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Abstract. We establish the validity of the Euler+Prandtl approximation for solutions of the Navier-Stokes equations in the
half plane with the Dirichlet boundary conditions, in the vanishing viscosity limit, for initial data which are analytic only near
the boundary, and Sobolev smooth away from the boundary. Our proof does not require higher order correctors, and works
directly by estimating an L!-type norm for the vorticity of the error term in the expansion Navier-Stokes—(Euler+Prandtl).
An important ingredient in the proof is the propagation of local analyticity for the Euler equation, a result of independent

interest
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1. Introduction

In this paper, we consider the Navier-Stokes system

D uNS — EAuNS 4 uNS VNS 4 vpNS =0 (1.1)

divu™® =0 (1.2)

on the domain H =T x Ry = {(z,y) € T x R: y > 0}, where T = [—m, 7], with the no-slip boundary
condition

w0 =0 (1.3)

and with an incompressible initial datum
w2 = ug”®. (1.4)

Throughout the paper, we denote the kinematic viscosity by €2. Our goal is to establish, with a concise
proof, the Euler+Prandtl approximation for solutions of (1.1)—(1.4) in the vanishing viscosity limit e — 0,
for initial data that are analytic only near the boundary of the domain, and are Sobolev smooth away
from the boundary.

1.1. Previous Results

One of the fundamental problems in mathematical fluid dynamics is to determine whether the solutions
of the Navier-Stokes equations (1.1)-(1.2) converge to the solution of the Euler equations

ou +uP - vuP + vp¥ =0 (1.5)
divu® =0 (1.6)

in the inviscid limit e — 0. In [32], Kato showed that the inviscid limit holds in the energy norm
L°°(0,T, L?>(H)) if and only if the energy dissipation in a thin layer of size €2 vanishes as € — 0, i.e.,

T
lim 62/ / (Va2 dzdydt = 0. (1.7)
0 Jo Jygey
We refer the reader to [3,6,7,33,35,51,59,60,63] for refinements and extensions based on Kato’s original
argument; cf. also the recent review [50]. These results assume explicit properties that the sequence of
Navier-Stokes solutions must obey on [0,7] as € — 0 in order for them to have a strong L L2 Euler
limit. On the other hand, verifying these conditions based on the knowledge of the initial datum only is
in general an outstanding open problem. We emphasize that to date, even the question of whether the
weak L? L2 inviscid limit holds (against test functions compactly supported in the interior of the domain),
remains open. Conditional results have been established recently in terms of interior structure functions
[9,11], or in terms of interior vorticity concentration measures [8].

In his seminal 1908 paper, Prandtl postulated that the solution of the Navier-Stokes equations can be
written as

u™(z,y,t) = uP(z,y,t) + (ﬂp (m, %,t) Levt (ac, %,t)) + O(e), (1.8)

where u® denotes the solution of the Euler equations and @°, o*¥ are components of the solution of

the Prandtl boundary layer equations (see (2.10) below). While the well-posedness [1,10,18,28,37,39,
42.44.52,56,57] and the ill-posedness [14,19,26,43] regimes for the Prandtl equations are by now well-
understood, establishing the validity of the expansion (1.8) presents a number of outstanding challenges.

In [57,58], Sammartino-Caflisch establish the validity of the Prandtl expansion and hence the strong
inviscid limit in the energy norm, for well-prepared and analytic initial data wug, in the sense that ug
satisfies the Prandtl ansatz (1.8) at time ¢ = 0, and is analytic in both the z and y variables on the entire
half space. They construct solutions of the Euler and Prandtl equations in suitable analytic spaces in x
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and y, carefully analyze the error terms in the expansion (1.8), and show that they remain O(e) for an
O(1) time interval by an abstract Cauchy-Kowalevski theorem. This strategy has been proven successful
for treating the case of a channel [36,45] and the exterior of a disk [5].

In [49], Maekawa established the validity of the expansion (1.8) for Sobolev smooth initial vorticity
that is compactly supported away from the boundary, by using the vorticity boundary condition in [2,48]
and controlling the weak interaction between the Prandtl solutions near the boundary and the Euler
solution far away from the boundary.

We refer the reader to [61] for an energy based proof of the Caflisch-Sammartino result, and [12,13]
for a proof of Maekawa’s result in 2D and 3D respectively, which relies solely on energy methods.

Recently, in [55], Nguyen and the second author establish the strong inviscid limit in L>°(0, T, L?(H))
for analytic initial data, and for the first time avoid completely the use of Prandtl boundary layer cor-
rectors (1.8). Instead, they appeal to the vorticity formulation, give precise pointwise bounds for the
associated Green’s function, and work in a suitable analytic boundary-layer function spaces that control
the pointwise behavior of solutions of the Navier-Stokes equations. In this paper we use the pointwise
estimates for the Green function of the Stokes problem from [55]; cf. Lemma 7.2 below.

In [40,41], the first and the last two authors established the strong inviscid limit in the energy norm,
for initial data that is only analytic close to the boundary of the domain, and has finite Sobolev regularity
in the complement (see also [62] in the 3D case). These works thus close the gap between the Sammartino-
Caflisch [57,58], which assumes the analyticity on the entire half-plane, and the Maekawa [49] results,
which assumes that the initial vorticity vanishes identically near the boundary. Up to now, the class of
initial data considered in [40,41] appears to be the largest class of initial data that the strong inviscid
limit is known to hold, in the absence of structural or symmetry assumptions. Note that neither [55] nor
[40,41] establish the validity of the expansion (1.8), which is the main result of this paper.

Recently in [16,17], Gerard-Varet, Maekawa, and Masmoudi improved the classical results of
Sammartino-Caflisch to Gevrey perturbations in x and Sobolev perturbation in y for shear flows of
the Prandtl type, when the Prandtl shear flow is both monotonic and concave. Lastly, we mention that
the vanishing viscosity limit is also known to hold in the presence of certain symmetry assumptions on the
initial data, which is maintained by the flow; see e.g. [4,20,27,34,46,47,50,53,54] and references therein.
Also, the very recent works [15,24,25,29-31] establish the vanishing viscosity limit and the validity of
the Prandtl expansion for the stationary Navier-Stokes equation, in certain regimes.

It is worth noting that in all the above cases the Prandtl expansion (1.8) is valid, and thus the Kato
criterion (1.7) holds. However, in general there is a large discrepancy between the question of the vanishing
viscosity limit in the energy norm, and the problem of the validity of the Prandtl expansion.

In the negative direction of the Prandtl asymptotic expansion, we refer the reader to the works [21-23]
of Grenier and Nguyen, which show that the Prandtl expansion (1.8) is in general false at the level of
Sobolev regularity.

1.2. The Present Paper

The main purpose of this paper is two-fold.

First, we establish the Prandtl asymptotic expansion (1.8) for initial data that is only analytic near the
boundary, and is Sobolev regular in the complement. When compared to [40,41], the main difficulty here
is that the Euler equation is not a priori well-suited for propagating regularity which is analytic near the
boundary of the domain, and only Sobolev away from the domain. The main reasons are that the pressure
is nonlocal and the equation is not parabolic. This essential fact is established in Theorem 5.1 below. The
proof consists of three steps. First, we obtain the analyticity of the Euler solution with respect to the
operators y0, and 0, (i.e., in an analytic wedge), by approximating the Euler solution via the Navier-
Stokes solutions as in [40,41]. Since the Euler data is uniformly analytic up to the boundary, it belongs
to the initial space required by [40]. In the second step, we use Montel’s theorem for normal families, to
obtain that the family of the Navier-Stokes solutions, which are analytic in a wedge, have a subsequence
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which converges to the solution of the Euler equation, which is then analytic in a wedge. In the third
step we bootstrap the analyticity to uniform by using the following strategy. The solution of the Euler
equations is analytic uniformly on any line which is at a positive distance from the boundary. This provides
analyticity of v® on every such line. Note that, in addition, v¥ = 0 on the boundary OH. Therefore, we
may perform a localized analytic energy proof, which takes advantage of the boundary condition on the
lower boundary and the uniform interior analyticity strictly inside the domain to propagate the local
analyticity forward in time.

Secondly, we note that in the previous works where the Prandtl expansion was justified, a further
asymptotic expansion of the error term was used, by considering correctors given by the linearization
of Navier-Stokes about the Euler and Prandtl solutions, with suitable boundary conditions. Our main
improvement is to obtain the convergence directly, without resorting to further expansions, by using the
L' based analytic spaces from [40,41,55]. As a consequence of this simpler approximation procedure, our
main result requires fewer compatibility conditions between the Euler, Navier-Stokes, and Prandtl initial
data, when compared to [57,58].

The paper is structured as follows. In Sect. 2, we introduce the Euler+Prandtl approximation of
Navier-Stokes, at the level of the vorticity. The main theorem concerning the expansion (1.8) is stated in
Sect. 3, along with a corollary, which states that the order O(e) estimate on the error also holds in the
uniform norm. In Sect. 4, we recall the equation for the error and introduce the necessary norms, along
with some preliminary results. Sections 5 and 6 contain the necessary analytic bounds for the Euler and
Prandtl equations, respectively. Sections 7.2 and 7.3 contain the analytic and Sobolev estimates needed
in the proof of the main result. The proof of the main theorem is then provided in Sect. 9, while the proof
of the corollary are given in Sect. 10.

2. The Euler+Prandtl Approximation in the Vorticity Form

In order to describe the Euler+Prandtl approximation of solutions to the Navier-Stokes equation, it is
convenient to work with the vorticity formulations of the Navier-Stokes, Euler, and Prandtl equations.
We describe these next.

The Nawvier-Stokes vorticity We denote the components of the Navier-Stokes velocity as uN®> =
(uNS,vN5) and let the associated vorticity be given by

WNS = L NS = g NS g NS
The Navier-Stokes vorticity satisfies
DS — 2AWNS = (439, 4 vN39, )W S
in H, with the boundary condition given by (cf. [2,48,49])
62(8y + |8w|)f,uNS = %Afl ((uNS&K + stay)wNS) ly=0 -

The Euler vorticity Away from the boundary {y = 0}, that is for y 2 ¢, the Navier-Stokes vorticity
shall be shown to be well-approximated by the Euler vorticity, which we denote as

I VAR TRl L —3qu.

Here, u® = (u¥,v®) is the smooth solution of the Euler equations in H, i.e., (1.1)—(1.2) with ¢ = 0, with
the initial condition

(") 1= = (ug, vg) (2.1)

specified below and the boundary condition
vFl,—0 = 0. (2.2)
It is convenient to denote by UP and PP the trace of the Euler tangential flow and pressure on 9H, i.e.,

UE(t,2) = u®(t,z,0) and PE(t,z) = p®(t,2,0). (2.3)
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The Prandtl vorticity Close to the boundary {y = 0}, that is for y < €, the Navier-Stokes vorticity is
shown below to be well-approximated by the total boundary layer vorticity defined in (2.11). We recall
that the Prandtl equations for the velocity field (u’, ev®”), which are functions of ¢, 2, and the fast normal
variable!

y="2,
€
read as
(0 — Oyy)ut +uP o,u® 4+ vPoyulf = -0, PF, (2.4)
Y
- / dput dY” (2.5)
0

for (z,Y) € H. The boundary conditions for u¥ are
u¥ly—o =0 and uPly oo = UP. (2.6)
The classical Prandtl vorticity, defined as

QF = oyu®, (2.7)
satisfies the equation
oOF — 020F +4P0,0F + P9y QF =0 (2.8)
in H, with the boundary conditions
9,0F ly—o = 0, P" and QFly oo = 0. (2.9)

The Prandtl velocity component u” may then be computed from the vorticity as u®(x,Y) = fOY Qr
(x,Y")dY"'. The boundary layer velocity vector is then given by (u",ev"), where

a" =u” —~U®  and o' = / dyutdy’. (2.10)
Y
We introduce the total boundary layer vorticity by
1 1
W’ = (-0,,0,) - (@, e0") = €0,0" — ~0yu" = ed, 0" — ~QF. (2.11)
€ €

The Euler—+ Prandtl expansion In terms of the vorticity, the Euler+Prandtl expansion of the Navier-
Stokes solution is

W = WF 4+ WP+ ewe, (2.12)

where w, is the error vorticity. Proving the validity of the Euler+Prandtl expansion amounts to showing
that the error vorticity we is O(1) with respect to € uniformly in time, in a suitable norm in space. We
achieve this in Theorem 3.1 below. Since we prove the validity of the expansion uniformly in time, which
is e-independent, the initial data for the Navier-Stokes equation has to be compatible with (2.12), as
explained next.

Compatible initial data By compatible initial data u)® = (u)®, v)'®)

and uf = (uf,v¥) we mean that

uyS(a,y) = uf (,y) + @ (2,Y) + cucola,y). (2.13)
o3(@,) = o) + et (2,Y) + eveola,y) (2.14)

where (u§, ev§ ) are defined from the Prandtl initial datum uf via (2.10), and the error velocity (e, Veo)

is incompressible and satisﬁes boundary conditions which ensure that u)®(x,0) = v)S(z,0) = 0, namely
teo(2,0) = 0 and veo(z, 0) fo 0z (2,Y)dY. In addition to (2.13)—(2.14), we require that weo is
O(e) in a suitable norm which is L™ based in z and L' based in y (cf. (7.1) below).

IThroughout the paper, we use the vertical spatial variable Y for the Prandtl variables, and y for all others.
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A concrete example for compatible initial data is as follows.? The initial data for the modified Prandtl
velocity components u¥ and 9% (cf. (2.10)) may be taken as

W =UP@)(Y)  and  of = ~0,US(x)e(Y), (2.15)

where ¢ is a uniformly analytic function which decays sufficiently fast as Y — oo, along with its deriva-
tives, and satisfies ¢’(0) = —1. The precise assumption is given in (6.5) below. For the initial error velocity
components u, and v, appearing in (2.13)—(2.14), we may consider

ueo(z,y) = —Ug' (2)'(y)  and  veo(x,y) = 0.U5 ()Y (y), (2.16)

where 1 is a uniformly analytic function with ¥ (0) = (0) and ¥’(0) = 0, with a sufficient decay as
y — o0. The precise assumption is given in (7.2) below. From (2.16) it follows that the error vorticity
we = —0yUe + O,V at the initial time equals

weo(,y) = U5 ()9 (y) + Uy ()¢ (y) (2.17)

which is shown in (7.1) to be O(1). Using (2.13)—(2.16), the properties of ¢ and v stated above, and the
fact that the Euler data are incompressible and satisfy v = 0, it follows that the Navier-Stokes datum
is incompressible, and satisfies the correct boundary conditions, namely uONS = vgls =0 on {y = 0}.

3. Main Results

Our main result provides an O(e) estimate on the error for the vorticity in the Euler+Prandtl expan-
sion (2.12).

Therorem 3.1. Assume that the Navier-Stokes initial datum u)® and the Euler initial datum ul are

compatible, as described in (2.13)—(2.14), with the Euler datum that satisfies (5.1), the Prandtl initial
vorticity QF which satisfies (6.1), and with the initial error vorticity weo that satisfies (7.1). Then, there
exists Ty, > 0, independent of €, such that

NS
0

sup ‘H(wNS — WP = wP)(~,t)’Ht < Ce, (3.1)
te[0,T%]
where C' > 0 is a constant. The norm ||-||, is defined in (4.10); it represents a norm which encodes

L'-based analyticity near the boundary, and Sobolev regularity away from the boundary.

Remark 3.1. An example of compatible initial conditions which satisfies the assumptions of Theorem 3.1
is given by the Prandtl and error of the form (2.15) and (2.16), with functions ¢ and ¢ which satisfy
certain regularity assumptions; cf. (6.5) and (7.2) respectively.

As a direct consequence of Theorem 3.1, we obtain that at the level of the velocity, the Euler4+Prandtl
approximation of the Navier-Stokes solution is O(e) in the uniform norm, with respect to both the
tangential and the normal variables. Moreover, at any fixed distance away from the boundary, the same
convergence rate holds as € — 0, even without an additional help of the Prandtl corrector.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

sup |[[(uNS — o — 4" NS — P — eTJP)(-,t)HLw(H) < Ce. (3.2)
te[0,7%]
Also, for any set K C H such that dist(K,9H) > 0, we have
sup [[(u™® — uP) (-, 1) oo () < Ce. (3.3)
t€[0,To)

2Compare with the initial datum compatibility assumption in [58, Assumption (2.26)]; the fact that we do not need to
include higher order correctors in the expansion (2.12), means that we require a less restrictive set of initial conditions for
Ue and ve.
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The proofs of Theorem 3.1 and Corollary 3.2 are given in Sects. 9 and 10 respectively. The main idea
in the proof of Theorem 3.1 is to estimate the error term in the vorticity equation for Navier-Stokes —
Euler — Prandtl, cf. (3.17)—(3.18) below. The remainder of this section is dedicated to deriving this error
equation, while in the rest of the paper we perform estimates on it.

3.1. The Evolution for the Error Velocity and Vorticity

At the velocity level, the Euler+Prandtl expansion of the Navier-Stokes solution is given by
™ =P + " + eu, (3.4)
NS = o o’ + eve, (3.5)

where u¥ and oF are introduced in (2.10) and where (u,v.) stands for the error velocity. At the initial
time ¢ = 0, the expressions (3.4)—(3.5) correspond to the definition of compatible initial datum, cf. (2.13)—
(2.14). The vorticity for the error (ue,ve) is denoted by

We = —OyUe + Oy (3.6)

and corresponds to the expansion (2.12).
It is also convenient to introduce the approximate velocity

Uy = u® + P and vy = vF + o’ (3.7)
and the approximate vorticity
1
Wy = —OylUy + 00 = WP — Z0F + 0,07 . (3.8)
€

The evolution equation for (ue,ve) is given by (see [58, Eqs. (2.32)—(2.39)])

1 -
(at - 62A)ue + (ueaz + Ueay)ua + (uaaz + 'Uaay)ue + e(ueax + Ueay)ue + ampe = fl + Egayup (39)
(0 — € A)ve + (ue0y + 060y )V + (UaOz + 020y ) Ve + €(UeOy + Ve0y)Ve + Oype = fo (3.10)
Opie + Oyve =0 (3.11)
ue|y=0 =0 (312)
Uc|y:0 =9, (313)
where A = 0,5 + 0yy. The function g in (3.9) and (3.13) is defined by
g=g(t,x)= —/ 0,0t dY = —o% |y, (3.14)
0

and at the initial time, we have
g(t7 "I")‘t:() = _’DP (.’I}, 07 t)|t:0 .
The forcing terms in (3.9)—(3.10) read

fl — _1 (ﬂpﬁx(uE _ UE) + (%ﬂp(uE _ UE) + 8yﬂP(UE + yaxUE)) _ ﬁPaqu + EA’U,E + eaiﬂl:’
€

Y (af’ﬁx(“Ey_UE) + axaP“E;UE + YQPW> — Y0, u” + eAuF + ed2u”  (3.15)
and
fo=— (00" + ua0,0" + v20,0" + 7 9") — %apamuE + €Av,
0, "

= - (ataP + U, 0,0 + Yv—;ayﬁp + @Paqu> - YﬂPT + €Av, . (3.16)
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From (3.9)—(3.13), we obtain that w, obeys the boundary value problem
(0 — EA)w, = F in H (3.17)
€2(0y + |0 )we = 0y (—Ap) ' F + |0, /Oo ot dy on OH, (3.18)
where i
F = —(ue0y + 00y )wa — égayQP — (UaOs + 020y)we — €(UeDy + V60y)we + (Onfa — Oy f1) . (3.19)

The boundary condition (3.18) may be derived proceeding similarly to [49], by combining (3.12) and (3.19).

Observe that the second boundary term in (3.18) may be written as |0,] fooo ot dy = ‘gz‘&gg. Recall

that the evolution equation for u® reads
0y — Oyy)ut + b0, UE + UTo,aF +uto,ub + (o8 —YUE)oyut =0, (3.20)

where
@P(Y):/ d,ut dy’ (3.21)
Y

(cf. [58, Eq. (2.20)]). Lastly, observe that using the definition g = —8,(f,~ ¥ dY’), we rewrite the integral
in the last term on the right side of (3.18) as

/ Q" dY = / (Oyyu" — 0,(a"U") — " 0,u" — 0" 9,u") dY
0 0

_ / (Oy QF — 0, (@ UB) — aP0,a® — 0, (@ + UE)aP) dy
0

= —OF|y_o + Uy — 28xUE/ ardy — ax/ (at)%dy (3.22)
0 0

where we used (3.20) in the first equality and thus the boundary condition in (3.18) reads
62(6y + ‘asze = (ay(_AD)_1F>|y:0 - |6ac| QP‘YZO + ‘az| UEQ

—2|ar|amUE/ utdy — |az|am/ (a)?dY on OH. (3.23)
0 0

Since the error vorticity equation (3.17) has a forcing term which depends on the Euler and Prandtl
solutions, it is natural that we first perform suitable analytic and Sobolev estimates for these Euler
(cf. Sect. 5) and Prandtl (cf. Sect. 6) solutions, with the initial conditions given by (2.13)—(2.14). Prior
to this, in the following section we introduce the functional framework in which these estimates are
performed.

4. The Functional Framework
4.1. The Base Analytic Norms

For p € (0, 1] we define the complex domains
Q,={2€C:0<Rez<1,|Imz| < pRez}U{z€C:1 <Rez<1+pu,|Imz[<1+p—Rez} (4.1)
and
Q,={ZecC:0<ReZ[ImZ| <pReZ}. (4.2)
We note that the domain (NZ“ is much larger than the domain €2, and allows Re Z to be arbitrarily large,

while the domain €, is located near the boundary 0 < Rey < 14p. We use f¢(y) € C to denote the Fourier
transform of f(z,y) with respect to the  variable at frequency & € Z, i.e., f(z,y) = dez fe(y)et=s.



JMFM On the Euler+Prandtl Expansion Page 9 of 46 47

We define three types of analytic norms, Y ., Y\ 4,00, and Py, . The principal purpose of the Y} ,
norm is to control the remainder of the Prandtl expansion, the main role of the Y} ,, o norm is to estimate
the Euler solution in analytic spaces, while the Py ,, - norm bounds the Prandtl solution in the domain
KNZ“. Let A, € (0,1].

e For a complex function f(y) defined on §,,, let

Iles = sup 1o (4.3)
<O<p
and for a complex function f(z,y) defined on the domain T x ©,,, we introduce the Llll—based analytic
norm
£y, = Dl e 2o (4.4)
€L

e For a complex valued function f(z,y) defined on T x €2,,, we define the L;°-based analytic norm
1 lvs e = DM | (4.5)
£EZ

If f = f(x) is independent of y and only depends on z € T, we replace the norm || f¢|| > (q,) simply
by |fe|, and still use the notation in (4.5).
e For a function f(z,Y") defined on the domain T x §,,, we define the L§°-based analytic norm

1Py e = D fell g, (4.6)
EET

If f = f(z) is independent of Y and only depends on z € T, e.g. trace terms at Y = 0 or terms
which are integrated in Y, we replace the norm || fe|| Lo (@) simply by |fe|, and still use the notation
in (4.6).

Note that both the Y) , and Y) , o norms only require the corresponding function to be analytic in x

near the boundary {y = 0}, whereas the P\ , . norm requires also analyticity at Y-large. Moreover,
unlike in [40], the Y) , oo norm is not weighted in the y variable.

4.2. The Sobolev Norms

To control the Sobolev part of a function f away from the boundary, for ;1 > 0 we introduce

Iflls, = Z lyfellzzy>14u) - (4.7)
3

Note that the S, norm is Zé, so that in view of the Hausdorff-Young inequality, we have ||y f| 1 L2 (y>14p) <

/]

Sl’.
U[sing (4.4) and (4.7) we also define

1fllysuns, = [fllva,. + 17

Note that the norm Y} ,NS,, controls the L' norm in the analytic region 0 < Rey < 1+, and a weighted
L2 norm in the Sobolev region y > 1 + p.
As a genuine Li’y—based Sobolev norm we choose

||f||?9 = ||yf||%2(y21/2) = Z ||yff||2L2(y21/2) )
£EZ

S, -

and denote the higher derivative version by

Ifllz =Y N0:03fls = > 99503 fllr2(y=1/2) - (4.8)

0<i+5<3 0<i+5<3
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Note that since (1+[£])~! € £2, we have the lossy estimates || f|

s, S lls +10:flls < M flls, + 110/

Sy

4.3. The Cumulative Error Norm

Finally, we define the norm |||-|||, which appears in Theorem 3.1.

Before doing so, we fiz two sufficiently small parameters A, 1, € (0, 1], which are independent of e,
and only depend on the parameter Ag which appears in the assumptions on the Euler datum (cf. (5.1))
and the Prandtl datum (cf. (6.1)), and the parameters ps, Ao which appear in the assumption on the
initial error vorticity (cf. (7.1)). The precise values of A, i, are given in (7.3) below; at this point we only
emphasize that these parameters are determined in terms of the datum, and that they are independent
of e. Lastly, let v, > 2 be a sufficiently large parameter representing the rate of decay of the analyticity
radius. This parameter is also independent of €, and its value shall be determined in the proof (see the line
above (9.2)). Throughout the paper, the time parameter is chosen to satisfy 0 < ¢t < min{1, u../(2v.)},
so that t <1 and py — v«t > ps/2 > 0; in fact, we let ¢ € [0,T,], where T, € (0, 1] is independent of ¢, is
given explicitly in (7.3).

To treat the loss of a derivative in the nonlinear terms, in terms of the parameters u, and . discussed
above, we use (4.4) to define the cumulative L,-based analytic norm

1f Oy = o S D MO0 Fliva, o + (e = =72 D> (105(w0y) fllva, |+ (49)

P<fls =Yt i+§<1 itj=2
for all 0 <t < T,. Lastly, for the same range of ¢, using (4.8) we denote by
llwllly = llw @)y @) + llw(®)lz (4.10)

the cumulative error vorticity norm.

Remark 4.1. (Implicit constants) We emphasize that throughout the paper the implicit constants in the
symbols < are never allowed to depend on the large parameters e !, 7., and 7 '. These implicit constants
are however allowed to depend on parameters independent of € and 7., such as Ao, A1, Ao, Ax, fo, (01, b2, L,
or K.

4.4. Functional Inequalities

We recall several useful properties of the norms introduced in (4.4)—(4.6). First, from the Cauchy integral
formula, we deduce the following inequality (cf. also [55, Lemma 2.2]).

Lemma 4.1 (Analytic recovery). For 0 < pu < 11 < s — v+8, we have

1

D9 @0y fllva, S =—fIvas»
sl = p

where the implicit constant is universal.

We omit the proof of Lemma 4.1 and refer the reader to [55]. In the next lemma, we record a number
of useful product estimates concerning the analytic norms. Similar bounds to the ones stated in (4.11)
below were previously established in [55] and [40].

Lemma 4.2 (Product estimates). For A\, u € (0,1], we have the inequalities

1 (2 Y)g(z 9)llvs, S 1@ Y es, Mg 9)llys (4.11a)
1 (2 Y)g(@ )y, S el @ +Y)*2f(@,Y)llpy, Mo 9) v, (4.11b)
1@ 9)g(z Ylva . S 1@ 9)llva o lg(@9)lva (4.11c)
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1@, Vg, 9)ls, S IV F@, V), gz )]s, (4.11d)
19 )ls, S IV T ey (19600 172 T 10206 y21/2,) (4.110)
1 Y)ge s, S IV FG ey (19600 12 1 12y + 1000 0) 21 212))  (A116)
1@ gt s, S 1Fls, (19012 e uorim + 1000 21 1)) (4.11g)

for any 0 > 2, whenever the right sides of the above inequalities are finite. For simplicity of notation, we
write Y instead of ReY for the weights on the right sides.

Proof of Lemma 4.2 We first observe that for an analytic function f(z,Y) defined on T x O uy With

Y = y/e, the function (z,y) — f(x,y/e€) is analytic in ,,, since y € Q,, implies Y € Q This observation
is used throughout the proof.
Since the Y) , norm contains an L' norm with respect to the y variable along the polygonal path 9

with 6 < p, and since we have dy = edY and (1 + Re Y)_% € L}, we have a useful bound
£, Y)llvs . < N+ ReY) 2221 (1 +ReY )2 f(2,Y)llpy ..o
Sell@+Y) 2 f @ Y) | py e (4.12)

where the implicit constant is universal, and we omitted the real part of the weight appearing on the
right side. Next, we note that by the definition of the domain £2,,, we have

”f(x?y)”Y)\,“ 5 ||f($7y)||y>\,u,<x> ) (413)

where the implicit constant is universal. The above two estimates bound the L'-based analytic norm, in
terms of those based on L.

Next, we consider product estimates, and start with (4.11a). Again, using that y € €, implies Y =
y/e € KNZH, from the Holder inequality we obtain

I follys, = ZHeA(H” y)”g'Zfz )9¢—¢' ()l c1

SZZII@ 1+#—y>+|f—f|gg_5,(y)||% sup | fer (Y)eM IS

YeQ,
< lgllva 1F 1Py -
Similarly for (4.11b), we appeal to the above argument and to the proof of (4.12), to obtain

1gllva, <D0 XTI fe (V)| Sup AR ge g (y)]
/ Yy n

< e+ Y2 ey gl - (4.14)

The inequality (4.11c) is a consequence of the Holder inequality in y on the domain .
In order to prove the bound (4.11d), we note that by the definition of the S, norm in (4.7), Holder’s
inequality in y, and the fact that y > 1 + p implies that Y = y/e > (1 4+ u)/e > 1/e, we deduce that

||f9||su < Z Z ||f£’||Loo(y21+u) ||y9£f£’||L2(y21+M)
I

< llglls, D IV fell poeyrsso
3

< lglls, € Y Fellpy . >

for any A,0 > 0. In a similar fashion we may establish (4.11e) as

1Falls, <D el ferll oo 19e-€ 2140
& ¢



47 Page 12 of 46 I. Kukavica et al. JMFM

< Y el iyt o D Nger 22100
£ 14

6 |]y0
Se HY f§||P>\,HYO° (||9||L2(y21/2) + Haﬂ?gHL2(y21/2)> )

where in the last inequality we have used Plancherel, and the fact (1+ [¢”[)~1 € ¢2,. The proof of (4.11f)
is similar as we have

1falls, <322 IV ferll ey ranm 197 96 25140
& ¢

< Zee HYOfEHLoo(YZUE) Z ||g§//||L°°(y21+u)
5 5//

0 0
Se ||Y f{HpA%M <||g||LgL§c(y21/2) + ||axg||L§LZo(y21/2)>

since [ly~ |2 (yz140) S 1.
The last inequality, (4.11g) follows directly from the definition (4.7) and Holder’s inequality

1905, < 30D ferllpagyorim 19 e oo < 1ls, (1902 unrim + 1909l 2 1100 ) -
§ &

which concludes the proof. (I

Next, we recall the following elliptic estimates for the velocity; for a proof, we refer the reader to [40,
Lemma 6.3] and [41, Lemmas 4.2 and 5.1].

Lemma 4.3 (Elliptic estimates). Let (u,v) be the velocity obtained from the vorticity w via the Biot-Savart
law, cf. (7.35)—(7.36) with g = 0. For 1 € (0, e — vxt) and X € (0, \.], we have the estimates

10; W0y ullys o SN0 wlvs s, + 3 (Iwllva, + [90ywllys )

s ()

for all non-negative integers i,j such i+ j < 1. For the Sobolev norm away from the boundary, one has

> (10505ullrz  yo1m + 192090l 22 210 ) S el
i+j=3

and

SN0 wlly, ns
Y, pu,00

o

and
S (18:05ulum o1/ + 10050115, 1/0) S el (4.15)
i+j<2
for allt € [0,T].

5. Uniform Analyticity of the Euler Solution in a Strip

In this section, we estimate the solution of the Euler Eqgs. (1.5)—(1.6) posed on the half-space H = T x R
with the boundary condition (2.2) and the initial condition (2.1). We require the initial data to be
uniformly analytic in x and y near the boundary. Away from the boundary, i.e., for y > 2, we only
require Sobolev regularity. These assumptions are stated in terms of the initial vorticity wi'. Namely, we
assume that wgg(y) is analytic in the domain {y € C: 0 < Rey < 2, [Imy| < 2} with values in the L%
space with the weight e*/¢l, is continuous on the closure, and satisfies

N , ,
Ze ol sup lwoe ()] + § : ||y8;(y8y)]wg||m(y>l/2) S (5.1)
ez 0<Re y<2,[Imy|<2 i+j<4 N
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for some g € (0, 1]. We allow all the constants to depend on Ag. Note that wf satisfies the assumptions
on the initial data in [40, Theorem 3.1]. Our goal in this section is to establish the bounds stated in
Lemma 5.7 below. To this end, we first prove that if the initial Euler data satisfies (5.1), then the solution
of the Euler equations remains analytic near the boundary, locally in time.

Therorem 5.1. Assume that (5.1) holds, and let Ww® be the vorticity corresponding to the unique solution
of the Cauchy problem for the Euler equations (1.5)—~(1.6), (2.1), with the initial vorticity wg. Then there
exists Ty € (0, 1] such that

Z ||y3l(9] ||L2(y>1/2) 1 (5.2)
i+j<4
and
Z 10,09 u™ ()| L2 Lw>1/2) T Z |\a;8§UE(t)||Lgfy(y21/2) ST, (5.3)
0<itj<4 0<i+5<3

for t € [0,To]. Moreover, the vorticity w® and the velocity u® are uniformly real-analytic in (z,y) €
T x [0,1] in the sense that there exists a constant (o € (0,1] such that

2. (z’j—j)! 10,050 | Lo (rx 0.1y $ 1 (5.4)
and
> i1 )1 %05l cexoy S 1 (5.5)
%7 :
fort € [0, Tp).

The inequalities (5.4) and (5.5) assert the uniform analyticity up to y = 0, instead of only analyticity
in a wedge.

We divide the proof of Theorem 5.1 into several steps. First, we obtain the interior analyticity of
solutions, which is asserted in the next lemma.

Lemma 5.2. Assume that wf satisfies (5.1). Then there exist constants Ty, o € (0,1] and C > 1 such
that we have (5.2), (5.3), and

STeClwEty) 1, yeQN{y:1/2<Rey<1+pu}, (5.6)
3

for all t € [0, Tp).
Proof of Lemma 5.2 In order to apply [40, Theorem 3.1], note that we have

> (loiwoYwolly,  +[108wo) wolly, . )+ D7 800 | ayse S 1.
i+ <2 i+5<3
where €9 = A\g/2, i.e., the condition (3.1) in [40, Theorem 3.1] is fulfilled. Therefore, for every € € (0, 1]
sufficiently small there exists a unique solution to the Navier-Stokes equations wN¢, with the initial data
wf on a uniform in € time interval [0, 7p], and on this interval the solutions w™%¢ are uniformly bounded

and analytic in Q,,, i.e.,

Moo

[[max{e, Re y}wN5e

<1, (5.7)

Yegng.00 ~
for some 9 € (0, 1] which is independent of ¢; additionally, by [40],
WS — ¥ in C([0, Ty], L*(H)) ase — 0. (5.8)
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Note that this solution is different than the one in (2.12) since it starts from a different initial data. Using
(5.7), we get a uniform in € bound

Zego(H“o_Rey)‘&‘ max{e,Rewa?s’e(t,yﬂ <1, y€Q,, tel0,To,

3
which implies
1
Sl y) 1, S <Rey<1+52 yeq,, (5.9)

3

for every t € [0, Tp]. We next claim that the Euler solution satisfies
1
D ecomoltlA i Bt y)) < 1, 5 <Rey <1+ % Y€ Qs (5.10)

3

for ¢t € [0,Tp]. To prove (5.10), first observe that we have (5.8). Fix any tg € [0,7p] and mo € N. Due
to the uniform bound (5.9) at time ¢y, we may apply the vector version of Montel’s theorem and deduce
that there exists an analytic function f on Qo = {y € Q,, : 1/2 < Rey < 1+ po/2} with values in the
space of functions g such that

1
3 eonolél/Ag(t, )] < oo, 5 <Rey<1+ % y € Qy, (5.11)
€

and a sequence €j, €a, ... — 0 such that wNS< (¢y) converges to f uniformly on compact subsets of Q,
with values in the space corresponding to (5.11). By the uniform bound

mo
1
Z 650“0‘5‘/2|w?s’6(t,y)| <1, 5 <Rey <1+ %, Y€ Qs
E=—mo

for every mgy € N (which is a consequence of (5.9) at t = o) for € = €1, €a, .. ., the function f also satisfies
the same bound. Finally, note that f = {wf(to)}¢2_,, by @™ — W in C([0,Tp), L*(H)), and we
obtain

mo

1
Z 660H0|€|/2|W?(t7y)|§17 5 <Rey§1+%; yGQHO
§=mo

at t = to, and to € [0,Tp]. Since mg € N is arbitrary, we obtain (5.10) and (5.6) by replacing po with

Ho/2.
Next, we establish (5.2), which is obtained using a weighted Sobolev estimate with a weight ¢(y) =

(y? 4 1)'/2. First, note that

S lorwlza+ 3 I0ul3: S 1, (5.12)
|| <4 |a|<5
by the local H* existence. The weighted energy ) = Z|a|§4 [ |0°w|¢? satisfies
Ld |2 el a—/73 1o 2
mwzzZ/\aw pu-Vo — 3 /au.va WO we
la|=4 la|<4,0<8<a,|8|<2,(lal,B)#(4,0)

— Z /3'Bu VO Pwdwe? .
|a]<4,0<B<a, (8|23

All the terms are estimated in a straight-forward way by (5.12) and using that all the derivatives of ¢
are uniformly bounded. For the first term, we estimate the integral by ||0%w@||p2]|0“w]| 2||u| L, for the
second term, we bound the integral by ||0%u/| e ||D!*1=181F1we| 12 [|0“we| 12, while the integral in the
third term by [|0°%ul| g | DI =181 10| 12]|0%we|| 2. We omit further details.

Finally, the inequality (5.3) follows by the Biot-Savart law as in the proof of [41, Lemma 5.1]. O



JMFM On the Euler+Prandtl Expansion Page 15 of 46 47

Next, we provide estimates on a solution of the Euler equation in the region T x [0, 1] in the analytic
norm
T\a|—3

lllz, = > mgalgag||a°‘w||L2(1rx[o,1]), (5.13)
|a|>3 '

where o = (a1, ;) and 7 > 0. In (5.13), the parameters 0,6 € (0, 1] are constants such that

~_ 1 _
0,0 < ol and < g, (5.14)

for a sufficiently large constant C, determined in the proof of Lemma 5.6 below. Also, denote by

leel =3
T —
lwllg, = ) 7oy 0" 0™ 0%l L2(Tx 0,1
B, |§4(|a|2)! (Tx[0,1])
the corresponding dissipative analytic norm.
The following statement provides an estimate for the Euler vorticity in a uniform analytic norm up
to the boundary.

Lemma 5.3. Assume that wg satisfies (5.1), and suppose that W® is a solution of the Euler equations,
with the initial data wf, such that (5.2), (5.3), and (5.6) hold for t € [0,Tp], for some constant Ty > 0.

With 6,8 as in (5.14), the function w® satisfies

sup [|w™(t)
0<t<Ty

(5.15)

~ <
HAl/C ~ ]' 9
where C' > 1 is a sufficiently large constant.

Recall that all constants depend only on \g. Note that since wg € H*, by the local existence theory

for the Euler equations, by potentially reducing the value of the parameter T from Lemma 5.2, we have

WO las, [w® (@) as 1, t€[0,To). (5.16)

Before the proof of Lemma 5.3, we state two auxiliary results. In the first one, we show that the analytic
norm in T X [1/2,1 + po/2] of the Euler vorticity is bounded.

Lemma 5.4. Assume that wg and w® are is in Lemma 5.8, and let o, To be as in Lemma 5.2 and (5.16).
Then we have
T\(x|—3

I v R A FTCIVES R B
fort €[0,Tp], provided 5,6 < 1/C for a sufficiently large constant C'.
Proof of Lemma 5.4 Fix t € [0,Tp], and denote w = w¥. By (5.6), we have

> eMlECI0lw e (y) S O,y e [1/2,14 po/2], i€ N, (5.17)
I

omitting indicating the dependence on ¢. Therefore,

1 an o 1 .
Tar—3lo o ellzaxion S gar—ay 2= 167 %5 w0
3
Cfllal! . C(xlall .
> W Ze>\#0|§|/c||8y2w||L§(0,1) S W ZeA#Olgl/C||8y2w|‘Lz°(O,l)
' 1<

CuColag! _ clellal! < cll,
(laf = 3)! (laf = 3)!
where we used (5.17) in the fourth inequality. (]
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In order to bound the analytic norm of the velocity by the vorticity in a strip (cf. Lemma 5.6 below),
we first need to control the analyticity of v® at y = 1. For 7 > 0, denote by

i—2
. T
lglla, = Z ||3x9||H1/2(T)m
i>2
the boundary analytic norm of a function ¢g defined on T.
Lemma 5.5. Let w? be as in Lemma 5.3. Then we have
[v5ly=illa,,e ST, tE€[0,To], (5.18)
for a sufficiently large constant C'.
Proof of Lemma 5.5 As in the proof of Lemma 5.4, we have
1 glel=3 o B
Z mmllﬁ wo | p2erxpt,zy ST (5.19)
ler|>3

where C is a sufficiently large constant. Now, the component v satisfies the elliptic equation
AvP = 90",
and then the local elliptic analytic regularity, the bound (5.19), and the Sobolev estimate (5.2) imply

1 FUal=3)+
o, B
Z 0% |\L2(Tx[g,g])mm St (5.20)

a€eN3

with a possibly larger C'. The bound (5.20) then gives (5.18) by using the trace inequality, upon enlarging
the constant C. (|

In the proof of Lemma 5.3, we need to estimate the velocity in terms of the vorticity in the analytic
norm. It is important that we provide an estimate with the same analyticity radius; thus, simply appealing
to the analytic regularity of the div-curl system is not sufficient.

Lemma 5.6 (Elliptic estimates in analytic spaces). Fort € [0,Tp], denote w = w®(t). Assume that

lwllgs, lwll 5,5 1914, < oo,

for some constant T € (0,1]. Then the function u = (u,v) = u® is the solution of the elliptic system

divue =0
curlu = w
with the boundary conditions
vly=0 =0
vly=1=9, (5.21)
and we have
lullz, < llwllgs +llwll 5, + 19l 4, (5.22)

provided S and § satisfy (5.14) for a sufficiently large C'.
Applying (5.22) to (5.16) and (5.18), we get
[y, S P, 1 te 0.7, (5.23)

where C' is sufficiently large.
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Proof of Lemma 5.6 We start with an estimate for v, which satisfies the Laplace equation

Av = 0w
with the boundary conditions (5.21). Denote
5igirt
o(v) = Y 7|\al vl|ze, (5.24)
i£52s 1 =3)

where, unless otherwise indicated, the norm is understood to be over the set T x [0,1]. To treat the sum
(5.24), we employ derivative reduction estimates as follows. For large values of j, we use

185050l L2 S 105785 2wl e + 1057105 ollpe + 1057105 20l L2 + 1050 0llr2, 522, (5.25)
while for small values,
10;0yvllz2 S N0pwllze + 105 gl as @y, 022,
where I' = {(z,y) : y = 1} and
|0z0llce S 105 wliee + 105 gl msrary, 02 3; (5.26)

all three reductions (5.25)—(5.26) follow by using the H? elliptic regularity for the Laplacian. Now, we
replace the inequalities (5.25)—(5.26) in the sum (5.24) according to the values of j obtaining,

o) S D 1050wl e + 105710 ol e + 105710520 2 + 104,05 0 2)

~

i+5>315>2
+) e (|0iwlze + 1105 gl msrey) + > ciolll0 wlize + 105 2gll sz (ry) »
i>2 i>3

where we denoted
5i8d iti—3
Cij = ————— .

Y i+ —3)!
Next, we re-index the sums. All the terms involving v may be absorbed into the left hand side under the
condition (5.14), where C is a sufficiently large constant, except for some lower order terms, which may
be controlled by ||v|| ga. Thus we obtain

o(v) S lwllms +7llwll 5+ llgll 4

since ||[v||gs S ||lw| gz, completing the inequality for v.
In order to treat the first component of the velocity, we split the sum ¢(u) into the sums over regions

i > 1 and ¢ = 0. For the first sum, we use the divergence-free condition 0,u = —0,v and obtain
o o 5
Y clidule S Y elo o) olles S ol + 30(0), (5.27)
i+j>3i>1 i+j>3i>1

while for i = 0, we use Oyu = 0,v — w and write

Py §iri— .
Z cinazagjjuHLQ = Zﬁ”a ullr2 NZ (j ) H(’) 8] "ol 2 +Zﬁ“ 9 'wlze .

i+5>3;i=0 >3 >3 ]>3
(5.28)

Summing (5.27) and (5.28), we get ¢(u) < [lw||gs + Tl|wll 7+ 9]l 4(r), and we obtain (5.22) for u. O

Proof of Lemma 5.3 First, observe that the bound on the first term in (5.1) implies

Z Cll(ja] = 3)! 10w I L2(Tx o)y S 1,

|| >3
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from where

lwgllz, <1, (5.29)

regardless of the values of 6,0 € (0,1]. Note that the solution w = w® satisfies
Ow+u-Vw=0, (5.30)

where u = (u,v) = (u®,v¥) is the Euler velocity. Let 7(t) = 79 — Ct, where C' > 1 is a sufficiently large
constant determined below. By the product rule, we have

d (0% (o4
iz, =7 Olwlz, + Z 5 s ||8 w| L2(rx[0,1)) (5.31)
o |>3

Next, we compute the time derivative of [[0%w||L2(rx(0,1)- With a € Ny such that [a| > 3, apply 9 to
(5.30), multiply by 0%w, and integrate by parts, obtaining

! «, |2
QZHaO‘wHLz = — Z (g) / (8’811, . vaa_ﬁw)aawdxdy —/ u-V <|8;|) d$dy
0<B<a Tx[0,1] Tx[0,1]
(6% 1 2
=— Z (a> / (aﬁ'u, . Vaa—ﬁw)ﬁawdxdy — / v(t, x, 1)wd:€
0<B<a B/ Jexioa T 2
(6%
< > (6) 10%w - VO Pw| 12 ]|0%w]| 12 + Aalt), (5.32)
0<p<a

where
1
Au(t) = —5/U(t,x,1)|8aw(t,x,1)\2daj
T

denotes the boundary term resulting from integration by parts. Since for all (¢,2) we have

—%U(t,x, D]o%w(t, z,1)| ——f/ Oy (v(0%w = / (0,0(8°w)? + 200, (8°w)0*w) dy

wHLg(o,U + [lull e 0,1y 19y 0wl 220,110
we obtain by (5.16)
Aa(t) S Vol |0°wll72 + [[v]| L= [0, 0%w]| 12]|0%w] 2

S 10°wllZs + [18y0%w] 2|0 wll e - (5.33)
Combining (5.31), (5.32), and (5.33), we get
d /
Lz, ~ 7 Ollel 5,
T\a|735a15a2 o || —3
Sl + X Tt 3 ()10 vl + X o0l L 63)

|| >3 0<p<La || >3

on the interval [0,Ty] N [0, 79/C). Using the product rules for analytic norms as in [38], we obtain

d
lwla, =T Olwlls, S llwlz, + @+ llulme + el z )wllzs + loliz,)-

This inequality, together with (5.16) and (5.23), leads to
d
glla, =7 Ollwls, S lwls, + Q@+ llwllz )@+ lwliz,)-

Under the assumption

(1) + Cllwl 5, <0,
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where C' is a sufficiently large constant, we obtain
d
Zlwla, S t+lel -

Now, noting also that we have a bound (5.29) for w, we conclude by a simple application of a Grénwall
argument. (I

Proof of Lemma 5.1 Since the inequalities (5.2) and (5.3) are established in Lemma 5.2 above, we only
need to prove (5.4) and (5.5). For simplicity, denote u = u® and w = w®. By (5.15) in Lemma 5.3, there
exists a constant (y such that

o[ —4

> G ey 1, 1€ 0.7, (5.35)
o] >4 '

Since 6 and § are constants, we may reduce (y to obtain
lor|—4

Z W”aawﬂm(mm,u) <1, tel0,Ty].
lo| >4 ’

Finally, we may use Agmon’s inequality to bound ||w||z(rx[o,q) in terms of the L? norms and further
decrease (p to get (5.4) for t € [0,T1]. Finally, by (5.23) and (5.35), we get

m—4
0 Taq sa leY
Z 7( — 2)! Z 6o 2\\8 UHLZ(’H'X[O,H) § 1, t e [O,Tl]7
m>4 la|=m
from where, using the same arguments as for the vorticity, we obtain (5.5). (I

From Theorem 5.1, we obtain the next statement. The bounds (5.36)—(5.38) in the theorem are used
when estimating the remainder of the Prandtl asymptotic expansions.

Lemma 5.7. Assume that (5.1) holds. Then there exist constants Ty € (0,1], A1 € (0,Xo/2], and u1 €
(0, o], such that for all X € [0, M1], p € [0, 1], and all t € [0,T4], we have for the Euler vorticity

1050565 1 e + 110505605 Iy, S 1 (5.36)
for the first velocity component there holds

;o O uf — 9LUE
os0ju .+ | s, (5.37)
Y Y, 4,00
while for the second velocity component we have
- 1., OivE 4+ yoitlUE
102090y, o + ||~ 0L0" ‘ Ll L <1, (5.38)
Y Y, 1,00 Y Y, 1,00

for alli+j < 3, where the implicit constants depend on i and j. Moreover, for the Euler trace U® defined
in (2.3), we have

> o Muf <, (5.39)
13

fort € [0,T1] and X € [0, \1].

Proof of Lemma 5.7 Let Ty € (0, 1] be the constant Ty in (5.15). For simplicity of presentation, we shall
establish the inequality (5.36) for the first term when ¢ = j = 0. The general case, as well as the
inequalities (5.37)—(5.39), follow from Theorem 5.1 in the same way. Using the definition of the Y ,
norm, we need to prove

Ze“”“"“lw?(h@\ <1, (5.40)
¢ez
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for y € Q,N{Rey < 1} and ¢ € [0,T1], where X and p are sufficiently small constants. Fix ¢ € [0,7}]. For
J € Ny, denote

aje= sup |Hw(ty)l.
0<y<1+pu

(Note that the supremum is taken among the real values of y.) Using Agmon’s inequality in the variable
y and (5.4), we have

; ; ; LG+ G+ 2!
Iaf,w&E(t’y)l S Hag],WEHLf,(O,Hu) + ||8§+1W?||L§(0,1+u) N S —

I a
for j € Ny. Therefore, for Ry < (o/2, we obtain the bound
Z LERI< 1. (5.41)
j=0 J:
Next, define
*_ dIwE(t,Rey) :
Felty) = =" (y — Rey), ly—Rey| < Ry, E€Z.

y|
=0 J:

By (5.41), we have
|f§ty\<z SRS,

and thus the function fe(¢,y) is holomorphic in the region
Soz{yEC:|I[my| SRO,OSRey<1}U{y€C:\Hmy\ §17R0,1§]Rey<1+Ro}.
Since fe(t,y) = 3yw?(t, y) on the segment [0, 1], by unique analytic continuation, we have
felt,y) = (%u}?(t, Y) on SpNQ,.

Now, choose ji; sufficiently small so that the domain 2, lies inside the region Sy. For y € Q,,,, we then
have

Ze/\(1+ul)|€||w (t,y)] < Ze (I+p1)l€] Z aaéRJ

§EL 5eZ
- 1+u1 DN = ase |€la L i B
o3 GOl S ey« 37 (000w 51
=0 7=0
and the inequality (5.40) is proven provided A and u are sufﬁmently small constants. O

6. Size of the Prandtl Solution in Analytic Norms

The initial datum for the Prandtl equation (af,9¢) is given by the boundary layer part of the Navier-
Stokes initial datum, cf. (2.13)—(2.14). In view of the definitions (2.6), (2.7), and (2.10), this initial Prandtl
velocity may be computed from the tangential Euler trace UF (which is known; cf. Sect. 5), and from the
initial Prandtl vorticity QF. We assume that the initial Prandtl vorticity is real-analytic and satisfies

HQPHAAO/z S1, (6.1)

with Ag > 0 as in (5.1), and where we denote the analytic norm A, as

P2 TQ‘OC‘K?OQ e anP
12°)1%, = > WII(HY)”Y 2DQ"|2.. (6.2)
le|=0
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At this stage, we also introduce a dissipative analytic norm B, given by
a|7.2|a| HZaz
Q% = [l TR 4 4 vy e peaP2, . 6.3
19705, = > Tqar—aE 10 +Y) I3 (6.3)
lo|>5
The parameter k£ € (0,1] is introduced in order to deal with the dissipative term dyy in the analytic
estimate for the Prandtl system; one may for instance set x = 1/8. The parameter 7 > 0 is related to the
analyticity radius of QF.

Remark 6.1 (Example of a compatible initial datum). An example of a compatible Prandtl datum is
given by (2.15), so that the initial vorticity equals

Q) (z,Y) = U (z)"(Y), (6.4)
where the function ¢ in (6.4) is assumed to satisfy
(AOH)Zn n
Z g [+ Y)Y 8¥+2<PH%2([0,00)) SRS (6.5)
(n—4)!
n>0
and the parameter )\g is as in (5.1). With ¢ satisfying (6.5) and with the assumption (5.1) for w{’, which
implies via the Biot-Savart law Uy, = I e“f‘zwg5 (2)dz (see e.g. (7.35) with g = 0 evaluated at y = 0)

that UF is real-analytic with respect to = with radius \g, we obtain that QF in the definition (6.4) satisfies
the condition (6.1).

Having assumed in (6.1) that the initial Prandtl vorticity is real-analytic, and since in Lemma 5.7 we
have already shown that the Euler trace U is real-analytic on [0, T}], by using analytic energy estimates
similar to those in [37] and [39] we may show that there exists T € (0,71] and a real-analytic solution of
the Prandtl system (2.8)—(2.9) on [0, T5]. More precisely, in light of (6.1) and (5.39), we may set

1 . {)\0 } A
To=—-ming —, A\ p = —
2 2 2
and conclude that there exists Th € (0,71] and an analytic solution QF to the Prandtl Egs. (2.8)-(2.9)
with analyticity properties quantified in the following way. There exists a decreasing function 7 = 7(t)
(different than the one from Sect. 5) on [0, T3] such that 7(0) = 79 and

A
T =)z 3= te[0.1), (6.6)
with QF satisfying
T
swp [N, + [ (1v O O, + 1270l ) dt S 1. (67)
t€[0,T7] 0

The term involving ||(9yQP(T)H?4T(t) results from the dissipation dyyQF in (2.8), while the one with
||QP(T)||2BTW from the decay in analyticity radius. Note that since all constants are allowed to depend on
A1, and since the lower bound (6.6) holds, we have
Ty~ 1 and T(t) ~ A ~ 1.
While the bound (6.7) provides analytic estimates for the Prandtl solution, these estimates are with
respect to the A, and B, energy-type norms from (6.2)—(6.3). However, in order to bound the error

vorticity we, which is forced by the Prandtl solution via (3.17)—(3.19), we need to estimate the size of the
Prandtl solution in the norm P, , . This is achieved in the next statement.

Lemma 6.1. Let \y = %, Ho = ’\312"“ < 1, and v > 4, and assume that (6.7) holds. Then, for any
A€ (0,A2], any p € (0, u2], and for all i,j € Ny the following bounds hold. For the classical Prandtl
vorticity we have the pointwise in time estimates

(14 YY)ty +aial of <1, (6.8)

HPA,;L,OO ~
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for the first component of the Prandtl velocity we have
0430 o+ 3T [ @)y <1, (6.9)
=4 0
while for the second component of the velocity

i )P
‘@Ev

Y
uniformly on [0, T3], where the implicit constants are allowed to depend on i and j. In addition, we have
the integrated in time estimate

FIA+ Y)Y 390 gy, L ST, (6.10)

Pk,u,oo

T o
|l yyviegoriy, , drs, (6.11)
0 e
fori,j € Ny.
Observe that the derivative 7 is matched in (6.8) by the weight Y/*!, while in (6.11) with Y.

Proof 6.1. Since the Py ;o norm is monotone in p and A, we assume throughout the proof that
A=A and W= s = KA\a,

and thus in view of (6.6) we have 8\ < 7(¢)/2, for any t € [0,75]. It suffices to establish the bounds
claimed in the lemma for the case i = 0, as the cases ¢ > 1 follow analogously (these bounds carry an
additional factor of Al_i, but since A; ~ 1, these factors are hidden in the implicit constant).

We start by establishing the Py, o bounds for the first term in (6.8) by proving

[+ Y)Yy QP p, S 1. (6.12)
For any weight function n(Y) = n(ReY’), and a function f which is analytic with respect to Y in the

domain (Nlu, form the Taylor series expansion for f(Y) = f(ReY + ilmY') around f(ReY'), and using
that [Im Y| < uReY for Y € Q,,, we obtain

sup [n(Y)F(Y)| S *||77 )(uRe Y)™ 0" (V)| Lgs (j0,00)) - (6.13)
Q m>0 ml
Applying this inequality with f = (8{,913)5 and n(Y) = (1 +Y)Y~1YJ+! (for simplicity of notation we
write Y instead of ReY throughout this proof), we deduce

sup’(1+Y)V R EAR A ]< Z || L+ Y)Y 07O el L (0,00)) -
QH

Next, for a fixed £ € Z, by expanding e)‘(l"’”)'f' < e*Mél into its power series, and using (m +n)!/m!n! <
2mF" and pu = Ak, we get

) . 2\
RSSO sup ‘(1 + Y)771Y]+1(5{,QP)5‘ < Z %H(l +Y) 1Ym+J+1(anam+]QP)gHL°°
Q. m,n>0 o

(4x)mtngm . , o
< (A + Y)Yy 9RO | s 6.14
Nmzn;() (m tn)] [(1+Y) (03 0y JellLgs (6.14)

Taking the ¢}(Z) norm in &, and using a factor of (14 £2)2™%™ in order to obtain a bound in ¢?(Z x N?)
in (£,n,m) needed for Plancherel’s identity, we estimate

I+ Y)Y IO, |
(1+&£2)(8N)2(mtm)2m ~ . -y
I e (LN O S L S TN
E€Z n,m>0
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14 £2)(8A)2(mtm)2m S
SIDIE éflﬁn)p 11+ Y)Y ™ (@0 e 5

x (11 + VP Y RO O el g+ (mt o+ D1+ Y )Y @007 OR )] 1z )

1+€2 8)\ 2(m+n)ﬁ2m i e 1/2
SOSDIE (1 4+ Y)Y ™ @0 QR Ye|12,

12
£€Z n,m>0 m+n)

1+§2 8A)2(mtn) g2m oy
(T X! ) (14 Y=Ly oI 2,

12
£€Z n,m>0 m + Tl)

(1+€2)(8N)>(mHmp?m , IR 1/2
3 Z (m +n)2 (m+j+ 1?1+ Y)Y (@707 O e, )
£EL n,m>0

(6.15)

In the second inequality, we used Agmon’s inequality in Y, along with the fact that (1 + Y)?Y~lym+i+l
8;”“ QF vanishes at Y = 0 (recall that m + j > 0). Therefore, by Parseval’s identity in the variable z,

([0 K Eharc; At 30 T AN

2(m+n) .2m . i
< (3 EIE vy ooy ori.)

~ 12
no (m+n)!

1/2

2 2(m+n) .2m . Py
x < S T 4 vty (L - 92000y o

n,m>0 (m+n)'2
2 2(m+n) 2m ‘ ‘ 1/2
+ Z T/mﬁ(m +5+ 1)2”(1 + Y)"/—IYm-H(l _ 33)3:3$+]QP||%2> . (6.16)

n,m>0

Now, for a = (n, m) we use that |a|"271% <, 1 holds whenever 7 > 0, and since 7 ~ 1 (meaning that our
constants are allowed to depend on A1), that x = 1/8 ~ 1, we obtain from (6.16) that

1+ Y)Y .af | p

[ENY

(6.17)

where the implicit constant also depends on i and j. The estimate (6.12) now follows.

Next, we consider the bound (6.11), which is proven similarly to the arguments above, but with Y/
and (1+ Y)? replacing Y7+ and (1 4 Y)7~!, respectively. Agmon’s inequality in Y here reads

11+ Y) Y™ (0705 e 7

SN+ Y)Y (0707 Q8 )|
A+ Y)Y (@O e s
x U+ VPV @R g+ (m+ D1+ Y)Y (@0 AR5 )
(6.18)

When compared to (6.15), the main difference in (6.18) is that the terms on the last line contain factors
of the type Y*2D*9,QF | and thus we bound

I(1+ V) YIi.0F Y lover|)? .

et

||P>\,y,,oo 5 ||

The second term in the above inequality may only be estimated in L* in time, by appealing to the bound
provided by the second term in (6.7); from this, the estimate (6.11) follows.
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Next, we turn to the proof of the bound for the first term on the left side of (6.9). Using (6.13) with
f(y) = u¥ and proceeding in the same way as in the first line of (6.15), we have

(1 +Y)~2aP |3

)\HOC

(1+€%)(8N)2(mtmg2m -
S Z Z (m+n)!? I +Y)™= Y (070 P)£||2L<;,° =5+ 1, (6.19)
EEZ n,m>0

where I; and I correspond to the sums with m = 0 and m > 1, respectively. In order to estimate the
first sum, we use the fundamental theorem of calculus on [Y, 00) and dyu" = QF to obtain

— 1 on~ n
I+ Y)7208a" g S N1 +Y) 070712
and thus, since (1+Y)~! € L2, we have
—3 an~P P
1A+Y)20 0w [|pz S N(A+Y)"07Q ||z
Therefore, using that 8\ < 7/2 and 7 ~ 1, we may use Plancherel’s identity and (6.7) to obtain
(L+&)(r/2)*" n P P2
eyt I+ Y @0)ell 23 0,00 S 1971, S 1
£€Zn>0

The bound for the I, term in (6.19) is more direct, and is obtained by replacing dyu"” = QF and repeating
the proof of (6.17). This implies that I, < 1, and thus [[(1 4 Y)7 23 ||p, oo S 1 holds.
The estimate on the first term in (6.10) follows from

1 P 1 v P / ! B 1 /Y ~P ! !
— Y)=—— YHhay' = - = Y)dY
77 (2,Y) Y/o Oyu (z,Y")d 0. U"(x) v, 0w (z,Y"dY',

the previously established bound (5.37) (which holds for a wider set of values for A, u1), the bound on the
first term in (6.9), and the fact that v > 3/2.
To bound the second term in (6.10), we recall the identity

P (2,Y) = / 0, (., Y")dY"
Y

which may be used in conjunction with the bound for the first term on the left side of (6.9), and integration
in Y (which is possible since v > 5/2), to yield the desired bound for the third term in (6.9).

In order to conclude the proof of the lemma, we need to estimate the second term on the right side of
(6.9). For this, we have

Zemwm/ | dy < / D AW LY TE E | (14 Y)Y
3= £ET
< / 10+ Y)Y 2@ p,, (14 Y)?dY $1,
0
by appealing to the bound for the first term on the left side of (6.9), and the condition v > 5/2. O

We conclude this section by noting that the estimates obtained in Lemma 6.1 are all with respect to
norms that are (weighted) L$°. On the other hand, the a-priori bound (6.7) provides L% information,
and this may be used to improve the Y, , product estimate (4.11b), which in essence is an Llll bound. In
this direction we have the following.

Lemma 6.2 (Improved Y) ,, product estimate involving the Prandtl vorticity). Let A, j1 be as in Lemma 6.1,
and assume that g = g(x,y) is such that ||gl|y, e <00 Then, we have the pointwise in time estimate

ot 1)Y 79,0407 (@)

Selg@ylly,, . (6.20)

P

for any i,j € Ny.
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In comparison, (6.7) and (6.11) give a bound similar to (6.20), but which is valid only in L* with
respect to time, as opposed to pointwise in time.

Proof of Lemma 6.2 The statement follows from the first inequality in (4.14), if we are able to show that
3 il Hw’a;a{,Qg(Y)HLl <e. (6.21)
m

Recall that the weight Y7 in (6.21) is short hand notation for (ReY')7. At this stage we recall the definition
of the E}L norm in (4.3), and note that this consists of L' norms over complex paths corresponding to
the variable y = €Y. Moreover, we note that if y € Q,,, then by the definitions (4.1) and (4.2), we have
that Y = y/e € ﬁu, for any € € (0, 1]. Lastly, we note that dy = edY, and as such we have

H(Re Y)ja;a{,szg(Y)HLl — ¢ sup (6.22)

0<o<p

(ReY)! a;a{,szg’(Y)‘

L%(Fee)’
where I'. g = {Y € C: €Y € 0} consists of the union of the two complex paths I' . 9, where
Ity ={Y €Q,: 0<ReY < 1/e,ImY = +fReY}
U{Y €Q,:1/e <ReY < (1+6)/e,ImY = +0/e F (ReY —1/e)}.

Note that for every Y € ije, we have that [ImY] < fReY < pReY, independently of €, and for all
6 € [0, ). Due to this fact, using the Taylor expansion argument used to prove (6.13), we have that

/J/m H i+m am-+j P ‘
< — ||y Qe (Y
LL(T.g) ™ ngo m! y ()

Using that (1+Y)~! € L%, we combine (6.22)—(6.23), and as in (6.14) we expand e*(T®)I¢l into its power
series, to arrive at

Zemw)\ﬂ Hwa;amg(y)HU

sup H (Re Y)jé){,Qg (Y)‘
0<o<pu

. 6.23
Ly ([0,00)) ( )

<€Z Z /J/ m'n' ) H(l+Y)Y]+ma;n+J(a;+lQP)€(Y)‘

& m,n>0

L%([0,00))

Since ¢ < 1, (m + n)!/(m!n!) < 2™ and as noted at the beginning of the proof of Lemma 6.1 by
monotonicity in A and p it suffices to consider A = Az and p = k\g, where Ao < 7(t)/16 for all ¢ € [0, T5],
it follows from the above bound that

Ze (el ||y 7o 0.0 (v H <GZZ
DI T;/f;"”

& m,n>0

" |[aryysemapsariany)

L3 ([0,00))

(L+Y)Y 07 (910 )e (1)

L2([0,00))

The ¢*(Z x N?) norm taken above in (£, 1, m) may be converted into an £%(Z x N?) norm with respect to
(¢,m,m), as in the transition from (6.14) to (6.15) earlier in the proof, at a cost of a factor of (1+¢&2)2m+n,
After applying Plancherel, recalling the definition of the A; norm in (6.2) and the fact that v > 1, as in
(6.16)—(6.17) we obtain

>-0lel |[yioiaf of (v))|
m

N

2m T/2 (mtn) 242 j+m gm+j  anti P 2
e e |aryyyIrarti@rrian )|
L3 ([0,00))

03D

& m,n>0
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2m 2(m—+n)
<l K-"(7/2)

~

. . . 2
|+ Y)Y THmapta (1 - 92)ar il (v)|

o (m + n)!? L2
P
S el -
The desired estimate, (6.21), now follows from (6.7), concluding the proof of the Lemma. O

7. The Y (t) Norm Estimate

We assume that the initial error vorticity obeys a bound consistent with the definitions of the Y(¢) and Z
norms in (4.9) and (4.8). More precisely, we assume that there exist e-independent constants Az, 3 € (0, 1]
such that

S 10wy Yweollvag oy + 3 (00500l a0y S 1 (7.1)

i+j<2 i+5<3

The goal of this section is to obtain an estimate for the Y (¢) norm of we, by appealing to the assumption
in the first sum in (7.1). The Z norm estimate is performed in Sect. 8, cf. Proposition 8.4, and uses the
finiteness of the second sum in (7.1).

Remark 7.1 (Example of compatible initial condition for the error vorticity). The assumption (7.1) is for
instance satisfied by weo as defined in (2.17), whenever there exists u3 € (0, 1] such that the function ¥ (y)
satisfies

S Iwdy Yl + 100 ey, + 3 050l ooy < 10 (7.2)

n3
0<5<2 0<5<5
where we recall that £}, is defined in (4.3) above. In order to see that (2.17) and (7.2) imply (7.1), we
note that by the definition (4.4) and the previously established estimate (5.39), we have that for every
i,j€{0,1,2},

105 Y0y Y weollva, g S D T (14 [€°)|UG| S 1
1/

as soon as Az(1 + pu3) < Aq, where Ay is as in (5.7). The later condition is ensured by A3 < A;/4, since
w3 € (0,1]. Similarly, the finiteness of the second sum in (7.2) and the estimate (5.39) gives that
i 5 i 2\77E
||3xaiwe0||m<y21/4) S o1 = a)uy| . S 1,
for every 0 < i+ j < 3. Thus, we have shown that (7.1) holds with ps as in (7.2), and with A3 = A\ /4,
A1 as in (5.7).

Remark 7.2 (The starred parameters). Using the parameters (77, A1, u1) from Lemma 5.7, the param-
eters (T, A2, p12) from Lemma 6.1, and the parameters (us, A3) from assumption (7.1), we define the
parameters alluded to at the beginning of Sect. 4 by
s = min{pg, po, ust, A = min{ Ay, Ao, Az}, T, = min {Tl,TQ, ZM*} , (7.3)
Y
where v, > 2 is the only free parameter left. We emphasize that the implicit constants in < symbols are
not allowed to depend on v, or on €, but they are allowed to depend on ., A« € (0,1].

Having defined the parameters A, u., and with v, free, the norm Y (¢) in (4.9) is well-defined. The
main result of this section is as follows.
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Proposition 7.1 (The Y (¢) estimate). Assume that weo satisfies (7.1), that the Euler solution satisfies the
conclusion of Lemma 5.7, and that the Prandtl solution satisfies the conclusions of Lemma 6.1. Let v, > 2
be arbitrary, and let ji., A, Ty be as defined in (7.3). Then, for all ¢ € [0, T.] such that supg,< [|lwell, is
finite, we have o

1 2
@)y S 1+~ ( sup [lwell, + ¢ sup ||we|||s) , (7.4)
Y+ \0<s<t 0<s<t

where the implicit constant is independent of v, and e.

The remainder of this section is dedicated to the proof of the above proposition, which is concluded
in Sect. 7.4.

7.1. Analytic Estimates for the Stokes Equation in the Vorticity Form

The Y) , norm estimates for the error vorticity, necessary in order to prove Proposition 7.1, are obtained
by using that w, solves the Stokes equation (3.17)—(3.18). Applying the Fourier transform in the x variable
this Stokes system becomes

Btwe,g — 62A5we’5 = Fg in ]HL (75)
(0 + |€])we e = Be on OH, (7.6)
for £ € Z, where F; denotes the tangential Fourier transform of the forcing term F' defined in (3.19) and
Be denotes the tangential Fourier transform of the cumulative term appearing on the right side of (3.18),

or alternatively, (3.23). The solution of (7.5)—(7.6) is given in terms of the Green’s function Ge¢(t,y,2)
for this system as

t poo t [e%s)
We,e(t,y) :/0/0 Ge(t — s,y,2)Fe(s, 2) dzds—i—/OGE(t—s,%O)Bg(s) d8+/0 Ge(t,y, 2)woee(z) dz .

(7.7)
In turn, bounds on the Green’s function G¢ are given in [55], and we recall these estimates here.
Lemma 7.2. The Green’s function G¢ may be written as
Ge = Erg + R,
where
~ 1 (y—2)2 (y+2)? 262
He(t,y,2) = — <e—w +e_I2T> e <t
v =
and Re¢ is a function of y + z, which obeys the bounds
1 (y+2)2 2e2y
k k+1,—60b(y+2) —p T
|82R5(t,y,z)\ SO e T 4 (ezt)(k+1)/2e e s k€ No, (7.8)

where 8y > 0 and
1
The implicit constant in (7.8) depends only on k and 6.

Using the bounds stated in Lemma 7.2 and recalling the definition of B¢ in (3.18), we obtain the
following Y} ,, analytic estimate for the error vorticity we, as defined in (7.7).
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Lemma 7.3 (The abstract Y\, analytic bound). Let v, > 2, and fix parameters A, p., Tx € (0,1] as in
(7.3). Fix times s,t such that 0 < s <t < Ty, A € (0, \,] arbitrary, a parameter u € (0, fx — 745), and
let

1

71
which obeys p < fi < g — 7v48. Then, the forcing (first) term in (7.7) is bounded as

=510 X 0500, [ 6l s aF s

B=p+ (e — s — p), (7.9)

i+j=2 Yau
+ ) |0i(woy) / G(t — s,y,2)F(s,z) dz
i+5<1 Y
S D 0L WO F (), + Y 10505F(s)]ls, - (7.10)
i+5<1 i+35<1

The trace kernel (second) term in (7.7) is estimated as
(e = s = 1) D N04(y0,) Gt = 5,5, 0)B(s)llys,, + > 02(40,)' Gt = 5,5,0)B(s)ly, |
i+j=2 i+5<1 '
S (I0LF )y + 105 ()s,) + > > e EIE [0rge ()] - (7.11)
i<1 i<l £€7
Lastly, for the initial datum (third) term in (7.7) we have
> ooy [ Gt sz d:
i+5<2 0

S Z ||3;(yay)jW0c||Yx,” + Z Z {|§ia§woe»f||[/1(y21+“) 5 1. (712)

i+j<2 i+j<2 €

Y)\,I»L

We note that the second inequality in (7.12) is a direct consequence of the assumption (7.1) and the
definition (7.3).

In view of the integral representation (7.7) and the estimates in Lemma 7.3, it remains to bound
the analytic and Sobolev norms of the forcing term F, which appears in both (7.10) and in (7.11), the
analytic in = norm of the trace term due to u" appearing on the right side of (7.11), and the analytic
and Sobolev norms of the initial datum in (7.12). This is achieved in Lemma 7.4 below.

7.2. Contribution of the Forcing Term

In view of the representation formula for w, given by (7.7), and of the abstract Y} , norm estimate provided
by Lemma 7.3 for the three terms appearing on the right side of (7.7), in order to prove Theorem 3.1 we
need to estimate the terms on the right side of (7.10)—(7.12) in terms of the Y3 , norm of we. This is the
content of the following lemma.

Lemma 7.4. (Forcing and trace in Y} , analytic norms) Let s € [0,T%], 1t € (0, s —48), and A € (0, A.].
For the forcing term in (3.19), we have the pointwise in time estimates

D 0awdyY Fllvy, S 1+ el(L+ Y)Y by o+ D 10690y wellv uns,
ERS i+j<2
te > 10.wa) wellvuns, D 1000y welly,
i+i<1 i+ <2 '
Te HaﬁweHYA’“ms# ”yaywe”y,\,u (7.13)
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and
Z HagicajF”S 1+ Z (aiague‘lL;fy(y21+#)+||aiaive“L;?y(y21+u)) + Z Haiﬁiweﬂgu
<1 i+7<2 i+i<2
+ e< > (||8;8§uc|\Lg?y(y21+u) + ||8;aivc”Lg?y(y21+u))> > (10i0jwells,
<2 iri<2
(7.14)

for all s € [0,T.]. Moreover, for ¢ < 1 we estimate the contribution of 9;¢g appearing in (7.11) as

> e ElE] |0, gel

13/

<1, (7.15)
L4(0,T)

for all t € [0, T}, with Tp < 1.

Before proving the above lemma, we note that Lemma 7.4 immediately implies the following statement.

Proposition 7.5. Let s € [0,T%], p € (s — V«8), and A € [0, \.]. The forcing term F defined in (3.19)
satisfies the pointwise estimates

: j el
0p(Y0y Y F(8)|ly,, S 1+ [lwelll, +E(s) + (1 + €lf|welll, = , 7.16
N;l 102 (y0y ) F'(s) v, llowellls + €(s) + (1 + elflewell )(#* )i (7.16)
where
T.
/ (E(s)) ds < e, (7.17)
0
and
Y 1035 F($)ls, S 1+ llwell, + elllwell (7.18)

i+j<1
As stated in Remark 7.2, the implicit constants in the < symbols do depend on pi., A« € (0,1], but they
are independent of . > 2, and on € € (0, 1].

Proof of Lemma 7.5 The bound (7.18) follows from (7.14) by appealing to the elliptic estimate (4.15),
and noting that due to the inequality mentioned below (4.8) we have

Yo 10i0we($)ls, < Y 10505wells = llwell ; < llwell,
i+j<2 i+y<3
Similarly, the bound (7.16) follows from the estimate (7.13), the definition (4.9), which implies

> |l ' 3 llwe ()l
”81 (yay)]we ”Y)\; - ”az ya we( )HY,\ P S 5 1 s
x o sk . 7 /3
i+j=2 i+j=2 (/L* N’ ’7*3)
and the fact that by (6.11) the second term in (7.13), which defines £(s), may indeed be bounded as in
(7.17). -

7.3. The Proof of Lemma 7.4

The proof of this lemma is structured as follows. First, we establish the stand-alone estimate (7.15).
Next, recalling the definition of the forcing term F' in (3.19), we estimate the contribution arising from
the forcing terms f; and fo present in (3.9)—(3.10), as this term does not involve (ue, Ve, we). The next
subsection provides analytic and Sobolev estimates for the error velocity (ue,v.) in terms of the error
vorticity we, via estimates for the inhomogeneous div-curl system (7.33). We conclude by estimating the
remaining terms in (3.19).
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7.3.1. The Proof of the Estimate (7.15). In order to establish the bound (7.15), we prove the pointwise
in time estimate

> g [0rge(s)] S 1+ 105 Q7 () Ivay g oo (7.19)
EEZ

where Ay and jio are as defined in Lemma 6.1. This estimate may then be combined with L* in time
bound (6.11) with j =0, A = Az, and p = p9, to imply (7.15).

In order to prove (7.19), we first compute 9;g. Recall that g = — [;° 8,uFdY, and that in (3.22) we
have computed a formula for fooo 0,u’dY . Combining these two identities, we arrive at

( / a;“atanY)
0 &

SIEFTH 9 [y =o + €17 (UPg)e]

€] 09| <

gt (&UUE/ apdy) e[+ (/ (ﬂP)QdY> . (7.20)
0 3 0 3
Using |Q§|y:0| S HQ?HLOC(@&) and the parameter inequality
Aa(1
n<u*§u2:m2gw, (7.21)

which holds by the definition (7.3), the parameter definitions in Lemma 4.1, and the choice k = 1/8, we
bound the contribution of the first term in (7.20) as

YT O [y—o] £ ex ORI TOL ) S 10T (pyy e s
§EL I3/

an expression which belongs to L*(0,7,) according to (6.11), with the norm of constant size. For the
second term in (7.20) we use that the Fourier transform of a product is a (discrete) convolution, which is
well-estimated using K% norms. Therefore, by also appealing to the definition of g in (3.14), to the bounds
(5.39) and (6.9), and the parameter estimates (7.21) and i < \y/8 < A1 /8, we arrive at

Zep|g||£|i+1 |(UEg)E’ < (Z eﬂlﬁl(m + 1)t ’U§E|> (Z eﬂlfl(m + 1)i+1|g§|> <1.

§EL I3/ 1=/

For the third term in (7.20), using the same parameter inequalities and appealing to (5.39) and (6.9) we
similarly have

Zeﬁ|£||€|z'+1 <8$UE/ ﬂPdY>
0

€T 3
S (Zeﬂlf(m +1)it2 |U§\> (Zeﬁf(lfl +1)”“/°o |a}§|dY> <1.
tez ¢ez 0

The bound for the last term in (7.20) is similar, but also uses the estimate for the first term on the left

side of (6.9):
/ ﬂgdyD <1
0

3 enleljgli+2 ( / m(ﬂP)?dY) S (Z etll |ﬂ§|Lm) (Z ertljg)
0 Y
€

§EL I3/ I3/

This concludes the proof of (7.19).
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7.3.2. Size of 9, f2 — 8y, f1 in Analytic and Sobolev Norms. According to (3.19), the last term in the
definition of F' is the forcing term 0, fo — 9, f1. In this section we provide a Y} , estimate for this term,
which is needed in proving (7.13), and a S,, estimate, which is required to prove (7.14).

Lemma 7.6. Let 0 < pu < py and X < A, be arbitrary. Then, for integers i,j > 0 such that i+ j < 1 we
obtain

10240y ) (D fo = Oy f1)llvs,. S 1+ €ll(1+ V)2V K.Q8 1, , (7.22)
and
105 (yy ) (Da fo — Oy fi)lls, S 1. (7.23)

By the estimate (6.11), we have that the second term on the right side of (7.22) is O(e) when measured
in L*([0,T.]).

Proof of Lemma 7.6 We only consider the estimate (7.22) in the case i = j = 0. The case i+j = 1 follows
mutatis mutandis. According to the definitions of f; and fo in (3.15)—(3.16), after taking into account
incompressibility, the definitions of &* and o¥, and a number of cancellations, we have

1 1 1 1 _
Oufr — Oyf1 = 50,098 (u® —U®) + 50y Q° (V7 + y0,U") — ~" 0,w" + —vP 00"
€ € € €

+ 00y u” — 20,08 + 29307 + eAW® — 80,07 — (@ + w0y 0" + 07 0y (W + ).
(7.24)

Noting that —9,0,7" = —Om(f;o 0;ufdY") by (3.21) and using the Prandtl evolution (3.20), we obtain

070,70 = —Oya (—QP +ofa” —UB" -0, / (@")?dy’ —20,U" / an¥’>
Y

Y
= 040 — 0,0 (WFT) + UPD,, 0" + 50, U + 40,U%0,5°

+ 03 / (@")2dy’ + 203U" / atdy’.
Y Y

Combining the above two identities allows us to rewrite
1 1 1. 1 ~
—0yf1 + 0z fo = —ZﬁwQP(uE — UE) + —sayQP(UE + y@wUE) — ZaPo,0" + =P, u"
€ € € €
+ E2030° + eAwW® — 0,08 — (@ +u® - U9, 0" + 40,570, U"

+ 07 (0pptt” 4+ AUT + 50, UT) — 02(@"o") + 203U / atdy’ + 03 / (@")2dy’
Y Y
=fe1t -+ feas. (7.25)

For the Y, ,, estimate of —0, fi + 0, f2 we consider the thirteen terms in (7.25) individually. For the first
term in (7.25), we have

1 1 E_pyP
for = 50,07 (WF —U®) = -y, 0" L ———.
e € Yy
Using (5.37), (6.8), and (4.11b) we thus obtain
1 uf — UE
I fellys, S Zell+ Y)Y 0,07y e BT ST (7.26)
Y, 1,00

Similarly, we have
OP v® + 0, UF
Y2

)

1 1
feo = 53YQP(UE + 90, U") = Eyzay
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and so by appealing to (5.38), (6.8), and (4.11b) we may estimate

—~

<1 E 490, U"
[ L+ YV, ey || ST (7.27)
€ Y Y, 00
In a similar fashion, from (5.36), (6.9), and (4.11b) we have
1 ~
I Fesllys, < Zell @+ Y220 py o 1020 Iy e S T (7.28)
while from (5.38), (6.9), and (4.11b) we have
1 ~
I feally, S Zell(@+ Y)P200.0" |y [0l ST (7.29)

This concludes the estimates for all the terms which have inverse powers of € in (7.25). The next seven
terms in (7.25) all have simple bounds in view of the bounds (4.11), (4.12), (4.13), and Lemmas 5.7, 6.1:

Ifesllvs, S €105 vy, S ENA+Y)2035p, , . S €
[ fesllva, SelAw®ly,, S ellAw®|ly,, . Se
1ferllva, S 100292 Ivs,, S ell(1+ Y)Y 20207 b, ,
1 feslva, S el +Y) 2000 ey, o (18°]1py o + 10 = Uy ) Se
S el +Y)320,5% | py 10U v, S e
Sl + Y2 p, o (1000t |1y oo + 18WE v, o+ 102U v, ) S

| fesliva,

| fe,10llv.,.
2

ety S el +Y) 2000 (@07 by e S €D _NA+YY20 by YT 00| Se
1=0

(7.30)

We note that the above stated estimate for the term f. 7 is responsible for the second term on the right
side of (7.22). It remains to consider the last two terms in (7.25). From Lemma 6.1 and using the bound

oo
Zex(wu)\&\ sup ((1 + Y)% / |uf] dY )
€€z Y
A +m)le] i -3 L
<S> e sup (1+Y)2 1 +Y)7E |k
v 1 4+ Y’)

€L
oo /
/ v
y (1+Y/)—3

which holds since 4 > 4, and combining with estimates (4.11c) and (4.12), we obtain
/ atdy’ ell1+v)2 / atdy’
Y Y

From the product rule, estimate (4.12), and Lemma 6.1, we also obtain

feasllvs, S ell(t+Y)2030" |y, T N oy + €l (14 Y) 20,07 |11y, 1028 Iy e S€ (7:32)

Adding the upper bounds in (7.26)—(7.32), completes the proof of the Y} , estimate claimed in (7.22).
In order to complete the proof for the lemma, it remains to estimate the S, norm of 8% (yd, )’ (=9, f1 +
Oz f2); as noted earlier, we only give these details for the case i = j = 0. As before, we separately consider
the thirteen terms in (7.25). We note that all terms that are a product of Prandtl part and Euler part are
in fact small, in view of the product estimates (4.11d)—(4.11e), and the previously established estimates
(5.2)—(5.3) and (5.39) for Euler, respectively (6.8)—(6.11) for Prandtl; however, since we only wish to

N[

SI+Y) 73 py o sup(1+Y)

I feazllvs,. S N02UF v 0 e Se (7.31)

Y u Px 1,00
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obtain an O(1) upper bound, we do not attempt to estimate these terms in terms of optimal powers of
e. Using (4.11e), (5.3), (5.39), and (6.8), we have

YaxQP UE _ UE 'I.LE _ UE
Y

< e e V20,07 1Py ”

lfeall, < ¢

S HIL2(y>1/2)

SIYA+ Y00 p o (I iz e + 10%m) $1
since 7 > 4. For the next three terms, we similarly obtain

p 0P +y0, U
2

v® 4 y0,UP

Y20y Q 5 <1
Y

HLL3(y=1/2)

SIA+Y)?*Y20vQ%||py ,

lfeclls, S

S/»‘
Ifeslls, < € le HYﬂPHPA’MO Haw‘*’EHs N H 1+Y) _7~PHPA,#,OQ HyawwEHH;Lg(yzuz) <1

’UE

z <1
Y

< a+yy-to.a|

BE

v

<Y 9,0’ —
||fea4||5’u NH wa Ul Yy S, Px p,00

< ||Y3Mu

PHPMOO H”EHH;Lg(yzl/z)

S,

since v > 4. For the fifth and seventh terms in the right side of (7.25), which are linear in Prandtl terms,

we appeal to (4.11f) with g =1 € LiLZQ, to deduce

2 |43 -P 2P
||fe75||su + ||f677||5“ 5 € Hazv prymoo + HaQO HPMMX, 5 L.
For the only error term which is linear in the Euler solution, we note that

o = g, € APy + € [99:AE ooy S €51

(y=>1+4p) ~ 7~

(y>1+p)

in view of (5.2). The remaining terms consist of Euler-Prandtl products, which are estimated using
(4.11d)—(4.11f), and Prandtl-Prandtl products, which are bounded using (4.11f) and the fact that

||9(%Y)||H;L;c(y21/2) < ||g($,Y)HH;L;°(Y21/(2e)) N EGHYQQHPA,WO )
for any A, > 0 and any 6 > 0. We may thus show that
2-P ~p E E
||fe,8”s ISR ([0 (VN (H“ HH;L;o(yzl/g) + [|u HH;L%(;;Zl/Q) +|U HH;) S

S [l 10U |y <1

“lp,.
er,lOHs S HUPHPA oo (Ha2~PHH1L°°(y>1/2 + HA“EHH;Lg(y21/2) + H@iUEHH;) S

Ifenlls, S [|05(@"07) ||
Ifosals, < [
Y P)\,[_L,OO
> P
Ifosalls, < o2 [~ @2

where in the last two inequalities we have used that (1 + Y)%_'V € L3, since v > 4. This completes the
proof of Lemma 7.6. O

||6§3UE||H1 slasytd@| ety <

Py 00

<1

~ I

PA‘M,oo

7.3.3. Modified Biot-Savart Law. The first, third, and fourth terms in the definition of F' in (3.19) all
involve the vector (ue, ve), which is obtained from the error vorticity w, and the Prandtl boundary vertical

velocity g = —9% |y —o (see (3.14)), via the div-curl system
—0Oyle + 0306 = we in H
OzUe + Oyve =0 in H

Vo =g = Ozh on OH. (7.33)
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The representation formula for the system (7.33) is as follows. With V+ = (-3,,0,), we define the
corrector V+(e Y% h(z)), which is curl-free, divergence-free, and its second component equals 0,k = g
on OHL. Therefore,

— 0y (ue + me |8$|-”g) + 0y (ve - e"am‘yg> = We in H

Oz (ue + |gz|e|61|yg> + 0y (ve - e*wﬂﬂ‘yg) =0 in H

ve—e 1%lVg =0 on  OH. (7.34)

Using the classical Biot-Savart law (cf. [49], or (6.2)—(6.3) in [40]), upon taking the Fourier transforms in
x we deduce

Uee(y) = —me lElyge

1 v >
+2<‘/ e IB=2)(1 = o210, (2)dz + / e"g“z‘”(l+e—2'€'y>we7g<z>dZ) (7.35)
0 Yy
and

vee(y) = e W ge

2Z|§| (/ eI (1 = o210, (2)dz + /y*e-5<z_y)(1_6_2|§y)%§(z)dz)(- )
7.36

As a direct consequence of the above formulae, we obtain an inequality for the velocity in a L°°-based
analytic norm in terms of the vorticity in a Lzl/-based analytic norm.

Lemma 7.7 (Y} ;..o norm estimates for the modified Biot-Savart law). Let p € (0, ps — v4t) and X €
(0, Ai]. Then, the functions u. and ve defined via the modified Biot-Savart law (7.35)—(7.36), satisfy the
estimates

107 40y tellyr o S N05 wellvi s, + 3 (lwellva, + 1y0ywellys ) + 1059l s o o (7.37)

Joor (52)1,....

for all integers i,j > 0 such that i + j < 1. Lastly, for 0 <i <1 we have
105 vellva e S 105wellva s, + 10591l py 0 ce - (7.38)

and

S 07 wellv, s, + 10 gl Py

Proof of Lemma 7.7 The proof follows closely estimates in [40, Sect. 6] and [41, Sect. 4]. For simplicity, we
only provide estimates for the real values in definition (4.5); the bounds along complex contour integrals
follow along the same lines. From (7.35) and (7.36), the velocity field (ue, ve) can be decomposed as

3 —|s|yg§’e—§yg€> (), (7.39)

(Ue, Vo) = (_Sle

where (1, Uo) is obtained from the vorticity w, by the usual Biot-Savart law on T x Ry (cf. (7.34)).
The first term on the right of (7.39) contributes the g terms on the right sides of (7.37)—(7.38) thanks
to the inequalities

1 — e lEly
(ym) A+p—y)lél, \E\y‘ < eA(1+u)\E\’ ‘(yay)a (y)‘ < €,

which hold for 0 <Rey <1+ p.
For the second term on the right of (7.39), the estimates corresponding to (7.37)—(7.39) are given by
the elliptic estimates in Lemma 4.3, since the map we — (Ug, U¢) is the usual Biot-Savart law on T x R.
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The estimate claimed in (7.38) for 0, is immediate upon inspecting the second line in (7.36), and recalling
the definitions (4.4), (4.5), (4.7). O

The estimate provided by Lemma 7.7 contains tangentially analytic norms of the trace term g, which
we recall is given in terms of the Prandtl solution as g(t,z) = — fooo 0,u’ (x,Y,t)dY, where u* = uF —UP.
However, this is precisely the term which was bounded in estimate (6.9) of Lemma 6.1. By combining
these estimates we obtain:

Corollary 7.8. For s € [0,T,] and p € (0, 1 — Y48), we have

105 (98 ) wellvi oo SN0 wellvy urs, + 3 (lwellva,, + [90ywellys.,) +1, (7.40)
i azz Ve — 9 i
H(yay)J (()) SN0E  wellys ns, +1, (7.41)
y Y)\,;I.,OO
[0zvellvy oo S 10zwellvy uns, +1, (7.42)

for integers i,5 > 0 such that i + j < 1.

7.3.4. Proof of Lemma 7.4, the Forcing Term. In this section, we establish the Y} , and S, estimates for
F and its first order tangential and conormal derivatives, as claimed in (7.13) and (7.14). We recall that
F is given by (3.19), which we re-arrange by appealing to (3.7) as

F = —u.0pw, — (vcaywa + ;gayﬂp> — (ua0z + any)wc —¢ (ucam + (a° + vc)é)y) We + (Ox fo — Oy f1)

— F(l) N F(5) . (7.43)

The estimate for the last term in (7.43), namely F(®), was given earlier in Lemma 7.6, and these bounds
are already consistent with (7.13) and (7.14). We divide this section into four steps, in which we bound
{FOYL.

Step 1. Bounding F(V) in (7.43). We recall the definitions (3.7)—(3.8), which give that

FO = —y, ((‘3me — lamQP + 68§UP> .
€

We apply Lemma 4.2, the improved product estimate in Lemma 6.2 for the term containing 9,0V, the
estimates (4.13), (5.36), (6.8), (6.10), and Corollary 7.8 to obtain

IED v, = luebowalivs e S luellva e (10207 s, + 1+ €ll00007 1y )

S 1+ ||WCHYXMQS“ ) (744)
where we used € < 1. The estimate for 9, F'(!) is essentially the same and gives
10:FDlly, , S1+ Y 0iwellv, s, - (7.45)
i<l

Similarly, the application of yd, results in two terms: When this operator acts on u, we use (7.40); on
the other hand, when this operator acts on w,, we use that yd, = Y dy, the identity dyo" = —9,u", the
bounds (5.36), (6.8), (6.9), (6.10), and (6.20); in summary

g3y FDVllys S 1+ D7 1050y wellys s, (7.46)
i+j<1
The above three estimates are all consistent with (7.13).

Next, we bound the S, norm of the first term in (7.43). For (4, j) = (0,0), by appealing to Lemma 4.2
and the bounds (5.2), (5.3), (6.8), (6.10), we obtain

IFD s, < ltellira e i ([0e0®], + Y027+ €627, )
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S Z ||6;ue‘ L, (y>14p) * (7.47)
i<1
Here we have implicitly used L°(T) C L2(T). For (i,5) = (1,0), by a similar argument, we obtain
1 i
10, F Vs, < ||3m“c}|L;<;y(y21+u> : (7.48)
i<2
Lastly, for (i,7) = (0,1), we have
Dy FY = 40, (ue0pwa) = (Dytue)Dpwa + UedpDywa ,
and thus by using the identity dyo" = —0,u" and a similar argument to the bound (7.47), we have
10,FD s, S N0yuellm s o ([00%lg, + Y007 +el|0207] )
E 2 P 3~P
el (020,65 s, + 1V20:00 Q7 1y, |+ 0, )
DL . -

i+5<2

Step 2. Bounding F® in (7.43). Appealing to (3.8) and dyo" = —0,u", we write the second term in
(7.43) as

1 1
—F(z) = vcﬁywa + ggaYQP - Ucawa - ?(Uc - g)aYQp - Ucagap

lve_g

= V.0yw" — - Yoy QF — v.02u" . (7.50)

When (7, ) = (0,0), using the above decomposition, and appealing to Lemmas 4.2, 5.7, 6.1, Corollary 7.8,
and Lemma 6.2 for the term containing Y9y QF, we obtain

~ Vo — ¢
IF@ v, S lvellva, (IIawaIIYA,M +ell(1+ Y)g/QaﬁuP\\pA,,,,,w) +
Y)\,p.,oo
< (lwellys ons, +1) (1+€) + (|0uwellys ,ns, +1)
ST+ [10iwelly, ns, - (7.51)

i<1

Applying 0% (yd, )’ = 9% (Yy)’, with i+ = 1, to the definition of F() in (7.50), and using that Rey < 1
for y € Q,, yields a similar bound

1020, POy, S 10500, vellvs e (10055 v, + €l (1Y) 20207 |, )

el (1050 B v, 4 €ll (04 Y2052 (Y Oy Y |y )

(O (v — -
+ H(yay)] < x(v g)) + v g
y Yk,u,oo y Y)\’H,Oo
S (10ewellva uns, + 1) + (105 wellvy uns, + 1) + (Iwellvauns, +1)
S1+ Zﬂaiweﬂn,msu : (7.52)
i<2
Here we have used 0yve = —0,u. and Oyu” = QF. All these terms are bounded by the right side of

(7.13).
Next, we bound the S, norm of F®) | as defined in (7.50). Using Lemma 4.2, Theorem 5.1, Lemma 6.1,
and Corollary 7.8, we obtain

2 2~P
1F@lls, S el nge ey (10wels, + 1028 |, )
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+ (HUCHH;LEC(Z!ZH-H) + HQHH;) HY28YQPHPA,“,OC

S ”UeHH;LZC(yZH-M) (”ayWeHs + ”axayWeHs =+ HaiﬂPHPA%(X,)
(s i + S0 16 [ 00 ) 2o,
3

ST+ [[0ve]

i<1

(7.53)

L, (y>1+u) *

The estimates for the S, norm of 8;65F ) follow similarly to (7.53) by applying the Leibniz rule, resulting

m
Y05 F s, S1+ > 0vell e (o1 - (7.54)
=1 i+j<2 v

and thus we omit the details.
Step 3. Bounding F®) in (7.43). Recalling (3.7), we return to the third term in (7.43), which we
re-write as

—FG) = (120 + any)wC = uPOwe + U Opwe + UEBwa .

First, we bound the Y} , norm of F®) ie., for (i,j) = (0,0). By Lemma 4.2, Lemma 5.7, and Lemma 6.1,
we have

» 1
||F(3)HYX1L 5 (”uEHY)\,u,oc + ||uP||P)\,u,oc) Haﬂ?we”Y)\,u + 7/UE Hyaywe”y')\
Y n

Y)\,;L,oc

S 10swellvs . + [lyOywellvs . - (7.55)
Similarly, for ¢ + j =1, since Rey S 1 for y € Q,,, by Lemma 4.2, Lemma 5.7, and Lemma 6.1, we have

105 (50, Y FOllys o S (105056 v, o + 105(Y O YT ||y, ) 10l

o

~ . . 1
UL OO [ PO ||a;+1<yay>fwe|yA,ﬁHy”E

1.
—0iy®
Yy

+jamue||yx,u,m> lydyeelly,

Yk,u,oo

|6 oyl

YA,;L,OO

< Y loiwoyYewelly, , - (7.56)

i+j<2

Next, we bound the S, norm of F® and its first tangential and conormal derivatives. When (4, j) = (0,0),
by Lemma 4.2, Theorem 5.1, and Lemma 6.1 we obtain

IF@ls, < ([lu®]

H1L® (y>14p) + HEPHPXW,Q) 10w | s, T HUEHH;LEO(yZHu) ||6ywe||su

S Y loiogus, (7.57)
itj=1
By a very similar argument, for i + j = 1 we get

10,05 F P s, < D [[050we

i+5<2

Is, - (7.58)

Step 4: Bounding F™ in (7.43). It remains to consider the fourth term in (7.43), which we recall is
given by

FW = _¢ (ue(?a:we + (ﬁp + ve)aywe) ) (7.59)
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This term is the only one which is nonlinear in we, but it has the added benefit that it has a power of €

as a multiplying factor. Using that (3.14) gives 9" |y—g = —g, and recalling the definition of o¥ in (2.10),
we rewrite

Y
(0" + ve)Oywe = (Ve — g) + (8° + g) = €(ve — 9)Oywe — eay%/ 9, u dy’
0

Ve — 9 1 /Y ~P !
=|e€ - = O.u dY'" | yo,we . 7.60

Using (7.59) and (7.60), we appeal to Lemma 4.2, Lemma 6.1, and Corollary 7.8, to arrive at

Ve — G

Y, 1,00

1F Dy, S elltellya o 10swellvs , + ( + HMPH%M) lydywellys...

S € (1+ lwellys s, ) [19aellvs, + (1 -+ eldaellys s, ) w0yelys (7.61)
a bound which is consistent with (7.13). Similarly, for (¢,j) = (1,0) we get
0. F vy, S (14 [0uellv o) sl + (1+ el uns,) 1s0yseelvs,
+ e (L Jwellvs s, ) 8%l + (L + elOuwellvs s, ) [0, Dol - (7:62)
On the other hand, for (i,5) = (0,1) we obtain
lydy FOllys . S € (14 lwellvs ns,) 150y 0swellvs . + (1 + el dawellva uns, ) 1(8y) *well v,
e (14 10aellva s, + lwelly, , + I90yeelly, ) 19uellvs,,
+ (14 ellOzwellyvy ns,.) lly0ywellvs . - (7.63)

To conclude, it remains to estimate 9% (y9, )7 F'Y) with respect to the S, norm. For (i, ) = (0,0), using
(7.59), Lemma 4.2, and Lemma 6.1, we have

IEOls, S lluellszg (o1 10ells, + € (lellmizg oo + 17715y, ) 1Oyl

Se|l+ Z ||8;uc||L°°(y21+u) + HafiﬂvcHLOO(yzl-‘ru) Z Haiaiwclls“ : (7.64)
i<1 i+ji=1

The estimate for 9, F* is nearly identical, upon applying the Leibniz rule in z. For the (“)yF(4) estimate,
the only special term is 90" dywe = —€ 19, u" dywe, which nonetheless may be bounded using (4.11d)
with @ = 1. In analogy to (7.64), for i + j = 1 the resulting estimate is

10505 FDlls, Se | 14+ D 1000ucl pe oy + 105050 e oy | D 0200wl - (7.65)
i+j<2 i+j<2

Step 5: Conclusion of the proof of Lemma 7.4. By adding the upper bounds obtained in (7.44), (7.45),
and (7.46) for F() | the estimates (7.51) and (7.52) for F(?), the upper bounds (7.55) and (7.56) for F),
the estimates (7.61), (7.62) and (7.63) for F®, and the bound (7.22) for F®), we obtain the proof of
(7.13).

By adding the upper bounds obtained in (7.47), (7.48), and (7.49) for F(1), the estimates (7.53) and
(7.54) for F) the upper bounds (7.57) and (7.58) for F'®)| the estimates (7.64) and (7.65) for F(*) and
the bound (7.23) for F(®), we obtain the proof of (7.13).

Lastly, we recall that bound (7.15) was previously established in Section 7.3.1, thereby establishing
Lemma 7.4.
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7.4. Proof of Proposition 7.1

According to definition (4.9), we fix 0 < t < T, and let u € (0, ptx — Y4t). Using the mild formulation
(7.7), and applying Lemma 7.3, we obtain

i j ! i % ds
> 100, e, S1+ [ X 1000V FOIn, + 3 1005, |
i+j=2 0 \itrj<1 iti<1 Hose — H = T«

' @ i i i ds

[ S0, + 1061 + 30 30 e e oraes) | 5.
0 \i<1 i<l € P = = s

where [ is as defined in (7.9). In particular, g, — i — 748 = (3/4) (s« — p — 7+8). Applying Lemma 7.4
and Proposition 7.5, we deduce

. . tr o 1 e o
S 1L w0, ®llvs, S 1+ / < tlleelly (U elfell)llw Is>d5
0

5 oo — =758 (p — p1 = Ya5)Y/3

1+ flwell, + €lllwe 1
+/0 llwells + €lllw |||6d T , (7.66)

fox — [b = VxS Ve — = yut) V4

In the above estimate, we have used the inequalities (7.15) and (7.17), applied the Hélder inequality in
time, and have used the estimate

/t ds - 1

0 (s = B = 7us) T ™y (pae — pp = 7ut)®

which holds for @ > 0 and pu < . — v«t. Now, using the definition of Y'(¢) norm, and fact that (g, — p—
Y)Y < (py — pt — 755)Y/3, and the fact that v, > 2, we get

(e == 21)2 > 1104 (90, we (D) v,

itj=2
t t 1/3
ds (1 — = 1ut)/3ds
514—(14— Sup |[|well|s +€ sup |[we i)(/ +/
0<s<t el 0<s<t el 0 (e —p—=78)23 " Jo o (pe — pp—ye8)t/3
1
St (s foell, + € sup llall) (7.6)
Y \0<s< 0<

Similarly to the argument leading to (7.66) using that p, <1 we also may show that

~

t
> 10, v, 1+ [ X 100 FOlv, + 3 1005, | ds

i+i<1 0 \itj<1 iti<1

+/0 Y 0L ES)llvs, + 10LF (8)1s,) + Y0 > e Vel Duge(s)] | ds

i<1 i<l ¢

51+/ 1+ [flwelll +6|||aie!|8d L/
o (e —p—78)

1
S1+ ( sup fll, +€ sup el ) (7.68)

* \0<s<

Combining (7.67) and (7.68), taking a supremum over all u € (0, us —4t), and appealing to the definition
of the Y (t) norm in (4.9), concludes the proof of (7.4).
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8. The Z Norm Estimate

In this section, we obtain a bound on the Z norm, defined in (4.8), for we. From (3.17), we recall that w,
satisfies

Oywe — €2 Awe + €(uedy + VeOy)we + (UqOpwe + VgOywe) + (UeOpwy + VeOyws) = }N?,
where

F = ——gayQ - 8yf1 + 8mf2

Denote ¢(y) = yy(y) where ¢ € C'* is a non-decreasing function such that ¢ = 0 for 0 < y < 7+ and

¢ =1 for y > L. Observe that lywellL2(y>1) < l[¢we[r2. The function

Q)= > [l¢didIwel 72

1+j<3

1
1

satisfies

dQ
T (o ellmgarn + ool gaiyn )@
+

(6 > 0 el yzryay Y ||523§Ua||Lw(y21/4)>Q

1<itj<2 1<itj<2
+ (6 Z ||6;5§ue(t)||Lz(y21/4) + Z "a;agua(t)’|L2(y>1/4)) H(bvwe”LOO(H) Q1/2
i+j=3 i+j=3
+(€+e vell Loo (1 /a<y<1/2) + 1Vall oo (1 /a<y<1/2)) Z ||8;85Wc||%gwy(1/4§y§1/2)
1+5<3
+ Y 00l Y 10503wall iz =1/
0<i+j<2 0<i+j<d
+ Z Ha;aiue(t)HLz(yx/zx) Z ‘|6ia§wa(t)||L°°(y>1/4) + Z H@;BJFHLZ 1/>1/4)Q1/27 (8.1)
i+j=3 B itj=1 N i+5<3
where ue = (Ue, Vo) and w, = (ua,v,). Also, by (7.1), we have
Q(0) S 1. (8.2)
Our next goal is to estimate the right hand side of the inequality (8.1). First, we estimate the error

velocity u. in terms of the error vorticity, which is needed in several terms in (8.1).

Lemma 8.1. For all § € (0,1/2), we have
> 10 05ue®llrz,w=a + > 10:0ue®|z (s ST+l
0<i+5<2 i+j=3
where the implicit constants depend on 6. Also, we have the bound

Y 050 we(®)lze, 5<y<arm + D [|050we(t Wiz os S 1+ lwele-

0<its<2 itj=3
Proof of Lemma 8.1 Recall from (3.14) that g = —%|y—¢. By the estimate (6.10), we obtain
19igllLee(my S 1, i €Ny, (8.3)

where the implicit constant depends on 4, as long as v > 5/2. The rest of the proof proceeds exactly as in
the proof of [41, Lemma 5.1]. Note that the proof depends on the Biot-Savart law (7.35)—(7.36), and the
only difference between the Biot-Savart law here and in [41] is the presence of g, which is simply bounded
by (8.3). O
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Next, we bound the Sobolev norms of the approximate velocity u, and vorticity w, from (3.7)—(3.8).

Lemma 8.2. Assume v > 5/2. For all § € (0,1/2)
> 10L0jua(®)llz, z0) + D Ha;a;ua(t)n% bos S 1 (8.4)
0<it+j<3 i+j=4
where the implicit constants depend on §. Also, we have the bound

Z ||3;3§wa(t)||Lg?y(5gyg3/4) + Z ||3;aiwa(t)Hng(y25) S1. (8.5)

0<i+5<2 i+j=3

Proof 8.2. Recall that u, = u® + %" and v, = v¥ + ev’. Since (5.16) holds, in order to prove the claimed
upper bound for the first term in (8.4), we only need to prove

D 005" (1) L, (y=s) + 1020987 ()| Lo, y=0) S 1- (8.6)
0<i+j<2

Note that the bound on the first term in (6.9) implies

1

i a7 ~P < -
|azayu (Y)| ~ yjty—3/2° 1,7 € NOa
where the implicit constant depends on i and j. The bound for the first term in (8.6) then holds if we
assume v > 3/2. The bound for the second term in (8.6) is the same, except that we use (6.10) instead
of (6.9) and we assume v > 5/2.

For the bound on the second term in (8.4), recall that ¥ = y/e and thus

1Y) lL2y>s) = 2N FO) 2 (vss7e -

The bound on the first component of the velocity then holds if v > 2 and for the second component if
v > 3.

In order to prove the estimate (8.5), we use (5.16) for the Euler part, while for the Prandtl part we
have the bound

o 1
i P s
LRV S s, i€ No, (8.7)
which follows from (6.8). The bound for the first term in (8.5) then holds if v > 1 while the bound for
the second term in (8.5) follows if v > 3/2. O
Finally, we state the bound for the forcing term F.
Lemma 8.3. Assume that v > 2. For every § > 0, we have
||8}£83j;ﬁ”[z%y(y25) 5 17 Za] € NOa

where the implicit constant depends on i, j, and 6 > 0.

Proof of Lemma 8.3 Observing the expansion (7.24) for —0, fi + 0, f2, we note that all terms contain
products of Prandtl and Euler velocities and vorticities. To avoid repetition, we only estimate the higher
order term, which is the first term in (7.24) and requires bounding ¢ 29597 [ Q" in L?(y > §). Using
(8.7), we get

020997 | L2(y>s) S 1
provided vy > 2 since
-7 — A2y <
y> >6/e) N
Y 2=y = € ZNY 2y zo76) S €7

where the constant depends on e. 0
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Next, we give the bound for the Z norm of the error vorticity we, which we recall, cf. (4.8), is given by

lwellz = > Nwells = D Ilydidjwell L2y 1) -

i+5<3 i+5<3

Proposition 8.4 (The Z norm estimate). Assume that sup,c(o 7 [|well; is finite. Then we have the bound

lwe(®)lz < (1 + [ e, ds) exp (0 [ax we<s>|s>ds> , (8.8)
provided v > 5/2.

Proof. (Proof of Proposition 8.4) Applying the bounds in Lemmas 8.1, 8.2, and 8.3 in (8.1), we get
aQ
dt ™~

Using also (8.2) and applying the Gronwall lemma, we obtain (8.8). O

(1 + wlle)@ + (1 + fwlle)? -

9. Proof of Theorem 3.1

The main result of the paper follows from the definition (2.12) and the following result:

Therorem 9.1. Assume that the Navier-Stokes initial vorticity wgls is given by (2.12), where the Euler
initial vorticity satisfies (5.1) and the Prandtl initial vorticity satisfies (6.1), for some Ao > 0, independent
of €. Moreover, assume that weo that satisfies (7.1) for some Az, pus > 0, independent of €. Then, there
exists a v« > 2 sufficiently large, independent of €, such that with the parameters u., T € (0,1] defined
in (7.3) we have that

sup lwe (-, )|, < Ck,
te[0,Ty]

for a constant C, > 0 independent of .

Proof. Under the assumption (5.1), the Euler solution satisfies the estimates in Lemma 5.7, for suit-
able (T, A1, p11). Assuming (6.1), and using that the Euler trace U® is known to be real-analytic in z,
the Prandtl solution obeys the bounds in Lemma 6.1 for suitable (75, A2, o). Define the parameters
i, Ty As € (0,1] as in (7.3), and let v, > 2 be a free parameter. With these fixed parameters, define the
norm ||, by (4.10).

By combining Proposition 7.1 and Proposition 8.4, and using that by (7.3) we have T, < .1, we
obtain the following a priori estimate for the cumulative error vorticity:

CO 2
lwe®l, < Co + 2 ( sup Jlwell, + ¢ sup |||we|||s)
Vs \0<s<t 0<s<t

*

C C
0o (14 20 s flall ) esp (204 sup el (9.1)
Y 0<s<t Y 0<s<t
for a sufficiently large constant Cy which is independent of «, and ¢, and for all ¢ € [0, T,]. Moreover, due
to (7.1), the definitions (4.10) and (7.3), we also have
llweollly < Co,

by possibly enlarging the value of Cj. Since ¢ < 1, we deduce that upon choosing v, > 2 to be sufficiently
large, solely in terms of Cy, we have

sup lwe (@), < 2Co, (9.2)

te[0,Ty]

which completes the proof upon letting C, = 2C). Il
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10. Proof of Corollary 3.2

We conclude the paper by deducing the main corollary.

Proof. (Proof of Corollary 3.2) We start by proving the inequality (3.2), which in light of (3.4)—(3.5)
amounts to showing that u, and ve are O(1), uniformly in e with respect to the L>°(H) norm.
First, by (3.1), we have

llweC-, 0l S 1, t€[0,T3]. (10.1)
Using (7.40) with ¢ = j = 0, we get
luellva, o oo S llwellya, ons, +1 S llwe(5 DMl +151, (10.2)
where A, and p. are as in the beginning of Sect. 4.3. Similarly, the bound (7.42) with ¢ = 0 analogously
implies
[vellys, oo S1-
Next, using (8.4) with ¢ = 7 = 0 and (10.1), we get
lue(®)ll Lo, (>1/2) + [lve(®)l| oo, (>1/2) S 1. (10.3)
Combining (10.2)—(10.3), and recalling the definition (4.5), we get
l[ue ()l Les, + lve(®)llLge, ST,

Ty N

and (3.2) follows.
Next, we turn to the second assertion, (3.3). Let K C H be such that dist(K,0H) =: dxg > 0. The
inequality (3.3) then follows from (3.2) and (3.4)—(3.5) by observing that

18" || Lo (v 2dne fe) 107 oo (v 2dn /o) S €5

which follows from the bounds (6.9)—(6.10), due to the fact that v was chosen sufficiently large. Note that
the bound (3.3) is not uniform as dx — 0. (]

Remark 10.1. The conclusion of Theorem 3.1 is stronger than the fact that the vanishing viscosity limit
holds with respect to the energy norm. Namely, if in addition to the assumptions of Theorem 3.1
(or Remark 3.1), we assume that the Navier-Stokes data belongs to L?(H), and suppose that lim. .o
H(ugs —uf, vONS — vg)H L) = 0, then the vanishing viscosity limit holds in the energy norm:

tig sup [0 =0, 0 = o)D)l = 0. (10.4)
€10,1%

In order to verify (10.4), denote the strip S = {(z,y) € H: 0 <y < 1}. By (7.40), (7.42), and (10.1), we
have that

10ztiellL2(s) + 1Bavell2(s) S 1- (10.5)
Similarly, using (5.37) and (5.38) we get
182u" (| L2(s) + 1020 | 12(5) S 1,
and finally, (6.9) and (6.10) give
100" || L2(5) + 100" | L2¢s) S 1- (10.6)
From the inequalities (10.5)—(10.6), together with the ansatz (3.4)—(3.5), we obtain
1026~ L2(s) + 020" L2(s) S 14

uniformly in € € (0, 1]. Applying the criterion (2.13) in [60] with o = 3/4, we conclude that (10.4) holds.
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