et al., 2023). For example, suppose a
species is specialized to a rare habitat. In that case, it can
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be functionally indistinct in this habitat but functionally
distinct when compared to species of other habitats in a
regional pool. It is also possible for species to be func-
tionally distinct at all spatial scales if they are located
at a margin of a fitness landscape (Case 3) globally (e.g.
sharks in marine megafauna, Pimiento et al., 2020). We
also expect some of the mechanisms we have highlighted
to produce spatial variation in functional distinctiveness
to change over time, including source-sink (Case 2) and
neutral (Box 1, Figure 5) dynamics. This suggests that
more work is needed on the patterns and causes of vari-
ation in functional distinctiveness at larger spatiotempo-
ral scales.

Connections to evolutionary dynamics

While we have focused here on ecological drivers of
local patterns in functional distinctiveness, the func-
tional composition of communities and species pools
ultimately reflects the legacy of evolutionary dynamics
and speciation events over the long run (Vellend, 2016).
For example, the evolution of key innovations can gen-
erate functionally distinct lineages initially, though
distinctiveness may decline over time if evolutionary
radiation makes the innovation more common or if dif-
ferent lineages converge towards similar phenotypes
(Deline et al., 2018; Miller & Stroud, 2022). Although
a full discussion about the evolution of distinctive-
ness is beyond the scope of this paper, future research
should explore the connections between ecological
and evolutionary drivers of functional distinctive-
ness in communities. For example, it is still uncertain
whether functional distinctiveness is related to phylo-
genetic distinctiveness. Several studies have suggested a
weak, if any, relationship (Cornwell et al., 2014; Grenié
et al., 2018; Jetz et al., 2014). Contrasting relationships
are expected depending on underlying evolutionary and
biogeographic processes. A positive correlation should
be found in the case of functional paleoendemic species
adapted to a different historical climate (e.g. Southern
hemisphere coniferes, Rundel, 2019). Such a positive
correlation implies that the functionally distinct traits
are associated with low diversification or evolutionary
dead ends. Conversely, a negative correlation occurs
with strong niche conservatism and rapid divergence in
ayoung lineage. The absence of correlation (Liow, 2007)
occurs when recent evolutionary radiations break a
relationship between phylogenetic and functional dis-
tinctiveness. To better understand the linkage between
functional and phylogenetic distinctiveness, further
studies of the emergence and linkage at the intraspe-
cific level are needed (Vasseur et al., 2018). In this per-
spective, our framework also provides a way to address
the emergence and maintenance of genotypes bearing
original phenotypes within species.

Embracing the multiple facets of rarity

Functional distinctiveness is one of the facets of eco-
logical rarity. Other facets include functional unique-
ness, the distance to a nearest neighbour in functional
space and other taxonomic components based on local
species abundance and regional frequency (Violle
et al., 2017). We considered here the case of functional
distinctiveness as a relevant indicator of the influence
of a rugged fitness landscape on community dynam-
ics and composition. We acknowledge that the fitness
landscape perspective further offers a relevant basis
for investigating the drivers of other facets of rarity in
future works.

We considered here a metric of functional distinc-
tiveness based on species occurrences, but it can also
be weighted by species abundances (Violle et al., 2017).
Our framework addresses the emergence and per-
sistence of more distinct phenotypes irrespective of
their abundance. We did so because we based our rea-
soning on the concept of intrinsic fitness that relates
to the ability of species to increase when rare and not
to their equilibrium abundance. Nevertheless, a rele-
vant perspective would be to address whether and how
species with distinct phenotypes become abundant in
a community. For this purpose, the Lotka-Volterra
model (Equation 1) offers a way to model and analyse
abundance dynamics under the dependence of func-
tional traits.

CONCLUSIONS

Our conceptual framework provides a novel perspec-
tive on how heterogeneous fitness landscapes may
cause the emergence and persistence of functionally
more distinct species in communities, a perspective
that is missing in traditional views of communities
that emphasize community-weighted trait means and
unimodal trait-performance relationships. We make
predictions and offer examples for four possible hy-
potheses for functional distinctiveness. This work can
advance trait-based ecology and our understanding
of functional distinctiveness by providing a frame-
work and means to distinguish among them. Future
research should prioritize a more detailed under-
standing of trait-performance relationships. A further
avenue would be to characterize and relate the influ-
ence of ecological and evolutionary processes on local
and regional distinctiveness, respectively, to develop
a multiscale perspective on functional distinctiveness.
Phenotypic diversity, especially related to functional
distinctiveness, connects directly to the ecophysiolog-
ical mechanisms that drive population and commu-
nity dynamics and, therefore, should be a central aim
of understanding and conserving biodiversity.
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