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Abstract. We establish the validity of the Euler+Prandtl approximation for solutions of the Navier-Stokes equations in the
half plane with the Dirichlet boundary conditions, in the vanishing viscosity limit, for initial data which are analytic only near
the boundary, and Sobolev smooth away from the boundary. Our proof does not require higher order correctors, and works
directly by estimating an L1-type norm for the vorticity of the error term in the expansion Navier-Stokes−(Euler+Prandtl).
An important ingredient in the proof is the propagation of local analyticity for the Euler equation, a result of independent
interest
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1. Introduction

In this paper, we consider the Navier-Stokes system

∂tu
NS − ε2∆uNS + uNS · ∇uNS + ∇pNS = 0 (1.1)

divuNS = 0 (1.2)

on the domain H = T × R+ = {(x, y) ∈ T × R : y ≥ 0}, where T = [−π,π], with the no-slip boundary
condition

uNS|y=0 = 0 (1.3)

and with an incompressible initial datum

uNS|t=0 = uNS
0 . (1.4)

Throughout the paper, we denote the kinematic viscosity by ε2. Our goal is to establish, with a concise
proof, the Euler+Prandtl approximation for solutions of (1.1)–(1.4) in the vanishing viscosity limit ε → 0,
for initial data that are analytic only near the boundary of the domain, and are Sobolev smooth away
from the boundary.

1.1. Previous Results

One of the fundamental problems in mathematical fluid dynamics is to determine whether the solutions
of the Navier-Stokes equations (1.1)–(1.2) converge to the solution of the Euler equations

∂tu
E + uE · ∇uE + ∇pE = 0 (1.5)

divuE = 0 (1.6)

in the inviscid limit ε → 0. In [32], Kato showed that the inviscid limit holds in the energy norm
L∞(0, T, L2(H)) if and only if the energy dissipation in a thin layer of size ε2 vanishes as ε → 0, i.e.,

lim
ε→0

ε2
∫ T

0

∫

{y!ε2}
|∇uNS|2dxdydt = 0. (1.7)

We refer the reader to [3,6,7,33,35,51,59,60,63] for refinements and extensions based on Kato’s original
argument; cf. also the recent review [50]. These results assume explicit properties that the sequence of
Navier-Stokes solutions must obey on [0, T ] as ε → 0 in order for them to have a strong L∞

t L2
x Euler

limit. On the other hand, verifying these conditions based on the knowledge of the initial datum only is
in general an outstanding open problem. We emphasize that to date, even the question of whether the
weak L2

tL
2
x inviscid limit holds (against test functions compactly supported in the interior of the domain),

remains open. Conditional results have been established recently in terms of interior structure functions
[9,11], or in terms of interior vorticity concentration measures [8].

In his seminal 1908 paper, Prandtl postulated that the solution of the Navier-Stokes equations can be
written as

uNS(x, y, t) = uE(x, y, t) +
(
ũP

(
x,

y

ε
, t

)
, εv̄P

(
x,

y

ε
, t

))
+O(ε) , (1.8)

where uE denotes the solution of the Euler equations and ũP, v̄P are components of the solution of
the Prandtl boundary layer equations (see (2.10) below). While the well-posedness [1,10,18,28,37,39,
42,44,52,56,57] and the ill-posedness [14,19,26,43] regimes for the Prandtl equations are by now well-
understood, establishing the validity of the expansion (1.8) presents a number of outstanding challenges.

In [57,58], Sammartino-Caflisch establish the validity of the Prandtl expansion and hence the strong
inviscid limit in the energy norm, for well-prepared and analytic initial data u0, in the sense that u0

satisfies the Prandtl ansatz (1.8) at time t = 0, and is analytic in both the x and y variables on the entire
half space. They construct solutions of the Euler and Prandtl equations in suitable analytic spaces in x
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and y, carefully analyze the error terms in the expansion (1.8), and show that they remain O(ε) for an
O(1) time interval by an abstract Cauchy-Kowalevski theorem. This strategy has been proven successful
for treating the case of a channel [36,45] and the exterior of a disk [5].

In [49], Maekawa established the validity of the expansion (1.8) for Sobolev smooth initial vorticity
that is compactly supported away from the boundary, by using the vorticity boundary condition in [2,48]
and controlling the weak interaction between the Prandtl solutions near the boundary and the Euler
solution far away from the boundary.

We refer the reader to [61] for an energy based proof of the Caflisch-Sammartino result, and [12,13]
for a proof of Maekawa’s result in 2D and 3D respectively, which relies solely on energy methods.

Recently, in [55], Nguyen and the second author establish the strong inviscid limit in L∞(0, T, L2(H))
for analytic initial data, and for the first time avoid completely the use of Prandtl boundary layer cor-
rectors (1.8). Instead, they appeal to the vorticity formulation, give precise pointwise bounds for the
associated Green’s function, and work in a suitable analytic boundary-layer function spaces that control
the pointwise behavior of solutions of the Navier-Stokes equations. In this paper we use the pointwise
estimates for the Green function of the Stokes problem from [55]; cf. Lemma 7.2 below.

In [40,41], the first and the last two authors established the strong inviscid limit in the energy norm,
for initial data that is only analytic close to the boundary of the domain, and has finite Sobolev regularity
in the complement (see also [62] in the 3D case). These works thus close the gap between the Sammartino-
Caflisch [57,58], which assumes the analyticity on the entire half-plane, and the Maekawa [49] results,
which assumes that the initial vorticity vanishes identically near the boundary. Up to now, the class of
initial data considered in [40,41] appears to be the largest class of initial data that the strong inviscid
limit is known to hold, in the absence of structural or symmetry assumptions. Note that neither [55] nor
[40,41] establish the validity of the expansion (1.8), which is the main result of this paper.

Recently in [16,17], Gerard-Varet, Maekawa, and Masmoudi improved the classical results of
Sammartino-Caflisch to Gevrey perturbations in x and Sobolev perturbation in y for shear flows of
the Prandtl type, when the Prandtl shear flow is both monotonic and concave. Lastly, we mention that
the vanishing viscosity limit is also known to hold in the presence of certain symmetry assumptions on the
initial data, which is maintained by the flow; see e.g. [4,20,27,34,46,47,50,53,54] and references therein.
Also, the very recent works [15,24,25,29–31] establish the vanishing viscosity limit and the validity of
the Prandtl expansion for the stationary Navier-Stokes equation, in certain regimes.

It is worth noting that in all the above cases the Prandtl expansion (1.8) is valid, and thus the Kato
criterion (1.7) holds. However, in general there is a large discrepancy between the question of the vanishing
viscosity limit in the energy norm, and the problem of the validity of the Prandtl expansion.

In the negative direction of the Prandtl asymptotic expansion, we refer the reader to the works [21–23]
of Grenier and Nguyen, which show that the Prandtl expansion (1.8) is in general false at the level of
Sobolev regularity.

1.2. The Present Paper

The main purpose of this paper is two-fold.
First, we establish the Prandtl asymptotic expansion (1.8) for initial data that is only analytic near the

boundary, and is Sobolev regular in the complement. When compared to [40,41], the main difficulty here
is that the Euler equation is not a priori well-suited for propagating regularity which is analytic near the
boundary of the domain, and only Sobolev away from the domain. The main reasons are that the pressure
is nonlocal and the equation is not parabolic. This essential fact is established in Theorem 5.1 below. The
proof consists of three steps. First, we obtain the analyticity of the Euler solution with respect to the
operators y∂y and ∂x (i.e., in an analytic wedge), by approximating the Euler solution via the Navier-
Stokes solutions as in [40,41]. Since the Euler data is uniformly analytic up to the boundary, it belongs
to the initial space required by [40]. In the second step, we use Montel’s theorem for normal families, to
obtain that the family of the Navier-Stokes solutions, which are analytic in a wedge, have a subsequence
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which converges to the solution of the Euler equation, which is then analytic in a wedge. In the third
step we bootstrap the analyticity to uniform by using the following strategy. The solution of the Euler
equations is analytic uniformly on any line which is at a positive distance from the boundary. This provides
analyticity of vE on every such line. Note that, in addition, vE = 0 on the boundary ∂H. Therefore, we
may perform a localized analytic energy proof, which takes advantage of the boundary condition on the
lower boundary and the uniform interior analyticity strictly inside the domain to propagate the local
analyticity forward in time.

Secondly, we note that in the previous works where the Prandtl expansion was justified, a further
asymptotic expansion of the error term was used, by considering correctors given by the linearization
of Navier-Stokes about the Euler and Prandtl solutions, with suitable boundary conditions. Our main
improvement is to obtain the convergence directly, without resorting to further expansions, by using the
L1 based analytic spaces from [40,41,55]. As a consequence of this simpler approximation procedure, our
main result requires fewer compatibility conditions between the Euler, Navier-Stokes, and Prandtl initial
data, when compared to [57,58].

The paper is structured as follows. In Sect. 2, we introduce the Euler+Prandtl approximation of
Navier-Stokes, at the level of the vorticity. The main theorem concerning the expansion (1.8) is stated in
Sect. 3, along with a corollary, which states that the order O(ε) estimate on the error also holds in the
uniform norm. In Sect. 4, we recall the equation for the error and introduce the necessary norms, along
with some preliminary results. Sections 5 and 6 contain the necessary analytic bounds for the Euler and
Prandtl equations, respectively. Sections 7.2 and 7.3 contain the analytic and Sobolev estimates needed
in the proof of the main result. The proof of the main theorem is then provided in Sect. 9, while the proof
of the corollary are given in Sect. 10.

2. The Euler+Prandtl Approximation in the Vorticity Form

In order to describe the Euler+Prandtl approximation of solutions to the Navier-Stokes equation, it is
convenient to work with the vorticity formulations of the Navier-Stokes, Euler, and Prandtl equations.
We describe these next.

The Navier-Stokes vorticity We denote the components of the Navier-Stokes velocity as uNS =
(uNS, vNS) and let the associated vorticity be given by

ωNS = ∇⊥ · uNS = ∂xv
NS − ∂yu

NS .

The Navier-Stokes vorticity satisfies

∂tω
NS − ε2∆ωNS = −(uNS∂x + vNS∂y)ωNS .

in H, with the boundary condition given by (cf. [2,48,49])

ε2(∂y + |∂x|)ωNS = ∂y∆−1
(
(uNS∂x + vNS∂y)ωNS

)
|y=0 .

The Euler vorticity Away from the boundary {y = 0}, that is for y ! ε, the Navier-Stokes vorticity
shall be shown to be well-approximated by the Euler vorticity, which we denote as

ωE = ∇⊥ · uE = ∂xv
E − ∂yu

E .

Here, uE = (uE, vE) is the smooth solution of the Euler equations in H, i.e., (1.1)–(1.2) with ε = 0, with
the initial condition

(uE, vE)|t=0 = (uE
0 , v

E
0 ) (2.1)

specified below and the boundary condition

vE|y=0 = 0 . (2.2)

It is convenient to denote by UE and PE the trace of the Euler tangential flow and pressure on ∂H, i.e.,

UE(t, x) = uE(t, x, 0) and PE(t, x) = pE(t, x, 0). (2.3)
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The Prandtl vorticity Close to the boundary {y = 0}, that is for y " ε, the Navier-Stokes vorticity is
shown below to be well-approximated by the total boundary layer vorticity defined in (2.11). We recall
that the Prandtl equations for the velocity field (uP, εvP), which are functions of t, x, and the fast normal
variable1

Y =
y

ε
,

read as

(∂t − ∂Y Y )uP + uP∂xu
P + vP∂Y u

P = −∂xP
E , (2.4)

vP = −
∫ Y

0
∂xu

P dY ′ , (2.5)

for (x, Y ) ∈ H. The boundary conditions for uP are

uP|Y=0 = 0 and uP|Y →∞ = UE . (2.6)

The classical Prandtl vorticity, defined as

ΩP = ∂Y u
P , (2.7)

satisfies the equation

∂tΩP − ∂2
Y ΩP + uP∂xΩP + vP∂Y ΩP = 0 (2.8)

in H, with the boundary conditions

∂yΩP|Y=0 = ∂xP
E and ΩP|Y →∞ = 0 . (2.9)

The Prandtl velocity component uP may then be computed from the vorticity as uP(x, Y ) =
∫ Y
0 ΩP

(x, Y ′)dY ′. The boundary layer velocity vector is then given by (ũP, εv̄P), where

ũP = uP − UE and v̄P =
∫ ∞

Y
∂xũ

PdY ′ . (2.10)

We introduce the total boundary layer vorticity by

ωP = (−∂y, ∂x) · (ũP, εv̄P) = ε∂xv̄
P − 1

ε
∂Y ũ

P = ε∂xv̄
P − 1

ε
ΩP . (2.11)

The Euler+Prandtl expansion In terms of the vorticity, the Euler+Prandtl expansion of the Navier-
Stokes solution is

ωNS = ωE + ωP + εωe , (2.12)

where ωe is the error vorticity. Proving the validity of the Euler+Prandtl expansion amounts to showing
that the error vorticity ωe is O(1) with respect to ε uniformly in time, in a suitable norm in space. We
achieve this in Theorem 3.1 below. Since we prove the validity of the expansion uniformly in time, which
is ε-independent, the initial data for the Navier-Stokes equation has to be compatible with (2.12), as
explained next.

Compatible initial data By compatible initial data uNS
0 = (uNS

0 , vNS
0 ) and uE

0 = (uE
0 , v

E
0 ) we mean that

uNS
0 (x, y) = uE

0 (x, y) + ũP
0 (x, Y ) + εue0(x, y) , (2.13)

vNS
0 (x, y) = vE0 (x, y) + εv̄P0 (x, Y ) + εve0(x, y) , (2.14)

where (ũP
0 , εv̄

P
0 ) are defined from the Prandtl initial datum uP

0 via (2.10), and the error velocity (ue0, ve0)
is incompressible and satisfies boundary conditions which ensure that uNS

0 (x, 0) = vNS
0 (x, 0) = 0, namely

ue0(x, 0) = 0 and ve0(x, 0) = −
∫ ∞
0 ∂xũP

0 (x, Y )dY . In addition to (2.13)–(2.14), we require that ωe0 is
O(ε) in a suitable norm which is L∞ based in x and L1 based in y (cf. (7.1) below).

1Throughout the paper, we use the vertical spatial variable Y for the Prandtl variables, and y for all others.
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A concrete example for compatible initial data is as follows.2 The initial data for the modified Prandtl
velocity components ũP and v̄P (cf. (2.10)) may be taken as

ũP
0 = UE

0 (x)ϕ
′(Y ) and v̄P0 = −∂xU

E
0 (x)ϕ(Y ) , (2.15)

where ϕ is a uniformly analytic function which decays sufficiently fast as Y → ∞, along with its deriva-
tives, and satisfies ϕ′(0) = −1. The precise assumption is given in (6.5) below. For the initial error velocity
components ue and ve appearing in (2.13)–(2.14), we may consider

ue0(x, y) = −UE
0 (x)ψ

′(y) and ve0(x, y) = ∂xU
E
0 (x)ψ(y) , (2.16)

where ψ is a uniformly analytic function with ψ(0) = ϕ(0) and ψ′(0) = 0, with a sufficient decay as
y → ∞. The precise assumption is given in (7.2) below. From (2.16) it follows that the error vorticity
ωe = −∂yue + ∂xve at the initial time equals

ωe0(x, y) = ∂2
xU

E
0 (x)ψ(y) + UE

0 (x)ψ
′′(y) , (2.17)

which is shown in (7.1) to be O(1). Using (2.13)–(2.16), the properties of ϕ and ψ stated above, and the
fact that the Euler data are incompressible and satisfy vE0 = 0, it follows that the Navier-Stokes datum
is incompressible, and satisfies the correct boundary conditions, namely uNS

0 = vNS
0 = 0 on {y = 0}.

3. Main Results

Our main result provides an O(ε) estimate on the error for the vorticity in the Euler+Prandtl expan-
sion (2.12).

Therorem 3.1. Assume that the Navier-Stokes initial datum uNS
0 and the Euler initial datum uE

0 are
compatible, as described in (2.13)–(2.14), with the Euler datum that satisfies (5.1), the Prandtl initial
vorticity ΩP

0 which satisfies (6.1), and with the initial error vorticity ωe0 that satisfies (7.1). Then, there
exists T∗ > 0, independent of ε, such that

sup
t∈[0,T∗]

∣∣∣∣∣∣(ωNS − ωE − ωP)(·, t)
∣∣∣∣∣∣

t
≤ Cε , (3.1)

where C > 0 is a constant. The norm |||·|||t is defined in (4.10); it represents a norm which encodes
L1-based analyticity near the boundary, and Sobolev regularity away from the boundary.

Remark 3.1. An example of compatible initial conditions which satisfies the assumptions of Theorem 3.1
is given by the Prandtl and error of the form (2.15) and (2.16), with functions ϕ and ψ which satisfy
certain regularity assumptions; cf. (6.5) and (7.2) respectively.

As a direct consequence of Theorem 3.1, we obtain that at the level of the velocity, the Euler+Prandtl
approximation of the Navier-Stokes solution is O(ε) in the uniform norm, with respect to both the
tangential and the normal variables. Moreover, at any fixed distance away from the boundary, the same
convergence rate holds as ε → 0, even without an additional help of the Prandtl corrector.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

sup
t∈[0,T∗]

‖(uNS − uE − ũP, vNS − vE − εv̄P)(·, t)‖L∞(H) ≤ Cε . (3.2)

Also, for any set K ⊂ H such that dist(K, ∂H) > 0, we have

sup
t∈[0,T0]

‖(uNS − uE)(·, t)‖L∞(K) ≤ Cε . (3.3)

2Compare with the initial datum compatibility assumption in [58, Assumption (2.26)]; the fact that we do not need to
include higher order correctors in the expansion (2.12), means that we require a less restrictive set of initial conditions for
ue and ve.
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The proofs of Theorem 3.1 and Corollary 3.2 are given in Sects. 9 and 10 respectively. The main idea
in the proof of Theorem 3.1 is to estimate the error term in the vorticity equation for Navier-Stokes −
Euler − Prandtl, cf. (3.17)–(3.18) below. The remainder of this section is dedicated to deriving this error
equation, while in the rest of the paper we perform estimates on it.

3.1. The Evolution for the Error Velocity and Vorticity

At the velocity level, the Euler+Prandtl expansion of the Navier-Stokes solution is given by

uNS = uE + ũP + εue (3.4)

vNS = vE + εv̄P + εve , (3.5)

where ũP and v̄P are introduced in (2.10) and where (ue, ve) stands for the error velocity. At the initial
time t = 0, the expressions (3.4)–(3.5) correspond to the definition of compatible initial datum, cf. (2.13)–
(2.14). The vorticity for the error (ue, ve) is denoted by

ωe = −∂yue + ∂xve (3.6)

and corresponds to the expansion (2.12).
It is also convenient to introduce the approximate velocity

ua = uE + ũP and va = vE + εv̄P (3.7)

and the approximate vorticity

ωa = −∂yua + ∂xva = ωE − 1
ε
ΩP + ε∂xv̄

P . (3.8)

The evolution equation for (ue, ve) is given by (see [58, Eqs. (2.32)–(2.39)])

(∂t − ε2∆)ue + (ue∂x + ve∂y)ua + (ua∂x + va∂y)ue + ε(ue∂x + ve∂y)ue + ∂xpe = f1 +
1
ε
g∂yũ

P (3.9)

(∂t − ε2∆)ve + (ue∂x + ve∂y)va + (ua∂x + va∂y)ve + ε(ue∂x + ve∂y)ve + ∂ype = f2 (3.10)
∂xue + ∂yve = 0 (3.11)

ue|y=0 = 0 (3.12)
ve|y=0 = g , (3.13)

where ∆ = ∂xx + ∂yy. The function g in (3.9) and (3.13) is defined by

g = g(t, x) = −
∫ ∞

0
∂xũ

PdY = −v̄P|Y=0 , (3.14)

and at the initial time, we have

g(t, x)|t=0 = −v̄P(x, 0, t)|t=0 .

The forcing terms in (3.9)–(3.10) read

f1 = −1
ε

(
ũP∂x(uE − UE) + ∂xũ

P(uE − UE) + ∂yũ
P(vE + y∂xU

E)
)

− v̄P∂yu
E + ε∆uE + ε∂2

xũ
P

= −Y

(
ũP ∂x(uE − UE)

y
+ ∂xũ

Pu
E − UE

y
+ Y ΩP v

E + y∂xUE

y2

)
− v̄P∂yu

E + ε∆uE + ε∂2
xũ

P (3.15)

and

f2 = −
(
∂tv̄

P + ua∂xv̄
P + va∂y v̄

P + v̄P∂yv
E
)

− 1
ε
ũP∂xv

E + ε∆va

= −
(

∂tv̄
P + ua∂xv̄

P + Y
va
y

∂Y v̄
P + v̄P∂yv

E

)
− Y ũP ∂xvE

y
+ ε∆va . (3.16)



47 Page 8 of 46 I. Kukavica et al. JMFM

From (3.9)–(3.13), we obtain that ωe obeys the boundary value problem

(∂t − ε2∆)ωe = F in H (3.17)

ε2(∂y + |∂x|)ωe = ∂y(−∆D)−1F + |∂x|
∫ ∞

0
∂tũ

PdY on ∂H , (3.18)

where

F = −(ue∂x + ve∂y)ωa − 1
ε2
g∂Y ΩP − (ua∂x + va∂y)ωe − ε(ue∂x + ve∂y)ωe + (∂xf2 − ∂yf1) . (3.19)

The boundary condition (3.18) may be derived proceeding similarly to [49], by combining (3.12) and (3.19).
Observe that the second boundary term in (3.18) may be written as |∂x|

∫ ∞
0 ∂tũPdY = ∂x

|∂x|∂tg. Recall
that the evolution equation for ũP reads

(∂t − ∂Y Y )ũP + ũP∂xU
E + UE∂xũ

P + ũP∂xũ
P + (v̄P − Y UE)∂Y ũ

P = 0 , (3.20)

where

v̄P(Y ) =
∫ ∞

Y
∂xũ

P dY ′ (3.21)

(cf. [58, Eq. (2.20)]). Lastly, observe that using the definition g = −∂x(
∫ ∞
0 ũPdY ), we rewrite the integral

in the last term on the right side of (3.18) as
∫ ∞

0
∂tũ

PdY =
∫ ∞

0

(
∂Y Y ũ

P − ∂x(ũPUE) − ũP∂xũ
P − vP∂yũ

P
)
dY

=
∫ ∞

0

(
∂Y ΩP − ∂x(ũPUE) − ũP∂xũ

P − ∂x(ũP + UE)ũP
)
dY

= −ΩP|Y=0 + UEg − 2∂xU
E

∫ ∞

0
ũPdY − ∂x

∫ ∞

0
(ũP)2dY , (3.22)

where we used (3.20) in the first equality and thus the boundary condition in (3.18) reads

ε2(∂y + |∂x|)ωe =
(
∂y(−∆D)−1F

)
|y=0 − |∂x|ΩP|Y=0 + |∂x|UEg

− 2 |∂x| ∂xU
E

∫ ∞

0
ũPdY − |∂x| ∂x

∫ ∞

0
(ũP)2dY on ∂H . (3.23)

Since the error vorticity equation (3.17) has a forcing term which depends on the Euler and Prandtl
solutions, it is natural that we first perform suitable analytic and Sobolev estimates for these Euler
(cf. Sect. 5) and Prandtl (cf. Sect. 6) solutions, with the initial conditions given by (2.13)–(2.14). Prior
to this, in the following section we introduce the functional framework in which these estimates are
performed.

4. The Functional Framework

4.1. The Base Analytic Norms

For µ ∈ (0, 1] we define the complex domains

Ωµ = {z ∈ C : 0 ≤ Re z ≤ 1, |Im z| ≤ µRe z} ∪ {z ∈ C : 1 ≤ Re z ≤ 1 + µ, |Im z| ≤ 1 + µ − Re z} (4.1)

and

Ω̃µ =
{
Z ∈ C : 0 ≤ ReZ, |ImZ| ≤ µReZ

}
. (4.2)

We note that the domain Ω̃µ is much larger than the domain Ωµ, and allows ReZ to be arbitrarily large,
while the domain Ωµ is located near the boundary 0 ≤ Re y ≤ 1+µ. We use fξ(y) ∈ C to denote the Fourier
transform of f(x, y) with respect to the x variable at frequency ξ ∈ Z, i.e., f(x, y) =

∑
ξ∈Z fξ(y)eixξ.
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We define three types of analytic norms, Yλ,µ, Yλ,µ,∞, and Pλ,µ,∞. The principal purpose of the Yλ,µ

norm is to control the remainder of the Prandtl expansion, the main role of the Yλ,µ,∞ norm is to estimate
the Euler solution in analytic spaces, while the Pλ,µ,∞ norm bounds the Prandtl solution in the domain
Ω̃µ. Let λ, µ ∈ (0, 1].

• For a complex function f(y) defined on Ωµ, let

‖f‖L1
µ
= sup

0≤θ<µ
‖f‖L1(∂Ωθ) , (4.3)

and for a complex function f(x, y) defined on the domain T×Ωµ, we introduce the L1
y-based analytic

norm

‖f‖Yλ,µ =
∑

ξ∈Z
‖eλ(1+µ−y)|ξ|fξ‖L1

µ
. (4.4)

• For a complex valued function f(x, y) defined on T × Ωµ, we define the L∞
y -based analytic norm

‖f‖Yλ,µ,∞ =
∑

ξ∈Z
‖eλ(1+µ−y)|ξ|fξ‖L∞(Ωµ) . (4.5)

If f = f(x) is independent of y and only depends on x ∈ T, we replace the norm ‖fξ‖L∞(Ωµ) simply
by |fξ|, and still use the notation in (4.5).

• For a function f(x, Y ) defined on the domain T × Ω̃µ, we define the L∞
Y -based analytic norm

‖f‖Pλ,µ,∞ =
∑

ξ∈Z
eλ(1+µ)|ξ|‖fξ‖L∞(Ω̃µ)

. (4.6)

If f = f(x) is independent of Y and only depends on x ∈ T, e.g. trace terms at Y = 0 or terms
which are integrated in Y , we replace the norm ‖fξ‖L∞(Ω̃µ)

simply by |fξ|, and still use the notation
in (4.6).

Note that both the Yλ,µ and Yλ,µ,∞ norms only require the corresponding function to be analytic in x
near the boundary {y = 0}, whereas the Pλ,µ,∞ norm requires also analyticity at Y -large. Moreover,
unlike in [40], the Yλ,µ,∞ norm is not weighted in the y variable.

4.2. The Sobolev Norms

To control the Sobolev part of a function f away from the boundary, for µ > 0 we introduce

‖f‖Sµ =
∑

ξ

‖yfξ‖L2(y≥1+µ) . (4.7)

Note that the Sµ norm is )1ξ , so that in view of the Hausdorff-Young inequality, we have ‖yf‖L∞
x L2

y(y≥1+µ)≤
‖f‖Sµ .

Using (4.4) and (4.7) we also define

‖f‖Yλ,µ∩Sµ = ‖f‖Yλ,µ + ‖f‖Sµ .

Note that the norm Yλ,µ∩Sµ controls the L1 norm in the analytic region 0 ≤ Re y ≤ 1+µ, and a weighted
L2 norm in the Sobolev region y ≥ 1 + µ.

As a genuine L2
x,y-based Sobolev norm we choose

‖f‖2S = ‖yf‖2L2(y≥1/2) =
∑

ξ∈Z
‖yfξ‖2L2(y≥1/2) ,

and denote the higher derivative version by

‖f‖Z =
∑

0≤i+j≤3

‖∂i
x∂j

yf‖S =
∑

0≤i+j≤3

‖y∂i
x∂j

yf‖L2(y≥1/2) . (4.8)
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Note that since (1+ |ξ|)−1 ∈ )2ξ , we have the lossy estimates ‖f‖Sµ
≤ ‖f‖S +‖∂xf‖S ≤ ‖f‖Sµ

+‖∂xf‖Sµ
.

4.3. The Cumulative Error Norm

Finally, we define the norm |||·|||t which appears in Theorem 3.1.
Before doing so, we fix two sufficiently small parameters λ∗, µ∗ ∈ (0, 1], which are independent of ε,

and only depend on the parameter λ0 which appears in the assumptions on the Euler datum (cf. (5.1))
and the Prandtl datum (cf. (6.1)), and the parameters µ2,λ2 which appear in the assumption on the
initial error vorticity (cf. (7.1)). The precise values of λ∗, µ∗ are given in (7.3) below; at this point we only
emphasize that these parameters are determined in terms of the datum, and that they are independent
of ε. Lastly, let γ∗ ≥ 2 be a sufficiently large parameter representing the rate of decay of the analyticity
radius. This parameter is also independent of ε, and its value shall be determined in the proof (see the line
above (9.2)). Throughout the paper, the time parameter is chosen to satisfy 0 ≤ t ≤ min{1, µ∗/(2γ∗)},
so that t ≤ 1 and µ∗ − γ∗t ≥ µ∗/2 > 0; in fact, we let t ∈ [0, T∗], where T∗ ∈ (0, 1] is independent of ε, is
given explicitly in (7.3).

To treat the loss of a derivative in the nonlinear terms, in terms of the parameters µ∗ and γ∗ discussed
above, we use (4.4) to define the cumulative L1

y-based analytic norm

‖f(t)‖Y (t) = sup
0<µ<µ∗−γ∗t




∑

i+j≤1

‖∂i
x(y∂y)jf‖Yλ∗,µ + (µ∗ − µ − γ∗t)1/3

∑

i+j=2

‖∂i
x(y∂y)jf‖Yλ∗,µ



 , (4.9)

for all 0 ≤ t ≤ T∗. Lastly, for the same range of t, using (4.8) we denote by

|||ω|||t = ‖ω(t)‖Y (t) + ‖ω(t)‖Z (4.10)

the cumulative error vorticity norm.

Remark 4.1. (Implicit constants) We emphasize that throughout the paper the implicit constants in the
symbols " are never allowed to depend on the large parameters ε−1, γ∗, and T−1

∗ . These implicit constants
are however allowed to depend on parameters independent of ε and γ∗, such as λ0,λ1,λ2,λ∗, µ0, µ1, µ2, µ∗,
or κ.

4.4. Functional Inequalities

We recall several useful properties of the norms introduced in (4.4)–(4.6). First, from the Cauchy integral
formula, we deduce the following inequality (cf. also [55, Lemma 2.2]).

Lemma 4.1 (Analytic recovery). For 0 ≤ µ < µ̃ < µ∗ − γ∗s, we have
∑

i+j=1

‖∂i
x (y∂y)

j f‖Yλ,µ " 1
µ̃ − µ

‖f‖Yλ,µ̃
,

where the implicit constant is universal.

We omit the proof of Lemma 4.1 and refer the reader to [55]. In the next lemma, we record a number
of useful product estimates concerning the analytic norms. Similar bounds to the ones stated in (4.11)
below were previously established in [55] and [40].

Lemma 4.2 (Product estimates). For λ, µ ∈ (0, 1], we have the inequalities

‖f(x, Y )g(x, y)‖Yλ,µ " ‖f(x, Y )‖Pλ,µ,∞‖g(x, y)‖Yλ,µ (4.11a)

‖f(x, Y )g(x, y)‖Yλ,µ " ε‖(1 + Y )3/2f(x, Y )‖Pλ,µ,∞‖g(x, y)‖Yλ,µ,∞ (4.11b)
‖f(x, y)g(x, y)‖Yλ,µ " ‖f(x, y)‖Yλ,µ,∞‖g(x, y)‖Yλ,µ (4.11c)
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‖f(x, Y )g(x, y)‖Sµ " εθ‖Y θf(x, Y )‖Pλ,µ,∞‖g(x, y)‖Sµ (4.11d)

‖f(x, Y )g(x, y)‖Sµ " εθ‖Y θf(x, Y )‖Pλ,µ,∞

(
‖g(x, y)‖L2(y≥1/2) + ‖∂xg(x, y)‖L2(y≥1/2)

)
(4.11e)

‖f(x, Y )g(x, y)‖Sµ " εθ‖Y θf(x, Y )‖Pλ,µ,∞

(
‖g(x, y)‖L2

xL
∞
y (y≥1/2) + ‖∂xg(x, y)‖L2

xL
∞
y (y≥1/2)

)
(4.11f)

‖f(x, y)g(x, y)‖Sµ " ‖f‖Sµ

(
‖g‖L2

xL
∞
y (y≥1+µ) + ‖∂xg‖L2

xL
∞
y (y≥1+µ)

)
, (4.11g)

for any θ ≥ 2, whenever the right sides of the above inequalities are finite. For simplicity of notation, we
write Y instead of ReY for the weights on the right sides.

Proof of Lemma 4.2 We first observe that for an analytic function f(x, Y ) defined on T × Ω̃µ, with
Y = y/ε, the function (x, y) -→ f(x, y/ε) is analytic in Ωµ, since y ∈ Ωµ implies Y ∈ Ω̃µ. This observation
is used throughout the proof.

Since the Yλ,µ norm contains an L1 norm with respect to the y variable along the polygonal path ∂Ωθ

with θ < µ, and since we have dy = εdY and (1 + ReY )− 3
2 ∈ L1

Y , we have a useful bound

‖f(x, Y )‖Yλ,µ ≤ ‖(1 + ReY )−3/2‖L1
µ
‖(1 + ReY )3/2f(x, Y )‖Pλ,µ,∞

" ε‖(1 + Y )3/2f(x, Y )‖Pλ,µ,∞ , (4.12)

where the implicit constant is universal, and we omitted the real part of the weight appearing on the
right side. Next, we note that by the definition of the domain Ωµ, we have

‖f(x, y)‖Yλ,µ " ‖f(x, y)‖Yλ,µ,∞ , (4.13)

where the implicit constant is universal. The above two estimates bound the L1-based analytic norm, in
terms of those based on L∞.

Next, we consider product estimates, and start with (4.11a). Again, using that y ∈ Ωµ implies Y =
y/ε ∈ Ω̃µ, from the Hölder inequality we obtain

‖fg‖Yλ,µ =
∑

ξ

‖eλ(1+µ−y)+|ξ|
∑

ξ′

fξ′(Y )gξ−ξ′(y)‖L1
µ

≤
∑

ξ

∑

ξ′

‖eλ(1+µ−y)+|ξ−ξ′|gξ−ξ′(y)‖L1
µ

sup
Y ∈Ω̃µ

|fξ′(Y )eλ(1+µ)|ξ′||

≤ ‖g‖Yλ,µ‖f‖Pλ,µ,∞ .

Similarly for (4.11b), we appeal to the above argument and to the proof of (4.12), to obtain

‖fg‖Yλ,µ ≤
∑

ξ

∑

ξ′

‖eλ(1+µ)|ξ′|fξ′(Y )‖L1
µ
sup
y∈Ωµ

|eλ(1+µ−y)+|ξ−ξ′|gξ−ξ′(y)|

≤ ε‖(1 + Y )3/2f‖Pλ,µ,∞‖g‖Yλ,µ,∞ . (4.14)

The inequality (4.11c) is a consequence of the Hölder inequality in y on the domain Ωµ.
In order to prove the bound (4.11d), we note that by the definition of the Sµ norm in (4.7), Hölder’s

inequality in y, and the fact that y ≥ 1 + µ implies that Y = y/ε ≥ (1 + µ)/ε ≥ 1/ε, we deduce that

‖fg‖Sµ
≤

∑

ξ

∑

ξ′

‖fξ′‖L∞(y≥1+µ) ‖ygξ−ξ′‖L2(y≥1+µ)

≤ ‖g‖Sµ

∑

ξ

εθ
∥∥Y θfξ

∥∥
L∞(Y ≥1/ε)

≤ ‖g‖Sµ
εθ

∥∥Y θfξ

∥∥
Pλ,µ,∞

,

for any λ, θ ≥ 0. In a similar fashion we may establish (4.11e) as

‖fg‖Sµ
≤

∑

ξ

∑

ξ′

ε ‖Y fξ′‖L∞(y≥1+µ) ‖gξ−ξ′‖L2(y≥1+µ)
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≤
∑

ξ

εθ
∥∥Y θfξ

∥∥
L∞(Y ≥1/ε)

∑

ξ′′

‖gξ′′‖L2(y≥1+µ)

" εθ
∥∥Y θfξ

∥∥
Pλ,µ,∞

(
‖g‖L2(y≥1/2) + ‖∂xg‖L2(y≥1/2)

)
,

where in the last inequality we have used Plancherel, and the fact (1+ |ξ′′|)−1 ∈ )2ξ′′ . The proof of (4.11f)
is similar as we have

‖fg‖Sµ
≤

∑

ξ

∑

ξ′

ε2
∥∥Y 2fξ′

∥∥
L∞(y≥1+µ)

∥∥y−1gξ−ξ′
∥∥
L2(y≥1+µ)

≤
∑

ξ

εθ
∥∥Y θfξ

∥∥
L∞(Y ≥1/ε)

∑

ξ′′

‖gξ′′‖L∞(y≥1+µ)

" εθ
∥∥Y θfξ

∥∥
Pλ,µ,∞

(
‖g‖L2

xL
∞
y (y≥1/2) + ‖∂xg‖L2

xL
∞
y (y≥1/2)

)

since ‖y−1‖L2(y≥1+µ) " 1.
The last inequality, (4.11g) follows directly from the definition (4.7) and Hölder’s inequality

‖fg‖Sµ
≤

∑

ξ

∑

ξ′

‖yfξ′‖L2(y≥1+µ) ‖gξ−ξ′‖L∞(y≥1+µ) ≤ ‖f‖Sµ

(
‖g‖L2

xL
∞
y (y≥1+µ) + ‖∂xg‖L2

xL
∞
y (y≥1+µ)

)
,

which concludes the proof. #

Next, we recall the following elliptic estimates for the velocity; for a proof, we refer the reader to [40,
Lemma 6.3] and [41, Lemmas 4.2 and 5.1].

Lemma 4.3 (Elliptic estimates). Let (u, v) be the velocity obtained from the vorticity ω via the Biot-Savart
law, cf. (7.35)–(7.36) with g = 0. For µ ∈ (0, µ∗ − γ∗t) and λ ∈ (0,λ∗], we have the estimates

‖∂i
x(y∂y)ju‖Yλ,µ,∞ " ‖∂i+j

x ω‖Yλ,µ∩Sµ + j
(
‖ω‖Yλ,µ + ‖y∂yω‖Yλ,µ

)

and ∥∥∥∥∂i
x(y∂y)j

(
v

y

)∥∥∥∥
Yλ,µ,∞

" ‖∂i+1
x ω‖Yλ,µ∩Sµ ,

for all non-negative integers i, j such i+ j ≤ 1. For the Sobolev norm away from the boundary, one has
∑

i+j=3

(
‖∂i

x∂j
yu‖L2

x,y(y≥1/4) + ‖∂i
x∂j

yv‖L2
x,y(y≥1/4)

)
" |||ω|||t

and
∑

i+j≤2

(
‖∂i

x∂j
yu‖L∞

x,y(y≥1/4) + ‖∂i
x∂j

yv‖L∞
x,y(y≥1/4)

)
" |||ω|||t , (4.15)

for all t ∈ [0, T∗].

5. Uniform Analyticity of the Euler Solution in a Strip

In this section, we estimate the solution of the Euler Eqs. (1.5)–(1.6) posed on the half-space H = T×R+

with the boundary condition (2.2) and the initial condition (2.1). We require the initial data to be
uniformly analytic in x and y near the boundary. Away from the boundary, i.e., for y ≥ 2, we only
require Sobolev regularity. These assumptions are stated in terms of the initial vorticity ωE

0 . Namely, we
assume that ωE

0,ξ(y) is analytic in the domain {y ∈ C : 0 < Re y < 2, |Im y| ≤ 2} with values in the L1
ξ

space with the weight eλ0|ξ|, is continuous on the closure, and satisfies
∑

ξ∈Z
eλ0|ξ| sup

0≤Re y≤2,|Im y|≤2
|ωE

0,ξ(y)|+
∑

i+j≤4

∥∥y∂i
x(y∂y)jωE

0

∥∥
L2(y≥1/2)

" 1 , (5.1)
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for some λ0 ∈ (0, 1]. We allow all the constants to depend on λ0. Note that ωE
0 satisfies the assumptions

on the initial data in [40, Theorem 3.1]. Our goal in this section is to establish the bounds stated in
Lemma 5.7 below. To this end, we first prove that if the initial Euler data satisfies (5.1), then the solution
of the Euler equations remains analytic near the boundary, locally in time.

Therorem 5.1. Assume that (5.1) holds, and let ωE be the vorticity corresponding to the unique solution
of the Cauchy problem for the Euler equations (1.5)–(1.6), (2.1), with the initial vorticity ωE

0 . Then there
exists T0 ∈ (0, 1] such that

∑

i+j≤4

‖y∂i
x∂j

yω
E(t)‖2L2(y≥1/2) " 1 (5.2)

and
∑

0≤i+j≤4

‖∂i
x∂j

yu
E(t)‖L2

x,y(y≥1/2) +
∑

0≤i+j≤3

‖∂i
x∂j

yu
E(t)‖L∞

x,y(y≥1/2) " 1 , (5.3)

for t ∈ [0, T0]. Moreover, the vorticity ωE and the velocity uE are uniformly real-analytic in (x, y) ∈
T × [0, 1] in the sense that there exists a constant ζ0 ∈ (0, 1] such that

∑

i,j

ζi+j
0

(i+ j)!
‖∂i

x∂j
yω

E‖L∞(T×[0,1]) " 1 (5.4)

and
∑

i,j

ζi+j
0

(i+ j)!
‖∂i

x∂j
yu

E‖L∞(T×[0,1]) " 1 , (5.5)

for t ∈ [0, T0].

The inequalities (5.4) and (5.5) assert the uniform analyticity up to y = 0, instead of only analyticity
in a wedge.

We divide the proof of Theorem 5.1 into several steps. First, we obtain the interior analyticity of
solutions, which is asserted in the next lemma.

Lemma 5.2. Assume that ωE
0 satisfies (5.1). Then there exist constants T0, µ0 ∈ (0, 1] and C ≥ 1 such

that we have (5.2), (5.3), and
∑

ξ

e|ξ|/C |ωE
ξ (t, y)| " 1, y ∈ Ωµ0 ∩ {y : 1/2 < Re y < 1 + µ0} , (5.6)

for all t ∈ [0, T0].

Proof of Lemma 5.2 In order to apply [40, Theorem 3.1], note that we have
∑

i+j≤2

(
∥∥∂i

x(y∂y)jω0

∥∥
Yε0,1

+
∥∥∂i

x(y∂y)jω0

∥∥
Yε0,1,∞

) +
∑

i+j≤3

∥∥y∂i
x(y∂y)jωE

0

∥∥
L2(y≥1/2)

" 1 ,

where ε0 = λ0/2, i.e., the condition (3.1) in [40, Theorem 3.1] is fulfilled. Therefore, for every ε ∈ (0, 1]
sufficiently small there exists a unique solution to the Navier-Stokes equations ωNS,ε, with the initial data
ωE
0 on a uniform in ε time interval [0, T0], and on this interval the solutions ωNS,ε are uniformly bounded

and analytic in Ωµ0 , i.e.,

‖max{ε,Re y}ωNS,ε‖Yε0,µ0,∞ " 1 , (5.7)

for some µ0 ∈ (0, 1] which is independent of ε; additionally, by [40],

ωNS,ε → ωE in C([0, T0], L2(H)) asε → 0. (5.8)
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Note that this solution is different than the one in (2.12) since it starts from a different initial data. Using
(5.7), we get a uniform in ε bound

∑

ξ

eε0(1+µ0−Re y)|ξ| max{ε,Re y}|ωNS,ε
ξ (t, y)| " 1, y ∈ Ωµ0 , t ∈ [0, T0] ,

which implies
∑

ξ

eε0µ0|ξ|/2|ωNS,ε
ξ (t, y)| " 1,

1
2
< Re y < 1 +

µ0

2
, y ∈ Ωµ0 , (5.9)

for every t ∈ [0, T0]. We next claim that the Euler solution satisfies
∑

ξ

eε0µ0|ξ|/4|ωE
ξ (t, y)| " 1,

1
2
< Re y < 1 +

µ0

2
, y ∈ Ωµ0 , (5.10)

for t ∈ [0, T0]. To prove (5.10), first observe that we have (5.8). Fix any t0 ∈ [0, T0] and m0 ∈ N. Due
to the uniform bound (5.9) at time t0, we may apply the vector version of Montel’s theorem and deduce
that there exists an analytic function f on Ω0 = {y ∈ Ωµ0 : 1/2 < Re y < 1 + µ0/2} with values in the
space of functions g such that

∑

ξ

eε0µ0|ξ|/4|g(t, y)| < ∞,
1
2
< Re y < 1 +

µ0

2
, y ∈ Ωµ0 (5.11)

and a sequence ε1, ε2, . . . → 0 such that ωNS,εj (t0) converges to f uniformly on compact subsets of Ω0,
with values in the space corresponding to (5.11). By the uniform bound

m0∑

ξ=−m0

eε0µ0|ξ|/2|ωNS,ε
ξ (t, y)| " 1,

1
2
< Re y < 1 +

µ0

2
, y ∈ Ωµ0 ,

for every m0 ∈ N (which is a consequence of (5.9) at t = t0) for ε = ε1, ε2, . . ., the function f also satisfies
the same bound. Finally, note that f = {ωE

ξ (t0)}
m0
ξ=−m0

by ωNS,ε → ωE in C([0, T0], L2(H)), and we
obtain

m0∑

ξ=m0

eε0µ0|ξ|/2|ωE
ξ (t, y)| " 1,

1
2
< Re y ≤ 1 +

µ0

2
, y ∈ Ωµ0

at t = t0, and t0 ∈ [0, T0]. Since m0 ∈ N is arbitrary, we obtain (5.10) and (5.6) by replacing µ0 with
µ0/2.

Next, we establish (5.2), which is obtained using a weighted Sobolev estimate with a weight φ(y) =
(y2 + 1)1/2. First, note that

∑

|α|≤4

‖∂αω‖2L2 +
∑

|α|≤5

‖∂αu‖2L2 " 1 , (5.12)

by the local H4 existence. The weighted energy ψ =
∑

|α|≤4

∫
|∂αω|φ2 satisfies

1
2
d

dt
ψ = 2

∑

|α|=4

∫
|∂αω|2φu · ∇φ −

∑

|α|≤4,0≤β≤α,|β|≤2,(|α|,β) ,=(4,0)

∫
∂βu · ∇∂α−βω∂αωφ2

−
∑

|α|≤4,0≤β≤α,|β|≥3

∫
∂βu · ∇∂α−βω∂αωφ2 .

All the terms are estimated in a straight-forward way by (5.12) and using that all the derivatives of φ
are uniformly bounded. For the first term, we estimate the integral by ‖∂αωφ‖L2‖∂αω‖L2‖u‖L∞ , for the
second term, we bound the integral by ‖∂βu‖L∞‖D|α|−|β|+1ωφ‖L2‖∂αωφ‖L2 , while the integral in the
third term by ‖∂βu‖L∞‖D|α|−|β|+1ωφ‖L2‖∂αωφ‖L2 . We omit further details.

Finally, the inequality (5.3) follows by the Biot-Savart law as in the proof of [41, Lemma 5.1]. #
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Next, we provide estimates on a solution of the Euler equation in the region T × [0, 1] in the analytic
norm

‖ω‖Ãτ
=

∑

|α|≥3

τ |α|−3

(|α| − 3)!
δ̃α1 δ̄α2‖∂αω‖L2(T×[0,1]) , (5.13)

where α = (α1,α2) and τ > 0. In (5.13), the parameters δ̃, δ̄ ∈ (0, 1] are constants such that

δ̃, δ̄ ≤ 1
C

and δ̄ ≤ δ̃

C
, (5.14)

for a sufficiently large constant C, determined in the proof of Lemma 5.6 below. Also, denote by

‖ω‖B̃τ
=

∑

|α|≥4

τ |α|−3

(|α| − 2)!
δ̃α1 δ̄α2‖∂αω‖L2(T×[0,1])

the corresponding dissipative analytic norm.
The following statement provides an estimate for the Euler vorticity in a uniform analytic norm up

to the boundary.

Lemma 5.3. Assume that ωE
0 satisfies (5.1), and suppose that ωE is a solution of the Euler equations,

with the initial data ωE
0 , such that (5.2), (5.3), and (5.6) hold for t ∈ [0, T0], for some constant T0 > 0.

With δ̃, δ̄ as in (5.14), the function ωE satisfies

sup
0≤t≤T0

‖ωE(t)‖Ã1/C
" 1 , (5.15)

where C ≥ 1 is a sufficiently large constant.

Recall that all constants depend only on λ0. Note that since ω0 ∈ H4, by the local existence theory
for the Euler equations, by potentially reducing the value of the parameter T0 from Lemma 5.2, we have

‖ωE(t)‖H4 , ‖uE(t)‖H5 " 1, t ∈ [0, T0] . (5.16)

Before the proof of Lemma 5.3, we state two auxiliary results. In the first one, we show that the analytic
norm in T × [1/2, 1 + µ0/2] of the Euler vorticity is bounded.

Lemma 5.4. Assume that ωE
0 and ωE are is in Lemma 5.3, and let µ0, T0 be as in Lemma 5.2 and (5.16).

Then we have
∑

|α|≥3

τ |α|−3

(|α| − 3)!
δ̃α1 δ̄α2‖∂αωE‖L2(T×[1/2,1+µ0/2]) " 1 ,

for t ∈ [0, T0], provided δ̃, δ̄ ≤ 1/C for a sufficiently large constant C.

Proof of Lemma 5.4 Fix t ∈ [0, T0], and denote ω = ωE. By (5.6), we have
∑

ξ∈Z
eλ0|ξ|/C |∂i

yω0,ξ(y)| " Cii!, y ∈ [1/2, 1 + µ0/2], i ∈ N0 , (5.17)

omitting indicating the dependence on t. Therefore,
1

(|α| − 3)!
‖∂α1

x ∂α2
y ω‖L2(T×[0,1]) " 1

(|α| − 3)!

∑

ξ

‖ξα1∂α2
y ω‖L2

y(0,1)

" Cα1α1!
(|α| − 3)!

∑

ξ

eλµ0|ξ|/C‖∂α2
y ω‖L2

y(0,1)
" Cα1α1!

(|α| − 3)!

∑

ξ

eλµ0|ξ|/C‖∂α2
y ω‖L∞

y (0,1)

" Cα1Cα2α1!α2!
(|α| − 3)!

" C|α||α|!
(|α| − 3)!

" C|α| ,

where we used (5.17) in the fourth inequality. #
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In order to bound the analytic norm of the velocity by the vorticity in a strip (cf. Lemma 5.6 below),
we first need to control the analyticity of vE at y = 1. For τ > 0, denote by

‖g‖Āτ
=

∑

i≥2

‖∂i
xg‖H1/2(T)

τ i−2

(i − 2)!

the boundary analytic norm of a function g defined on T.

Lemma 5.5. Let ωE be as in Lemma 5.3. Then we have

‖vE|y=1‖Ā1/C
" 1, t ∈ [0, T0] , (5.18)

for a sufficiently large constant C.

Proof of Lemma 5.5 As in the proof of Lemma 5.4, we have
∑

|α|≥3

1
C|α|

τ |α|−3

(|α| − 3)!
‖∂αωE‖L2(T×[ 12 ,

3
2 ])

" 1 . (5.19)

where C is a sufficiently large constant. Now, the component vE satisfies the elliptic equation

∆vE = ∂xωE ,

and then the local elliptic analytic regularity, the bound (5.19), and the Sobolev estimate (5.2) imply
∑

α∈N2
0

‖∂αvE‖L2(T×[ 34 ,
5
4 ])

1
C|α|

τ (|α|−3)+

(|α| − 3)!
" 1 , (5.20)

with a possibly larger C. The bound (5.20) then gives (5.18) by using the trace inequality, upon enlarging
the constant C. #

In the proof of Lemma 5.3, we need to estimate the velocity in terms of the vorticity in the analytic
norm. It is important that we provide an estimate with the same analyticity radius; thus, simply appealing
to the analytic regularity of the div-curl system is not sufficient.

Lemma 5.6 (Elliptic estimates in analytic spaces). For t ∈ [0, T0], denote ω = ωE(t). Assume that

‖ω‖H3 , ‖ω‖Ãτ
, ‖g‖Āτ

< ∞ ,

for some constant τ ∈ (0, 1]. Then the function u = (u, v) = uE is the solution of the elliptic system

divu = 0
curlu = ω

with the boundary conditions

v|y=0 = 0
v|y=1 = g , (5.21)

and we have

‖u‖Ãτ
" ‖ω‖H3 + ‖ω‖Ãτ

+ ‖g‖Āτ
, (5.22)

provided δ̃ and δ̄ satisfy (5.14) for a sufficiently large C.

Applying (5.22) to (5.16) and (5.18), we get

‖uE‖Ã1/C
" ‖ωE‖Ã1/C

+ 1, t ∈ [0, T0] , (5.23)

where C is sufficiently large.
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Proof of Lemma 5.6 We start with an estimate for v, which satisfies the Laplace equation

∆v = ∂xω

with the boundary conditions (5.21). Denote

φ(v) =
∑

i+j≥3

δ̃iδ̄jτ i+j−3

(i+ j − 3)!
‖∂i

x∂j
yv‖L2 , (5.24)

where, unless otherwise indicated, the norm is understood to be over the set T× [0, 1]. To treat the sum
(5.24), we employ derivative reduction estimates as follows. For large values of j, we use

‖∂i
x∂j

yv‖L2 " ‖∂i+1
x ∂j−2

y ω‖L2 + ‖∂i+1
x ∂j−1

y v‖L2 + ‖∂i+1
x ∂j−2

y v‖L2 + ‖∂i
x∂j−1

y v‖L2 , j ≥ 2 , (5.25)

while for small values,

‖∂i
x∂yv‖L2 " ‖∂i

xω‖L2 + ‖∂i−1
x g‖H3/2(Γ), i ≥ 2 ,

where Γ = {(x, y) : y = 1} and

‖∂i
xv‖L2 " ‖∂i−1

x ω‖L2 + ‖∂i−2
x g‖H3/2(Γ), i ≥ 3 ; (5.26)

all three reductions (5.25)–(5.26) follow by using the H2 elliptic regularity for the Laplacian. Now, we
replace the inequalities (5.25)–(5.26) in the sum (5.24) according to the values of j obtaining,

φ(v) "
∑

i+j≥3;j≥2

cij(‖∂i+1
x ∂j−2

y ω‖L2 + ‖∂i+1
x ∂j−1

y v‖L2 + ‖∂i+1
x ∂j−2

y v‖L2 + ‖∂i
x∂j−1

y v‖L2)

+
∑

i≥2

ci1(‖∂i
xω‖L2 + ‖∂i−1

x g‖H3/2(Γ)) +
∑

i≥3

ci0(‖∂i−1
x ω‖L2 + ‖∂i−2

x g‖H3/2(Γ)) ,

where we denoted

cij =
δ̃iδ̄jτ i+j−3

(i+ j − 3)!
.

Next, we re-index the sums. All the terms involving v may be absorbed into the left hand side under the
condition (5.14), where C is a sufficiently large constant, except for some lower order terms, which may
be controlled by ‖v‖H4 . Thus we obtain

φ(v) " ‖ω‖H3 + τ‖ω‖Ãτ
+ ‖g‖Ā(τ)

since ‖v‖H4 " ‖ω‖H3 , completing the inequality for v.
In order to treat the first component of the velocity, we split the sum φ(u) into the sums over regions

i ≥ 1 and i = 0. For the first sum, we use the divergence-free condition ∂xu = −∂yv and obtain

∑

i+j≥3;i≥1

cij‖∂i
x∂j

yu‖L2 "
∑

i+j≥3;i≥1

cij‖∂i−1
x ∂j+1

y v‖L2 " ‖v‖H3 +
δ̃

δ̄
φ(v) , (5.27)

while for i = 0, we use ∂yu = ∂xv − ω and write
∑

i+j≥3;i=0

cij‖∂i
x∂j

yu‖L2 =
∑

j≥3

δ̄jτ j−3

(j − 3)!
‖∂j

yu‖L2 "
∑

j≥3

δ̄jτ j−3

(j − 3)!
‖∂x∂j−1

y v‖L2 +
∑

j≥3

δ̄j

(j − 3)!τ j−3
‖∂j−1

y ω‖L2 .

(5.28)

Summing (5.27) and (5.28), we get φ(u) " ‖ω‖H3 + τ‖ω‖Ãτ
+ ‖g‖Ā(τ), and we obtain (5.22) for u. #

Proof of Lemma 5.3 First, observe that the bound on the first term in (5.1) implies
∑

|α|≥3

1
C|α|(|α| − 3)!

‖∂αωE
0 ‖L2(T×[0,1]) " 1 ,
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from where

‖ωE
0 ‖Ãτ0

" 1 , (5.29)

regardless of the values of δ̃, δ̄ ∈ (0, 1]. Note that the solution ω = ωE satisfies

∂tω + u · ∇ω = 0 , (5.30)

where u = (u, v) = (uE, vE) is the Euler velocity. Let τ(t) = τ0 − Ct, where C ≥ 1 is a sufficiently large
constant determined below. By the product rule, we have

d

dt
‖ω‖Ãτ

= τ ′(t)‖ω‖B̃τ
+

∑

|α|≥3

τ |α|−3

(|α| − 3)!
δ̃α1 δ̄α2

d

dt
‖∂αω‖L2(T×[0,1]) . (5.31)

Next, we compute the time derivative of ‖∂αω‖L2(T×[0,1]). With α ∈ N0 such that |α| ≥ 3, apply ∂α to
(5.30), multiply by ∂αω, and integrate by parts, obtaining

1
2
d

dt
‖∂αω‖2L2 = −

∑

0<β≤α

(
α

β

) ∫

T×[0,1]
(∂βu · ∇∂α−βω)∂αωdxdy −

∫

T×[0,1]
u · ∇

(
|∂αω|2

2

)
dxdy

= −
∑

0<β≤α

(
α

β

) ∫

T×[0,1]
(∂βu · ∇∂α−βω)∂αωdxdy −

∫

T
v(t, x, 1)

|∂αω(t, x, 1)|2

2
dx

≤
∑

0<β≤α

(
α

β

)
‖∂βu · ∇∂α−βω‖L2‖∂αω‖L2 +Aα(t) , (5.32)

where

Aα(t) = −1
2

∫

T
v(t, x, 1)|∂αω(t, x, 1)|2dx

denotes the boundary term resulting from integration by parts. Since for all (t, x) we have

− 1
2
v(t, x, 1)|∂αω(t, x, 1)|2 = −1

2

∫ 1

0
∂y(v(∂αω)2)dy = −1

2

∫ 1

0

(
∂yv(∂αω)2 + 2v∂y(∂αω)∂αω

)
dy

" ‖∇u‖L∞
y (0,1)‖∂αω‖2L2

y(0,1)
+ ‖u‖L∞(0,1)‖∂y∂

αω‖L2(0,1)‖∂αω‖L2
y(0,1)

,

we obtain by (5.16)

Aα(t) " ‖∇v‖L∞‖∂αω‖2L2 + ‖v‖L∞‖∂y∂
αω‖L2‖∂αω‖L2

" ‖∂αω‖2L2 + ‖∂y∂
αω‖L2‖∂αω‖L2 . (5.33)

Combining (5.31), (5.32), and (5.33), we get
d

dt
‖ω‖Ãτ

− τ ′(t)‖ω‖B̃τ

" ‖ω‖Ãτ
+

∑

|α|≥3

τ |α|−3δ̃α1 δ̄α2

(|α| − 3)!

∑

0<β≤α

(
α

β

)
‖∂βu · ∇∂α−βω‖L2 +

∑

|α|≥3

‖∂y∂
αω‖L2

τ |α|−3

(|α| − 3)!
, (5.34)

on the interval [0, T0] ∩ [0, τ0/C). Using the product rules for analytic norms as in [38], we obtain
d

dt
‖ω‖Ãτ

− τ ′(t)‖ω‖B̃τ
" ‖ω‖Ãτ

+ (1 + ‖u‖H2 + ‖u‖Ãτ
)(‖ω‖H3 + ‖ω‖B̃τ

) .

This inequality, together with (5.16) and (5.23), leads to
d

dt
‖ω‖Ãτ

− τ ′(t)‖ω‖B̃τ
" ‖ω‖Ãτ

+ (1 + ‖ω‖Ãτ
)(1 + ‖ω‖B̃τ

) .

Under the assumption

τ ′(t) + C‖ω‖Ãτ
≤ 0 ,
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where C is a sufficiently large constant, we obtain
d

dt
‖ω‖Ãτ

" 1 + ‖ω‖2
Ãτ

.

Now, noting also that we have a bound (5.29) for ωE
0 , we conclude by a simple application of a Grönwall

argument. #
Proof of Lemma 5.1 Since the inequalities (5.2) and (5.3) are established in Lemma 5.2 above, we only
need to prove (5.4) and (5.5). For simplicity, denote u = uE and ω = ωE. By (5.15) in Lemma 5.3, there
exists a constant ζ0 such that

∑

|α|≥4

ζ |α|−4
0

(|α| − 2)!
δ̃α1 δ̄α2‖∂αω‖L2(T×[0,1]) " 1, t ∈ [0, T1] . (5.35)

Since δ̃ and δ̄ are constants, we may reduce ζ0 to obtain
∑

|α|≥4

ζ |α|−4
0

(|α| − 2)!
‖∂αω‖L2(T×[0,1]) " 1, t ∈ [0, T1] .

Finally, we may use Agmon’s inequality to bound ‖ω‖L∞(T×[0,t]) in terms of the L2 norms and further
decrease ζ0 to get (5.4) for t ∈ [0, T1]. Finally, by (5.23) and (5.35), we get

∑

m≥4

ζm−4
0

(m − 2)!

∑

|α|=m

δ̃α1 δ̄α2‖∂αu‖L2(T×[0,1]) " 1, t ∈ [0, T1] ,

from where, using the same arguments as for the vorticity, we obtain (5.5). #
From Theorem 5.1, we obtain the next statement. The bounds (5.36)–(5.38) in the theorem are used

when estimating the remainder of the Prandtl asymptotic expansions.

Lemma 5.7. Assume that (5.1) holds. Then there exist constants T1 ∈ (0, 1],λ1 ∈ (0,λ0/2], and µ1 ∈
(0, µ0], such that for all λ ∈ [0,λ1], µ ∈ [0, µ1], and all t ∈ [0, T1], we have for the Euler vorticity

‖∂i
x∂j

yω
E‖Yλ,µ,∞ + ‖∂i

x∂j
yω

E‖Yλ,µ " 1 , (5.36)

for the first velocity component there holds

‖∂i
x∂j

yu
E‖Yλ,µ,∞ +

∥∥∥∥
∂i
xu

E − ∂i
xU

E

y

∥∥∥∥
Yλ,µ,∞

" 1 , (5.37)

while for the second velocity component we have

‖∂i
x∂j

yv
E‖Yλ,µ,∞ +

∥∥∥∥
1
y
∂i
xv

E

∥∥∥∥
Yλ,µ,∞

+
∥∥∥∥

∂i
xv

E + y∂i+1
x UE

y2

∥∥∥∥
Yλ,µ,∞

" 1 , (5.38)

for all i+ j ≤ 3, where the implicit constants depend on i and j. Moreover, for the Euler trace UE defined
in (2.3), we have

∑

ξ

eλ|ξ||UE
ξ | " 1 , (5.39)

for t ∈ [0, T1] and λ ∈ [0,λ1].

Proof of Lemma 5.7 Let T1 ∈ (0, 1] be the constant T0 in (5.15). For simplicity of presentation, we shall
establish the inequality (5.36) for the first term when i = j = 0. The general case, as well as the
inequalities (5.37)–(5.39), follow from Theorem 5.1 in the same way. Using the definition of the Yλ,µ,∞
norm, we need to prove

∑

ξ∈Z
eλ(1+µ)|ξ||ωE

ξ (t, y)| " 1 , (5.40)



47 Page 20 of 46 I. Kukavica et al. JMFM

for y ∈ Ωµ ∩ {Re y ≤ 1} and t ∈ [0, T1], where λ and µ are sufficiently small constants. Fix t ∈ [0, T1]. For
j ∈ N0, denote

aj,ξ = sup
0≤y≤1+µ

|∂j
yω

E
ξ (t, y)| .

(Note that the supremum is taken among the real values of y.) Using Agmon’s inequality in the variable
y and (5.4), we have

|∂j
yω

E
ξ (t, y)| " ‖∂j

yω
E
ξ ‖L2

y(0,1+µ) + ‖∂j+1
y ωE

ξ ‖L2
y(0,1+µ) " j!

ζj0
+

(j + 1)!
ζj+1
0

" (j + 1)!
ζj0

" 2jj!
ζj0

,

for j ∈ N0. Therefore, for R0 ≤ ζ0/2, we obtain the bound
∞∑

j=0

aj,ξ
j!

Rj
0 " 1 . (5.41)

Next, define

fξ(t, y) =
∞∑

j=0

∂j
yω

E
ξ (t,Re y)
j!

(y − Re y)j , |y − Re y| < R0, ξ ∈ Z .

By (5.41), we have

|fξ(t, y)| ≤
∞∑

j=0

aj
j!
Rj

0 " 1 ,

and thus the function fξ(t, y) is holomorphic in the region

S0 =
{
y ∈ C : |Im y| ≤ R0, 0 ≤ Re y < 1

}
∪

{
y ∈ C : |Im y| ≤ 1 − R0, 1 ≤ Re y < 1 +R0

}
.

Since fξ(t, y) = ∂yωE
ξ (t, y) on the segment [0, 1], by unique analytic continuation, we have

fξ(t, y) = ∂yω
E
ξ (t, y) on S0 ∩ Ωµ .

Now, choose µ1 sufficiently small so that the domain Ωµ1 lies inside the region S0. For y ∈ Ωµ1 , we then
have

∑

ξ∈Z
eλ(1+µ1)|ξ||ωE

ξ (t, y)| "
∑

ξ∈Z
eλ(1+µ1)|ξ|

∞∑

j=0

aj,ξ
j!

Rj
0

"
∞∑

i=0

(λ(1 + µ1))i|ξ|i

i!

∞∑

j=0

aj,ξ
j!

Rj
0 "

∞∑

i,j=0

|ξ|iaj,ξ
(i+ j)!

(λ(1 + µ1))iRj
0 " 1 ,

and the inequality (5.40) is proven provided λ and µ are sufficiently small constants. #

6. Size of the Prandtl Solution in Analytic Norms

The initial datum for the Prandtl equation (ũP
0 , v̄

P
0 ) is given by the boundary layer part of the Navier-

Stokes initial datum, cf. (2.13)–(2.14). In view of the definitions (2.6), (2.7), and (2.10), this initial Prandtl
velocity may be computed from the tangential Euler trace UE

0 (which is known; cf. Sect. 5), and from the
initial Prandtl vorticity ΩP

0 . We assume that the initial Prandtl vorticity is real-analytic and satisfies

‖ΩP
0 ‖Aλ0/2 " 1 , (6.1)

with λ0 > 0 as in (5.1), and where we denote the analytic norm Aτ as

‖ΩP‖2Aτ
=

∑

|α|≥0

τ2|α|κ2α2

(|α| − 4)!2
‖(1 + Y )γY α2DαΩP‖2L2 . (6.2)
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At this stage, we also introduce a dissipative analytic norm Bτ , given by

‖ΩP‖2Bτ
=

∑

|α|≥5

|α|τ2|α|κ2α2

(|α| − 4)!2
‖(1 + Y )γY α2DαΩP‖2L2 . (6.3)

The parameter κ ∈ (0, 1] is introduced in order to deal with the dissipative term ∂Y Y in the analytic
estimate for the Prandtl system; one may for instance set κ = 1/8. The parameter τ > 0 is related to the
analyticity radius of ΩP.

Remark 6.1 (Example of a compatible initial datum). An example of a compatible Prandtl datum is
given by (2.15), so that the initial vorticity equals

ΩP
0 (x, Y ) = UE

0 (x)ϕ
′′(Y ) , (6.4)

where the function ϕ in (6.4) is assumed to satisfy
∑

n≥0

(λ0κ)2n

(n − 4)!2
‖(1 + Y )γY n∂n+2

Y ϕ‖2L2([0,∞)) " 1 , (6.5)

and the parameter λ0 is as in (5.1). With ϕ satisfying (6.5) and with the assumption (5.1) for ωE
0 , which

implies via the Biot-Savart law UE
0,ξ =

∫ ∞
0 e−|ξ|zωE

0,ξ(z)dz (see e.g. (7.35) with g ≡ 0 evaluated at y = 0)
that UE

0 is real-analytic with respect to x with radius λ0, we obtain that ΩP
0 in the definition (6.4) satisfies

the condition (6.1).

Having assumed in (6.1) that the initial Prandtl vorticity is real-analytic, and since in Lemma 5.7 we
have already shown that the Euler trace UE is real-analytic on [0, T1], by using analytic energy estimates
similar to those in [37] and [39] we may show that there exists T2 ∈ (0, T1] and a real-analytic solution of
the Prandtl system (2.8)–(2.9) on [0, T2]. More precisely, in light of (6.1) and (5.39), we may set

τ0 =
1
2
min

{
λ0

2
,λ1

}
=

λ1

2

and conclude that there exists T2 ∈ (0, T1] and an analytic solution ΩP to the Prandtl Eqs. (2.8)–(2.9)
with analyticity properties quantified in the following way. There exists a decreasing function τ = τ(t)
(different than the one from Sect. 5) on [0, T2] such that τ(0) = τ0 and

τ(t) ≥ τ(T2) ≥ τ0
2

=
λ1

4
, t ∈ [0, T2] , (6.6)

with ΩP satisfying

sup
t∈[0,T2]

‖ΩP(t)‖2Aτ(t)
+

∫ T2

0

(
‖∂Y ΩP(τ)‖2Aτ(t)

+ ‖ΩP(τ)‖2Bτ(t)

)
dt " 1 . (6.7)

The term involving ‖∂Y ΩP(τ)‖2Aτ(t)
results from the dissipation ∂Y Y ΩP in (2.8), while the one with

‖ΩP(τ)‖2Bτ(t)
from the decay in analyticity radius. Note that since all constants are allowed to depend on

λ1, and since the lower bound (6.6) holds, we have

T2 ∼ 1 and τ(t) ∼ λ1 ∼ 1 .

While the bound (6.7) provides analytic estimates for the Prandtl solution, these estimates are with
respect to the Aτ and Bτ energy-type norms from (6.2)–(6.3). However, in order to bound the error
vorticity ωe, which is forced by the Prandtl solution via (3.17)–(3.19), we need to estimate the size of the
Prandtl solution in the norm Pλ,µ,∞. This is achieved in the next statement.

Lemma 6.1. Let λ2 = λ1
32 , µ2 = λ1κ

32 ≤ 1, and γ ≥ 4, and assume that (6.7) holds. Then, for any
λ ∈ (0,λ2], any µ ∈ (0, µ2], and for all i, j ∈ N0 the following bounds hold. For the classical Prandtl
vorticity we have the pointwise in time estimates

‖(1 + Y )γ−1Y j+1∂i
x∂j

Y ΩP‖Pλ,µ,∞ " 1 , (6.8)
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for the first component of the Prandtl velocity we have

‖(1 + Y )γ− 3
2 ∂i

xũ
P‖Pλ,µ,∞ +

∑

ξ∈Z
eλ(1+µ)|ξ|

∫ ∞

0

∣∣(∂i
xũ

P)ξ
∣∣ dY " 1 , (6.9)

while for the second component of the velocity
∥∥∥∥

∂i
xv

P

Y

∥∥∥∥
Pλ,µ,∞

+ ‖(1 + Y )γ− 5
2 ∂i

xv̄
P‖Pλ,µ,∞ " 1 , (6.10)

uniformly on [0, T2], where the implicit constants are allowed to depend on i and j. In addition, we have
the integrated in time estimate

∫ T2

0
‖(1 + Y )γY j∂i

x∂j
Y ΩP‖4Pλ,µ,∞

dt " 1 , (6.11)

for i, j ∈ N0.

Observe that the derivative ∂j
y is matched in (6.8) by the weight Y j+1, while in (6.11) with Y j .

Proof 6.1. Since the Pλ,µ,∞ norm is monotone in µ and λ, we assume throughout the proof that

λ = λ2 and µ = µ2 = κλ2 ,

and thus in view of (6.6) we have 8λ ≤ τ(t)/2, for any t ∈ [0, T2]. It suffices to establish the bounds
claimed in the lemma for the case i = 0, as the cases i ≥ 1 follow analogously (these bounds carry an
additional factor of λ−i

1 , but since λ1 ∼ 1, these factors are hidden in the implicit constant).
We start by establishing the Pλ,µ,∞ bounds for the first term in (6.8) by proving

‖(1 + Y )γ−1Y j+1∂j
Y ΩP‖Pλ,µ,∞ " 1 . (6.12)

For any weight function η(Y ) = η(ReY ), and a function f which is analytic with respect to Y in the
domain Ω̃µ, form the Taylor series expansion for f(Y ) = f(ReY + ı̂ImY ) around f(ReY ), and using
that |ImY | ≤ µReY for Y ∈ Ω̃µ, we obtain

sup
Ω̃µ

|η(Y )f(Y )| "
∑

m≥0

1
m!

‖η(Y )(µReY )m∂m
Y f(Y )‖L∞

Y ([0,∞)) . (6.13)

Applying this inequality with f = (∂j
Y ΩP)ξ and η(Y ) = (1 + Y )γ−1Y j+1 (for simplicity of notation we

write Y instead of ReY throughout this proof), we deduce

sup
Ω̃µ

∣∣∣(1 + Y )γ−1Y j+1(∂j
Y ΩP)ξ

∣∣∣ "
∑

m≥0

µm

m!
‖(1 + Y )γ−1Y m+j+1(∂m+j

Y ΩP)ξ‖L∞
Y ([0,∞)) .

Next, for a fixed ξ ∈ Z, by expanding eλ(1+µ)|ξ| ≤ e2λ|ξ| into its power series, and using (m+ n)!/m!n! ≤
2m+n and µ = λκ, we get

eλ(1+µ)|ξ| sup
Ω̃µ

∣∣∣(1 + Y )γ−1Y j+1(∂j
Y ΩP)ξ

∣∣∣ "
∑

m,n≥0

(2λ)nµm

m!n!
‖(1 + Y )γ−1Y m+j+1(∂n

x∂m+j
Y ΩP)ξ‖L∞

Y

"
∑

m,n≥0

(4λ)m+nκm

(m+ n)!
‖(1 + Y )γ−1Y m+j+1(∂n

x∂m+j
Y ΩP)ξ‖L∞

Y
. (6.14)

Taking the )1(Z) norm in ξ, and using a factor of (1 + ξ2)2m+n in order to obtain a bound in )2(Z×N2)
in (ξ, n,m) needed for Plancherel’s identity, we estimate

‖(1 + Y )γ−1Y j+1∂j
Y ΩP‖2Pλ,µ,∞

"
∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γ−1Y m+j+1(∂n

x∂m+j
Y ΩP)ξ‖2L∞

Y
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"
∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γY m+j(∂n

x∂m+j
Y ΩP)ξ‖L2

Y

×
(
‖(1 + Y )γ−1Y m+j+1(∂n

x∂m+j+1
Y ΩP)ξ‖L2

Y
+ (m+ j + 1)‖(1 + Y )γ−1Y m+j(∂n

x∂m+j
Y ΩP)ξ‖L2

Y

)

"
(∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γY m+j(∂n

x∂m+j
Y ΩP)ξ‖2L2

Y

)1/2

×
(∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γ−1Y m+j+1(∂n

x∂m+j+1
Y ΩP)ξ‖2L2

Y

+
∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
(m+ j + 1)2‖(1 + Y )γ−1Y m+j(∂n

x∂m+j
Y ΩP)ξ‖2L2

Y

)1/2

.

(6.15)

In the second inequality, we used Agmon’s inequality in Y , along with the fact that (1 + Y )γ−1Y m+j+1

∂m+j
y ΩP vanishes at Y = 0 (recall that m+ j ≥ 0). Therefore, by Parseval’s identity in the variable x,

‖(1 + Y )γ−1Y j+1∂j
Y ΩP‖2Pλ,µ,∞

"
( ∑

n,m≥0

(τ/2)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γY m+j(1 − ∂2

x)∂
n
x∂m+j

Y ΩP‖2L2

)1/2

×
( ∑

n,m≥0

(τ/2)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γ−1Y m+j+1(1 − ∂2

x)∂
n
x∂m+j+1

Y ΩP‖2L2

+
∑

n,m≥0

(τ/2)2(m+n)κ2m

(m+ n)!2
(m+ j + 1)2‖(1 + Y )γ−1Y m+j(1 − ∂2

x)∂
n
x∂m+j

Y ΩP‖2L2

)1/2

. (6.16)

Now, for α = (n,m) we use that |α|r2−|α| "r 1 holds whenever r ≥ 0, and since τ ∼ 1 (meaning that our
constants are allowed to depend on λ1), that κ = 1/8 ∼ 1, we obtain from (6.16) that

‖(1 + Y )γ−1Y j+1∂j
Y ΩP‖Pλ,µ,∞ "

∥∥ΩP
∥∥
Aτ

, (6.17)

where the implicit constant also depends on i and j. The estimate (6.12) now follows.
Next, we consider the bound (6.11), which is proven similarly to the arguments above, but with Y j

and (1 + Y )j replacing Y j+1 and (1 + Y )γ−1, respectively. Agmon’s inequality in Y here reads

‖(1 + Y )γY m+j(∂n
x∂m+j

Y ΩP)ξ‖2L∞
Y

" ‖(1 + Y )γY m+j(∂n
x∂m+j

Y ΩP)ξ‖2L2
Y

+ ‖(1 + Y )γY m+j(∂n
x∂m+j

Y ΩP)ξ‖L2
Y

×
(
‖(1 + Y )γY m+j(∂n

x∂m+j+1
Y ΩP)ξ‖L2

Y
+ (m+ j)‖(1 + Y )γY m+j−1(∂n

x∂m+j
Y ΩP)ξ‖L2

Y

)
.

(6.18)

When compared to (6.15), the main difference in (6.18) is that the terms on the last line contain factors
of the type Y α2Dα∂yΩP, and thus we bound

‖(1 + Y )γY j∂j
Y ΩP‖Pλ,µ,∞ "

∥∥ΩP
∥∥
Aτ

+
∥∥ΩP

∥∥1/2

Aτ

∥∥∂Y ΩP
∥∥1/2

Aτ
.

The second term in the above inequality may only be estimated in L4 in time, by appealing to the bound
provided by the second term in (6.7); from this, the estimate (6.11) follows.
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Next, we turn to the proof of the bound for the first term on the left side of (6.9). Using (6.13) with
f(y) = ũP and proceeding in the same way as in the first line of (6.15), we have

‖(1 + Y )γ− 3
2 ũP‖2Pλ,µ,∞

"
∑

ξ∈Z

∑

n,m≥0

(1 + ξ2)(8λ)2(m+n)κ2m

(m+ n)!2
‖(1 + Y )γ− 3

2Y m(∂n
x∂m

Y ũP)ξ‖2L∞
Y

= I1 + I2 , (6.19)

where I1 and I2 correspond to the sums with m = 0 and m ≥ 1, respectively. In order to estimate the
first sum, we use the fundamental theorem of calculus on [Y,∞) and ∂Y ũP = ΩP to obtain

‖(1 + Y )γ− 1
2 ∂n

x ũ
P‖L∞

Y
" ‖(1 + Y )γ∂n

xΩP‖L2
Y

and thus, since (1 + Y )−1 ∈ L2
Y , we have

‖(1 + Y )γ− 3
2 ∂n

x ũ
P‖L2

Y
" ‖(1 + Y )γ∂n

xΩP‖L2
Y
.

Therefore, using that 8λ ≤ τ/2 and τ ∼ 1, we may use Plancherel’s identity and (6.7) to obtain

I1 "
∑

ξ∈Z

∑

n≥0

(1 + ξ2)(τ/2)2n

n!2
‖(1 + Y )γ(∂n

xΩP)ξ‖2L2
Y ([0,∞)) "

∥∥ΩP
∥∥2

Aτ
" 1 .

The bound for the I2 term in (6.19) is more direct, and is obtained by replacing ∂Y ũP = ΩP and repeating
the proof of (6.17). This implies that I2 " 1, and thus ‖(1 + Y )γ− 3

2 ũP‖Pλ,µ,∞ " 1 holds.
The estimate on the first term in (6.10) follows from

1
Y
vP(x, Y ) = − 1

Y

∫ Y

0
∂xu

P(x, Y ′)dY ′ = ∂xU
E(x) − 1

Y

∫ Y

0
∂xũ

P(x, Y ′)dY ′ ,

the previously established bound (5.37) (which holds for a wider set of values for λ, µ), the bound on the
first term in (6.9), and the fact that γ ≥ 3/2.

To bound the second term in (6.10), we recall the identity

v̄P(x, Y ) =
∫ ∞

Y
∂xũ

P(x, Y ′)dY ′ ,

which may be used in conjunction with the bound for the first term on the left side of (6.9), and integration
in Y (which is possible since γ > 5/2), to yield the desired bound for the third term in (6.9).

In order to conclude the proof of the lemma, we need to estimate the second term on the right side of
(6.9). For this, we have

∑

ξ∈Z
eλ(1+µ)|ξ|

∫ ∞

0

∣∣ũP
ξ

∣∣ dY "
∫ ∞

0

∑

ξ∈Z
eλ(1+µ)|ξ|(1 + Y )γ− 3

2
∣∣ũP

ξ

∣∣ (1 + Y )
3
2−γdY

"
∫ ∞

0
‖(1 + Y )γ− 3

2 ũP‖Pλ,µ,∞(1 + Y )
3
2−γdY " 1 ,

by appealing to the bound for the first term on the left side of (6.9), and the condition γ > 5/2. #

We conclude this section by noting that the estimates obtained in Lemma 6.1 are all with respect to
norms that are (weighted) L∞

Y . On the other hand, the a-priori bound (6.7) provides L2
Y information,

and this may be used to improve the Yλ,µ product estimate (4.11b), which in essence is an L1
y bound. In

this direction we have the following.

Lemma 6.2 (Improved Yλ,µ product estimate involving the Prandtl vorticity). Let λ, µ be as in Lemma 6.1,
and assume that g = g(x, y) is such that ‖g‖Yλ,µ,∞

< ∞. Then, we have the pointwise in time estimate
∥∥∥g(x, y)Y j∂i

x∂j
Y ΩP(x, Y )

∥∥∥
Yλ,µ

" ε ‖g(x, y)‖Yλ,µ,∞
, (6.20)

for any i, j ∈ N0.
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In comparison, (6.7) and (6.11) give a bound similar to (6.20), but which is valid only in L4 with
respect to time, as opposed to pointwise in time.

Proof of Lemma 6.2 The statement follows from the first inequality in (4.14), if we are able to show that
∑

ξ

eλ(1+µ)|ξ|
∥∥∥Y j∂i

x∂j
Y ΩP

ξ (Y )
∥∥∥
L1

µ

" ε . (6.21)

Recall that the weight Y j in (6.21) is short hand notation for (ReY )j . At this stage we recall the definition
of the L1

µ norm in (4.3), and note that this consists of L1 norms over complex paths corresponding to
the variable y = εY . Moreover, we note that if y ∈ Ωµ, then by the definitions (4.1) and (4.2), we have
that Y = y/ε ∈ Ω̃µ, for any ε ∈ (0, 1]. Lastly, we note that dy = εdY , and as such we have

∥∥∥(ReY )j∂i
x∂j

Y ΩP
ξ (Y )

∥∥∥
L1

µ

= ε sup
0≤θ<µ

∥∥∥(ReY )j∂i
x∂j

Y ΩP
ξ (Y )

∥∥∥
L1

Y (Γε,θ)
, (6.22)

where Γε,θ = {Y ∈ C : εY ∈ ∂Ωθ} consists of the union of the two complex paths Γ±
ε,θ, where

Γ±
ε,θ = {Y ∈ Ω̃µ : 0 ≤ ReY ≤ 1/ε, ImY = ±θReY }

∪{Y ∈ Ω̃µ : 1/ε ≤ ReY ≤ (1 + θ)/ε, ImY = ±θ/ε ∓ (ReY − 1/ε)} .

Note that for every Y ∈ Γ±
ε,θ, we have that |ImY | ≤ θReY ≤ µReY , independently of ε, and for all

θ ∈ [0, µ). Due to this fact, using the Taylor expansion argument used to prove (6.13), we have that

sup
0≤θ<µ

∥∥∥(ReY )j∂j
Y ΩP

ξ (Y )
∥∥∥
L1

Y (Γε,θ)
"

∑

m≥0

µm

m!

∥∥∥Y j+m∂m+j
Y ΩP

ξ (Y )
∥∥∥
L1

Y ([0,∞))
. (6.23)

Using that (1+Y )−1 ∈ L2
Y , we combine (6.22)–(6.23), and as in (6.14) we expand eλ(1+µ)|ξ| into its power

series, to arrive at
∑

ξ

eλ(1+µ)|ξ|
∥∥∥Y j∂i

x∂j
Y ΩP

ξ (Y )
∥∥∥
L1

µ

" ε
∑

ξ

∑

m,n≥0

µm(λ(1 + µ))n

m!n!

∥∥∥(1 + Y )Y j+m∂m+j
Y (∂n+i

x ΩP)ξ(Y )
∥∥∥
L2

Y ([0,∞))
.

Since µ ≤ 1, (m + n)!/(m!n!) ≤ 2m+n, and as noted at the beginning of the proof of Lemma 6.1 by
monotonicity in λ and µ it suffices to consider λ = λ2 and µ = κλ2, where λ2 ≤ τ(t)/16 for all t ∈ [0, T2],
it follows from the above bound that
∑

ξ

eλ(1+µ)|ξ|
∥∥∥Y j∂i

x∂j
Y ΩP

ξ (Y )
∥∥∥
L1

µ

" ε
∑

ξ

∑

m,n≥0

(2µ)m(4λ)n

(m+ n)!

∥∥∥(1+Y )Y j+m∂m+j
Y (∂n+i

x ΩP)ξ(Y )
∥∥∥
L2

Y ([0,∞))

" ε
∑

ξ

∑

m,n≥0

κm(τ/4)m+n

(m+ n)!

∥∥∥(1+Y )Y j+m∂m+j
Y (∂n+i

x ΩP)ξ(Y )
∥∥∥
L2

Y ([0,∞))
.

The )1(Z×N2) norm taken above in (ξ, n,m) may be converted into an )2(Z×N2) norm with respect to
(ξ, n,m), as in the transition from (6.14) to (6.15) earlier in the proof, at a cost of a factor of (1+ξ2)2m+n.
After applying Plancherel, recalling the definition of the Aτ norm in (6.2) and the fact that γ ≥ 1, as in
(6.16)–(6.17) we obtain

∑

ξ

eλ(1+µ)|ξ|
∥∥∥Y j∂i

x∂j
Y ΩP

ξ (Y )
∥∥∥
L1

µ

" ε




∑

ξ

∑

m,n≥0

κ2m(τ/2)2(m+n)

(m+ n)!2
(1 + ξ2)2

∥∥∥(1 + Y )Y j+m∂m+j
Y (∂n+i

x ΩP)ξ(Y )
∥∥∥
2

L2
Y ([0,∞))





1
2
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" ε




∑

m,n≥0

κ2m(τ/2)2(m+n)

(m+ n)!2
∥∥∥(1 + Y )Y j+m∂m+j

Y (1 − ∂2
x)∂

n+i
x ΩP(Y )

∥∥∥
2

L2





1
2

" ε
∥∥ΩP

∥∥
Aτ

.

The desired estimate, (6.21), now follows from (6.7), concluding the proof of the Lemma. #

7. The Y (t) Norm Estimate

We assume that the initial error vorticity obeys a bound consistent with the definitions of the Y (t) and Z
norms in (4.9) and (4.8). More precisely, we assume that there exist ε-independent constants λ3, µ3 ∈ (0, 1]
such that

∑

i+j≤2

‖∂i
x(y∂y)jωe0‖Yλ3,µ3

+
∑

i+j≤3

∥∥y∂i
x∂j

yωe0

∥∥
L2(y≥1/4)

" 1 . (7.1)

The goal of this section is to obtain an estimate for the Y (t) norm of ωe, by appealing to the assumption
in the first sum in (7.1). The Z norm estimate is performed in Sect. 8, cf. Proposition 8.4, and uses the
finiteness of the second sum in (7.1).

Remark 7.1 (Example of compatible initial condition for the error vorticity). The assumption (7.1) is for
instance satisfied by ωe0 as defined in (2.17), whenever there exists µ3 ∈ (0, 1] such that the function ψ(y)
satisfies

∑

0≤j≤2

‖(y∂y)jψ‖L1
µ3

+ ‖(y∂y)j∂2
yψ‖L1

µ3
+

∑

0≤j≤5

∥∥y∂j
yψ

∥∥
L2(y≥1/4)

" 1 , (7.2)

where we recall that L1
µ is defined in (4.3) above. In order to see that (2.17) and (7.2) imply (7.1), we

note that by the definition (4.4) and the previously established estimate (5.39), we have that for every
i, j ∈ {0, 1, 2},

‖∂i
x(y∂y)jωe0‖Yλ3,µ3

"
∑

ξ∈Z
eλ3(1+µ3)|ξ||ξ|i(1 + |ξ|2)|UE

0,ξ| " 1

as soon as λ3(1 + µ3) < λ1, where λ1 is as in (5.7). The later condition is ensured by λ3 ≤ λ1/4, since
µ3 ∈ (0, 1]. Similarly, the finiteness of the second sum in (7.2) and the estimate (5.39) gives that

∥∥∂i
x∂j

yωe0

∥∥
L2(y≥1/4)

"
∥∥∂i

x(1 − ∂2
x)U

E
0

∥∥
L2 " 1 ,

for every 0 ≤ i + j ≤ 3. Thus, we have shown that (7.1) holds with µ3 as in (7.2), and with λ3 = λ1/4,
λ1 as in (5.7).

Remark 7.2 (The starred parameters). Using the parameters (T1,λ1, µ1) from Lemma 5.7, the param-
eters (T2,λ2, µ2) from Lemma 6.1, and the parameters (µ3,λ3) from assumption (7.1), we define the
parameters alluded to at the beginning of Sect. 4 by

µ∗ = min{µ1, µ2, µ3}, λ∗ = min{λ1,λ2,λ3}, T∗ = min
{
T1, T2,

µ∗
2γ∗

}
, (7.3)

where γ∗ ≥ 2 is the only free parameter left. We emphasize that the implicit constants in " symbols are
not allowed to depend on γ∗ or on ε, but they are allowed to depend on µ∗,λ∗ ∈ (0, 1].

Having defined the parameters λ∗, µ∗, and with γ∗ free, the norm Y (t) in (4.9) is well-defined. The
main result of this section is as follows.
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Proposition 7.1 (The Y (t) estimate). Assume that ωe0 satisfies (7.1), that the Euler solution satisfies the
conclusion of Lemma 5.7, and that the Prandtl solution satisfies the conclusions of Lemma 6.1. Let γ∗ ≥ 2
be arbitrary, and let µ∗,λ∗, T∗ be as defined in (7.3). Then, for all t ∈ [0, T∗] such that sup0≤s≤t |||ωe|||s is
finite, we have

‖ωe(t)‖Y (t) " 1 +
1
γ∗

(
sup

0≤s≤t
|||ωe|||s + ε sup

0≤s≤t
|||ωe|||2s

)
, (7.4)

where the implicit constant is independent of γ∗ and ε.

The remainder of this section is dedicated to the proof of the above proposition, which is concluded
in Sect. 7.4.

7.1. Analytic Estimates for the Stokes Equation in the Vorticity Form

The Yλ,µ norm estimates for the error vorticity, necessary in order to prove Proposition 7.1, are obtained
by using that ωe solves the Stokes equation (3.17)–(3.18). Applying the Fourier transform in the x variable
this Stokes system becomes

∂tωe,ξ − ε2∆ξωe,ξ = Fξ in H , (7.5)

ε2(∂y + |ξ|)ωe,ξ = Bξ on ∂H , (7.6)

for ξ ∈ Z, where Fξ denotes the tangential Fourier transform of the forcing term F defined in (3.19) and
Bξ denotes the tangential Fourier transform of the cumulative term appearing on the right side of (3.18),
or alternatively, (3.23). The solution of (7.5)–(7.6) is given in terms of the Green’s function Gξ(t, y, z)
for this system as

ωe,ξ(t, y) =
∫ t

0

∫ ∞

0
Gξ(t − s, y, z)Fξ(s, z) dzds+

∫ t

0
Gξ(t − s, y, 0)Bξ(s) ds+

∫ ∞

0
Gξ(t, y, z)ω0e,ξ(z) dz .

(7.7)

In turn, bounds on the Green’s function Gξ are given in [55], and we recall these estimates here.

Lemma 7.2. The Green’s function Gξ may be written as

Gξ = H̃ξ +Rξ ,

where

H̃ξ(t, y, z) =
1√
ε2t

(
e− (y−z)2

4ε2t + e− (y+z)2

4ε2t

)
e−ε2ξ2t ,

and Rξ is a function of y + z, which obeys the bounds

|∂k
zRξ(t, y, z)| " bk+1e−θ0b(y+z) +

1
(ε2t)(k+1)/2

e−θ0
(y+z)2

ε2t e− ε2ξ2t
8 , k ∈ N0 , (7.8)

where θ0 > 0 and

b = b(ξ, ε) = |ξ|+ 1
ε
.

The implicit constant in (7.8) depends only on k and θ0.

Using the bounds stated in Lemma 7.2 and recalling the definition of Bξ in (3.18), we obtain the
following Yλ,µ analytic estimate for the error vorticity ωe, as defined in (7.7).
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Lemma 7.3 (The abstract Yλ,µ analytic bound). Let γ∗ ≥ 2, and fix parameters λ∗, µ∗, T∗ ∈ (0, 1] as in
(7.3). Fix times s, t such that 0 ≤ s ≤ t ≤ T∗, λ ∈ (0,λ∗] arbitrary, a parameter µ ∈ (0, µ∗ − γ∗s), and
let

µ̄ = µ+
1
4
(µ∗ − γ∗s − µ) , (7.9)

which obeys µ < µ̄ < µ∗ − γ∗s. Then, the forcing (first) term in (7.7) is bounded as

(µ∗ − γ∗s − µ)
∑

i+j=2

∥∥∥∥∂i
x(y∂y)j

∫ ∞

0
G(t − s, y, z)F (s, z) dz

∥∥∥∥
Yλ,µ

+
∑

i+j≤1

∥∥∥∥∂i
x(y∂y)j

∫ ∞

0
G(t − s, y, z)F (s, z) dz

∥∥∥∥
Yλ,µ̄

"
∑

i+j≤1

‖∂i
x(y∂y)jF (s)‖Yλ,µ̄ +

∑

i+j≤1

‖∂i
x∂j

yF (s)‖Sµ̄ . (7.10)

The trace kernel (second) term in (7.7) is estimated as

(µ∗ − γ∗s − µ)
∑

i+j=2

‖∂i
x(y∂y)jG(t − s, y, 0)B(s)‖Yλ,µ +

∑

i+j≤1

∥∥∂i
x(y∂y)jG(t − s, y, 0)B(s)

∥∥
Yλ,µ̄

"
∑

i≤1

(
‖∂i

xF (s)‖Yλ,µ̄ + ‖∂i
xF (s)‖Sµ

)
+

∑

i≤1

∑

ξ∈Z
eµ̄|ξ||ξ|i |∂tgξ(s)| . (7.11)

Lastly, for the initial datum (third) term in (7.7) we have
∑

i+j≤2

∥∥∥∥∂i
x(y∂y)j

∫ ∞

0
G(t, y, z)ω0e(z) dz

∥∥∥∥
Yλ,µ

"
∑

i+j≤2

‖∂i
x(y∂y)jω0e‖Yλ,µ +

∑

i+j≤2

∑

ξ

∥∥ξi∂j
yω0e,ξ

∥∥
L1(y≥1+µ)

" 1 . (7.12)

We note that the second inequality in (7.12) is a direct consequence of the assumption (7.1) and the
definition (7.3).

In view of the integral representation (7.7) and the estimates in Lemma 7.3, it remains to bound
the analytic and Sobolev norms of the forcing term F , which appears in both (7.10) and in (7.11), the
analytic in x norm of the trace term due to ũP appearing on the right side of (7.11), and the analytic
and Sobolev norms of the initial datum in (7.12). This is achieved in Lemma 7.4 below.

7.2. Contribution of the Forcing Term

In view of the representation formula for ωe given by (7.7), and of the abstract Yλ,µ norm estimate provided
by Lemma 7.3 for the three terms appearing on the right side of (7.7), in order to prove Theorem 3.1 we
need to estimate the terms on the right side of (7.10)–(7.12) in terms of the Yλ,µ norm of ωe. This is the
content of the following lemma.

Lemma 7.4. (Forcing and trace in Yλ,µ analytic norms) Let s ∈ [0, T∗], µ ∈ (0, µ∗ −γ∗s), and λ ∈ (0,λ∗].
For the forcing term in (3.19), we have the pointwise in time estimates

∑

i+j≤1

‖∂i
x(y∂y)jF‖Yλ,µ " 1 + ε‖(1 + Y )γY j∂i+2

x ∂j
Y ΩP‖Pλ,µ,∞ +

∑

i+j≤2

‖∂i
x(y∂y)jωe‖Yλ,µ∩Sµ

+ ε
∑

i+j≤1

‖∂i
x(y∂y)jωe‖Yλ,µ∩Sµ

∑

i+j≤2

∥∥∂i
x(y∂y)jωe

∥∥
Yλ,µ

+ ε
∥∥∂2

xωe

∥∥
Yλ,µ∩Sµ

‖y∂yωe‖Yλ,µ
(7.13)
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and
∑

i+j≤1

‖∂i
x∂j

yF‖Sµ " 1 +
∑

i+j≤2

(
‖∂i

x∂j
yue‖L∞

x,y(y≥1+µ) + ‖∂i
x∂j

yve‖L∞
x,y(y≥1+µ)

)
+

∑

i+j≤2

‖∂i
x∂j

yωe‖Sµ

+ ε

( ∑

i+j≤2

(
‖∂i

x∂j
yue‖L∞

x,y(y≥1+µ) + ‖∂i
x∂j

yve‖L∞
x,y(y≥1+µ)

)) ∑

i+j≤2

‖∂i
x∂j

yωe‖Sµ ,

(7.14)

for all s ∈ [0, T∗]. Moreover, for i ≤ 1 we estimate the contribution of ∂tg appearing in (7.11) as
∥∥∥∥
∑

ξ∈Z
eµ̄|ξ||ξ|i |∂tgξ|

∥∥∥∥
L4(0,T∗)

" 1 , (7.15)

for all t ∈ [0, T0], with T0 ≤ 1.

Before proving the above lemma, we note that Lemma 7.4 immediately implies the following statement.

Proposition 7.5. Let s ∈ [0, T∗], µ ∈ (µ∗ − γ∗s), and λ ∈ [0,λ∗]. The forcing term F defined in (3.19)
satisfies the pointwise estimates

∑

i+j≤1

‖∂i
x(y∂y)jF (s)‖Yλ,µ " 1 + |||ωe|||s + E(s) + (1 + ε|||ωe|||s)

|||ωe|||s
(µ∗ − µ − γ∗s)1/3

, (7.16)

where
∫ T∗

0
(E(s))4 ds " ε , (7.17)

and ∑

i+j≤1

‖∂i
x∂j

yF (s)‖Sµ " 1 + |||ωe|||s + ε|||ωe|||2s . (7.18)

As stated in Remark 7.2, the implicit constants in the " symbols do depend on µ∗,λ∗ ∈ (0, 1], but they
are independent of γ∗ ≥ 2, and on ε ∈ (0, 1].

Proof of Lemma 7.5 The bound (7.18) follows from (7.14) by appealing to the elliptic estimate (4.15),
and noting that due to the inequality mentioned below (4.8) we have

∑

i+j≤2

‖∂i
x∂j

yωe(s)‖Sµ ≤
∑

i+j≤3

‖∂i
x∂j

yωe‖S = ‖ωe‖Z ≤ |||ωe|||s .

Similarly, the bound (7.16) follows from the estimate (7.13), the definition (4.9), which implies
∑

i+j=2

‖∂i
x(y∂y)jωe(s)‖Yλ,µ ≤

∑

i+j=2

‖∂i
x(y∂y)jωe(s)‖Yλ∗,µ ≤

|||ωe(s)|||s
(µ∗ − µ − γ∗s)1/3

,

and the fact that by (6.11) the second term in (7.13), which defines E(s), may indeed be bounded as in
(7.17). #

7.3. The Proof of Lemma 7.4

The proof of this lemma is structured as follows. First, we establish the stand-alone estimate (7.15).
Next, recalling the definition of the forcing term F in (3.19), we estimate the contribution arising from
the forcing terms f1 and f2 present in (3.9)–(3.10), as this term does not involve (ue, ve,ωe). The next
subsection provides analytic and Sobolev estimates for the error velocity (ue, ve) in terms of the error
vorticity ωe, via estimates for the inhomogeneous div-curl system (7.33). We conclude by estimating the
remaining terms in (3.19).
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7.3.1. The Proof of the Estimate (7.15). In order to establish the bound (7.15), we prove the pointwise
in time estimate

∑

ξ∈Z
eµ̄|ξ||ξ|i |∂tgξ(s)| " 1 + ‖∂i+1

x ΩP(s)‖Yλ2,µ2,∞ , (7.19)

where λ2 and µ2 are as defined in Lemma 6.1. This estimate may then be combined with L4 in time
bound (6.11) with j = 0, λ = λ2, and µ = µ2, to imply (7.15).

In order to prove (7.19), we first compute ∂tg. Recall that g = −
∫ ∞
0 ∂xũPdY , and that in (3.22) we

have computed a formula for
∫ ∞
0 ∂tũPdY . Combining these two identities, we arrive at

|ξ|i |∂tgξ| "
∣∣∣∣∣

(∫ ∞

0
∂i+1
x ∂tũ

PdY

)

ξ

∣∣∣∣∣

" |ξ|i+1
∣∣ΩP

ξ |Y=0

∣∣ + |ξ|i+1|(UEg)ξ|

+ |ξ|i+1

∣∣∣∣∣

(
∂xU

E

∫ ∞

0
ũPdY

)

ξ

∣∣∣∣∣ + |ξ|i+2

∣∣∣∣∣

(∫ ∞

0
(ũP)2dY

)

ξ

∣∣∣∣∣ . (7.20)

Using |ΩP
ξ |Y=0| " ‖ΩP

ξ ‖L∞(Ω̃µ̄)
and the parameter inequality

µ̄ < µ∗ ≤ µ2 = κλ2 ≤ λ2(1 + µ2)
8

, (7.21)

which holds by the definition (7.3), the parameter definitions in Lemma 4.1, and the choice κ = 1/8, we
bound the contribution of the first term in (7.20) as

∑

ξ∈Z
eµ̄|ξ||ξ|i+1

∣∣ΩP
ξ |Y=0

∣∣ "
∑

ξ∈Z
e

1
8λ2(1+µ2)|ξ||ξ|i+1‖ΩP

ξ ‖L∞(Ω̃µ̄)
" ‖∂i+1

x ΩP‖Pλ2,µ2,∞ ,

an expression which belongs to L4(0, T∗) according to (6.11), with the norm of constant size. For the
second term in (7.20) we use that the Fourier transform of a product is a (discrete) convolution, which is
well-estimated using )1ξ norms. Therefore, by also appealing to the definition of g in (3.14), to the bounds
(5.39) and (6.9), and the parameter estimates (7.21) and µ̄ ≤ λ2/8 ≤ λ1/8, we arrive at

∑

ξ∈Z
eµ̄|ξ||ξ|i+1

∣∣(UEg)ξ
∣∣ "

(
∑

ξ∈Z
eµ̄|ξ|(|ξ|+ 1)i+1

∣∣UE
ξ

∣∣
)(

∑

ξ∈Z
eµ̄|ξ|(|ξ|+ 1)i+1|gξ|

)
" 1 .

For the third term in (7.20), using the same parameter inequalities and appealing to (5.39) and (6.9) we
similarly have

∑

ξ∈Z
eµ̄|ξ||ξ|i+1

∣∣∣∣∣∣

(
∂xU

E

∫ ∞

0
ũPdY

)

ξ

∣∣∣∣∣∣

"
(

∑

ξ∈Z
eµ̄|ξ|(|ξ|+ 1)i+2

∣∣UE
ξ

∣∣
)(

∑

ξ∈Z
eµ̄|ξ|(|ξ|+ 1)i+1

∫ ∞

0

∣∣ũP
ξ

∣∣ dY
)

" 1 .

The bound for the last term in (7.20) is similar, but also uses the estimate for the first term on the left
side of (6.9):

∑

ξ∈Z
eµ̄|ξ||ξ|i+2

∣∣∣∣∣∣

(∫ ∞

0
(ũP)2dY

)

ξ

∣∣∣∣∣∣
"

(
∑

ξ∈Z
eµ̄|ξ|

∣∣ũP
ξ

∣∣
L∞

Y

)(
∑

ξ∈Z
eµ̄|ξ||ξ|i+2

∣∣∣∣
∫ ∞

0
ũP

ξ dY

∣∣∣∣

)
" 1 .

This concludes the proof of (7.19).
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7.3.2. Size of ∂xf2 − ∂yf1 in Analytic and Sobolev Norms. According to (3.19), the last term in the
definition of F is the forcing term ∂xf2 − ∂yf1. In this section we provide a Yλ,µ estimate for this term,
which is needed in proving (7.13), and a Sµ estimate, which is required to prove (7.14).

Lemma 7.6. Let 0 < µ ≤ µ∗ and λ ≤ λ∗ be arbitrary. Then, for integers i, j ≥ 0 such that i + j ≤ 1 we
obtain

‖∂i
x(y∂y)j(∂xf2 − ∂yf1)‖Yλ,µ " 1 + ε‖(1 + Y )3/2Y j∂i+2

x ∂j
Y ΩP‖Pλ,µ,∞ (7.22)

and

‖∂i
x(y∂y)j(∂xf2 − ∂yf1)‖Sµ " 1 . (7.23)

By the estimate (6.11), we have that the second term on the right side of (7.22) is O(ε) when measured
in L4([0, T∗]).

Proof of Lemma 7.6 We only consider the estimate (7.22) in the case i = j = 0. The case i+j = 1 follows
mutatis mutandis. According to the definitions of f1 and f2 in (3.15)–(3.16), after taking into account
incompressibility, the definitions of ũP and v̄P, and a number of cancellations, we have

∂xf2 − ∂yf1 =
1
ε2

∂xΩP(uE − UE) +
1
ε3

∂Y ΩP(vE + y∂xU
E) − 1

ε
ũP∂xωE +

1
ε
vE∂xxũ

P

+ v̄P∂yyu
E − 2∂xxΩP + ε2∂3

xv̄
P + ε∆ωE − ∂t∂xv̄

P − (ũP + uE)∂xxv̄
P + v̄P∂xx(ũP + uE) .

(7.24)

Noting that −∂t∂xv̄P = −∂xx(
∫ ∞
Y ∂tũPdY ′) by (3.21) and using the Prandtl evolution (3.20), we obtain

−∂t∂xv̄
P = −∂xx

(
−ΩP + vP ũP − UEv̄P − ∂x

∫ ∞

Y
(ũP)2dY ′ − 2∂xU

E

∫ ∞

Y
ũPdY ′

)

= ∂xxΩP − ∂xx(vP ũP) + UE∂xxv̄
P + 5∂xxU

Ev̄P + 4∂xU
E∂xv̄

P

+ ∂3
x

∫ ∞

Y
(ũP)2dY ′ + 2∂3

xU
E

∫ ∞

Y
ũPdY ′ .

Combining the above two identities allows us to rewrite

−∂yf1 + ∂xf2 =
1
ε2

∂xΩP(uE − UE) +
1
ε3

∂Y ΩP(vE + y∂xU
E) − 1

ε
ũP∂xωE +

1
ε
vE∂xxũ

P

+ ε2∂3
xv̄

P + ε∆ωE − ∂xxΩP − (ũP + uE − UE)∂xxv̄
P + 4∂xv̄

P∂xU
E

+ v̄P(∂xxũ
P + ∆uE + 5∂xxU

E) − ∂2
x(ũ

PvP) + 2∂3
xU

E

∫ ∞

Y
ũPdY ′ + ∂3

x

∫ ∞

Y
(ũP)2dY ′

= fe,1 + · · ·+ fe,13 . (7.25)

For the Yλ,µ estimate of −∂yf1 + ∂xf2 we consider the thirteen terms in (7.25) individually. For the first
term in (7.25), we have

fe,1 =
1
ε2

∂xΩP(uE − UE) =
1
ε
Y ∂xΩPu

E − UE

y
.

Using (5.37), (6.8), and (4.11b) we thus obtain

‖fe,1‖Yλ,µ " 1
ε
ε‖(1 + Y )3/2Y ∂xΩP‖Pλ,µ,∞

∥∥∥∥
uE − UE

y

∥∥∥∥
Yλ,µ,∞

" 1 . (7.26)

Similarly, we have

fe,2 =
1
ε3

∂Y ΩP(vE + y∂xU
E) =

1
ε
Y 2∂Y ΩP v

E + y∂xUE

y2
,
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and so by appealing to (5.38), (6.8), and (4.11b) we may estimate

‖fe,2‖Yλ,µ " 1
ε
ε‖(1 + Y )3/2Y 2∂yΩP‖Pλ,µ,∞

∥∥∥∥
vE + y∂xUE

y2

∥∥∥∥
Yλ,µ,∞

" 1 . (7.27)

In a similar fashion, from (5.36), (6.9), and (4.11b) we have

‖fe,3‖Yλ,µ " 1
ε
ε‖(1 + Y )3/2ũP‖Pλ,µ,∞‖∂xωE‖Yλ,µ,∞ " 1 , (7.28)

while from (5.38), (6.9), and (4.11b) we have

‖fe,4‖Yλ,µ " 1
ε
ε‖(1 + Y )3/2∂xxũ

P‖Pλ,µ,∞‖vE‖Yλ,µ,∞ " 1 . (7.29)

This concludes the estimates for all the terms which have inverse powers of ε in (7.25). The next seven
terms in (7.25) all have simple bounds in view of the bounds (4.11), (4.12), (4.13), and Lemmas 5.7, 6.1:

‖fe,5‖Yλ,µ " ε2‖∂3
xv̄

P‖Yλ,µ " ε3‖(1 + Y )
3
2 ∂3

xv̄
P‖Pλ,µ,∞ " ε3

‖fe,6‖Yλ,µ " ε‖∆ωE‖Yλ,µ " ε‖∆ωE‖Yλ,µ,∞ " ε

‖fe,7‖Yλ,µ " ‖∂xxΩP‖Yλ,µ " ε‖(1 + Y )3/2∂2
xΩP‖Pλ,µ,∞

‖fe,8‖Yλ,µ " ε‖(1 + Y )3/2∂xxv̄
P‖Pλ,µ,∞

(
‖ũP‖Pλ,µ,∞ + ‖uE − UE‖Yλ,µ,∞

)
" ε

‖fe,9‖Yλ,µ " ε‖(1 + Y )3/2∂xv̄
P‖Pλ,µ,∞‖∂xU

E‖Yλ,µ,∞ " ε

‖fe,10‖Yλ,µ " ε‖(1 + Y )3/2v̄P‖Pλ,µ,∞

(
‖∂xxũ

P‖Pλ,µ,∞ + ‖∆uE‖Yλ,µ,∞ + ‖∂xxU
E‖Yλ,µ,∞

)
" ε

‖fe,11‖Yλ,µ " ε‖(1 + Y )3/2∂xx(ũPvP)‖Pλ,µ,∞ " ε
2∑

i=0

‖(1 + Y )5/2∂i
xũ

P‖Pλ,µ,∞

∥∥Y −1∂2−i
x vP

∥∥
Pλ,µ,∞

" ε .

(7.30)

We note that the above stated estimate for the term fe,7 is responsible for the second term on the right
side of (7.22). It remains to consider the last two terms in (7.25). From Lemma 6.1 and using the bound

∑

ξ∈Z
eλ(1+µ)|ξ| sup

Y

(
(1 + Y )

3
2

∫ ∞

Y

∣∣ũP
ξ

∣∣ dY ′
)

"
∑

ξ∈Z
eλ(1+µ)|ξ| sup

Y

(
(1 + Y )

3
2

∫ ∞

Y
(1 + Y ′)γ− 3

2
∣∣ũP

ξ

∣∣ dY ′

(1 + Y ′)γ− 3
2

)

" ‖(1 + Y )γ− 3
2 ũP‖Pλ,µ,∞ sup

Y
(1 + Y )

3
2

∫ ∞

Y

dY ′

(1 + Y ′)γ− 3
2

" 1 ,

which holds since γ ≥ 4, and combining with estimates (4.11c) and (4.12), we obtain

‖fe,12‖Yλ,µ " ‖∂3
xU

E‖Yλ,µ,∞

∥∥∥∥
∫ ∞

Y
ũPdY ′

∥∥∥∥
Yλ,µ

" ε

∥∥∥∥(1 + Y )
3
2

∫ ∞

Y
ũPdY ′

∥∥∥∥
Pλ,µ,∞

" ε . (7.31)

From the product rule, estimate (4.12), and Lemma 6.1, we also obtain

‖fe,13‖Yλ,µ " ε‖(1 + Y )
3
2 ∂2

xv̄
P‖Pλ,µ,∞‖ũP‖Pλ,µ,∞ + ε‖(1 + Y )

3
2 ∂xv̄

P‖Pλ,µ,∞‖∂xũ
P‖Pλ,µ,∞ " ε . (7.32)

Adding the upper bounds in (7.26)–(7.32), completes the proof of the Yλ,µ estimate claimed in (7.22).
In order to complete the proof for the lemma, it remains to estimate the Sµ norm of ∂i

x(y∂y)j(−∂yf1+
∂xf2); as noted earlier, we only give these details for the case i = j = 0. As before, we separately consider
the thirteen terms in (7.25). We note that all terms that are a product of Prandtl part and Euler part are
in fact small, in view of the product estimates (4.11d)–(4.11e), and the previously established estimates
(5.2)–(5.3) and (5.39) for Euler, respectively (6.8)–(6.11) for Prandtl; however, since we only wish to
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obtain an O(1) upper bound, we do not attempt to estimate these terms in terms of optimal powers of
ε. Using (4.11e), (5.3), (5.39), and (6.8), we have

‖fe,1‖Sµ
≤ ε−1

∥∥∥∥Y ∂xΩPu
E − UE

y

∥∥∥∥
Sµ

≤ ε−1ε‖Y 2∂xΩP‖Pλ,µ,∞

∥∥∥∥
uE − UE

y

∥∥∥∥
H1

xL
2
y(y≥1/2)

" ‖Y (1 + Y )γ−1∂xΩP‖Pλ,µ,∞

(
‖uE‖H1

xL
2
y(y≥1/2) + ‖UE‖H1

x

)
" 1

since γ ≥ 4. For the next three terms, we similarly obtain

‖fe,2‖Sµ
" ε−1

∥∥∥∥Y
2∂Y ΩP v

E + y∂xUE

y2

∥∥∥∥
Sµ

" ‖(1 + Y )2Y 2∂Y ΩP‖Pλ,µ,∞

∥∥∥∥
vE + y∂xUE

y2

∥∥∥∥
H1

xL
2
y(y≥1/2)

" 1

‖fe,3‖Sµ
" ε−1ε

∥∥Y ũP
∥∥
Pλ,µ,∞

∥∥∂xωE
∥∥
Sµ

"
∥∥∥(1 + Y )γ− 3

2 ũP
∥∥∥
Pλ,µ,∞

∥∥y∂xω
E
∥∥
H1

xL
2
y(y≥1/2)

" 1

‖fe,4‖Sµ
"

∥∥∥∥Y ∂xxũ
P v

E

y

∥∥∥∥
Sµ

"
∥∥Y ∂xxũ

P
∥∥
Pλ,µ,∞

∥∥∥∥
vE

y

∥∥∥∥
Sµ

"
∥∥∥(1 + Y )γ− 3

2 ∂xxũ
P
∥∥∥
Pλ,µ,∞

∥∥vE
∥∥
H1

xL
2
y(y≥1/2)

"1

since γ ≥ 4. For the fifth and seventh terms in the right side of (7.25), which are linear in Prandtl terms,
we appeal to (4.11f) with g ≡ 1 ∈ L2

xL
∞
y , to deduce

‖fe,5‖Sµ
+ ‖fe,7‖Sµ

" ε2
∥∥∂3

xv̄
P
∥∥
Pλ,µ,∞

+
∥∥∂2

xΩP
∥∥
Pλ,µ,∞

" 1 .

For the only error term which is linear in the Euler solution, we note that

‖fe,6‖Sµ
= ε

∥∥∆ωE
∥∥
Sµ

≤ ε
∥∥y∆ωE

∥∥
L2(y≥1+µ)

+ ε
∥∥y∂x∆ωE

∥∥
L2(y≥1+µ)

" ε " 1

in view of (5.2). The remaining terms consist of Euler–Prandtl products, which are estimated using
(4.11d)–(4.11f), and Prandtl–Prandtl products, which are bounded using (4.11f) and the fact that

‖g(x, Y )‖H1
xL

∞
y (y≥1/2) ≤ ‖g(x, Y )‖H1

xL
∞
Y (Y ≥1/(2ε)) " εθ‖Y θg‖Pλ,µ,∞ ,

for any λ, µ > 0 and any θ ≥ 0. We may thus show that

‖fe,8‖Sµ
" ‖∂2

xv̄
P‖Pλ,µ,∞

(∥∥ũP
∥∥
H1

xL
∞
y (y≥1/2)

+
∥∥uE

∥∥
H1

xL
2
y(y≥1/2)

+
∥∥UE

∥∥
H1

x

)
" 1

‖fe,9‖Sµ
"

∥∥∂xv̄
P
∥∥
Pλ,µ,∞

∥∥∂xU
E
∥∥
H1

x
" 1

‖fe,10‖Sµ
"

∥∥v̄P
∥∥
Pλ,µ,∞

(∥∥∂2
xũ

P
∥∥
H1

xL
∞
y (y≥1/2)

+
∥∥∆uE

∥∥
H1

xL
2
y(y≥1/2)

+
∥∥∂2

xU
E
∥∥
H1

x

)
" 1

‖fe,11‖Sµ
"

∥∥∂2
x(ũ

PvP)
∥∥
Pλ,µ,∞

" 1

‖fe,12‖Sµ
"

∥∥∥∥
∫ ∞

Y
ũP

∥∥∥∥
Pλ,µ,∞

∥∥∂3
xU

E
∥∥
H1

x
"

∥∥∥(1 + Y )γ− 3
2 ũP

∥∥∥
Pλ,µ,∞

∥∥∂3
xU

E
∥∥
H1

x
" 1

‖fe,13‖Sµ
"

∥∥∥∥∂3
x

∫ ∞

Y
(ũP)2

∥∥∥∥
Pλ,µ,∞

" 1 ,

where in the last two inequalities we have used that (1 + Y ) 3
2−γ ∈ L1

Y , since γ ≥ 4. This completes the
proof of Lemma 7.6. #

7.3.3. Modified Biot-Savart Law. The first, third, and fourth terms in the definition of F in (3.19) all
involve the vector (ue, ve), which is obtained from the error vorticity ωe and the Prandtl boundary vertical
velocity g = −v̄P|Y=0 (see (3.14)), via the div-curl system

−∂yue + ∂xve = ωe in H
∂xue + ∂yve = 0 in H

ve = g = ∂xh on ∂H . (7.33)
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The representation formula for the system (7.33) is as follows. With ∇⊥ = (−∂y, ∂x), we define the
corrector ∇⊥(e−y|∂x|h(x)), which is curl-free, divergence-free, and its second component equals ∂xh = g
on ∂H. Therefore,

− ∂y

(
ue +

∂x

|∂x|
e−|∂x|yg

)
+ ∂x

(
ve − e−|∂x|yg

)
= ωe in H

∂x

(
ue +

∂x

|∂x|
e−|∂x|yg

)
+ ∂y

(
ve − e−|∂x|yg

)
= 0 in H

ve − e−|∂x|yg = 0 on ∂H . (7.34)

Using the classical Biot-Savart law (cf. [49], or (6.2)–(6.3) in [40]), upon taking the Fourier transforms in
x we deduce

ue,ξ(y) = − ı̂ξ

|ξ|e
−|ξ|ygξ

+
1
2

(
−

∫ y

0
e−|ξ|(y−z)(1 − e−2|ξ|z)ωe,ξ(z) dz +

∫ ∞

y
e−|ξ|(z−y)(1 + e−2|ξ|y)ωe,ξ(z) dz

)
(7.35)

and

ve,ξ(y) = e−|ξ|ygξ

− ı̂ξ

2|ξ|

(∫ y

0
e−|ξ|(y−z)(1 − e−2|ξ|z)ωe,ξ(z) dz +

∫ ∞

y
e−|ξ|(z−y)(1 − e−2|ξ|y)ωe,ξ(z) dz

)
.

(7.36)

As a direct consequence of the above formulae, we obtain an inequality for the velocity in a L∞-based
analytic norm in terms of the vorticity in a L1

y-based analytic norm.

Lemma 7.7 (Yλ,µ,∞ norm estimates for the modified Biot-Savart law). Let µ ∈ (0, µ∗ − γ∗t) and λ ∈
(0,λ∗]. Then, the functions ue and ve defined via the modified Biot-Savart law (7.35)–(7.36), satisfy the
estimates

‖∂i
x(y∂y)jue‖Yλ,µ,∞ " ‖∂i+j

x ωe‖Yλ,µ∩Sµ + j
(
‖ωe‖Yλ,µ + ‖y∂yωe‖Yλ,µ

)
+ ‖∂i

xg‖Pλ,µ,∞ (7.37)

and ∥∥∥∥(y∂y)j
(

∂i
x(ve − g)

y

)∥∥∥∥
Yλ,µ,∞

" ‖∂i+1
x ωe‖Yλ,µ∩Sµ + ‖∂i+1

x g‖Pλ,µ,∞

for all integers i, j ≥ 0 such that i+ j ≤ 1. Lastly, for 0 ≤ i ≤ 1 we have

‖∂i
xve‖Yλ,µ,∞ " ‖∂i

xωe‖Yλ,µ∩Sµ + ‖∂i
xg‖Pλ,µ,∞ . (7.38)

Proof of Lemma 7.7 The proof follows closely estimates in [40, Sect. 6] and [41, Sect. 4]. For simplicity, we
only provide estimates for the real values in definition (4.5); the bounds along complex contour integrals
follow along the same lines. From (7.35) and (7.36), the velocity field (ue, ve) can be decomposed as

(ue, ve) =
(

− ı̂ξ

|ξ|e
−|ξ|ygξ, e

−|ξ|ygξ

)
+ (ũe, ṽe) , (7.39)

where (ũe, ṽe) is obtained from the vorticity ωe by the usual Biot-Savart law on T × R+ (cf. (7.34)).
The first term on the right of (7.39) contributes the g terms on the right sides of (7.37)–(7.38) thanks

to the inequalities
∣∣∣(y|ξ|)jeλ(1+µ−y)|ξ|e−|ξ|y

∣∣∣ " eλ(1+µ)|ξ|,

∣∣∣∣(y∂y)j
(
1 − e−|ξ|y

y

)∣∣∣∣ " |ξ|,

which hold for 0 ≤ Re y ≤ 1 + µ.
For the second term on the right of (7.39), the estimates corresponding to (7.37)–(7.39) are given by

the elliptic estimates in Lemma 4.3, since the map ωe -→ (ũe, ṽe) is the usual Biot-Savart law on T×R+.
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The estimate claimed in (7.38) for ṽe is immediate upon inspecting the second line in (7.36), and recalling
the definitions (4.4), (4.5), (4.7). #

The estimate provided by Lemma 7.7 contains tangentially analytic norms of the trace term g, which
we recall is given in terms of the Prandtl solution as g(t, x) = −

∫ ∞
0 ∂xũP(x, Y, t)dY , where ũP = uP−UE.

However, this is precisely the term which was bounded in estimate (6.9) of Lemma 6.1. By combining
these estimates we obtain:

Corollary 7.8. For s ∈ [0, T∗] and µ ∈ (0, µ∗ − γ∗s), we have

‖∂i
x(y∂y)jue‖Yλ,µ,∞ " ‖∂i+j

x ωe‖Yλ,µ∩Sµ + j
(
‖ωe‖Yλ,µ + ‖y∂yωe‖Yλ,µ

)
+ 1 , (7.40)

∥∥∥∥(y∂y)j
(

∂i
x(ve − g)

y

)∥∥∥∥
Yλ,µ,∞

" ‖∂i+1
x ωe‖Yλ,µ∩Sµ + 1 , (7.41)

‖∂i
xve‖Yλ,µ,∞ " ‖∂i

xωe‖Yλ,µ∩Sµ + 1 , (7.42)

for integers i, j ≥ 0 such that i+ j ≤ 1.

7.3.4. Proof of Lemma 7.4, the Forcing Term. In this section, we establish the Yλ,µ and Sµ estimates for
F and its first order tangential and conormal derivatives, as claimed in (7.13) and (7.14). We recall that
F is given by (3.19), which we re-arrange by appealing to (3.7) as

F = −ue∂xωa −
(
ve∂yωa +

1
ε2
g∂Y ΩP

)
− (ua∂x + vE∂y)ωe − ε

(
ue∂x + (v̄P + ve)∂y

)
ωe + (∂xf2 − ∂yf1)

= F (1) + · · ·+ F (5) . (7.43)

The estimate for the last term in (7.43), namely F (5), was given earlier in Lemma 7.6, and these bounds
are already consistent with (7.13) and (7.14). We divide this section into four steps, in which we bound
{F (i)}4i=1.

Step 1. Bounding F (1) in (7.43). We recall the definitions (3.7)–(3.8), which give that

F (1) = −ue

(
∂xωE − 1

ε
∂xΩP + ε∂2

xv̄
P

)
.

We apply Lemma 4.2, the improved product estimate in Lemma 6.2 for the term containing ∂xΩP, the
estimates (4.13), (5.36), (6.8), (6.10), and Corollary 7.8 to obtain

‖F (1)‖Yλ,µ = ‖ue∂xωa‖Yλ,µ " ‖ue‖Yλ,µ,∞

(
‖∂xωE‖Yλ,µ + 1 + ε‖∂xxv̄

P‖Pλ,µ,∞

)

" 1 + ‖ωe‖Yλ,µ∩Sµ , (7.44)

where we used ε ≤ 1. The estimate for ∂xF (1) is essentially the same and gives

‖∂xF
(1)‖Yλ,µ " 1 +

∑

i≤1

‖∂i
xωe‖Yλ,µ∩Sµ . (7.45)

Similarly, the application of y∂y results in two terms: When this operator acts on ue we use (7.40); on
the other hand, when this operator acts on ωa, we use that y∂y = Y ∂Y , the identity ∂Y v̄P = −∂xũP, the
bounds (5.36), (6.8), (6.9), (6.10), and (6.20); in summary

‖y∂yF
(1)‖Yλ,µ " 1 +

∑

i+j≤1

‖∂i
x(y∂y)jωe‖Yλ,µ∩Sµ . (7.46)

The above three estimates are all consistent with (7.13).
Next, we bound the Sµ norm of the first term in (7.43). For (i, j) = (0, 0), by appealing to Lemma 4.2

and the bounds (5.2), (5.3), (6.8), (6.10), we obtain

‖F (1)‖Sµ ≤ ‖ue‖H1
xL

∞
y (y≥1+µ)

(∥∥∂xωE
∥∥
Sµ

+
∥∥Y ∂xΩP

∥∥
Pλ,µ,∞

+ ε
∥∥∂2

xv̄
P
∥∥
Pλ,µ,∞

)
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"
∑

i≤1

∥∥∂i
xue

∥∥
L∞

x,y(y≥1+µ)
. (7.47)

Here we have implicitly used L∞
x (T) ⊂ L2

x(T). For (i, j) = (1, 0), by a similar argument, we obtain

‖∂xF
(1)‖Sµ "

∑

i≤2

∥∥∂i
xue

∥∥
L∞

x,y(y≥1+µ)
. (7.48)

Lastly, for (i, j) = (0, 1), we have

∂yF
(1) = y∂y(ue∂xωa) = (∂yue)∂xωa + ue∂x∂yωa ,

and thus by using the identity ∂Y v̄P = −∂xũP and a similar argument to the bound (7.47), we have

‖∂yF
(1)‖Sµ " ‖∂yue‖H1

xL
∞
y (y≥1+µ)

(∥∥∂xωE
∥∥
Sµ

+
∥∥Y ∂xΩP

∥∥
Pλ,µ,∞

+ ε
∥∥∂2

xv̄
P
∥∥
Pλ,µ,∞

)

+ ‖ue‖H1
xL

∞
y (y≥1+µ)

(∥∥∂x∂yω
E
∥∥
Sµ

+
∥∥Y 2∂x∂Y ΩP

∥∥
Pλ,µ,∞

+
∥∥∂3

xũ
P
∥∥
Pλ,µ,∞

)

"
∑

i+j≤2

∥∥∂i
x∂j

yue

∥∥
L∞

x,y(y≥1+µ)
. (7.49)

Step 2. Bounding F (2) in (7.43). Appealing to (3.8) and ∂Y v̄P = −∂xũP, we write the second term in
(7.43) as

−F (2) = ve∂yωa +
1
ε2
g∂Y ΩP = ve∂yω

E − 1
ε2
(ve − g)∂Y ΩP − ve∂

2
xũ

P

= ve∂yω
E − 1

ε

ve − g

y
Y ∂Y ΩP − ve∂

2
xũ

P . (7.50)

When (i, j) = (0, 0), using the above decomposition, and appealing to Lemmas 4.2, 5.7, 6.1, Corollary 7.8,
and Lemma 6.2 for the term containing Y ∂Y ΩP, we obtain

‖F (2)‖Yλ,µ " ‖ve‖Yλ,µ,∞

(
‖∂yω

E‖Yλ,µ + ε‖(1 + Y )3/2∂2
xũ

P‖Pλ,µ,∞

)
+

∥∥∥∥
ve − g

y

∥∥∥∥
Yλ,µ,∞

"
(
‖ωe‖Yλ,µ∩Sµ + 1

)
(1 + ε) + (‖∂xωe‖Yλ,µ∩Sµ + 1)

" 1 +
∑

i≤1

‖∂i
xωe‖Yλ,µ∩Sµ . (7.51)

Applying ∂i
x(y∂y)j = ∂i

x (Y ∂Y )
j , with i+j = 1, to the definition of F (2) in (7.50), and using that Re y " 1

for y ∈ Ωµ, yields a similar bound

‖∂i
x(y∂y)jF (2)‖Yλ,µ " ‖∂i

x(y∂y)jve‖Yλ,µ,∞

(
‖∂yω

E‖Yλ,µ + ε‖(1 + Y )3/2∂2
xũ

P‖Pλ,µ,∞

)

+ ‖ve‖Yλ,µ,∞

(
‖∂i

x∂j+1
y ωE‖Yλ,µ + ε‖(1 + Y )3/2∂i+2

x (Y ∂Y )j ũP‖Pλ,µ,∞

)

+
∥∥∥∥(y∂y)j

(
∂i
x(ve − g)

y

)∥∥∥∥
Yλ,µ,∞

+
∥∥∥∥
ve − g

y

∥∥∥∥
Yλ,µ,∞

" (‖∂xωe‖Yλ,µ∩Sµ + 1) + (‖∂i+1
x ωe‖Yλ,µ∩Sµ + 1) + (‖ωe‖Yλ,µ∩Sµ + 1)

" 1 +
∑

i≤2

‖∂i
xωe‖Yλ,µ∩Sµ . (7.52)

Here we have used ∂yve = −∂xue and ∂Y ũP = ΩP. All these terms are bounded by the right side of
(7.13).

Next, we bound the Sµ norm of F (2), as defined in (7.50). Using Lemma 4.2, Theorem 5.1, Lemma 6.1,
and Corollary 7.8, we obtain

‖F (2)‖Sµ " ‖ve‖H1
xL

∞
y (y≥1+µ)

(
‖∂yωe‖Sµ

+
∥∥∂2

xũ
P
∥∥
Pλ,µ,∞

)
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+
(
‖ve‖H1

xL
∞
y (y≥1+µ) + ‖g‖H1

x

)∥∥Y 2∂Y ΩP
∥∥
Pλ,µ,∞

" ‖ve‖H1
xL

∞
y (y≥1+µ)

(
‖∂yωe‖S + ‖∂x∂yωe‖S +

∥∥∂2
xũ

P
∥∥
Pλ,µ,∞

)

+

(
‖ve‖H1

xL
∞
y (y≥1+µ) +

∑

ξ

(1 + |ξ|2)
∫ ∞

0
|(∂xũ

P)ξ|dY
)

∥∥Y 2∂Y ΩP
∥∥
Pλ,µ,∞

" 1 +
∑

i≤1

∥∥∂i
xve

∥∥
L∞

x,y(y≥1+µ)
. (7.53)

The estimates for the Sµ norm of ∂i
x∂j

yF
(2) follow similarly to (7.53) by applying the Leibniz rule, resulting

in
∑

i+j=1

‖∂i
x∂j

yF
(2)‖Sµ " 1 +

∑

i+j≤2

∥∥∂i
xve

∥∥
L∞

x,y(y≥1+µ)
, (7.54)

and thus we omit the details.
Step 3. Bounding F (3) in (7.43). Recalling (3.7), we return to the third term in (7.43), which we

re-write as

−F (3) = (ua∂x + vE∂y)ωe = uE∂xωe + ũP∂xωe + vE∂yωe .

First, we bound the Yλ,µ norm of F (3), i.e., for (i, j) = (0, 0). By Lemma 4.2, Lemma 5.7, and Lemma 6.1,
we have

‖F (3)‖Yλ,µ "
(
‖uE‖Yλ,µ,∞ + ‖ũP‖Pλ,µ,∞

)
‖∂xωe‖Yλ,µ +

∥∥∥∥
1
y
vE

∥∥∥∥
Yλ,µ,∞

‖y∂yωe‖Yλ,µ

" ‖∂xωe‖Yλ,µ + ‖y∂yωe‖Yλ,µ . (7.55)

Similarly, for i+ j = 1, since Re y " 1 for y ∈ Ωµ, by Lemma 4.2, Lemma 5.7, and Lemma 6.1, we have

‖∂i
x(y∂y)jF (3)‖Yλ,µ "

(
‖∂i

x∂j
yu

E‖Yλ,µ,∞ + ‖∂i
x(Y ∂Y )j ũP‖Pλ,µ,∞

)
‖∂xωe‖Yλ,µ

+

(
i

∥∥∥∥
1
y
∂i
xv

E

∥∥∥∥
Yλ,µ,∞

+ j‖∂xue‖Yλ,µ,∞

)
‖y∂yωe‖Yλ,µ

+
(
‖uE‖Yλ,µ,∞+‖ũP‖Pλ,µ,∞

)
‖∂i+1

x (y∂y)jωe‖Yλ,µ+
∥∥∥∥
1
y
vE

∥∥∥∥
Yλ,µ,∞

∥∥∂i
x(y∂y)j+1ωe

∥∥
Yλ,µ

"
∑

i+j≤2

∥∥∂i
x(y∂y)jωe

∥∥
Yλ,µ

. (7.56)

Next, we bound the Sµ norm of F (3) and its first tangential and conormal derivatives. When (i, j) = (0, 0),
by Lemma 4.2, Theorem 5.1, and Lemma 6.1 we obtain

‖F (3)‖Sµ "
(∥∥uE

∥∥
H1

xL
∞
y (y≥1+µ)

+
∥∥ũP

∥∥
Pλ,µ,∞

)
‖∂xωe‖Sµ

+
∥∥vE

∥∥
H1

xL
∞
y (y≥1+µ)

‖∂yωe‖Sµ

"
∑

i+j=1

∥∥∂i
x∂j

yωe

∥∥
Sµ

. (7.57)

By a very similar argument, for i+ j = 1 we get

‖∂i
x∂j

yF
(3)‖Sµ "

∑

i+j≤2

∥∥∂i
x∂j

yωe

∥∥
Sµ

. (7.58)

Step 4: Bounding F (4) in (7.43). It remains to consider the fourth term in (7.43), which we recall is
given by

F (4) = −ε
(
ue∂xωe + (v̄P + ve)∂yωe

)
. (7.59)
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This term is the only one which is nonlinear in ωe, but it has the added benefit that it has a power of ε
as a multiplying factor. Using that (3.14) gives v̄P|Y=0 = −g, and recalling the definition of v̄P in (2.10),
we rewrite

ε(v̄P + ve)∂yωe = (ve − g) + (v̄P + g) = ε(ve − g)∂yωe − ε∂yωe

∫ Y

0
∂xũ

PdY ′

=

(
ε
ve − g

y
− 1

Y

∫ Y

0
∂xũ

PdY ′

)
y∂yωe . (7.60)

Using (7.59) and (7.60), we appeal to Lemma 4.2, Lemma 6.1, and Corollary 7.8, to arrive at

‖F (4)‖Yλ,µ " ε‖ue‖Yλ,µ,∞‖∂xωe‖Yλ,µ +

(
ε

∥∥∥∥
ve − g

y

∥∥∥∥
Yλ,µ,∞

+
∥∥∂xũ

P
∥∥
Pλ,µ,∞

)
‖y∂yωe‖Yλ,µ

" ε
(
1 + ‖ωe‖Yλ,µ∩Sµ

)
‖∂xωe‖Yλ,µ +

(
1 + ε‖∂xωe‖Yλ,µ∩Sµ

)
‖y∂yωe‖Yλ,µ , (7.61)

a bound which is consistent with (7.13). Similarly, for (i, j) = (1, 0) we get

‖∂xF
(4)‖Yλ,µ " ε

(
1 + ‖∂xωe‖Yλ,µ∩Sµ

)
‖∂xωe‖Yλ,µ +

(
1 + ε‖∂2

xωe‖Yλ,µ∩Sµ

)
‖y∂yωe‖Yλ,µ

+ ε
(
1 + ‖ωe‖Yλ,µ∩Sµ

)
‖∂2

xωe‖Yλ,µ +
(
1 + ε‖∂xωe‖Yλ,µ∩Sµ

)
‖y∂y∂xωe‖Yλ,µ . (7.62)

On the other hand, for (i, j) = (0, 1) we obtain

‖y∂yF
(4)‖Yλ,µ " ε

(
1 + ‖ωe‖Yλ,µ∩Sµ

)
‖y∂y∂xωe‖Yλ,µ +

(
1 + ε‖∂xωe‖Yλ,µ∩Sµ

)
‖(y∂y)2ωe‖Yλ,µ

+ ε
(
1 + ‖∂xωe‖Yλ,µ∩Sµ + ‖ωe‖Yλ,µ

+ ‖y∂yωe‖Yλ,µ

)
‖∂xωe‖Yλ,µ

+
(
1 + ε‖∂xωe‖Yλ,µ∩Sµ

)
‖y∂yωe‖Yλ,µ . (7.63)

To conclude, it remains to estimate ∂i
x(y∂y)jF (4) with respect to the Sµ norm. For (i, j) = (0, 0), using

(7.59), Lemma 4.2, and Lemma 6.1, we have

‖F (4)‖Sµ " ε ‖ue‖H1
xL

∞
y (y≥1+µ) ‖∂xωe‖Sµ

+ ε
(
‖ve‖H1

xL
∞
y (y≥1+µ) +

∥∥v̄P
∥∥
Pλ,µ,∞

)
‖∂yωe‖Sµ

" ε



1 +
∑

i≤1

∥∥∂i
xue

∥∥
L∞(y≥1+µ)

+
∥∥∂i

xve
∥∥
L∞(y≥1+µ)




∑

i+j=1

∥∥∂i
x∂j

yωe

∥∥
Sµ

. (7.64)

The estimate for ∂xF (4) is nearly identical, upon applying the Leibniz rule in x. For the ∂yF (4) estimate,
the only special term is ∂y v̄P∂yωe = −ε−1∂xũP∂yωe, which nonetheless may be bounded using (4.11d)
with θ = 1. In analogy to (7.64), for i+ j = 1 the resulting estimate is

‖∂i
x∂j

yF
(4)‖Sµ " ε



1 +
∑

i+j≤2

∥∥∂i
x∂j

yue

∥∥
L∞(y≥1+µ)

+
∥∥∂i

x∂j
yve

∥∥
L∞(y≥1+µ)




∑

i+j≤2

∥∥∂i
x∂j

yωe

∥∥
Sµ

. (7.65)

Step 5: Conclusion of the proof of Lemma 7.4. By adding the upper bounds obtained in (7.44), (7.45),
and (7.46) for F (1), the estimates (7.51) and (7.52) for F (2), the upper bounds (7.55) and (7.56) for F (3),
the estimates (7.61), (7.62) and (7.63) for F (4), and the bound (7.22) for F (5), we obtain the proof of
(7.13).

By adding the upper bounds obtained in (7.47), (7.48), and (7.49) for F (1), the estimates (7.53) and
(7.54) for F (2), the upper bounds (7.57) and (7.58) for F (3), the estimates (7.64) and (7.65) for F (4), and
the bound (7.23) for F (5), we obtain the proof of (7.13).

Lastly, we recall that bound (7.15) was previously established in Section 7.3.1, thereby establishing
Lemma 7.4.
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7.4. Proof of Proposition 7.1

According to definition (4.9), we fix 0 ≤ t ≤ T∗ and let µ ∈ (0, µ∗ − γ∗t). Using the mild formulation
(7.7), and applying Lemma 7.3, we obtain

∑

i+j=2

‖∂i
x(y∂y)jωe(t)‖Yλ,µ " 1 +

∫ t

0




∑

i+j≤1

‖∂i
x(y∂y)jF (s)‖Yλ,µ̄ +

∑

i+j≤1

‖∂i
x∂j

yF (s)‖Sµ̄



 ds

µ∗ − µ − γ∗s

+
∫ t

0




∑

i≤1

(‖∂i
xF (s)‖Yλ,µ̄ + ‖∂i

xF (s)‖Sµ) +
∑

i≤1

∑

ξ

eµ̄|ξ||ξ|i|∂tgξ(s)|



 ds

µ∗ − µ − γ∗s
,

where µ̄ is as defined in (7.9). In particular, µ∗ − µ̄ − γ∗s = (3/4)(µ∗ − µ − γ∗s). Applying Lemma 7.4
and Proposition 7.5, we deduce

∑

i+j=2

‖∂i
x(y∂y)jωe(t)‖Yλ,µ " 1 +

∫ t

0

(
1 + |||ωe|||s

µ∗ − µ − γ∗s
+

(1 + ε|||ωe|||s)|||ωe|||s
(µ∗ − µ − γ∗s)4/3

)
ds

+
∫ t

0

1 + |||ωe|||s + ε|||ωe|||2s
µ∗ − µ − γ∗s

ds+
1

γ3/4
∗ (µ∗ − µ − γ∗t)1/4

. (7.66)

In the above estimate, we have used the inequalities (7.15) and (7.17), applied the Hölder inequality in
time, and have used the estimate

∫ t

0

ds

(µ∗ − µ − γ∗s)1+α
" 1

γ∗(µ∗ − µ − γ∗t)α
,

which holds for α ≥ 0 and µ < µ∗ − γ∗t. Now, using the definition of Y (t) norm, and fact that (µ∗ − µ−
γ∗t)1/3 ≤ (µ∗ − µ − γ∗s)1/3, and the fact that γ∗ ≥ 2, we get

(µ∗ − µ − γ∗t)1/3
∑

i+j=2

‖∂i
x(y∂y)jωe(t)‖Yλ,µ

" 1 +
(
1 + sup

0≤s≤t
|||ωe|||s + ε sup

0≤s≤t
|||ωe|||2s

)(∫ t

0

ds

(µ∗ − µ − γ∗s)2/3
+

∫ t

0

(µ∗ − µ − γ∗t)1/3ds
(µ∗ − µ − γ∗s)4/3

)

" 1 +
1
γ∗

(
sup

0≤s≤t
|||ωe|||s + ε sup

0≤s≤t
|||ωe|||2s

)
. (7.67)

Similarly to the argument leading to (7.66), using that µ∗ " 1 we also may show that

∑

i+j≤1

‖∂i
x(y∂y)jωe(t)‖Yλ,µ " 1 +

∫ t

0




∑

i+j≤1

‖∂i
x(y∂y)jF (s)‖Yλ,µ̄ +

∑

i+j≤1

‖∂i
x∂j

yF (s)‖Sµ̄



 ds

+
∫ t

0




∑

i≤1

(‖∂i
xF (s)‖Yλ,µ̄ + ‖∂i

xF (s)‖Sµ) +
∑

i≤1

∑

ξ

eµ̄|ξ||ξ|i|∂tgξ(s)|



 ds

" 1 +
∫ t

0

1 + |||ωe|||s + ε|||ωe|||2s
(µ∗ − µ − γ∗s)1/3

ds+ t3/4

" 1 +
1
γ∗

(
sup

0≤s≤t
|||ωe|||s + ε sup

0≤s≤t
|||ωe|||2s

)
. (7.68)

Combining (7.67) and (7.68), taking a supremum over all µ ∈ (0, µ∗ −γ∗t), and appealing to the definition
of the Y (t) norm in (4.9), concludes the proof of (7.4).
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8. The Z Norm Estimate

In this section, we obtain a bound on the Z norm, defined in (4.8), for ωe. From (3.17), we recall that ωe

satisfies

∂tωe − ε2∆ωe + ε(ue∂x + ve∂y)ωe + (ua∂xωe + va∂yωe) + (ue∂xωa + ve∂yωa) = F̃ ,

where

F̃ = − 1
ε2
g∂Y ΩP − ∂yf1 + ∂xf2.

Denote φ(y) = yψ(y) where ψ ∈ C∞ is a non-decreasing function such that ψ = 0 for 0 ≤ y ≤ 1
4 and

ψ = 1 for y ≥ 1
2 . Observe that ‖yωe‖L2(y≥ 1

2 )
≤ ‖φωe‖L2 . The function

Q(t) =
∑

i+j≤3

‖φ∂i
x∂j

yωe‖2L2

satisfies
dQ

dt
"

(
ε2 + ε ‖ve‖L∞(y≥1/4) + ‖va‖L∞(y≥1/4)

)
Q

+
(

ε
∑

1≤i+j≤2

‖∂i
x∂j

yue‖L∞(y≥1/4) +
∑

1≤i+j≤2

‖∂i
x∂j

yua‖L∞(y≥1/4)

)
Q

+
(

ε
∑

i+j=3

∥∥∂i
x∂j

yue(t)
∥∥
L2(y≥1/4)

+
∑

i+j=3

∥∥∂i
x∂j

yua(t)
∥∥
L2(y≥1/4)

)
‖φ∇ωe‖L∞(H) Q

1/2

+ (ε2 + ε ‖ve‖L∞(1/4≤y≤1/2) + ‖va‖L∞(1/4≤y≤1/2))
∑

i+j≤3

‖∂i
x∂j

yωe‖2L2
x,y(1/4≤y≤1/2)

+
∑

0≤i+j≤2

‖∂i
x∂j

yue‖L∞(y≥1/4)

∑

0≤i+j≤4

‖∂i
x∂j

yωa‖L2(y≥1/4)

+
∑

i+j=3

∥∥∂i
x∂j

yue(t)
∥∥
L2(y≥1/4)

∑

i+j=1

∥∥∂i
x∂j

yωa(t)
∥∥
L∞(y≥1/4)

+
∑

i+j≤3

‖∂i
x∂j

yF̃‖L2
x,y(y≥1/4)Q

1/2 , (8.1)

where ue = (ue, ve) and ua = (ua, va). Also, by (7.1), we have

Q(0) " 1. (8.2)

Our next goal is to estimate the right hand side of the inequality (8.1). First, we estimate the error
velocity ue in terms of the error vorticity, which is needed in several terms in (8.1).

Lemma 8.1. For all δ ∈ (0, 1/2), we have
∑

0≤i+j≤2

‖∂i
x∂j

yue(t)‖L∞
x,y(y≥δ) +

∑

i+j=3

∥∥∂i
x∂j

yue(t)
∥∥
L2

x,y(y≥δ)
" 1 + |||ω|||t ,

where the implicit constants depend on δ. Also, we have the bound
∑

0≤i+j≤2

‖∂i
x∂j

yωe(t)‖L∞
x,y(δ≤y≤3/4) +

∑

i+j=3

∥∥∂i
x∂j

yωe(t)
∥∥
L2

x,y(y≥δ)
" 1 + |||ωe|||t .

Proof of Lemma 8.1 Recall from (3.14) that g = −v̄P|Y=0. By the estimate (6.10), we obtain

‖∂ig‖L∞(T) " 1, i ∈ N0 , (8.3)

where the implicit constant depends on i, as long as γ ≥ 5/2. The rest of the proof proceeds exactly as in
the proof of [41, Lemma 5.1]. Note that the proof depends on the Biot-Savart law (7.35)–(7.36), and the
only difference between the Biot-Savart law here and in [41] is the presence of g, which is simply bounded
by (8.3). #
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Next, we bound the Sobolev norms of the approximate velocity ua and vorticity ωa from (3.7)–(3.8).

Lemma 8.2. Assume γ > 5/2. For all δ ∈ (0, 1/2)
∑

0≤i+j≤3

‖∂i
x∂j

yua(t)‖L∞
x,y(y≥δ) +

∑

i+j=4

∥∥∂i
x∂j

yua(t)
∥∥
L2

x,y(y≥δ)
" 1 , (8.4)

where the implicit constants depend on δ. Also, we have the bound
∑

0≤i+j≤2

‖∂i
x∂j

yωa(t)‖L∞
x,y(δ≤y≤3/4) +

∑

i+j=3

∥∥∂i
x∂j

yωa(t)
∥∥
L2

x,y(y≥δ)
" 1 . (8.5)

Proof 8.2. Recall that ua = uE + ũP and va = vE + εv̄P. Since (5.16) holds, in order to prove the claimed
upper bound for the first term in (8.4), we only need to prove

∑

0≤i+j≤2

‖∂i
x∂j

yũ
P(t)‖L∞

x,y(y≥δ) + ‖∂i
x∂j

y v̄
P(t)‖L∞

x,y(y≥δ) " 1. (8.6)

Note that the bound on the first term in (6.9) implies

|∂i
x∂j

yũ
P(Y )| " 1

Y j+γ−3/2
, i, j ∈ N0 ,

where the implicit constant depends on i and j. The bound for the first term in (8.6) then holds if we
assume γ > 3/2. The bound for the second term in (8.6) is the same, except that we use (6.10) instead
of (6.9) and we assume γ > 5/2.

For the bound on the second term in (8.4), recall that Y = y/ε and thus

‖f(Y )‖L2
y(y≥δ) = ε1/2‖f(Y )‖L2

Y (Y ≥δ/ε) .

The bound on the first component of the velocity then holds if γ > 2 and for the second component if
γ > 3.

In order to prove the estimate (8.5), we use (5.16) for the Euler part, while for the Prandtl part we
have the bound

|∂i
x∂j

yΩ
P(Y )| " 1

Y γ+j
, i, j ∈ N0 , (8.7)

which follows from (6.8). The bound for the first term in (8.5) then holds if γ ≥ 1 while the bound for
the second term in (8.5) follows if γ > 3/2. #

Finally, we state the bound for the forcing term F̃ .

Lemma 8.3. Assume that γ > 2. For every δ > 0, we have

‖∂i
x∂j

yF̃‖L2
x,y(y≥δ) " 1, i, j ∈ N0 ,

where the implicit constant depends on i, j, and δ > 0.

Proof of Lemma 8.3 Observing the expansion (7.24) for −∂yf1 + ∂xf2, we note that all terms contain
products of Prandtl and Euler velocities and vorticities. To avoid repetition, we only estimate the higher
order term, which is the first term in (7.24) and requires bounding ε−2∂i

x∂j
y

∫
i Ω

P in L2(y ≥ δ). Using
(8.7), we get

‖∂i
x∂j

yΩ
P‖L2(y≥δ) " 1

provided γ ≥ 2 since

‖Y −γ‖L2(y≥δ) = ε1/2‖Y −γ‖L2(Y ≥δ/ε) " εγ ,

where the constant depends on ε. #
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Next, we give the bound for the Z norm of the error vorticity ωe, which we recall, cf. (4.8), is given by

‖ωe‖Z =
∑

i+j≤3

‖ωe‖S =
∑

i+j≤3

‖y∂i
x∂j

yωe‖L2(y≥ 1
2 )
.

Proposition 8.4 (The Z norm estimate). Assume that supt∈[0,T ] |||ωe|||t is finite. Then we have the bound

‖ωe(t)‖Z "
(
1 +

∫ t

0
(1 + |||ωe(s)|||s)

3 ds

)
exp

(
C

∫ t

0
(1 + |||ωe(s)|||s)ds

)
, (8.8)

provided γ > 5/2.

Proof. (Proof of Proposition 8.4) Applying the bounds in Lemmas 8.1, 8.2, and 8.3 in (8.1), we get
dQ

dt
" (1 + |||ω|||t)Q+ (1 + |||ω|||t)3 .

Using also (8.2) and applying the Grönwall lemma, we obtain (8.8). #

9. Proof of Theorem 3.1

The main result of the paper follows from the definition (2.12) and the following result:

Therorem 9.1. Assume that the Navier-Stokes initial vorticity ωNS
0 is given by (2.12), where the Euler

initial vorticity satisfies (5.1) and the Prandtl initial vorticity satisfies (6.1), for some λ0 > 0, independent
of ε. Moreover, assume that ωe0 that satisfies (7.1) for some λ3, µ3 > 0, independent of ε. Then, there
exists a γ∗ ≥ 2 sufficiently large, independent of ε, such that with the parameters µ∗, T∗ ∈ (0, 1] defined
in (7.3) we have that

sup
t∈[0,T∗]

|||ωe(·, t)|||t ≤ C∗ ,

for a constant C∗ > 0 independent of ε.

Proof. Under the assumption (5.1), the Euler solution satisfies the estimates in Lemma 5.7, for suit-
able (T1,λ1, µ1). Assuming (6.1), and using that the Euler trace UE is known to be real-analytic in x,
the Prandtl solution obeys the bounds in Lemma 6.1 for suitable (T2,λ2, µ2). Define the parameters
µ∗, T∗,λ∗ ∈ (0, 1] as in (7.3), and let γ∗ ≥ 2 be a free parameter. With these fixed parameters, define the
norm |||·|||t by (4.10).

By combining Proposition 7.1 and Proposition 8.4, and using that by (7.3) we have T∗ " γ−1
∗ , we

obtain the following a priori estimate for the cumulative error vorticity:

|||ωe(t)|||t ≤ C0 +
C0

γ∗

(
sup

0≤s≤t
|||ωe|||s + ε sup

0≤s≤t
|||ωe|||2s

)

+ C0

(
1 +

C0

γ∗
(1 + sup

0≤s≤t
|||ωe|||s)

3

)
exp

(
C0

γ∗
(1 + sup

0≤s≤t
|||ωe|||s)

)
, (9.1)

for a sufficiently large constant C0 which is independent of γ∗ and ε, and for all t ∈ [0, T∗]. Moreover, due
to (7.1), the definitions (4.10) and (7.3), we also have

|||ωe0|||0 ≤ C0 ,

by possibly enlarging the value of C0. Since ε ≤ 1, we deduce that upon choosing γ∗ ≥ 2 to be sufficiently
large, solely in terms of C0, we have

sup
t∈[0,T∗]

|||ωe(t)|||t ≤ 2C0 , (9.2)

which completes the proof upon letting C∗ = 2C0. #
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10. Proof of Corollary 3.2

We conclude the paper by deducing the main corollary.

Proof. (Proof of Corollary 3.2) We start by proving the inequality (3.2), which in light of (3.4)–(3.5)
amounts to showing that ue and ve are O(1), uniformly in ε with respect to the L∞(H) norm.

First, by (3.1), we have

|||ωe(·, t)|||t " 1, t ∈ [0, T∗] . (10.1)

Using (7.40) with i = j = 0, we get

‖ue‖Yλ∗,µ∗,∞ " ‖ωe‖Yλ∗,µ∗ ∩Sµ + 1 " |||ωe(·, t)|||t + 1 " 1 , (10.2)

where λ∗ and µ∗ are as in the beginning of Sect. 4.3. Similarly, the bound (7.42) with i = 0 analogously
implies

‖ve‖Yλ∗,µ∗,∞ " 1 .

Next, using (8.4) with i = j = 0 and (10.1), we get

‖ue(t)‖L∞
x,y(y≥1/2) + ‖ve(t)‖L∞

x,y(y≥1/2) " 1. (10.3)

Combining (10.2)–(10.3), and recalling the definition (4.5), we get

‖ue(t)‖L∞
x,y

+ ‖ve(t)‖L∞
x,y

" 1 ,

and (3.2) follows.
Next, we turn to the second assertion, (3.3). Let K ⊂ H be such that dist(K, ∂H) =: dK > 0. The

inequality (3.3) then follows from (3.2) and (3.4)–(3.5) by observing that

‖ũP‖L∞(Y ≥dK/ε) + ‖v̄P‖L∞(Y ≥dK/ε) " ε ,

which follows from the bounds (6.9)–(6.10), due to the fact that γ was chosen sufficiently large. Note that
the bound (3.3) is not uniform as dK → 0. #

Remark 10.1. The conclusion of Theorem 3.1 is stronger than the fact that the vanishing viscosity limit
holds with respect to the energy norm. Namely, if in addition to the assumptions of Theorem 3.1
(or Remark 3.1), we assume that the Navier-Stokes data belongs to L2(H), and suppose that limε→0∥∥(uNS

0 − uE
0 , v

NS
0 − vE0 )

∥∥
L2(H)

= 0, then the vanishing viscosity limit holds in the energy norm:

lim
ε→0

sup
t∈[0,T0]

‖(uNS − uE, vNS − vE)(·, t)‖L2(H) = 0 . (10.4)

In order to verify (10.4), denote the strip S = {(x, y) ∈ H : 0 ≤ y ≤ 1}. By (7.40), (7.42), and (10.1), we
have that

‖∂xue‖L2(S) + ‖∂xve‖L2(S) " 1 . (10.5)

Similarly, using (5.37) and (5.38) we get

‖∂xu
E‖L2(S) + ‖∂xv

E‖L2(S) " 1 ,

and finally, (6.9) and (6.10) give

‖∂xũ
P‖L2(S) + ‖∂xv̄

P‖L2(S) " 1 . (10.6)

From the inequalities (10.5)–(10.6), together with the ansatz (3.4)–(3.5), we obtain

‖∂xu
NS‖L2(S) + ‖∂xv

NS‖L2(S) " 1 ,

uniformly in ε ∈ (0, 1]. Applying the criterion (2.13) in [60] with α = 3/4, we conclude that (10.4) holds.
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