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Abstract—Stress-strain curves are important representations of
a given material’s mechanical properties, which depend primarily
on the orientation of the individual crystals in the microstructure.
Generating stress-strain curves from numerical methods such
as the crystal plasticity finite element (CPFE) simulations is
computationally intensive. As a result, it is difficult to generate
complete stress-strain curves for all possible orientations of
a material. In this work, we propose a bilinear stress-strain
curve prediction framework for metallic alloys by integrating
supervised and unsupervised deep learning methods via trans-
fer learning principles. As a specific case-study, we focus on
predicting stress-strain curves of Nickel (Ni)-based superalloys
that have important applications in aerospace industry. Using
a small training set of just 100 complete stress-strain curves
(4,000 strain steps each) of different orientations generated by
CPFE simulation code, we were able to build a model that could
accurately predict stress-strain curves ( <2 % error) using simple
features that could be obtained by running the CPFE simulation
for just a single strain step. The proposed model can thus predict
the complete stress-strain curve for a given orientation of Ni-
based superalloys in a fraction of a second, which amounts to a
speedup of over 4000x as compared to the simulation.

Index Terms—stress-strain, encoder, decoder, neural network.

I. INTRODUCTION

Deformation is the action or process of distorting. When
a force is applied to a material, the material will either
compress or stretch as a response to the force. In mechanics,
the force applied to a unit area is called stress. The extent of
stretching or compressing (as a response to stress) is called
strain. Deformations can be elastic or plastic based on what
happens after the stress is released. Elastic deformation is
the deformation that disappears upon removal of the external
forces causing the alteration and the stress associated with it.
Plastic deformation is a permanent deformation or change in
the shape of a solid body without fracture under the action of
a sustained force.

Stress-strain curves are representations of the deformation
behavior for materials, consisting of an elastic and a plastic
region separated by a yield point for most materials. Poly-
crystalline materials are composed of many crystallites of

varying size and orientation. The deformation morphologies
of polycrystalline materials are strongly dependent on the
crystallographic orientations, which means stress-strain curves
depend on the orientations. Analyzing stress-strain curves
could help scientists understand the deformation behavior
and learn more information about the relationship between
structure and property for polycrystalline materials. Thus,
generating stress-strain curves according to different crystallo-
graphic orientations for materials is a very important problem
in materials science.

The crystal plasticity finite element (CPFE) ! simulations
can be used to generate stress-strain curves. Figure 1 shows
some example stress-strain curves of Ni-based superalloys
generated by CPFE simulations. The stress is plotted on the
y-axis and its corresponding strain is on the x-axis. The curve
is very steep at the beginning (the elastic zone), and after the
bend point the curve slope decreases (the plastic zone). How-
ever, CPFE simulation is computationally expensive and time-
consuming, especially if a stress-strain behavior of sufficient
length needs to be explored. In this study, we use artificial
intelligence methods to rapidly generate this type of stress-
strain curves of Ni that consists of two almost straight lines,
where the intersection of two lines is the yield point.

With the fast development of artificial intelligence and
machine learning (AI/ML) techniques, and the increasing
availability of data from the first three paradigms of science
(experiments, theory, and simulations), the fourth paradigm of
science, i.e., data-driven science and discovery, is playing an
important role in materials science [1]. Many machine learning
and deep learning techniques have been extensively used in
many materials science applications [2]-[8] to enhance mate-
rials property prediction, discovery, and design. Such models
do not require significant human intervention or knowledge,
learn relationships efficiently relative to the input design space,
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equipment identified are necessarily the best available for the purpose.
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Fig. 1: Example stress-strain curves of Ni-based superalloys
for orientations “10-10-0”, “40-40-0”, and *“90-90-0".

and can be generalized to different systems.

Recently, researchers have tried using machine learning
models to predict stress-strain curves at a much higher speed.
Yang et al. [9] proposed an artificial neural network (ANN)
model combined with principal component analysis (PCA) to
predict the stress-strain curve of binary composites. Janab et
al. [10] used a genetic algorithm and ANN to predict stress-
strain values of AA5182-O aluminum alloy sheets. Ali et al.
[11] employed ANN to estimate the stress-strain curve of
AA6063-T6 aluminum alloy under non-proportional loading
conditions. Koenuma et al. [12] used the deep learning method
with a rate-dependent crystal plasticity finite element method
formulation to predict the stress-strain curve of aluminum
alloy sheets. In [13], Yamanaka et al. trained two DNNs
to estimate biaxial stress-strain curves of sheet metals from
their underlying microstructural features. Merayo et al. [14]
accurately predict the yield stress (YS) and the ultimate tensile
strength (UTS) of aluminum alloys based on Brinell hardness
data using the ANN model.

In [15], Setti et al. used different architectures of neural
networks to predict the stress-strain curve of near beta titanium
alloy. Setti et al. [15] used the ANN approach to predict the
stress-strain curve of titanium alloy. In ANN training, the
module volume fraction of o and strain were employed as
input and stress as output. In this study, we focus on rapidly
predicting bilinear stress-strain curves for metallic alloys with
crystalline microstructures (with the specific case study on
Ni-based superalloys) using only simple features obtained by
running the CPFE simulation for a single strain step. Ni-
based superalloys are widely used in the aerospace industry,
especially in hot sections of turbine engine components, such
as blades, disks, casings and liners due to their excellent me-
chanical properties [16]. We thus select Ni-based superalloys
as the specific case study in this work.

A stress-strain curve prediction framework is proposed in
this study. The proposed framework only needs a small number
of stress-strain curves with 4,000 strain steps to predict stress-

strain curves for other orientations. The framework first fits the
stress-strain curve as a bilinear function to get four parameters.
A multi-layer feed-forward perceptron (MLP) is trained using
these parameters as labels and intermediate data obtained by
running the CPFE simulation for a single initial strain step
as features. After training, the model can be used to predict
these parameters, and generate bilinear stress-strain curves
according to the predicted parameters.

Moreover, since the available labeled training data is too
small, we generate a larger unlabeled dataset using easy-to-
obtain features from more orientations for unsupervised learn-
ing to make use of the orientation-based information. We train
an autoencoder model on this unlabeled dataset. The learned
weights are then transferred as initial weights to train a new
MLP model. The proposed framework is cross-validated on
100 stress-strain curves of different orientations generated by
CPFE simulations. The experimental results demonstrate that
the proposed framework has significant computational savings
while still maintaining the accuracy of the prediction. In
particular, we believe that the ability to quickly and accurately
predict complete stress-strain curves from simple and easy-to-
obtain input features is an attractive aspect of the proposed
framework. But since the material use-case, simulation to
generate the data, and the type of input features used in this
work are different from previous works, they are not directly
comparable.

II. CRYSTAL PLASTICITY BACKGROUND

A. Crystal Plasticity Finite Element Method

A crystal orientation is given by Miller Indices, (hkl), as
plane normal vectors. Majority of metal and metallic alloys
properties are associated with crystal orientations specifying
anisotropic characteristics of these materials. In single crystals,
orientation dependence can result in significant discrepancies
in mechanical properties. Different crystal orientations are
related through Euler angles. For convenience, the crystal
orientations in this study are represented by Euler angles as
”O4-0,-0,”. The range of O, and O, is [0, 90]. O, is always
equal to zero because of the crystal orientation dependence.
Figure 2(a) displays different stress-strain curves for a single
crystal Ni-based superalloys in both elastic and plastic regimes
for dissimilar orientations of ”0-0-0” and ”55-45-0” from the
CPFE simulations and compared to the experimental data.

The elastic-plastic deformation of crystalline multiphase
aggregates depends on the direction of loading, i.e. crystals
are mechanically anisotropic. The directionality or orientation
dependence of the mechanical response of crystals under load
is due to the anisotropy of the elastic tensor and to the orien-
tation dependence of the activation of certain crystallographic
deformation mechanisms. To address the crystalline anisotropy
and size dependence aspects in crystalline materials, crystal
plasticity (CP), a proper tool reflecting the anisotropic nature
of crystalline materials, along with finite element (FE) analysis
is utilized. The CPFE method in the large deformation plat-
form, when performed in three dimensions, has the ability to
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(a) The stress-strain curves of a single crystal
Ni-based superalloys resulted from the CP code and
compared to the experimental data [17].
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Fig. 2: Crystal plasticity backgrounds

assess and simulate the grain interactions, interface abrupt me-
chanical transitions, mixed deformation mechanisms, complex
boundary conditions, and diverse empirical and physics-based
constitutive models. The three-dimensional CPFE method can
be applied to generate stress-strain curves for any orientation.

B. Crystal Plasticity in Large Deformation Finite Element

Plasticity theories are applicable primarily to solids ex-
periencing inelastic deformations considerably greater than
elastic ones. The crystal plasticity approach with distinguished
potentials can be considered for either small or large defor-
mation [18]. While small deformation relations simplify the
implementation and simulation process, yet, make the model
limited to a small strain range. In the current study, large
deformation crystal plasticity formulations are implemented.

In continuum mechanics, deformation gradient tensor F
(F = j—;) is considered to map current configuration to
reference configuration figure 2(b). Here X is position of a
point in the reference (undeformed) configuration and x is
position of the same point in the current (deformed) config-
uration. Large strain-description is accommodated through a
multiplicative decomposition of the total deformation gradient,
F, into the elastic deformation gradient, F¢, which is the
deformation component due to the reversible response of
the lattice under external loads and displacements as well
as rigid-body rotations, and the plastic deformation gradient,
FP, as an irreversible deformation that persists when all
external forces and displacements are removed. In this sense,
the transformation of the reference state by F? leads to the
creation of the intermediate configuration. The intermediate
configuration signifies the presence of dislocations which
produce the permanent shape changes. In addition, due to the
rate dependence of most metals and metallic alloys, the rate of
deformation gradient needs to be involved through the velocity
gradient, 1 = FF-! (F is rate of deformation gradient tensor),
as well.

The decomposition framework is demonstrated in figure
2(b), where an atomistic structure in the reference configu-
ration is in the undeformed state. The current configuration
displays the deformed structure including both elastic and
plastic deformations where the plastic part of displacements
in the form of stretch type is calculated in the intermediate
configuration. With the presence of plastic deformation, multi-
plicative decomposition is adopted in order to divide the elastic
and plastic parts of the deformation. In fact, an intermediate
configuration is introduced to solve the indeterministic equa-
tion of F = F°F? by calculating F?. For a given deformation,
the plastic part F? is calculated using constitutive model via
the plastic part of the velocity gradient, 17 = FP(F?)~!. Then,
the deformation tensor F and the plastic strain F? could be
used to calculate stress and strain values further.

Thus, given the orientation number, F and F? (both F and
FP? are 3 x 3 matrices) are obtained as intermediate data and
stress-strain values are obtained as final data at each strain
step by CPFE simulations. Then the stress-strain curve can
be plotted over the complete strain steps. The more strain
steps we want to generate, the longer it takes. In order to
understand the complete deformation behavior of the material,
4,000 strain steps are recommended by domain scientists in
this study, which can take up to an hour to calculate the stress-
strain curve for a single orientation. It is infeasible to generate
a large number of stress-strain curves using CPFE simulations
directly.

III. METHODS
A. Proposed Framework

Figure 3 shows an overview of the proposed stress-strain
prediction framework by combining supervised and unsuper-
vised learning. Two datasets are generated using CPFE simu-
lations: a labeled dataset and an unlabeled dataset. The labeled
data are complete stress-strain curves and the corresponding
FP F matrices with 4,000 strain steps. Only 100 labeled data
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Fig. 3: Stress-strain curve prediction framework based on deep learning methods.

from 100 different orientations could be obtained due to time
constraints. We use bilinear functions to describe these 100
stress-strain curves. The bilinear function is defined by four
parameters: mj,ms, ¢, and xzp. These parameters are used as
labels to train a MLP model, where the input features are
just the initial FP and F matrices. After that, the stress-
strain curve can be predicted according to four parameters
predicted by the MLP model. In order to take advantage of
more information from more orientations without taking too
much time, we generate the initial F? and F' matrices for more
orientations to construct the unlabeled dataset. We take these
data as inputs to train an autoencoder model to reconstruct the
inputs. The encoder model in the autoencoder model has the
same architecture as the MLP model. Then, the weights of
the encoder model are transferred and utilized as the initial
weights for training the MLP model via transfer learning
principles.

B. Data Generation

In this study, 4,000 steps for each orientation are gener-
ated to make sure the stress-strain curves include the de-
formation behavior of sufficient length. We call the stress-
strain curve with 4,000 steps as the complete stress-strain
curve. Only 100 complete stress-strain curves are generated
as the labeled data due to time constraints. In order to
get well-distributed data, we traversed every element from
the list {0,10,20,30,40,50,60,70,80,90} for O, and O, as
the inputs to run CPFE simulations, i.e., a total of 100
orientations. The stress-strain curve for each orientation has
4,000 points or strain steps. Thus, 4,000 F and F? matrices
{Fo,F1,....; F3990} and {F(,F7,......;FE o4} for each ori-
entation were obtained. F and F{ equals a 3 x 3 identity
matrix for all orientations, the rest F' and FP matrices are
different for different orientations. Thus, we take F; and Ff
as the initial F' and F? matrices for each orientation to be used
as inputs for the MLP model. Figure 1 shows three example
stress-strain curves, where the orientations are ’10-10-0”, 40-
40-0” and ”90-90-0".

For generating unlabeled data, we set the number of steps
as one to generate the initial F and FP matrices. Because
the generation time is much less for only one step, we could
generate more data to construct the unlabeled dataset. Here
we traverse O, and O, from all integers in [0, 90] to obtain
8281 data points from different orientations.

C. Curve Fitting

In Figure 2(a), it is easy to distinguish the elastic regime
(linear and very steep) and the plastic regime, where the curve
slope decreases and becomes flatter. There is an obvious rapid
change near the yield point. Other stress-strain curves are
similar to these three examples according to our observation.
Thus, the relationship of stress and strain can be reasonably
represented by a bilinear fit over the entire range of 4,000
strain steps. The bilinear approximation of the stress-strain
curve consists of two lines that represent, respectively, the
elastic behavior and the plastic behavior. These two lines
intersect at the yield point. We use the bilinear function as
given by equation 1 to represent the stress-strain curve.

mix, T < Tp
y= (1)

mex +c¢, x> Ty
It is defined by four parameters: mq, ms,c, and x,. Note
that there are only three independent parameters actually, as
knowing any three of these is sufficient to solve for the fourth.
If we can get the values of these parameters for each orienta-
tion, the corresponding stress-strain curve for this orientation
can be plotted. The method for calculating m1,mo, ¢, and xy
for these 100 stress-strain curves is introduced in this section.
For a bilinear curve, the slope is m before the bend point
and mgy after the bend point. The bend point of the bilinear
curve is the yield point of the stress-strain curve. However,
these stress-strain curves are not really bilinear. Figure 4(a)
shows the slope values for every point. In the figure, the slope
values are not always the same before the yield point and after
the yield point. And there is a segment rather than a point



40-40-0

250000
200000 05

uuuuuu

00
uuuuuu T )

05
50000

00000 0,0005 00010 0.0015 0.0020 00025 0.0030 00035 0.0040

00010 00015 00020 00025 00030 00035 00040

(a) b)

0000 0005 0010 0015 0020 0025 0030 0035 0040
00010 00015 00020 00025 00030 00035 00040 strain (%)

(© (d)

Fig. 4: (a) first derivative curves of three stress-strain curves; second derivative curve for stress-strain curve of (b) 10-10-0; (c)
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that characterizes the huge difference in slope value. We call
this segment the yield segment. In order to have a bilinear
fit, we need to set an assumed yield point to represent the
yield segment. First, we calculate the second derivative value
for every point. Figure 4 (b)(c) show some example second
derivative curves. In the second derivative curve, the segments
whose values are negative indicate that the slope value is
reduced. The longest segments where the second derivative
is negative in figure 4 (b)(c) corresponds to segments where
the slopes are greatly reduced for orientations ”10-10-0” and
”90-90-0”, respectively, in figure 4 (a). It is easy to see that the
longest segments correspond to the yield segments. In figure
4 (a)(b)(c), we could find that there are several peaks besides
segments that the slope values are greatly reduced (i.e., the
yield segments). Obviously, these peaks are noise from the
numerical simulation. The difference between noise peaks and
the yield segments is the noise peaks are very short segments.
Therefore, the longest segment where the second derivative
is negative is the yield segment, and others are noise points.
After obtaining the yield segment, we set the middle point of
the yield segment as the assumed yield point (z,, y,).

After getting the yield point (x,, y,), we use the fit function
in matrix laboratory (MATLAB) to fit two linear curves y =
mix and y = mex + c. Then, the intersection point can be
calculated by equation 2, which may or may not be identical
to the assumed yield point (24, ¥q)-

c

Ty = ——— 2
my1 — Mo

We select the intersection point as the yield point (xy, yp)
for function 1. All four parameters mi,mo,c, and x, are
obtained. Figure 4(d) shows a comparison between the actual
stress-strain curve of orientation "40-40-0” and its bilinear
approximation, called assumed curve in this paper. As can
be seen, the fit of the bilinear model is good in both lines and
the yield point.

D. An ANN Model for Curve Prediction

Artificial neural networks have two key characteristics,
the networks have adaptive learning ability and the learned
knowledge is stored in the connection weights between neu-
rons. Neural networks have powerful modeling capabilities for
regression and classification problems. There are many popular

types of neural networks, such as convolutional neural net-
works (CNN), recurrent neural network (RNN) and generative
adversarial network (GAN) [19]. In this paper, a MLP neural
network is used to model the parameters of bilinear stress-
strain curves. In a feed-forward perceptron network, nodes
between adjacent layers are fully connected. The architecture
of the network in this paper has one hidden layer with 64
neurons.

The data for each orientation is considered as a data point.
It is clear that both F, F? and the orientation number can
contain the information of stress-strain curves for different
orientations. We try several combinations for these features
in the experiments to explore the encoding information of
these features. Using fewer steps’ F and FP matrices is
desirable as it can reduce the prediction time. We know
that Fo and Fg are the same for all orientations, so do not
contain any information for different stress-strain curves of
different orientations. Therefore, we use F'; and Ff matrices
and orientation numbers O, and O, as the inputs. All the
input features are normalized in the range of [-1, 1]. The
parameters mi, mo, ¢, and x; are labels for MLP model. The
trained model can be used to predict the parameters my, mo, ¢
and z;,. After obtaining the outputs, equation 2 is used again to
get more accurate xp. Finally, the predicted stress-strain curves
can be described and plotted according to these parameters.

E. An Autoencoder Model for Initial Weights Extraction

Due to the limited amount of labeled data (100 complete
stress-strain curves), the MLP model may not yield very good
results. Thus, in an attempt to improve the accuracy of our
MLP model, we explore unsupervised learning methods with
easy-to-obtain unlabeled data. Transfer learning (TL) tech-
niques are widely used to solve the small dataset problem in
machine learning. Recently, TL has gained significant interests
in the machine learning and materials science community [20].
TL is used to develop a learning system where the knowledge
learned from one domain (coined as source dataset) is used
to improve the accuracy of another domain (coined as target
dataset) which is generally small in size. This may be useful
when the source problem has a lot more data than the target
problem. There are two ways to perform TL, fine-tuning and
feature extraction. Fine-tuning uses weights of the pre-trained
model that is trained on the source problem as the starting



point for the training process and adapted in response to the
target problem. This can also be called as TL performed via
weight initialization scheme. The objective is to take advantage
of data from the source problem to extract information that
may be useful when learning or even when directly making
predictions in the target problem.

Autoencoder is an unsupervised learning algorithm, which
was first proposed by Rumelhartet et al. [21]. Autoencoder
model can reconstruct its own data through training, the
outputs of the model can realize the reproduction of inputs.
The model consists of two main components: an encoder and
a decoder. The encoder maps the original data to the hidden
layer through the encoding function, and the decoder uses the
decoding function to take the hidden layer as input to obtain
the reconstruction of the data. The reconstructed data has the
same structure as the original data. Autoencoder has many
successful applications in many different domains, such as
image classification, natural language processing, and material
science [22], [23]. In order to make the reconstructed data be
as close as possible to the original input during training, the
autoencoder model needs to learn some potential information
of the original data after training. Thus, the weights of
layers after training contain the information of the training
data, that could be transferred as initial weights for neural
networks. Using weights learned from unlabeled data using
unsupervised learning not only provides good initialization of
network weights, but also improves the overall generalization
performance [24].

Weight initialization based on autoencoder model is used in
this study. The architecture of encoder network is the same as
the MLP network. It consists of one input layer, one hidden
layer, and one output layer. The number of neurons in the input
layers depends on the input dimension. The hidden layer has
64 neurons and the output layer has 4 neurons. The decoder
network is the opposite. The input layer has 4 neurons, the
hidden layer has 64 neurons, and the number of neurons in
the output layer is the same as the input layer of the encoder.
We use unlabeled data from 8281 orientations as the training
data to train the autoencoder model. Subsequently, the weights
of the encoder were used to initialize the weights of the
MLP model. The unlabeled data provides more orientation-
based information to the model during the training process.
We call the new MLP model with weight initialization as the
Improved-MLP model.

IV. EXPERIMENTS AND RESULTS
A. Evaluation Metrics

We evaluate the proposed framework by mean absolute error
fraction M AE fo, MAE f1, M AFE f5 shown in equations 3, 4,
5. M AE fy compares the assumed curve and the actual curve,
M AFE f; compares the predicted curve and the assumed curve.
M AFE fy compares the predicted curve and the actual curve.
N is the number of steps for each stress-strain curve of an
orientation. Y _actual; is the t-th point’s actual stress value,
Y _assume, is the assumed stress value of this point calculated

by the assumed bilinear function and Y _pred; is the predicted
stress value of this point by the MLP model.

N |Y_assume; — Y _actualy]

Y _actual;

MAEfy = =2 ~ 3)
N |Y_pred; — Y_assume,
MAEf, =0 Y_]ci[ssumet @
N |Y_pred; — Y _actualy]
- Y actual
MAEf = *=° " 5)

B. Experiment Settings

We use the leave-one-out cross-validation method to eval-
uate the proposed framework on the labeled dataset which
has 100 data points. Several ML methods, such as Lin-
ear Regression, K-Nearest Neighbor algorithm (KNN), and
Random Forest are used to compare with the MLP model.
All machine learning models are implemented by scikit-learn
using the default hyperparameters. The autoencoder model
is implemented using Pytorch. The mean square error loss
function is used with an Adam optimizer [25]. The learning
rate is 0.0001. The number of epochs is 500. All experiments
were conducted on a machine with 2.5 Ghz Intel(R) Xeon(R)
Gold 6126 CPU.

C. Results and Analysis

Figure 5(a) shows the M AE f; values of every orientation
for 100 labeled data. The average value of M AFE fy for 100
orientations is 0.0030, i.e., 0.30%.

Tables I, II, III, IV, V show the results of different models
using different combinations of F'y, Fﬁ' and orientation number
as inputs, respectively. The mse of parameters calculates the
mean square error (MSE) of all four predicted parameters
mq, ma,c and . The results in the tables are average mse
of parameters, average M AFE f;, and average M AFE fy from
leave-one-out cross-validation. We can see that the results of
two MLP models are better than other models for all combi-
nations of inputs except when input is F7. The results of the
Improved-MLP model are better than the MLP model for all
combinations of inputs, which means using the information of
larger unlabeled data can improve the performance of the MLP
model trained on a small dataset. The results are better when
input is F; than when it is FY, which indicates F; encodes
more information of orientation. This insight is consistent with
the knowledge that F'; includes deformation for both elastic
and plastic parts while F¥ represents just the plastic part of the
stress-strain curve. The best result for M AFE f5 is 0.0141 (i.e.,
1.41%) obtained by the Improved-MLP model when inputs
are F; and F. The result demonstrates that the proposed
Improved-MLP model can predict the stress-strain curves with
high accuracy.

Figure 5(b)(c) shows the M AFE fy values of every orien-
tation for the MLP model and the Improved-MLP model,
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TABLE I: Result comparison using F; and F} as inputs TABLE IV: Result comparison using F] as inputs
average average average average mse average average

Models mse of parimeters M Alzég f1 M AgE fa Models of parimeters M AEg fi M AgE fa
LinearRegression 0.5162 0.0819 0.0822 LinearRegression 0.5135 0.0819 0.0822
KNeighborsRegressor 0.5538 0.0517 0.0525 KNeighborsRegressor 0.5548 0.0517 0.0525
RandomForestRegressor 0.1551 0.0269 0.0278 RandomForestRegressor 0.1386 0.0262 0.0271
MLP 0.0231 0.0141 0.0155 MLP 1.0665 0.0961 0.0962
Improved-MLP 0.0213 0.0127 0.0141 Improved-MLP 1.0665 0.0961 0.0962

TABLE II: Result comparison using Fy, F} and orientation TABLE V: Result comparison using orientation number as

number as inputs inputs
average mse average average average mse average average
Models of parameters MAE f1 MAEf> Models of parimeters MAngl MA%fQ
LinearRegression 0.5135 0.0819 0.0822 LinearRegression 1.0262 0.0962 0.0960
KNeighborsRegressor 0.5548 0.0517 0.0525 KNeighborsRegressor 0.1646 0.0419 0.0421
RandomForestRegressor 0.1469 0.0269 0.0278 RandomForestRegressor 0.1016 0.0344 0.0351
MLP 0.0464 0.0222 0.0231 MLP 0.0792 0.0332 0.0336
Improved-MLP 0.0351 0.0178 0.0186 Improved-MLP 0.0773 0.0331 0.0335

TABLE III: Result comparison using F; as inputs

values obtained by the Improved-MLP model are better than

average mse average average
Models & & 2

of parameters MAEf, MAEf, the MLP model for most orientations. This result demonstrates
LinearRegression 0.4394 0.0753 0.0757 . C e e .
KNeighborsRegressor 0.4809 00581 00583 that the weight initialization based on autoencoder model can
RandomForestRegressor 0.1892 00311 0.0318 help the MLP model learn more information from a larger
MLP 0.0290 00151 0.0165
Improved-MLP 0.0278 00142 00156 unlabeled dataset to get better performance.

Figure 6(a)(b)(c) show the actual, assumed, and predicted

stress-strain curves of some example orientations obtained

respectively, when inputs are F;, F}. The average values of by the proposed framework, respectively. Figure 6(a) shows
M AE f5 in Figure 5[c] is lowest in all different models and all ~ the stress-strain curve of orientation ”20-60-0”. The M AE f,
different combinations of inputs. We can see that the M AE fo  value equals to 0.0012, which is the minimum error across



all orientations. Figure 6(b) shows the stress-strain curve of
orientation ”10-60-0”. The M AFE f, value equals to 0.0086,
which is the median error across all orientations. Figure 6(c)
shows the stress-strain curve of orientation ”30-80-0”. The
M AFE fy value equals to 0.0790, which is the maximum error
across all orientations. Figure 6(d) shows the histogram of
MAE f5 error distribution. We can see that most M AFE f
values are less than 0.002 (i.e., 2 %). These results demonstrate
the proposed framework can predict the stress-strain with
minimal error. Moreover, one of the biggest advantages of the
proposed framework is the huge computational improvements
over conventional simulation tools. These computational sav-
ings come from the fact that once an ANN model is trained
and validated, the model does not need to run computationally
expensive simulations to predict the data. Therefore, the pro-
posed framework takes only a fraction of the time compared
to numerical simulations. Generating a complete stress-strain
curve of Ni-based superalloys for a given orientation takes
around 2,400 s by CPFE simulations. The proposed framework
takes < 0.6 s to predict the stress-strain curve, which means
over 4000x speedup.

V. CONCLUSION AND FUTURE WORK

This paper presents an intelligent and effective AI/ML
framework to predict the stress-strain curve of Ni-based super-
alloys. The proposed framework only needs a small number
of labeled data (100 complete stress-strain curves) to train
a MLP model. And transfer learning techniques based on
autoencoder model are used to improve the accuracy of the
MLP model with unlabeled data (initial F' and F? matrices).
The results demonstrate that the proposed stress-strain curve
prediction framework provides significant computational time
improvements with minimal prediction error.

This work provides a viable solution to speed up the
generation of stress-strain curves to save computational time
and resources. In the future, we plan to extend this framework
to more materials and build upon the proposed framework by
integrating it with the CPFE simulation, in order to quickly
calculate all the intermediate simulation variables, and not
just the final stress-strain curve. This can potentially provide
more interpretable information about the material’s deforma-
tion behavior to the FEM practitioners, and also provide an
opportunity to further improve the prediction accuracy of the
model.
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