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Chapter One

Introduction

We consider the homogeneous incompressible Euler equations

Ow+div(v@v)+Vp=0 (1.1a)
dive =0 (1.1b)

for the unknown velocity vector field v and scalar pressure field p, posed on the
three-dimensional box T? = [—,7]® with periodic boundary conditions. We
consider weak solutions of (1.1), which may be defined in the usual way for
v E LfLi.

We show that within the class of weak solutions of regularity C?H;/ 7, the
3D Euler system (1.1) is flezible.! An example of this flexibility is provided by:

Theorem 1.1 (Main result). Fiz 8 € (0,1/2). For any divergence-free vec-
tor fields vstart, Vend € LQ(']T:‘) which have the same mean, any T > 0, and any
€ > 0, there exists a weak solution v € C([0,T]; H?(T?)) to the 8D Euler equa-
tions (1.1) such that ||v(-,0) — Ustart||L2(T3) <eand |v(-,T) — UendHL2(T3) <e.

Since the vector field veng may be chosen to have a much higher (or much
lower) kinetic energy than the vector field vgart, the above result shows the
existence of infinitely many non-conservative weak solutions of 3D Euler in the
regularity class C?H;/ *7. Theorem 1.1 further shows that the set of so-called
wild initial data is dense in the space of L? periodic functions of given mean. The
novelty of this result is that these weak solutions have more than 1/3 regularity,
when measured on a L2-based Banach scale.

Remark 1.2. We have chosen to state the flexibility of the 3D Euler equations
as in Theorem 1.1 because it is a simple way to exhibit weak solutions which are
non-conservative, leaving the entire emphasis of the proof on the regularity class
in which the weak solutions lie. Using by now standard approaches encountered
in convex integration constructions for the Euler equations, we may alternatively
establish the following variants of flexibility for (1.1) within the class of CY H, e
weak solutions:

oosely speaking, we consider a system of partial differential equations of physical origin
to be flexible in a certain regularity class if at this regularity level the PDEs are not anymore
predictive: there exist infinitely many solutions, which behave in a non-physical way, in stark
contrast to the behavior of the PDE in the smooth category. We refer the interested reader to
the discussion in the surveys of De Lellis and Székelyhidi Jr. [30, 32], which draw the analogy
with the flexibility in Gromov’s h-principle [40].
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1. The proof of Theorem 1.1 also shows that given any 8 < 1/2, T > 0,
and E > 0, there exists a weak solution v € C(R, H?(T®)) of the 3D
Euler equations such that supp ,v C [=T,T], and ||v(-,0)|/;. > E. Such
weak solutions are nontrivial and have compact support in time, thereby
implying the non-uniqueness of weak solutions to (1.1) in the regularity
class C,?H;/ *7. The argument is sketched in Remark 3.7 below.

2. The proof of Theorem 1.1 may be modified to show that given any 5 €
(0,1/2), and any C™ smooth function e: [0,T] — (0,00), there exists a
weak solution v € C°([0,T); H?(T?)) of the 3D Euler equations, such
that v(-,t) has kinetic energy e(t), for all t € [0,T]. In particular, the

flexibility of 3D Euler in C’?H;/ >~ may be shown to also hold within the
class of dissipative weak solutions, by choosing e to be a non-increasing
function of time. This is further discussed in Remark 3.8 below.

1.1 CONTEXT AND MOTIVATION

Classical solutions of the Cauchy problem for the 3D Euler equations (1.1) are
known to exist, locally in time, for initial velocities which lie in C*® for some
a > 0 (see, e.g., Lichtenstein [48]). These solutions are unique, and they conserve
(in time) the kinetic energy £(t) = § [1s |v(z,t)|*dw, giving two manifestations
of rigidity of the Euler equations within the class of smooth solutions.

Motivated by hydrodynamic turbulence, it is natural to consider a much
broader class of solutions to the 3D Euler system; these are the distributional
or weak solutions of (1.1), which may be defined in the natural way as soon as
v € L?L2, since (1.1) is in divergence form. Indeed, one of the fundamental
assumptions of Kolmogorov’s '41 theory of turbulence [46] is that in the infinite
Reynolds number limit, turbulent solutions of the 3D Navier-Stokes equations
exhibit anomalous dissipation of kinetic energy; by now, this is considered to be
an experimental fact; see, e.g., the book of Frisch [39] for a detailed account. In
particular, this anomalous dissipation of energy necessitates that the family of
Navier-Stokes solutions does not remain uniformly bounded in the topology of
L?Bg,oo,m for any a > 1/3, as the Reynolds number diverges, as was alluded to
in the work of Onsager [58].? Thus, in the infinite Reynolds number limit for
turbulent solutions of 3D Navier-Stokes, one expects the convergence to weak
solutions of 3D Euler, not classical ones.

It turns out that even in the context of weak solutions, the 3D Euler equa-

20nsager did not use the Besov norm

lvllpa = IllvllLe + sup [2]7% lo(- +2) = v()llLe 5
P |z|>0

here we use this modern notation and the sharp version of this conclusion, cf. Constantin, E,
and Titi [22], Duchon and Robert [35], and Drivas and Eyink [34].
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tions enjoy some conditional variants of rigidity. An example is the classical
weak-strong uniqueness property.®> Another example is the question of whether
weak solutions of the 3D Euler equation conserve kinetic energy. This is the
subject of the Onsager conjecture [58], one of the most celebrated connections
between phenomenological theories in turbulence and the rigorous mathemati-
cal analysis of the PDEs of fluid dynamics. For a detailed account we refer the
reader to the reviews [37, 21, 61, 30, 64, 32, 33, 12, 14] and mention here only
a few of the results in the Onsager program for 3D Euler.

Constantin, E, and Titi [22] established the rigid side of the Onsager con-
jecture, which states that if a weak solution v of (1.1) lies in L?B{f’oo’w for some
B > 1/3, then v conserves its kinetic energy. The endpoint case 5 = 1/3 was
addressed by Cheskidov, Constantin, Friedlander, and Shvydkoy [16], who es-
tablished a criterion which is known to be sharp in the context of 1D Burgers.
By using the Bernstein inequality to transfer information from L2 into L3 | the
authors of [16] also prove energy-rigidity for weak solutions based on a regularity
condition for an L2-based scale: if v € L}H? with 3 > 5/s, then v conserves
kinetic energy (see also the work of Sulem and Frisch [63]). We emphasize the
discrepancy between the energy-rigidity threshold exponents 5/6 for the L2-based
Sobolev scale, and 1/3 for LP-based regularity scales with p > 3.

The first flexibility results were obtained by Scheffer [59], who constructed
nontrivial weak solutions of the 2D Euler system, which lie in L?L2 and have
compact support in space and time. The existence of infinitely many dissipative
weak solutions to the Euler equations was first proven by Shnirelman in [60],
in the regularity class L{°L2. Inspired by the work [53] of Miiller and Sverak
for Lipschitz differential inclusions, in [29] De Lellis and Székelyhidi Jr. have
constructed infinitely many dissipative weak solutions of (1.1) in the regularity
class L°LS° and have developed a systematic program towards the resolution
of the flexible part of the Onsager conjecture, using the technique of convex
integration. Inspired by Nash’s paradoxical constructions for the isometric em-
bedding problem [54], the first proof of flexibility of the 3D Euler system in
a Holder space was given by De Lellis and Székelyhidi Jr. in the work [31].
This breakthrough or crossing of the L to C? barrier in convex integration
for 3D Euler [31] has in turn spurred a number of results [8, 6, 9, 27] which
have used finer properties of the Euler equations to increase the regularity of
the wild weak solutions being constructed. The flexible part of the Onsager
conjecture was finally resolved by Isett [43, 42] in the context of weak solutions
with compact support in time (see also the subsequent work by the first and last
authors with De Lellis and Székelyhidi Jr. [11] for dissipative weak solutions),
by showing that for any regularity parameter § < 1/3, the 3D Euler system (1.1)
is flexible in the class of C’g » weak solutions. We refer the reader to the review

3If v is a strong solution of the Cauchy problem for (1.1) with initial datum vy € L2,
and w € L§°L3 is merely a weak solution of the Cauchy problem for (1.1), which has the
additional property that its kinetic energy £(t) is less than the kinetic energy of vg, for a.e.
t > 0, then in fact v = w. See, e.g., the review [66] for a detailed account.
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papers [30, 64, 32, 33, 12, 14] for more details concerning convex integration
constructions in fluid dynamics, and for open problems in this area. We note
that the situation in two dimensions appears considerably more difficult, as the
full flexible side of the Onsager conjecture remains open in this setting [56]. Suc-
cessfully extending either the homogeneous C'/*~ constructions, or the present
construction, to the 2D Euler equations appears to require new ideas.

Since the aforementioned convex integration constructions are spatially ho-
mogenous, they yield weak solutions whose Holder regularity index cannot be
taken to be larger than 1/3 (recall that weak solutions in L3C? with 3 > 1/
must conserve kinetic energy). However, the exponent 1/3 is not expected to be a
sharp threshold for energy rigidity/flexibility if the weak solutions’ regularity is
measured on an LP-based Banach scale with p < 3. This expectation stems from
the measured intermittent nature of turbulent flows; see, e.g., Frisch [39, Figure
8.8, page 132]. In broad terms, intermittency is characterized as a deviation
from the Kolmogorov 41 scaling laws, which were derived under the assump-
tions of homogeneity and isotropy (for a rigorous way to measure this deviation,
see Cheskidov and Shvydkoy [20]). A common signature of intermittency is
that for p # 3, the p'* order structure function® exponents (p deviate from
the Kolmogorov-predicted values of /3. We note that the regularity statement
v e CYB; , corresponds to a structure function exponent ¢, = sp; that is, Kol-
mogorov 41 predicts that s = 1/3 for all p. The exponent p = 2 plays a special
role, as it allows one to measure the intermittent nature of turbulent flows on the
Fourier side as a power-law decay of the energy spectrum. Throughout the last
five decades, the experimentally measured values of (5 (in the inertial range, for
viscous flows at very high Reynolds numbers) have been consistently observed
to exceed the Kolmogorov-predicted value of 2/3 [1, 50, 62, 45, 15, 44, 55], thus
showing a steeper decay rate in the inertial range power spectrum than the one
predicted by the Kolmogorov-Obhukov 5/3 law. Moreover, in the mathematical
literature, Constantin and Fefferman [23] and Constantin, Nie, and Tanveer [24]
have used the 3D Navier-Stokes equations to show that the Kolmogorov 41
prediction (o = 2/3 is only consistent with a lower bound for (s, instead of an
exact equality.

Prior to this work, it was not known whether the 3D Euler equation can
sustain weak solutions which have kinetic energy that is uniformly bounded in
time but not conserved, and which have spatial regularity equal to or exceeding
H;/3, corresponding to (3 > 2/3; see [12, Open Problem 5] and [14, Conjecture
2.6]. Theorem 1.1 gives the first such existence result. The solutions in Theo-

4In analogy with LP-based Besov spaces, absolute p'? order structure functions are typi-

cally defined as Sp(¢) = f(;‘p fr3 fo2 lv(x + £2,t) — v(x, t)|[Pdzdzdt. The structure function ex-

%, where € > 0

is the postulated anomalous dissipation rate in the infinite Reynolds number limit. Of course,
for any non-conservative weak solution we may define a positive number € = fOT |%8 (t)|dt as
a substitute for Kolmogorov’s €, which allows one to define ¢, accordingly.

ponents in Kolmogorov’s "41 theory are then given by (, = limsup,_, o+
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rem 1.1 may be constructed to have second-order structure function exponent (s
an arbitrary number in (0, 1), showing that (1.1) exhibits weak solutions which
severely deviate from the Kolmogorov-Obhukov 5/3 power spectrum.

We note that in a recent work [18], Cheskidov and Luo established the sharp-
ness of the L?L2° endpoint of the Prodi-Serrin criteria for the 3D Navier-Stokes
equations, by constructing non-unique weak (mild) solutions of these equations
in YL, for any p < 2.°> As noted in [18, Theorem 1.10], their approach also
applies to the 3D Euler equations, yielding weak solutions that lie in L}C? for
any 8 < 1, and thus these weak solutions also have more than !/3 regularity.
The drawback is that the solutions constructed in [18] do not have bounded (in
time) kinetic energy, in contrast to Theorem 1.1, which yields weak solutions
with kinetic energy that is continuous in time.

Theorem 1.1 is proven by using an intermittent convex integration scheme,
which is necessary in order to reach beyond the 1/3 regularity exponent, uni-
formly in time. Intermittent convex integration schemes have been introduced
by the first and last authors in [13] in order to prove the non-uniqueness of weak
(mild) solutions of the 3D Navier-Stokes equations with bounded kinetic energy,
and then refined in collaboration with Colombo [7] to construct solutions which
have partial regularity in time. Recently, intermittent convex integration tech-
niques have been used successfully to construct non-unique weak solutions for
the transport equation (cf. Modena and Székelyhidi Jr. [52, 51], Brué, Colombo,
and De Lellis [5], and Cheskidov and Luo [17]), the 2D Euler equations with
vorticity in a Lorentz space (cf. [4]), the stationary 4D Navier-Stokes equations
(cf. Luo [49]), the a-Euler equations (cf. [3]), and the MHD equations and re-
lated variants (cf. Dai [26], the first and last authors with Beekie [2]), and the
effect of temporal intermittency has recently been studied by Cheskidov and
Luo [18]. We refer the reader to the reviews [12, 14] for further references, and
for a comparison between intermittent and homogenous convex integration.

When applied to three-dimensional nonlinear problems, intermittent convex
integration has insofar only been successful at producing weak solutions with
negligible spatial regularity indices, uniformly in time. As we explain in Sec-
tion 1.2, there is a fundamental obstruction to achieving high regularity: in
physical space, intermittency causes concentrations that result in the formation
of intermittent peaks, and to handle these peaks the existing techniques have
used an extremely large separation between the frequencies in consecutive steps
of the convex integration scheme.® This book is the first to successfully imple-
ment a high-regularity (in L?), spatially intermittent, temporally homogenous,
convex integration scheme in three space dimensions, and shows that for the 3D
Euler system any regularity exponent 3 < 1/2 may be achieved.” In fact, the

5See also [19] for a proof that the space CYLL is critical for uniqueness at p = 2, in two
space dimensions.

6This becomes less of an issue when one considers the equations of fluid dynamics in very
high space dimensions; cf. Tao [65].

"It was known within the community (see Section 2.4.1 for a detailed explanation) that
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techniques developed in this book are the backbone for the recent work [57] of
the last two authors, which gives an alternative, intermittent, proof of the On-
sager conjecture. In general, we expect the framework developed in the present
work to inspire future iterations requiring a combination of intermittency and
sharp regularity estimates.

1.2 IDEAS AND DIFFICULTIES

As alluded to in the previous paragraph, the main difficulty in reaching a high
regularity exponent for weak solutions of (1.1) is that the existing intermittent
convex integration schemes do not allow for consecutive frequency parameters
Aq and Ag41 to be close to each other. In essence, this is because intermittency
smears out the set of active frequencies in the approximate solutions to the
Euler system (instead of concentric spheres, they are more akin to thick con-
centric annuli), and several of the key estimates in the scheme require frequency
separation to achieve LP-decoupling (see Section 2.4.1). Indeed, high regularity
exponents necessitate an almost geometric growth of frequencies (A, = AJ), or
at least a barely super-exponential growth rate A\;11 = )\Z with0<b—-1<«1
(in comparison, the schemes in [13, 7] require b ~ 10%). Essentially every new
idea in this manuscript is aimed either directly or indirectly at rectifying this
issue: how does one take advantage of intermittency, and at the same time keep
the frequency separation nearly geometric?

The building blocks used in the convex integration scheme are intermittent
pipe flows,® which we describe in Section 2.3. Due to their spatial concentration
and their periodization rate, quadratic interactions of these building blocks pro-
duce both the helpful low frequency term which is used to cancel the previous
Reynolds stress ]o%q, and a number of other errors which live at intermediate fre-
quencies. These errors are spread throughout the frequency annulus with inner
radius A, and outer radius A;41, and may have size only slightly less than that of
Zc%q. If left untreated, these errors only allow for a very small regularity parame-
ter 8. In order to increase the regularity index of our weak solutions, we need to
take full advantage of the frequency separation between the slow frequency A,
and the fast frequency Ag41. As such, the intermediate-frequency errors need
to be further corrected via velocity increments designed to push these residual
stresses towards the frequency sphere of radius Ag+1. The quadratic interactions
among these higher order velocity corrections themselves, and in principle also

there is a key obstruction to reaching a regularity index in L? for a solution to the Euler
equations larger than 1/2 via convex integration.

8The moniker used in [27] and the rest of the literature for these stationary solutions has
been “Mikado flows.” However, we rely rather heavily on the geometric properties of these
solutions, such as orientation and concentration around axes, and so to emphasize the tube-like
nature of these objects, we will frequently use the term “pipe flows.”
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with the old velocity increments, in turn create higher order Reynolds stresses,
which live again at intermediate frequencies (slightly higher than before), but
whose amplitude is slightly smaller than before. This process of adding higher
order velocity perturbations designed to cancel intermediate-frequency higher
order stresses has to be repeated many times until all the resulting errors are
either small or live at frequency ~ Aq41, and thus are also small upon inverting
the divergence. See Sections 2.4 and 2.6 for a more thorough account of this
iteration.

Throughout the process described in the above paragraph, we need to keep
adding velocity increments, while at the same time keeping the high-high-high
frequency interactions under control. The fundamental obstacle here is that
when composing the intermittent pipe flows with the Lagrangian flow of the slow
velocity field, the resulting deformations are not spatiotemporally homogenous.
In essence, the intermittent nature of the approximate velocity fields implies that
a sharp global control on their Lipschitz norm is unavailable, thus precluding
us from implementing a gluing technique as in [42, 11]. Additionally, we are
faced with the issue that pipe flows which were added at different stages of the
higher order correction process have different periodization rates and different
spatial concentration rates, and may a priori overlap. Our main idea here is to
implement a placement technique which uses the relative intermittency of pipe
flows from previous or same generations, in conjunction with a sharp bound on
their local Lagrangian deformation rate, to determine suitable spatial shifts for
the placement of new pipe flows so that they dodge all other bent pipes which
live in a restricted space-time region. This geometric placement technique is
discussed in Section 2.5.2.

A rigorous mathematical implementation of the heuristic ideas described in
the previous two paragraphs, which crucially allows us to slow down the fre-
quency growth to be almost geometric, requires extremely sharp information on
all higher order errors and their associated velocity increments. For instance, in
order to take advantage of the transport nature of the linearized Euler system
while mitigating the loss of derivatives issue which is characteristic of convex in-
tegration schemes, we need to keep track of essentially infinitely many sharp
material derivative estimates for all velocity increments and stresses. Such
estimates are naturally only attainable on a local inverse Lipschitz timescale,
which in turn necessitates keeping track of the precise location in space of the
peaks in the densities of the pipe flows, and performing a frequency localiza-
tion with respect to both the Eulerian and the Lagrangian coordinates. In
order to achieve this, we introduce carefully designed cutoff functions, which
are defined recursively for the velocity increments (in order to keep track of
overlapping pipe flows from different stages of the iteration), and iteratively
for the Reynolds stresses (in order to keep track of the correct amplitude of
the perturbation which needs to be added to correct these stresses); see Sec-
tion 2.5. The cutoff functions we construct effectively play the role of a joint
Eulerian-and-Lagrangian Littlewood-Paley frequency decomposition, which in
addition keeps track of both the position in space and the amplitude of var-
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ious objects (akin to a wavelet decomposition). The analysis of these cutoff
functions requires estimating very high order commutators between Lagrangian
and Eulerian derivatives (see Chapter 6 and Appendix A). Lastly, we mention
an additional technical complication: since the sharp control of the Lipschitz
norm of the approximate velocities in our scheme is local in space and time, we
need to work with an inverse divergence operator (e.g., for computing higher
order stresses) which, up to much lower order error terms, maintains the spatial
support of the vector fields that it is applied to. Additionally, we need to be
able to estimate an essentially infinite number of material derivatives applied
to the output of this inverse divergence operator. This issue is addressed in
Section A.8.

1.3 ORGANIZATION OF THE BOOK

The goal of this book is to prove Theorem 1.1 through an explicit construction
of satisfactory weak solutions of the 3D Euler equations. Many aspects of this
construction are in fact predicated on several recent advancements in the field
of convex integration, particularly for the Euler and Navier-Stokes equations.
Readers wishing to familiarize themselves with the important concepts can con-
sult the survey paper [12], which provides an excellent overview of the relevant
literature, along with essentially complete proofs of some fundamental results.
We also refer the reader to the foundational papers [31, 8, 43, 11, 13], in which
much of the aforementioned theory for the Euler and Navier-Stokes equations
was developed.

As the complete proof of Theorem 1.1 is quite intricate, we have provided
in Chapter 2 a broad overview of the main ideas, and how they tie together in
order to prove the end result. Any path through this book, whether a short
sojourn or a deep dive, should begin here. Specifically, Chapter 2 contains an
outline of the convex integration scheme, in which we replace some of the actual
(and more complicated) estimates and definitions appearing in the proof with
heuristic ones in order to highlight the new ideas at an intuitive level. Readers
familiar with the aforementioned literature may read only this chapter and still
encounter the inspiration behind every new idea in the proof.

For those readers wishing to move past heuristics, the proof of Theorem 1.1
is given in Chapter 3, assuming that a number of estimates hold true inductively
for the solutions of the Euler-Reynolds system at every step of the convex inte-
gration iteration. The remainder of the book is dedicated to showing that the
inductive bounds stated in Section 3.2 may indeed be propagated from step ¢
to step ¢+ 1. Chapter 4 contains the construction of the intermittent pipe flows
used in this book and describes the careful placement required to show that these
pipe flows do not overlap on a suitable space-time set. The mollification step of
the proof is performed in Chapter 5. Chapter 6 contains the definitions of the
cutoff functions used in the proof and establishes their properties. Readers may
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skip the proofs in Chapters 5 and 6, simply take the results for granted, and read
the rest of the book successfully. Chapter 7 breaks down the main inductive
bounds from Section 3.2 into components which take into account the higher
order stresses and perturbations. Chapter 8 then proves the constituent parts
of the inductive bounds outlined in Chapter 7. Chapter 9 carefully defines the
many parameters in the proof, states the precise order in which they are chosen,
and lists a few consequences of their definitions. Finally, Appendix A contains
the analytical toolshed to which we appeal throughout the book. Readers may
also wish to read the proofs in the appendix sparingly, as the statements are
generally sufficient for understanding most of the arguments.
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Chapter Two

Outline of the convex integration scheme

In Section 2.1, we list the set of parameters used throughout this chapter. The
primary inductive assumptions are detailed in Section 2.2. The principal build-
ing blocks of the convex integration scheme, namely, intermittent pipe flows, are
described in Section 2.3. We also elaborate on the intricacies of implementing
these building blocks within the context of a convex integration scheme. In par-
ticular, we will describe the degree of intermittency used in their construction,
the placement of the pipes, and the control of their Lagrangian deformation.
Section 2.4, describes the new concept of higher order stresses that play a key
role in the convex integration scheme. An additional crucial technical ingredient
to the construction, specialized cutoff functions, will be described in Section 2.5.
Such cutoff functions allow precise localization of scales of both the velocity and
Reynolds stress. In addition, the cutoffs play a key role in the placement of
pipes. Section 2.6 details the construction of the inductive perturbation to the
velocity designed to correct the Reynolds stress error of the previous iteration.
Finally, heuristic estimates of the new Reynolds stress error resulting from the
perturbation are given in Section 2.7.

2.1 A GUIDE TO THE PARAMETERS

In order to make sharp estimates throughout the scheme, we will require numer-
ous parameters. For the reader’s convenience, we have collected in this section
the heuristic definitions of all the parameters introduced in the following sec-
tions of the outline. The parameters are listed in Section 2.1.1 in the order
corresponding to their first appearance in the outline. We give as well brief
descriptions of the significance of each parameter.

2.1.1 Definitions
Definition 2.1 (Parameters introduced in Chapter 1).

1. B: The regqularity exponent corresponding to a solution v € CyHP(T?).
Definition 2.2 (Parameters introduced in Section 2.2).

1. q: The integer which represents the primary stages of the iterative convex
integration scheme.
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2. Ny = a®): The primary parameter used to quantify frequencies. a and b
will be chosen later, with a € Ry being a sufficiently large positive number
and b € R a real number slightly larger than 1.

3. 6q = )\;25 : The primary parameter used to quantify amplitudes of stresses
and perturbations.

4. Tq = ((531/2)\(1)_1: The primary parameter used to quantify the cost of a
material derivative 9 + vy - V.!

Definition 2.3 (Parameters introduced in Section 2.3).

1. n: The primary parameter which will be used to divide up the frequencies
between A\q and Ag+1 and which will take non-negative integer values. The
divisions will be used for both the frequencies of the higher order stresses
in Section 2.4 as well as the thickness of the intermittent pipe flows used
to correct the higher order stresses.

2. Nmax: A large integer which is fized independently of ¢ and which sets the
largest allowable value+01f n.

\n

3. Tgyin = (/\q)\;il)(g) The parameter quantifying intermittency, or

the thickness of a tube periodized at unit scale for values of n such that

0 <7 < Nmax.?
(1) ()"
4o Agm = Ag+1Tg+1.n = Ag* Agr1’ : The minimum frequency present

in an intermittent pipe flow Wqi1 . Equivalently, (/\q+1rq+17n)_1 is the
scale to which Wy 1, is periodized. See Figure 2.1.

>‘q-,0 /\q,l .. . )‘q-nmax

Ag b - —t — H—+ i+ I Agt1

Aq.0,0 Ag,1,0 Ag,2,0 o A et 1,0

/\q,n*]_. Agn

[T IR . , M . ey

I H— —t t- t t t t T H—— t +—t +—t t t |
)\q,n,() >‘q,n+1,0 B . )\q,n-%—Z‘U

)\q;n,p /\q,n‘p+1 /\q,n‘+l,p /\q.,n,+1.p+1

Figure 2.1: Schematic of the frequency parameters appearing in Definitions 2.2
and 2.4.

1
IFor technical reasons, 7'(;1 will be chosen to be slightly shorter than 62 \;. For the
1
heuristic calculations, one may ignore this modification and simply use ’Tq_l =03 Ag.
4
2In particular, this choice gives Tqtlntl = T;Jrl,n. In our proof, the inequality rg’Jrl’n <
r‘ql+1 n+1 Plays a crucial role. In order to absorb g independent constants, as well as to ensure

that there is a sufficient gap between these parameters to ensure decoupling, we have chosen
to work with the % instead of the % geometric scale.
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Definition 2.4 (Parameters introduced in Section 2.4).

4 n—1 n—l.é
1. For 2 < n < Nax, Agn,o0 = )\55) 6)\q+5 :) ® 4s the minimum fre-

quency present in the higher order stress Rq,n. Conversely, Agn+1,0 15
the mazimum frequency present in an When n =0, we set \g0,0 = Aq
to be the mazimum frequency present in }()Bq’o = }()Eq, and when n = 1,
Ag,1,0 = Ag,0 1S the minimum frequency present in ]%%1, while Mg 2,0 s the
mazximum frequency.

2. p: A secondary parameter which takes positive integer values and which
will be used to divide up the frequencies in between \gn,o and Agnt1,0, GS
well as the higher order stresses.

3. pmax: A large integer, fixed independently of q, which is the largest allow-
able value of p.

1—_p P
p— Pmax Pmax
4 Agngp = /\q,n,o P Agmt10° The mazimum frequency present in the higher

order stress R(me for 1 < n < npax and 1 < p < puax. Conversely,
Agn,p—1 15 the minimum frequency in Ry, p,. When n = 0 and p takes
any value, e adopt the convention that Mg, = A\q. See Figure 2.1.

U
le’ldX Pmax . y ;
5. fan o 0/\q,n,0 : The increment between frequencies Agn p—1 and

/\q%p forn > 1. We have the equalities

pm’xx

)‘q,mp = )‘qm 0 q n» )‘q,n+170 = /\qm 0

For ease of notation, when n =0 we set fg, = 1.

6. Forn=0andp=1, 6g41,01 = 0g+1 15 the amplitude off%q = ]O%,Lo. For
n=0andp>2, 6g1,0p =0, since there are no higher order stresses at
n=0. Forn > 1 and any value of p, the amplitude of Io?qmm is given by

. q+1)\
5q+1,n,p : H fq,n’

A
gnp=1 o

One should view the product of fq.n terms as a negligible error, which is
justified by calculating

1 1
A Pmax A Pmax
H fq,n’ _ < q7n1nax+170> < < q+1> (21)
<7/ <nmax Aq1,0 Ag

and assuming that pmax s large.
Definition 2.5 (Parameters introduced in Section 2.5).

1. ep: A very small positive number.
2. I'gy1 = ()\qul)\;l)eF ;A parameter which will be used to quantify devia-
tions in amplitude. In particular, I'y will be used to quantify amplitudes
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of both velocity fields and (higher order) stresses.

2.2 INDUCTIVE ASSUMPTIONS

o

For every non-negative integer ¢ we will construct a solution (vg, pg, Rq) to the
Euler-Reynolds system

Ovg + div (vg ® vg) + Vpg = div ]?iq (2.2a)
diveog =0. (2.2b)

Here ID%q is assumed to be a trace-free symmetric matrix. The relative size of
the approximate solution v, and the Reynolds stress error éq will be measured
in terms of the frequency parameter A, and the amplitude parameter d,, which
are defined in Definition 2.2. We will propagate the following basic inductive

o

estimates on (vg, Ry):3

1
[vgll g1 < 64 Aq (2.3)
[Rqllzr < dgta- (2.4)

We shall see later that in order to build solutions belonging to H? for 3 ap-
proaching %, we must propagate additional estimates on higher order material
and spatial derivatives of both v, and }"zq in L? and L', respectively. Roughly
speaking, every spatial derivative on either v, or szq costs a factor of A\;. Ad-
ditional material derivatives are more delicate and will be discussed further in
Section 2.5, but for the time being, one may imagine that each material deriva-
tive Dy g := 0y 4 vq - V on vy or Ry costs a factor of 7,1

2.3 INTERMITTENT PIPE FLOWS

Pipe flows, both homogeneous and intermittent, have proven to be one of the
most useful components of many convex integration schemes. Homogeneous pipe
flows were introduced first by Daneri and Székelyhidi Jr. [27]. The prototypical
pipe flow in the €3 direction is constructed using a smooth function p : R? — R
which is compactly supported, for example in a ball of radius 1 centered at the
origin, and has zero mean. Letting o : T2 — R be the T?-periodized version of

3By |lvg|l g1, we actually mean HULIHC’?Hl' Similarly, || Ry ;1 stands for ”I%LZHC,OLl . Unless
x t x

stated explicitly otherwise, all the norms used in this book are uniform in time and will be
abbreviated in the same way as in this example.



OUTLINE OF THE CONVEX INTEGRATION SCHEME 15

p, the T3-periodic pipe flow W : T? — R? is defined as
W(x1,22,23) = o(x1,23)es . (2.5)

It is immediate that W is divergence-free and a stationary solution to the Fuler
equations. Pipe flows such as W have been used in convex integration schemes
which produce solutions in L*°-based spaces [27, 43, 11]. At the ¢'" stage of
r]l‘3

the iteration, the
q+1

-periodized pipe flow W (A,41-) is used to construct the
perturbation.

By contrast, intermittent pipe flows are not spatially homogeneous. Inter-
mittency in the context of convex integration schemes was introduced by the first
and last authors in [13] via intermittent Beltrami flows, which are defined via
their Fourier support and may be likened to modified and renormalized Dirich-
let kernels. Intermittent pipe flows were introduced by Modena and Székelyhidi
Jr. in the context of the transport and transport-diffusion equation [52] and
have also been utilized for the higher dimensional (at least four dimensional*)
Navier-Stokes equations [49, 65]. The precise objects we use are defined in
(4.10) in Proposition 4.4, but let us briefly describe some of their important
attributes. The intermittency is quantified by the parameter ry41, < 1. Let

Procint B2 = R be defined by pr,.,, () = p (55 ), and let oy, be the

T2-periodized version of Prqi1.,- Thus one can see that 7,11, describes the
thickness of the pipes at unit scale. In order to make the intermittent pipe flows
of unit size in L?(T?), one must multiply by a factor of r;ﬁl)n, meaning that

the Lebesgue norms of the resulting object W,. ., = scale as

2

erqﬂm HLP('JTS) ~Tdkn

(2.6)

Let Wy11,, be the m—periodic version of W Notice that this
implies that the thickness of the pipes comprising W1 ,, is of order /\;:1 for all
n, and that the Lebesgue norms of the periodized object W, , depend only
on rq41,n. Per Definition 2.3, the thickness of the pipes used in the perturbation

at stage ¢ + 1 will be quantified by

Ag (3
Tqg+1n = ) T
q

This choice will be jusified upon calculation of the heuristic bounds.

Tq4+1,n"

)n+1

4In three dimensions, intermittent pipe flows are not sufficiently sparse to handle the error
term arising from the Laplacian. This issue was addressed by Colombo and the first and
last authors in [7] through the usage of intermittent jets, and similar objects have been used
in subsequent papers as well (see work of Brue, Colombo, and De Lellis [5], Cheskidov and
Luo [17, 18]).
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4 0 74 ’ €2
/7 TZ) 51 2 (Aq17g11,n)
% A—
1 || 0
A7
/ V. g / / [ )
/’ -
A . : o
21 (Ag+17g+1,m) — 3 21 (Ager)
; 2n ()\q+17‘q+1,n)71

Figure 2.2: A pipe flow Wq41 , which is periodized to scale (Ag417g+1,n) " = Ay is
placed in a direction parallel to the ez axis. Upon taking into account periodic shifts,
we note that there are 7"[1_31,71 many options to place this pipe. This degree of freedom
will be used later; see, e.g., Figure 2.7.

2.3.1 Lagrangian coordinates, intermittency, and placements

In order to achieve the optimum regularity 3, we will define the pipe flows which
comprise the perturbation at stage ¢+1 in Lagrangian coordinates corresponding
to the velocity field v,. Due to the inherent instability of Lagrangian coordinates
over timescales longer than that dictated by the Lipschitz norm of the velocity
field, there will be many sets of coordinates used in different time intervals which
are then patched together using a partition of unity. This technique has been
used frequently in recent convex integration schemes, beginning with work of
Isett [41], the first author, De Lellis, and Székelyhidi Jr. [10], and Isett, the
first author, De Lellis, and Székelyhidi Jr. [8], but perhaps most notably in the
proof of the Onsager conjecture by Isett [43] and the subsequent strengthening
to dissipative solutions by the first and last authors, De Lellis, and Székelyhidi
Jr. [11].

The proof of Onsager’s conjecture employs the gluing technique to prevent
pipe flows defined using different Lagrangian coordinate systems from overlap-
ping. The intermittent quality of our building blocks, and thus the approximate
solution v,, appears to obstruct the successful implementation of the gluing
technique, since gluing requires a sharp control on the global Lipschitz norm of
the velocity field, which will be unavailable. Thus, we cannot use the gluing
technique and must control in a different fashion the possible interactions be-
tween two intermittent pipe flows defined using different Lagrangian coordinate
systems.

To control these interactions, we have introduced a placement technique
(cf. Proposition 4.8) which is used to completely prevent all such interactions.
This placement technique is predicated on a simple observation about intermit-
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tent pipe flows, which to our knowledge has not yet been used in any convex
integration schemes to date. When the diameter of the pipe at unit scale is of
size ry41,n, there are (ry41.,) "2 disjoint choices for the support of pipe. These
choices simply correspond to shifting the intersection of the axis of the pipe in
the plane which is perpendicular to the axis; cf. Proposition 4.3. This degree
of freedom is unaffected by periodization and is depicted in Figure 2.2 for a
%—periodic intermittent pipe flow W1 ,. We will exploit this degree
of freedom to choose placements for each set of pipes which entirely avoid other
sets of pipes on small discretized regions of space-time. The space-time dis-
cretization is made possible through the usage of cutoff functions which will be
discussed in more detail later in Section 2.5. We remark that De Lellis and
Kwon [28] have introduced a placement technique in the context of C%, globally
dissipative solutions to the 3D Euler equations which is predicated on restricting
the timescale of the Lagrangian coordinate systems to be significantly shorter
than the Lipschitz timescale. This restriction significantly limits the regularity
of the final solution and is thus not suited for an intermittent scheme aimed at
Hi™ regularity.

2.4 HIGHER ORDER STRESSES

2.4.1 Regularity beyond 1/3

The resolution of the flexible side of the Onsager conjecture in [43] and [11] men-
tioned previously shows that given some prescribed regularity index € (0, %)7
one can construct dissipative weak solutions u in C”. Conversely, following on
partial work by Eyink [36], Constantin, E, and Titi [22] have proven that con-
servation of energy in the Euler equations requires only that u € L (Bg“ OO) for
a > 1/3. This leaves open the possibility of building dissipative weak solutions
with more than %—many derivatives in LP (’]I‘3) (uniformly in time in our case)
for p < 3.

Let us present a heuristic estimate which indicates a regularity limit of H 3
for solutions produced via convex integration schemes. For this purpose, let
us focus on one of the principal parts of the stress in an intermittent convex
integration scheme (for the familiar reader, this is part of the oscillation error).
The perturbations include a coefficient function a which depends on f{q and
thus for which derivatives cost A\, and which has amplitude 5;61 (the square
root of the amplitude of the stress). These coefficient functions are multiplied
by intermittent pipe flows W, ¢ for which derivatives cost A;1; and which
have unit size in L?, but are only periodized to scale (/\q+1rq+170)_1. When the
divergence lands on the square of the coefficient function a? in the nonlinear
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term, the resulting error term satisfies the estimate

Og112q

Hdivil (V(a2)P#0(Wq+1,O ®Wq+170))”L1 < b\ (2.7)

q+17q+1,0

The numerator is the size of V(a?) in L', while the denominator is the gain
induced by inverting the divergence at Ag417¢+1,0, which is the minimum fre-
quency of Po(Wei1,0 @ War1,0) = Wor1,0 @ Worr0 — frs Wor1,0 @ Woii0.
Note that we have used implicitly that W, ¢ has unit L* norm, and that by
periodicity P_o(Wy41,0 ® Wy41,0) decouples from V(a?). This error would be
minimized when 74410 = 1, in which case

—-28+3 —28b+1

5q+1)‘q
— <Og+2 = A1 " <A1

)\q+1
— 280> —2Bb<b—1
— 20b(b—1)<b—-1
1
— < T (2.8)
Any intermittency parameter 74410 < 1 would weaken this estimate since the
gain induced from inverting the divergence will only be Agy17r¢g+1,0 < Agt1-
On the other hand, we will see that a small choice of rqy1,0 strengthens all
other error terms, and because of this, in our construction we will choose 74410
as in Definition 2.3, item (3). One may refer to the blog post of Tao [65]
for a slightly different argument which reaches the same apparent regularity
limit. This apparent regularity limit is independent of dimension, and we believe
that the method in this book cannot be modified to yield weak solutions with
regularity LYW3P with s > 1/2, for any p € [1,2].

The higher order stresses mentioned in Section 1.2 will compensate for the
losses incurred in this nonlinear error term when 74410 < 1. As we shall
describe in the next section, we use the phrase “higher order stresses” to describe
errors which are higher in frequency and smaller in amplitude than ]o%q, but
not sufficiently small enough or at high enough frequency to belong to foi,H_l.
Similarly, “higher order perturbations” are used to correct the higher order
stresses and thus increase the extent to which an approximate solution solves
the Euler equations.

2.4.2 Specifics of the higher order stresses

In convex integration schemes which measure regularity in L (i.e., using Holder
spaces C?), pipe flows interact through the nonlinearity to produce low (=
Ag) and high (= A,41) frequencies. We denote by wgy1,0 the perturbation
designed to correct ]o%q. In the absence of intermittency, the low frequencies from
the self-interaction of wg41,0 cancel the Reynolds stress error }O%q, and the high
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frequencies are absorbed by the pressure up to an error small enough to be placed
in Rg41. In an intermittent scheme, the self-interaction of the intermittent pipe
flows comprising wq41,0 produces low, intermediate, and high frequencies. The
low and high frequencies play a similar role as before. However, the intermediate
frequencies cannot be written as a gradient, nor are small enough to be absorbed
in .éq+1. This issue has limited the available regularity on the final solution in
many previous intermittent convex integration schemes. In order to reach the
threshold H %, we address this issue using higher order Reynolds stress errors

o

Ryn forn=1,2,... Nmax; cf. Figure 2.3.

éq‘l ng éq,n Ryt

i Adding wg41,0

N —

quo fzq,l fqu Rq,n f{q+1

Figure 2.3: Adding the increment wqy 1,0 corrects the stress Ry = Ry, but produces
error terms which live at frequencies that are intermediate between Ay, and Aq41, due
to the intermittency of wg41,0. These new errors are sorted into higher order stresses
Rﬁqyn for 1 < n < nmax, as depicted above. The heights of the boxes corresponds to the
amplitude of the errors that will fall into them, while the frequency support of each

box increases from \; for Rq0 = Ry, to Ag41 for Ryi1.

After the addition of wq41,0 to correct }ofq, which is labeled in Figure 2.4 as
éq70, low frequency error terms are produced, which we divide into higher order
stresses. To correct the error term of this type at the lowest frequency, which is
labeled Io%%l in Figure 2.4, we add a sub-perturbation wgy1,1. The subsequent
bins are lighter in color to emphasize that they are not yet full; that is, there
are more error terms which have yet to be constructed but will be sorted into
such bins. The emptying of the bins then proceeds inductively on n, as we

add higher order perturbations wg41,,, which are designed to correct éqm. For
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1 < n < npax, the frequency support of Rq’n is?
{keZ?: Xno <kl <Agnti0])- (2.9)

This division will be justified upon calculation of the heuristic bounds in Section
2.7.

ﬁiq,o éq,l éq,n Rq,n+l Rq+1

l, Adding wgi1,n

Rq,() Rq,l Rq,n Rq,n+1 Rq+1

Figure 2.4: Adding Wgq+1,n to correct Io{q,n produces error terms which are distributed
among the Reynolds stresses Ry, for n 4+ 1 < n < Nmax.

Let us now explain the motivation for the division of Jo%q,n into the further
subcomponents }ofqm,p. Suppose that we add a perturbation wgy1,, to correct
Io%q’n for n > 1. The amplitude of wq;1,, would depend on the amplitude of
Ic%q,n, which in turn depends on the gain induced by inverting the divergence to
produce qu’ which depends then on the minimum frequency A4, 0. However,
derivatives on the low frequency coefficient function used to define wq41,, would
depend on the mazimum frequency of R, ,,, which is Ay n1+1.0. The (sharp-eyed)
reader may at this point object that the first derivative on the low frequency
coefficient function V(a(]o%qyn)) should be cheaper, since ]O%qwn is obtained from
inverting the divergence, and taking the gradient of the cutoff function written
above should thus morally involve bounding a zero-order operator. However,
constructing the low frequency coefficient function presents technical difficulties
which prevent us from taking advantage of this intuition. In fact, the failure
of this intuition is the sole reason for the introduction of the parameter p, as

51n reality, the higher order stresses are not compactly supported in frequency. However,
they will satisfy derivative estimates to very high order which are characteristic of functions
with compact frequency support.
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one may see from the heuristic estimates later. In any case, increasing the
regularity S of the final solution requires minimizing this gap between the gain
in amplitude provided by inverting the divergence and the cost of a derivative,
and so we subdivide }o%qm into further components }O%q,n,p for 1 < p < Prmaz-®
Both npax and pmax are fixed independently of ¢. Each component qu)p then
will have frequency support in the set

{k€Z?: Anp—1 < k| <Agnp} ={k €Z%: AgnofPnt <[kl < AgnofP,}-
(2.10)
Notice that by the definition of f, , in Definition 2.4, 2.10 defines a partition
of the frequencies in between Ay, 0 and Agnt1,0 for 1 < p < prax. Figure 2.5
depicts this division, and we shall describe in the heuristic estimates how each
subcomponent qu’n,p is corrected by wq41,n,p, With all resulting errors absorbed
into either ]D%qH or ]o%q,n/ for n’ > n.

-:I+I+I+ I

Rq,n,l Rq,nﬂ Rq,n,?) Rq,n,pmax
Wq+1,n Wa+1,m,1 We+im2  Wetin3 Wa+1,n,pmax

Figure 2.5: The higher order stress Ry, is decomposed into components Rq.» , which
increase in frequency and decrease in amplitude as p increases. We use the bases of the
boxes to indicate support in frequency, where frequency is increasing from left to right,
and the heights to indicate amplitudes. Each subcomponent I%’Jq,n,p is corrected by its
own corresponding sub-perturbation wq1,n,p, which has a commensurate frequency
and amplitude.

Thus, the net effect of the higher order stresses is that one may take errors
for which the inverse divergence provides a weak estimate due to the presence
of relatively low frequencies and push them to higher frequencies for which
the inverse divergence estimate is stronger. We will repeat this process until
all errors are moved (almost) all the way to frequency A,4+1, at which point

6There are certainly a multitude of ways to manage the bookkeeping for amplitudes and
frequencies. Using both n and p is convenient because then n is the only index which quantifies
the rate of periodization.
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they are absorbed into éq+1. Heuristically, this means that in constructing the
perturbation wy41 at stage g, we have eliminated all the higher order error terms
which arise from self-interactions of intermittent pipe flows, thus producing a
solution vg41 to the Euler-Reynolds system at level ¢ + 1 which is as close as
possible to a solution of the Fuler equations. We point out that one side effect
of the higher order perturbations is that the total perturbation w1 has spatial
support which is not particularly sparse, since as n increases the perturbations
Wq41,n, become successively less intermittent and thus more homogeneous. At
the same time, the frequency support of our solution is also not too sparse, since

4
bis close to 1 and 14410 = ()\q/\q__&l) ® . so that many of the frequencies between
Aq and Mgy are active.

2.5 CUTOFF FUNCTIONS

2.5.1 Velocity and stress cutoffs

The concept of a turnover time, which is proportional to the inverse of the
gradient of the mean flow v, is crucial to the convex integration schemes men-
tioned earlier which utilized Lagrangian coordinates. Since the perturbation is
expected to be roughly flowed by the mean flow vy, the turnover time deter-
mines a timescale on which the perturbation is expected to undergo significant
deformations. An important property of pipe flows, first noted by Daneri and
Székelyhidi Jr. in [27] and utilized crucially by Isett [43] towards the proof of
Onsager’s conjecture, is that the length of time for which pipe flows written
in Lagrangian coordinates remain approximately stationary solutions to Euler
depends only on the Lipschitz norm of the transport velocity v, and not on the
Lipschitz norms of the original (undeformed) pipe flow. However, the timescale
under which pipe flows transported by an intermittent velocity field remain
coherent is space-time dependent, in contrast to previous convex integration
schemes in which the timescale was uniform across R x T3. As such, we will
need to introduce space-time cutoffs 1; 4 in order to determine the local turnover
time. In particular, the cutoff v; ; will be defined such that

1 i — i
HVU‘JHL‘”(supp Pisq) S 6q/2)‘qrzz+1 = Tq 1F31+1 : (2.11)

With such cutoffs defined, we then define in addition a family of temporal cutoffs
Xi,k,q Which will be used to restrict the timespan of the intermittent pipe flows
in terms of the local turnover. Each cutoff function ;x4 will have temporal
support contained in an interval of length

Tl iy (2.12)

It should be noted that we will design the cutoffs so that we can deduce
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much more on its support than (2.11). Since the material derivative Dy, :=
0r+v4-V will play an important role, we will require estimates involving material
derivatives D}, of very high order.” We expect the cost of a material derivative
to be related to the turnover time, which itself is local in nature. As such, high
order material derivative estimates will be done on the support of the cutoff
functions and will be of the form

In addition to the family of cutoffs v; ; and x; x4, we will also require stress
cutoffs wj j ¢n,p Which determine the local size of the Reynolds stress errors

N 2
¢i7th,qqu,pHLr :

Ry np; in particular w; j 4.np Will be defined such that

HVM éq,n,pH < Oyirmp D2 AM (2.13)

+1 n,p *
Le°(supp wi,j,q,n,p I arp

Previous intermittent convex integration schemes have managed to successfully
cancel intermittent stress terms with much simpler stress cutoff functions than
the ones we use. However, mitigating the loss of spatial derivative in the oscilla-
tion error means that we have to propagate sharp spatial derivative estimates of
arbitrarily high order on the stress in order to produce solutions with regularity
approaching H?z. Due to this requirement, we then have to estimate the second
derivative (and higher) of the stress cutoff function

|9 (+* () )|

which in turn necessitates bounding the local L? norm of Vlj?qm)p due to the
term

?

Lt

2

H(v2(w2)) (Rq,n’p) ‘VRq,n,p
1

Given inductive estimates about the derivatives of }qu only in L' which have

not been upgraded to L¥ for p > 1, this term will obey a fatally weak estimate,

which is why we must estimate Ry, , in L™ as in (2.13).

2.5.2 Checkerboard cutoffs

As mentioned in the discussion of intermittent pipe flows, we must prevent pipes
originating from different Lagrangian coordinate systems from intersecting. The
first step is to reduce the complexity of this problem by restricting the size of
the spatial domain on which intersections must be prevented. Towards this end,

"The loss of material derivative in the transport error means that to produce solutions with

-1
regularity approaching H 2, we have to propagate material derivative estimates of arbitrarily
high order on the stress.
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consider the maximum frequency of the original stress }oiq = }?q,o, or any of the
higher order stresses ]ﬂ%qyn for n > 1. We may write these frequencies as Ag4171
for /\q)\q_ﬁl < ry < 1. We then decompose ]%q,n using a checkerboard partition of
unity comprised of bump functions which follow the flow of v, and have support
of diameter ()\q+17’1)71. These two properties ensure that we have preserved
the derivative bounds on I?iq,n. Thus, we fix the set {2 to be the support of an
individual checkerboard cutoff function in this partition of unity at a fixed time;
cf. (4.28).

Suppose furthermore that €2 is inhabited by disjoint sets of deformed inter-
mittent pipe flows which are periodized to spatial scales no finer than (/\q+17“2)_1
for 0 < r; < rp < 1. In practice, o will be 7441, Where ryy1 , is the amount of
intermittency used in the pipes which comprise the perturbation wg41,, which
is used to correct ]%q,n. The pipes which already inhabit 2 may first be from
previous generations of perturbations w41,/ for n’ < n, in which case they are
periodized to spatial scales much broader than ()\q+17"2)717 or from an overlap-
ping checkerboard cutoff function used to decompose ]i%qyn on which a placement
of pipes periodized to spatial scale (}\q+17"2)71 has already been chosen. In ei-
ther case, these pipes will have been deformed by the velocity field v, on the
timescale given by the inverse of the local Lipschitz norm. We represent the
support of these deformed pipe flows in terms of axes {A4; };cz around which the
pipes {P;};cz are concentrated to thickness )\;Jil (recall from Section 2.3 that
all intermittent pipe flows used in our scheme have this thickness).

We will now explain that under appropriate restrictions on r1 and ro, one
may choose a new set of (straight, i.e. not deformed) intermittent pipe flows
Wy 2,4, Periodized to scale ()\q+17"2)_1 which are disjoint from each deformed
pipe P; and are on the support of €). Heuristically, this task becomes easier when
ro is smaller, since this means both that we have more choices of placement for
the new set, and that there are fewer pipes P; inhabiting 2. Conversely, this
task becomes more difficult when 71 is smaller, since then Q is larger and will
contain more pipes P;. We assume throughout that the deformations of the
P;s are mild enough to preserve the expected length, curvature, and spacing
bounds between neighboring pipes that arise from writing pipes in Lagrangian
coordinates and flowing for a length of time which is strictly less than the inverse
of the Lipschitz norm of the velocity field.

First, we can estimate the cardinality of the set Z (which indexes the axes
A; and pipes P;) from above by r3r; 2. To understand this bound, first note
that if we had straight pipes P; periodized to scale ()\q+1r2)_1 inhabiting a
cube of side length (/\(H_lrl)*l, this bound would hold. Using the fact that our
deformed pipes obey similar length, curvature, and spacing bounds as straight
pipes and that our set €2 can be considered as a subset of a cube with side
length proportional to (/\q+17“1)_1, the same bound will hold up to dimensional
constants. Secondly, by the intermittency of the desired set of new pipes, we
have r5 2 choices for the placement of the new set, as indicated in Figure 2.2.
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To finish the argument, we must estimate how many of these ry 2 choices
would lead to non-empty intersections between the new pipes and any P;. To
calculate this bound, we will imagine the placement of the new set of straight
pipes as occurring on a two-dimensional plane which is perpendicular to the
axes of the pipes. After projecting each P; onto this two-dimensional plane, our
task is to choose the intersection points of the new pipes with the plane so that
the new pipes do not intersect the shadows of the P;’s.

2 (Agaar) !
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Figure 2.6: In the figure on the left we display T®, in which we have four large
deformed pipes, representing a very sparse set of pipe flows from an old generation
that were deformed by wvg, and a small subcube depicting the support of a cutoff
function (, , ; ., ;» whose diameter is &~ (Aq+171)" . Due to the sparseness, very few
(if any!) of the old generation pipes intersect the support of the cutoff. The figure on
the right further zooms into the support of the cutoff, to emphasize its contents. On
the support of Cq,i,k,n,f we have displayed two sets of deformed pipe flows, in lighter
and darker shades. These pipes flows were deformed also by vg, from a nearby time
at which they were straight and periodic at scale (Ag+172) . At the current time, at
which the above figure is considered, these pipe flows aren’t quite periodic anymore,
but they are close. The question now is: can we place a straight pipe flow, periodic
at scale (A\g+172) ", whose axis is orthogonal to the front face of the box on the right,
and which does not intersect any of the existing pipes in this region? To see that this
is possible, in Figure 2.7 we will estimate the area of shadows on this face of the cube.

Given one of the deformed pipes P;, since its thickness is )\;Jil and its length

inside €2 is proportional to the diameter of €2, specifically ()\q+17“1)_1, we may

cover the shadow of P; on the plane with ~ 7! many balls of diameter /\q__&l.
Covering all the P;’s thus requires ~ r3r; 2 -7 ' balls of diameter )\qjl. Now,
imagine the intersection of the new set of pipes with the plane. Each choice of

placement defines this intersection as essentially a set of balls of diameter ~ )\q_jl
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Figure 2.7: As mentioned in the caption of Figure 2.6, we consider the image on the
right and project all of the pipes present in the box onto the front face of the cube
(parallel to the e3 — e1 plane). Because these existing pipes were deformed by vg, the
shadow does not consist of straight lines, and in fact the projections can overlap. By
estimating the area of this projection, we see that if r3 < r then there is enough room
left to insert a new pipe flow with orientation axis ez (represented by the dark disks in
the above figure), which will not intersect any of the projections of the existing pipes,
and thus not intersect the existing pipes themselves.

equally spaced at distance (/\(H_lrg)_l. The intermittency ensures that there are
ry 2 disjoint choices of placement, i.e., Ty 2 disjoint sets of balls which represent
the intersection of a particularly placed new set of pipes with the plane. As long
as

2

—2
Tl

rtgry? =y <rd,

there must exist at least one choice of placement which does not produce any
intersections between W, ., and the P;s. Notice that if 1 is too small or if
ro is too large, this inequality will not be satisfied, thus validating our previous
heuristics about ry and rs.

To obey the relative intermittency inequality between r; and 19 derived
above for placements of new intermittent pipes on sets of a certain diameter, we
will utilize cutoff functions

<q,i,k,n,f’
which are defined using a variety of parameters. The index g describes the stage
of the convex integration scheme, while ¢ and & refer to the velocity and temporal
cutoffs defined above. The parameter n corresponds to a higher order stress }?q,n
and refers to its minimum frequency A, .0, quantifying the value of (Ag4171) "
and the diameter of the support as described earlier. The parameter [= (I,w,h)
depends on ¢ and n and provides an enumeration of the (three-dimensional)
checkerboard covering T? at scale ()\q,mo)_l. On the support of one of these
checkerboard cutoff functions, we can inductively place pipes periodized to scale

()\q+17'2)_1 = A, which are disjoint. The checkerboard cutoff functions and the
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pipes themselves all follow the same velocity field, ensuring that the disjointness
at a single time slice is sufficient.

2.5.3 Cumulative cutoff function

Finally, the variety of cutoffs described above will be combined into the family
of cutoffs

Mi g k,qnp,l "= Thogkamnp = Xiykquiquivjﬂ,”wp(q,i,k,n,f’

which have timespans of Tqu__f;l and L? norms

We will also require a cutoff n
support of 5

i

_J
I (2.14)

— - 2 .
"i.j.kam.p.0]| 12 STef
i:tj:tk:tqnhWhiCh is defined to be 1 on the
7 and satisfies the estimate

We remark that (2.14) and (2.15) are only heuristics (see Lemma 6.41 for the
precise estimate). Designing the cutoffs turned out to be for the authors perhaps
the most significant technical challenge of the book. Their definition will be
inductive and estimates involving them will involve several layers of induction.

1,7,k,q,n

i

<% T

AR U (2.15)

it kgm0 | 1

2.6 THE PERTURBATION

The intermittent pipe flows of Section 2.3, the higher order stresses of Section
2.4, and the cutoff functions of Section 2.5 provide the key ingredients in the
construction of the perturbation

Mmax Pmax Mmax
Wqt1 = E Wq+1,n,p = Wq+1,n-
n=0 p=1 n=0

In the above double sum, we will adopt the convention that wg41,0,, = 0 unless
p = 1 to streamline notation. Let us emphasize that w,, is constructed induc-

Pmax

tively on n for the following reason. Each perturbation wgi1,, = pel Wa+1,m,p
will contribute error terms to all higher order stresses ]a%qﬁ,p for n > n and
1 < p < Pmax, and so ]D%qﬁ = ZZZT‘ ]’?q,ﬁJ) is not a well-defined object until each
Wq41,ns has been constructed for all n’ < n. For the purposes of the following
heuristics, we will abbreviate the cutoff functions by a,, ,, and ignore summation
over many of the indexes which parametrize the cutoff functions, as they are not



28 CHAPTER 2

necessary to understand the heuristic estimates. We will freely use the heuristic
that the cutoff functions allow us to use the L{° H! norm of v, to control terms
(usually related to the turnover time) which previously required global Lipschitz
bounds on vy.

Let @45 : R x T3 — T2 be the solution to the transport equation

8,5(1’(1716 + Vg - V‘I)(Lk =0

with initial data given to be the identity at time ¢, = k7,. We mention that
this definition is purely heuristic, since as mentioned previously, the Lagrangian
coordinate systems will have to be indexed by another parameter which encodes
the fact that Vv, is spatially inhomogeneous.® For the time being let us ignore

this issue. Each map ®, has an effective timespan 7, = (5(1% Ag) "1, at which
point one resets the coordinates and defines a new transport map ®, ;41 starting
from the identity. Let W, , denote the pipe flow with intermittency rq41,
periodized to scale ()\q+1rq+1,n)_1. The perturbation wg41,n,p is then defined
heuristically by

Wtk nple.8) = 3 any (Fegnp(@)) (T (2, 0) 7 (@) Wos 10 (@2, ).

We have adopted the convention that Io{q = ID%(LO = Iw%q70,1 and éq,&p = 0 if
p > 2. Composing with @, adapts the pipe flows to the Lagrangian coordinate
system associated to v, so that (V®, 1) 'Wyi1,(®, ) is Lie-advected and
remains divergence-free to leading order. The perturbation wgy1.n, has the
following properties:

1. The thickness (at unit scale) of the pipes on which wg41,y,, is supported
depends only on ¢ and n and is quantified by

Tg+in = ( A >(g)"+1. (2.16)

Ag+1

Thus, the perturbations become less intermittent as n increases, since
the thickness of the pipes (periodized at unit scale) becomes larger as
n increases. Notice that the maximum frequency of Ry, p is Agn,p for
n > 1 per (2.10), and A, for n = 0, while the minimum frequency of the
intermittent pipe flow W1 ,, used to construct wyy1,n,p is Ag,n. Referring
back to Definition 2.3 and Definition 2.4, we have that for 1 < n < npax
and 1 < p < pmax,

_p

1——P
— )\ Pmax ) Pmax <& )\q 1.0

A q,n,0 q,n+1,0 =

q,n,p

8The actual transport maps used in the proof are defined in Definition 6.26.
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2.7

4\" 5 1— 4\" 5 4 n+1 1— 4 n+1
LA
which ensures that the low frequency portion of wgy1,n,, decouples from
the high frequency intermittent pipe flow W, ,. For n = 0, the max-
imum frequency of Ryo = R4 is Ay, which is much less than A, o per
Definition 2.3.

. The L? size of wy41.np is equal to the square root of the L! norm of R%q,n,p7

which in turn depends on the minimum frequency of ]D%qynyp and will be
Og+1,n,p, Where we define dq41,0p = dg+1. For n > 1 and 1 < p < prax,
we have from Definition 2.5 that

q+1A
6q+1,n7p H Jan-

qn,p 1 en

. For n > 1, derivatives on the low frequency coefficient function of W t1,n,p

cost the maximum frequency of Rq n,p>» Which is Ay p p. For n =0, Rq 0=

Rq, so that each spatial derivative on the coefficient function of wg11,0
costs Aq.

. The transport error and Nash error created by the addition of wg41,n,p

are small enough to be absorbed into JO%QH for every n .

. Per Definition 2.3, the oscillation error which results from wg41 5, inter-

acting with itself has minimum frequency

4y tl g raynl
Agn = Ag+1Tq41,n = ASS) )‘q+$5) .

THE REYNOLDS STRESS ERROR AND HEURISTIC
ESTIMATES

Note that since the relation (2.2) is linear in the Reynolds stress, replacing ¢
with ¢ + 1, the right-hand side can be split into three components:

div (wg41 ® wet1 + Rq)
atqu + Vq - qu+1 (217)

Wq+1 - vvq 3

which we call the oscillation error, transport error, and Nash error respectively.

2.7.1 Type 1 oscillation error

In this section, we sketch the heuristic estimates which justify the following prin-
ciple: the low frequency, high amplitude errors arising from the self-interaction
of an intermittent pipe flow can be transferred to higher frequencies and smaller
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amplitudes through the higher order stresses and perturbations. We shall show

that the following estimates are self-consistent and allow for the construction of
. . . L |

solutions approaching the regularity threshold H?z:

0g+17q
> )\q H fq7 q,n,p q+1 "7p)‘l]1‘f[n7p' (219)
anp=1 2

< Ograny (2.18)

|9 s

The higher order stress ]%q’n,p is defined using the spatial Littlewood-Paley pro-
jection operator

]P)[‘Ia”vp] = P[Aq,n,p—laAq,n,p) = PZ)‘q,n,pfl]P)<)‘q,n,p7

which projects onto the frequencies from (2.10). We define Io{q,n’p as follows:

Pmax

Ry = > > div = (V (a2 (Byr ) VO, L @ VOLT)

n'<np’'=1

(Pl Warto © Wopin) (@) (220)

We pause here to point out an important consequence of this definition. Let
n' be fixed, and consider the right side of the above equality. Then, due to the
periodicity of W1,/ at scale (Ag+17g+1,n7) ", we have’

Woir1n @ Wopns
= IP):0 (Wq+1,n/ & Wq+1,n’) + }P}#O (Wq+1,n’ & Wq—i—l,n’)
=Poo (Wor1w @ Wopr.n) + Pongiirg iy (Worin @ Woganr)

q+1,n’

For n’ > 1, we have that

’ ! ’ !

(87 (7 ()7
5 5 5 6 5 6

Ag+1Tq+1,n = Aq >\q+1 > Ag >\q+1 = A +1,0 = Agun/ pamass

where Ay /41,0 is the minimum frequency of Ry 141 = Zg,’“:"‘g Ry n41,p, while

for n’ = 0 we have that

%))\17(%)

Ag1Tq+1,0 = Aq,1 = Ag g+l = Ag,1,0

which is the minimum frequency of Io{q,l. Therefore, we have shown that the
error terms arising from all non-zero modes of W1 ,» ® W, v are accounted
for in the higher order stresses R,y for m > n'. Thus, the higher order stresses

9We denote by P_o the operator which subtracts from a function its mean in space.
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created by the interaction of wg 1, will be absorbed into higher order stresses
with strictly larger values of n.

Now assuming that Ry, and wg41 5 are well-defined for all n’ < n and
1 < p’ < pmax and using the heuristic estimates from the previous section for
Wqt1,n/,p', WE can estimate the component of ]i'iq,nyp coming from wqi 1,/ by
recalling (2.20) and writing

o

Rq,n,p

< } : 5q+1,n’,p’)‘q,n’,p’

Aq,n,p—l

Ll
n’'<n

0g112q
Hn” <n’ fq,n” )‘qm',p’

_ E )‘q,n’,p'—l

n'<n Agnp—1
S i |2
T M- 1 "
< 5Q+1A §
~ 1 fq n' = %¢+1n,p-
LIPTE e

The denominator comes from the gain induced by the combination of the in-
verse divergence and the Littlewood-Paley projector P, ,, ,j. The numerator is
the amplitude of V|an o (Ry.nr »)|?, computed using the chain rule and the as-
sumption (2.19) on VR, . We have used the fact that the L2 norm of W1,
is normalized to unit size. Any derivatives on qu,p will cost Ag . p, which is the
maximum frequency in the Littlewood-Paley projector P, ,, 5. Thus, all terms
which will land in I?iq,mp will satisfy the correct estimates given that Io%qm/,p/
satisfies the correct estimates for n’ < n and 1 < p’ < ppax. Since ]D%q =: éq,o
satisfies the inductive assumptions, we can initiate this iteration at level n =0
while satisfying (2.18).

Now that ]O%qﬁnyp satisfies the appropriate estimates, we can correct it with
a perturbation wgy1,,,, as described in the previous section. As before, since
Wy+1,n» has minimum frequency

4 n+1 1— 4 n+1 4 ""_é 1— 4 ”.§
Agn = Ag1Tqt1n = /\55) )‘q+$5) > /\25) 6/\q—i-ES) ¢ = Agn+1,0 5

and the minimum frequency in Ry 41 iS Agnt1,0, €very error term resulting

from the self-interaction of wqy1n,p will be absorbed into higher order stresses
éqﬁ for n > n. Therefore, we can induct on n to add a sequence of perturba-
tions wg41,n = Z:‘l" Wq+1,n,p Such that all nonlinear error terms are canceled
by subsequent perturbations. Upon reaching n,.x and recalling (2.1), we can

estimate the final nonlinear error term by

Ag
_ Oq+1Ag H Fymr < gt

AGH1Tg+1 M

<nmax
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17(%)"max+17 1

)\q Pmax
= gt1 )\7_"_1 < dg+2
q
1 4 \"max+1 1
—28 (3*1)(1*(6) - mx) —28b
= A A i < Ai1

— 28b(b—1)<(b—1) (1 B (g)nmaxH 1 )

pmax
1 4 Nmax+1 1
— f<—(1-(= - :
B 2 ( (5> pmax)

Choosing b to be close to 1 and nyax and pmax sufficiently large shows that these
. 1 .
error terms are commensurate with H 2~ regularity.

2.7.2 Type 2 oscillation error

We now consider the second type of oscillation error, which would arise as a
result of two distinct pipes intersecting and thus serves no purpose in the can-
cellation of stresses. Beginning with R, = R, 0, we have that every derivative

on ]o%q,O costs Aq. Therefore, we may decompose R, using a checkerboard par-
tition of unity at scale /\;1. Referring back to the discussion of the checkerboard
cutoff functions, this sets the value of r; to be /\q)\q_jl. Now, suppose that on
a single square of this checkerboard, we have placed a set of intermittent pipe
flows W, 1,0 which are periodized to scale (Ag117¢+10) . After flowing the
pipes and the checkerboard square by v, for a short length of time,'® we must
place a new set of pipes W; +1,0 Which are disjoint from the flowed pipes W1 o.
Given the choice of rq, this will be possible provided that

3
Tg+1,0 = T2 KL 1] . (2.21)

Thus, the minimum amount of intermittency needed to successfully place dis-

3
joint sets of intermittent pipes is ()‘q)‘q_il) *. Per Definition 2.3, our choice of

4
Tg+1,0 1S ()\q)\q;ll) ®, which is then sufficiently small.

Let us now assume that we have successfully corrected Ry, for n’ < n,
and that we wish to correct Ry, = ZZ:}X Ry n,p with a perturbation wg1., =

Pmax

el Wo+1,n,p- First, we recall that

v e

M
I 5 6q+1anapAq,n,p'

o

Therefore, we can multiply R, , by a checkerboard partition of unity at scale

10The length of time is equal to the local Lipschitz norm of vq on the support of the cutoff
Yi,q, given by the time cutoff hidden in an p.
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)‘;}L,O > A, ., while preserving these bounds. We must choose values of r1 and

ro, as in Section 2.5.2. Since for n > 2

_ 3 3 _
Ag1T1 = Agn,0 = Ag g+1 =Ag41- (

and forn =1

4\1-1 5
403 A\ 8
)‘qyl,O = )‘5 )‘(})Jrl > >‘q+1 ' by )
q+1

we have that for alln > 1

< /\q )Gﬁ)nl.g
1 Z .
Agi1

Recall that f%q’w, will be corrected by wg41,n,p, Which is constructed using
intermittent pipe flows W, , with intermittency

)\q (%)n«i»l
Tq+1,n = = T9.

Ag+1

Thus in order to succeed in placing pipes W1, which avoid both previous
generations of pipes, which are periodized to scales rougher than Wy ,,, and
pipes from the same generation on overlapping cutoff functions, we must ensure
that

3
o KL 11
( Ay )(‘é)"+1 ( Ay )(é)"l'é'i
— [ < | —
)‘q+1 )‘q+1
— 4 n—1 5 §< 4 n+1
5 6 4 5
L P64
2 5/ 125°

So our choice of rqy1,, is sufficient to ensure that we can successfully place
intermittent pipe flows when constructing wg41.,,, which are disjoint from all
other pipe flows from either previous generations (n’ < n) or the same generation
(the same value of n).
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2.7.3 Nash and transport errors

The heuristic for the Nash and transport errors is that our choice of rq41,x
provides much more intermittency than is needed to ensure that linear errors
arising from w415, can be absorbed into ]o%qH.u In other words, the Type 2
oscillation errors required much more intermittency than the Nash and transport
errors will.

Let us start with the Nash error arising from the addition of wg11 0,1, which
is designed to correct ]%q. Using decoupling, the cost of a derivative on Wy o
being A\,11 (so that inverting the divergence gains a factor of A\;41), the size of
Vv, in L?, and the L' size of W1, being 7441 0, the size of this error is

(%)
/> L gp s A
)\q 5q+15 2)\ Tq+1 0= ﬁ§q+15q/2>\q (qu_1> .

This is (much) less than d,o since

1 1 3/
52 5\

+1 28b
: NG S Oz = )‘q+1)‘q+1)‘q+1 q+1 < Agt
q+1
= 2662—5b—5§(b—1);
3
—= [f20+1)(b-1)<(b—-1) - 2.22
2

Choosing b close to 1 will make this error commensurate with H 3 regularity.
Let us now estimate the Nash error arising from the addition of wq41 5y, for
n > 2, given by

aiv = ((anp VO AWs10(@0)) - Vo )| |

Using again decoupling, the cost of a derivative on W41, being Ay41 (so that
inverting the divergence gains a factor of \,41), the size of Vv, in L?, the L!
size of Wyy1 4, being rgy1.,, and (2.1), we have that for n > 2, the size of this

110One may verify that in three dimensions, the minimum amount of intermittency needed to
absorb the Nash and transport errors arising from wq1,0 into Ry41 at regularity approaching

.1 1 _1
Hz is rqr1,0 = A§ A +21- In general, one can further verify that given errors supported
at frequency AgA;Jrl, one could correct them using intermittent pipe flows with minimum

frequency /\q2 )\q+1 while absorbing the resulting Nash and transport errors into Io%q+1. One

should compare this with (2.21), which shows that the placement technique requires more
3

intermittency, which at level n = 0 corresponds to /\ )‘q+1
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error is
L g :
)\qul "O¢+1,n,pTq+1,n 5‘1 )‘q
L g :
< Agi1 5q+1 n,1Tq+1,n 0d Aq
q
1 n
1 dg+17q A (3" 1
() () ()
)\q+1 )\an nl<n q+1
; ()"~
< 1 (5q+1)\q ( )\q ) 5 2pmax 5%)\
— 4\n—1 5 4\n—1 5 q7q -
/\q-‘rl )\gs) 6)\(11+$ ) 6 >‘q+1
Since

L, 1.5 (4 ”*1< 4\
2Pmax 2 6 5 5
independently of n > 2 if pyax is sufficiently large, the Nash error will be smaller
than 0g+2 based on the preceding estimates. Furthermore, one may check that

5q+1 117411 < 5q+1 2.17g¢+1,2, S0 that the Nash error arising from the addition
of wgy1,1,p is also satisfactorily small for all p.

Now let us consider the transport error. The size of the transport error
arising from the addition of wq41 ,p is

- B B A
Hle ((Dtyqanﬁp)vq)q’llwqﬂ’") b S Agi1 @ 0Tt
q
1 1 1
=% Orraslerin 032 (2.23)

Thus, the transport error is the same size as the Nash error and is sufficiently
small to be put into Rq1.






Chapter Three

Inductive assumptions

While in Chapter 2 we have outlined in broad terms the main steps in the proof
of Theorem 1.1, along with the heuristics for some of the choices we have made
in our proof, starting with the current section, we work with precise estimates.

In Section 3.1 we introduce some of the notation used in the proof, such
as the Euler-Reynolds system, the mollified velocity, velocity increments, mate-
rial/directional derivatives, our notation for geometric upper bounds with two
different bases, and our notation for ||-||,,.

In Section 3.2 we introduce the principal amplitude and frequency param-
eters used in proof (the precise definitions and the order of choosing these pa-
rameters is detailed in Section 9.1). Next, in Sections 3.2.1 and 3.2.2 we state
the primary inductive assumptions for the velocity, velocity increments, and
Reynolds stress. These primary estimates hold on the support of previous gen-
eration velocity cutoff functions, which are inductively assumed to satisfy a
number of properties, listed in Section 3.2.3. Lastly, in Section 3.2.4 we list a
number of bounds for the velocity increments and mollified velocities, which in-
volve all possible combinations of space and material derivatives, up to a certain
order. These bounds are technical in nature, and should be ignored at a first
reading; their sole purpose is to allow us to bound commutators between D™
and Dy", for very high values of n and m.

In conclusion, in Section 3.4 we show that if we are able to propagate the
previously stated inductive estimates from step ¢ to step g + 1, for every ¢ > 0,
then Theorem 1.1 follows. At the end of the section we discuss the modifications
to the proof which would be necessary in order to obtain other types of flexibility
statements.

3.1 GENERAL NOTATIONS

As is standard in convex integration schemes for the Euler system [29], we
introduce the Euler-Reynolds system for the unknowns (vg, Ry):

Dyvg + div (v, @ v,) + Vp, = div R, (3.1a)
divug, = 0. (3.1b)

Here and throughout the book, the pressure p, is uniquely defined by solving
Apy = divdiv (Ry — vq ® vg), with [1, pgdz = 0.
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In order to avoid the usual derivative loss issue in convex integration schemes,
for ¢ > 0 we use the space-time mollification operator defined in Section 9.4,
equation (9.64), to smooth out the velocity field v, as:

Vg, 1= Py u,tVq - (3.2)

q
In particular, we note that spatial mollification is performed at scale X;l (which
is just slightly smaller than A;l), while temporal mollification is at scale 7,—1
(which is a lot smaller than 7,_1).

Next, for all ¢ > 1, define

Wq = Vg = Veg_y> Ug 1= Vg, — Vg, (3.3)
For consistency of notation, define wg = vy and ug = vg,. Note that
Uuq = Py apwq + (/Pq,z,tvlq,1 - 'Uéq,l) (34)

so that we may morally think that u, = wg+ (a small error term); the smallness
of this error term will be ensured by choosing a mollifier with a large number of
vanishing moments; cf. (9.62).

We use the following notation for the material derivative corresponding to
the vector field vy, :

Dy g =0y + vy, - V. (3.5)
With this notation, we have that
Dig=Dyig-1+uq V. (3.6)
We also introduce the directional derivatives
Dy :=uy -V, (3.7

which allow us to transfer information between D;,_1 and D, 4 via D4 =
Dy g—1+ Dy.

Remark 8.1. If for a sequence of numbers {ay, },>0 and for two parameters 0 <
A < A we have the bounds

an, < A", forall n <N,
an < AVA""Ne forall n > N,,

for some N, > 1, we will abbreviate these bounds as

an < M (n, N, A A)
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where we define
M(n, N, A A) = pmin{n, N} pmax{n—N.,0} (3.8)

for all n > 0. The first entry of M (-, -, A, A) measures the index in the sequence
(typically number of derivatives considered) and the second entry determines
the index after which the base of the geometric bound changes from A to A.
This notation has the following consequence, which will be used throughout the
book: if 1 < XA <A, then

M (a, Ny, A\, A) M (b, N, A\, A) < M (a+b, Ny, \,A). (3.9)

When either a or b are larger than N, the above inequality creates a loss; for
a—+b < N, it is an equality.

Remark 3.2. Throughout this section, and the remainder of the book, in order
to abbreviate notation we shall use the notation || f||, to denote || f|| ;e (zn(psy)-
That is, all L? norms stand for LP norms in space, uniformly in time. éimilarly7
when we wish to emphasize a set dependence of an L” norm, we write || f|[ 1, g

for some space-time set 2 C R x T3, to stand for ||1o fHL?o(Lp(Ta)).

3.2 INDUCTIVE ESTIMATES

o

The proof is based on propagating estimates for solutions (vq, Ry) of the Euler-
Reynolds system (3.1), inductively for ¢ > 0. In order to state these bounds,
we first need to fix a number of parameters in terms of which these inductive
estimates are stated. We start by picking a regularity exponent 5 € (1/3,1/2),
and a super-exponential rate parameter b € (1,3/2) such that 26b < 1. In terms
of this choice of 8 and b, a number of additional parameters (npax, - .. Na,) are
fixed, whose precise definition is summarized for convenience in items (3)—(12)
of Section 9.1. Note that at this point the parameter a,(3,b) from item (13) in
Section 9.1 is not yet fixed. With this choice, we then introduce the fundamental
g-dependent frequency and amplitude parameters from Section 9.2. We state
here for convenience the main g-dependent parameters defined in (9.15), (9.17),
(9.18), and (9.21):

P T S VR (3.10a)
Aga1 )"
Tt =8P A T Tgi1 = ( i“) ~ APTHer o (3.10D)
q

where the constant cq is defined by (9.6). The & symbols in (3.10) mean that
the left side of the ~ symbol lies between two (universal) constant multiples of
the right side (see e.g. (9.16)).
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Remark 3.3. Throughout the subsequent sections, we will make frequent use
of the symbol <. We emphasize that any implicit constants indicated by <
are allowed to depend only on the parameters defined in Section 9.1, items
(1)-(12). The implicit constants in < are, however, always independent of the
parameters a and g, which appear in (3.10). This allows us at the end of the
proof— cf. item (13) in Section 9.1- to choose a.(3,b) to be sufficiently large so
that for all @ > a.(3,b) and all ¢ > 0, the parameter I';41 appearing in (3.10) is
larger than all the implicit constants in < symbols encountered throughout the
book. That is, upon choosing a, sufficiently large, any inequality of the type
A < B which appears in this book may be rewritten as A < I';41 B, for any
qg=>0.

In order to state the inductive assumptions we use four large integers, defined
precisely in Section 9.1. For the moment it is important to note that these fixed
parameters are independent of ¢ and that they satisfy the ordering

I NCut,t < Nind,t < Nind,v < Nﬁn . (311)

The precise definitions of these integers, and the meaning of the < symbols in
(3.11), are given in (9.9), (9.10), (9.11), and (9.14). Roughly speaking, the role
of these parameters is as follows:

® Ncye+ is the number of sharp material derivatives which are built into the
velocity and stress cutoff functions.

® Ninq,¢ is the number of sharp material derivatives propagated for velocities
and stresses.

o Ning, is used to quantify the number of (lossy) higher order space and time
derivatives for velocities and stresses.

e Ng, is used to quantify the highest order derivatives appearing in the proof.

Next, we state the inductive assumptions for the velocity increments and stresses
at various levels ¢ > 0. Throughout the section we frequently refer to the
notation M (n, N,, A\, A) from (3.8).

3.2.1 Primary inductive assumption for velocity increments

We make L? inductive assumptions for Ugq = Vg, — Vg, _, at levels ¢’ strictly
below ¢g. For all 0 < ¢’ < ¢ — 1 we assume that

n m
[, -1 D" DYy _yug

L2
' Y i -1 =1
< 5(/2,/\/1 (n, 2Nind,v, Ag/, )\q,> M (m, Nind,, L'gr 701 Tq,_l) (3.12)

holds for all n +m < Ngj.
At level ¢, we assume that the velocity increment w, satisfies

W01 D7D 1100 < T3 80 M (1, N T30 T35 L) (3.13)
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for n,m < 7Nipa,. Moreover, recalling from (9.67) that supp,f denotes the
temporal support of a function f, we inductively assume that

supp ;(Rg-1) C [T1, T2)
= supp () € [Ti = (Ag182) T+ (A-10,2) 7Y L (3.19)

3.2.2 Inductive assumption for the stress

For the Reynolds stress ]ilq, we make L' inductive assumptions

|

for all 0 < n,m < 3Njng,v-

n m P
dji,qle Dt,qfqu

qg—1>~-q ‘g—1

(3.15)

— i+1_—1 p—1~—1
L ST R e M (m, Niga,e, TEH Y T 7Y

3.2.3 Inductive assumption for the previous generation velocity
cutoff functions

More assumptions are needed in relation to the previous velocity perturbations
and old cutoff functions. First, we assume that the velocity cutoff functions
form a partition of unity for ¢’ < ¢ — 1:

Sy =1, and  whigthi g =0 for [i—i|>2. (3.16)
i>0
Second, we assume that there exists an imax = imax(q) > 0, which is bounded
uniformly in ¢ as

b+1 4

p—1 = el < Ty

(3.17)
such that
Yig =0 forall > imax(q), and F;‘f‘j’i(q/) < /\Z{a, (3.18)

forall ¢ < g—1. Forall 0 < ¢ < ¢—1and 0 < i < i, we assume the
following pointwise derivative bounds for the cutoff functions t); ,». For mixed
space and material derivatives (recall the notation from (3.5)) we assume that

k
<H DalDthq,1> Yi.g'

=1

Lsupp b g
wl*(K‘i’M)/Nﬁn
i,q’

5 M (K; Nindma Fq’ )\q’ ) Fq’Xq’) M (M7 Nind,t - Ncut,ta Ffzti)lﬂ;lila F;ilﬁ;l)
(3.19)
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for K, M,k >0 with 0 < K + M < Ng,, where a, 3 € N* are such that |a| = K
and || = M. Lastly, we consider mixtures of space, material, and directional
derivatives (recall the notation from (3.7)). Then with K, M, «, and k as
above, and with N > 0, we assume that
Lsupp o, k B
i DN (H an,zptjq,_1> Vi
1=1

,lpl—(N"'K""M)/Nﬁn
,q’

SM (Nv Nind,v, UgrAg, Fq’>‘q’> (FZ’_-EOqu_fl)K
X M (M) Nind,t - Ncut,t; Fz—}__ﬁl’r—/ily q_/}i-l;q_’1> (320)
aslongas 0 < N + K + M < Ngy.
In addition to the above pointwise estimates for the cutoff functions ; 4,

we also assume that we have a good L' control. More precisely, we postulate
that

S
o

+

1Viq 0 S 2 C where Cp, = 1

ST (3.21)

holds for 0 < ¢’ < ¢—1and all 0 < i < imax(q).

3.2.4 Secondary inductive assumptions for velocities

Next, for 0 < ¢ < qg—1,0 < i < imax, k > 1, K,M >0, and «, 8 € NF with
|a] = K and |3] = M, we assume that the following mixed space and material
derivative bounds hold:

k
‘ (TIp Dl )ug
=1

i+1 ¢/ 3 i+3 _—1 -1 ~—1
< (TS M (K,zl\lind,v,rq,Aq,,Aq,) M (M, Nina,, T5H 7oL ToL 7 )
(3.22)

L (supp 1/)i'q/)

for K+ M <3Nt/ + 1,

k
’ ( I1 D%Df;) Doy,
=1

: g~ T i—co_—1 p—1 ~—
< (T 6 N )M (K MNind.o, Ty Ay’ Aq,) M (M, Ning,e, T, rq,lﬂfq,l)
(3.23)

Lo (supp ¢; 47)
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for K + M < 3Niin /2, and

({1t
Le°(supp ¥; /)

S (T A2 )M (K 2N Ty Agrs Mg ) M (M N, T T 7 )

a+17¢
(3.24)

for K+ M < 3Nin/2+1. Additionally, for N > 0 we postulate that mixed space,
material, and directional derivatives satisfy

k
N i DB
|D (TI g D2y )ue
=1 Lo (supp ; 47)

< (Tit} 61/2>K+1M (N_i_K’Qde’v’Fq,)\q,,Xq,)

q'+1
X M (M, Niwa o, Ty 70t T4 ) (3.250)
1 i _
S (L8 M (N, 2N, Ty Agrs Mgy ) (T )

X M (M7 Nind,ta q++17— ’1 1 F;+1T 1) (325b)

whenever N + K + M < 3Nsin/2 4 1.
Remark 3.4. Identity (A.39) shows that (3.25b) automatically implies the bound

1D™ Di,

°° (supp ¥; 4)
S (L0 M (N, 2N T Ay M) M (M Nowa T D7)
(3.26)

for all N + M < 3Ntn/2 + 1. To see this, we take B = D, ,_1 and A = Dy, so
that A+ B = D, 4. The estimate (3 26) now is a consequence of identity (A.39)

and the parameter inequalities T Jrl7' < 7_1 (which follows from (9.40)) and

I",f’lﬂTq,l < Tq, (which is a consequence of (3.18) and (9.43)). In a similar

fashion, the bound (3.20) and identity (A.39) imply that

1suppw7:,q/ NDM
1—(N+M)/Ngin |
Vi 4

/L)

sm (N, de,v,rq/AqI,quXq/) M (M, Nina s = News Ty 5875 T 7 )

(3.27)

for all N + M < Ng,. Indeed, the above estimates follow from the same param-
eter inequalities mentioned above, and from identity (A.39) with A = Dy and
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B = Dt’qlfl.

Remark 3.5. The inductive assumptions for the velocities given in Sections 3.2.1
and 3.2.4, with the definition of the mollifier operator P, . + in Section 9.4, imply
that the new velocity field vy = wq + vg,_, is very close to its mollification vy,
uniformly in space and time. That is, we have

1071w, = vl < X726 (1 2N A )

X M (m,Nina s, 7, W T L 70T 1) (3.28)
for all n,m < 3Nipq,. The proof of the above bound is given in Lemma 5.1;
cf. estimate (5.4).

3.3 MAIN INDUCTIVE PROPOSITION

The main inductive proposition, which propagates the inductive estimates in
Section 3.2 from step ¢ to step ¢ + 1, is as follows.

Proposition 3.6. Fiz 8 € [1/3,1/2) and choose b € (1,1/28). Solely in terms
of B and b, define the parameters nmax, Cp, Cr, Co, €r, ar, Neut,t, Neut,zs
Nind,t; Nind,u; Ndec, d, and Ng, by the definitions in Section 9.1, items (1)-
(12). Then, there exists a sufficiently large a, = a.(8,b) > 1, such that for any
a > as, the following statement holds for any ¢ > 0. Given a velocity field vg
which solves the Fuler-Reynolds system with stress I:Bq, define vy, wq, and uq
via (3.2)—(3.3). Assume that {uqf}g,_:lo satisfies (3.12), w, obeys (3.13)—(3.14),
Jc%q satisfies (3.15), and that for every ¢’ < q—1 there exists a partition of unity
{Wi,q }i>0 such that properties (3.16)—(3.18) and estimates (3.19)—(3.25) hold.
Then, there exists a velocity field vq4+1, a stress IO%QH, and a partition of unity
{Wi.q}q>0, such that vyy1 solves the Euler-Reynolds system with stress fo{qH, Uq
satisfies (3.12) for ¢’ — q, wet1 obeys (3.13)~(3.14) for g — q+1, éq+1 satisfies
(3.15) for g — q+ 1, and the v, 4 are such that (3.16)—(3.25) hold when ¢’ — q.

3.4 PROOF OF THEOREM 1.1

Choose the parameters 3,b,. .., a, as described in Section 9.1, and assume that
with these parameter choices, and for any a > a., we are able to propagate
the inductive bounds claimed in Sections 3.2.1-3.2.4 from step ¢ to step ¢ + 1,
for all ¢ > 0; this is achieved in Sections 6-8. We next show that if a > a, is
chosen sufficiently large, depending additionally on the vgtart, Vond, 7' > 0, and
€ > 0 from the statement of Theorem 1.1, then the inductive assumptions imply
Theorem 1.1.
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Without loss of generality, assume that [1; vstare(2)d2 =[5 Vend(z)dz = 0.
Since these functions lie in L?(T?), there exists R > 0 such that upon defining

(1) . (2) .
Vg " = PSRUstart 5 and Vg = = ]P)SRUend )

where P<pr denotes the Fourier truncation operator to frequencies |£| < R, we
have that

||U(()1) — Ustart || 2 (T3) + ||U((J2) — Vend || 22(13) < 3 - (3.29)

N ™

Note that vél),véz) € C°(T3), and thus by the classical local well-posedness
theory plus propagation of regularity (see Foias, Frisch, and Temam [38]), there
exists Ty > 0 and unique strong solutions v} € C*°((—Tp, Tp) x T?) and v@ e
C>®(T — Ty, T + Tp) x T?) of the 3D Euler system (1.1), such that v(!)(z,0) =
vél)(x) and v (z,T) = v((f)(x). Without loss of generality, we may take Ty <
T/a.

Next, let ¢: [0,7] — [0,1] be a non-increasing C*° smooth function such
that ¢ =1 on [0, To/2] and ¢ = 0 on [Ty, T]. Define the C*°-smooth function

vo(z,t) == p(t)oM (z,t) + (T — )o@ (z,t). (3.30)

On [0,77, vo solves the Euler-Reynolds system (3.1) for a suitable zero mean
scalar pressure pg, with the C'°°-smooth stress Ry defined by

Ro(z,t) := (8yp) () Rv D (2, ) — (Bpp)(T — )y RvD (z, 1)
+o(t)(e(t) — D) (P ev®)(z,t)
+ (T — t)(p(T — t) — 1) (0P @) (z,t) (3.31)

where R is the classical nonlocal inverse divergence operator (see (A.100) for
the definition). From the above definition and the fact that ¢ = 1 on [0, To/2],
we deduce that

supp (Ro) C [To/2, T — Tofa] . (3.32)

This fact will be needed towards the end of the proof.

For consistency of notation, we also define v_1 = vo_, = u_1 = 0, so that
vo = wp holds by (3.3). For the velocity cutoffs, we let 19 _1 =1 and ¢, 1 =0
for all 4 > 1. It is then immediate to check that the {1; _1}i>0 satisfy the
inductive assumptions (3.16)—(3.21), for ¢ = —1, with the derivative bounds
(3.19) and (3.20) being empty statements respectively for when K + M > 1
and N + K + M > 1. Moreover, the bounds (3.12) and (3.22)—(3.25b) hold for
q' = —1 since the left side of these inequalities vanishes identically. Lastly, the
assumption (3.14) is empty since there is no R_ stress to speak of.

It thus remains to verify that the pair (vg, Rg) defined in (3.30)—(3.31)
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satisfies the estimates (3.13) and (3.15), where by the above choices we have
Dy _1 = 0;. Note that the parameter Nj,q, was already chosen; thus, we have
that

= max Do
Cdatum ogn,mgammd,v D" 9y UO||L°°(0,T;L2(1T3))

+ max
0<n,m<3Nind,v

D”&;’LROH < 0. (3.33)
L°°(0,T;L(T3))

Note that Cqatum only depends on vggart, Vend, the cutoff frequency R > 0, the
choice of the cutoff function ¢, T' > 0, and the parameter Ninq,. In particular,
Caatum does not depend on the parameter a, which is the base of the exponential
defining )\, in (3.10). Defining 7, = Tg' = \y" and 71 = Ty ® = Ay " (these
parameters are never used again) and using that Ag > a > a, > 1, we thus have
that (3.13) and (3.15) hold if we ensure that

Cdatum S 1_‘(715(1)/2 and Cdatum S F(;CR(Sl . (334)

Using the fact that er is sufficiently small with respect to 8 and b, we have that
F515(1)/2 = Ag”)\g”“)m/\gﬁ > (A A H(OHDB/2 > (gP=1/2)8. Also, by using the
fact that er is chosen to be sufficiently small with respect to § and b, we have
that Ty gy = ATV AC=DE S (A A1) =D8 > (g0=1/2)(b=1F Thus, if in
addition to a > a., as specified by item (13) in Section 9.1, we choose a > as
to be sufficiently large in terms of 8,b and the constant Cyatum from (3.33) in

order to ensure that ,
a(b_l) A 2 4Cdatuma

then the condition (3.34) is satisfied. We make this choice of a, and thus all
the estimates claimed in Sections 3.2.1-3.2.4 hold true for the base step in the
induction, the case ¢ = 0.

Proceeding inductively, these estimates thus hold true for all ¢ > 0. This
allows us to define a function v € C°(0,T; H? (T?)) for any f < 8 via the
absolutely convergent series’

v = qliﬁlgo vg = 1o+ Z(vq+1 —vy) = vy + Z (wgi1 + (ve, —vg)) ,  (3.35)
q>0 q>0

where we recall the notation (3.2) and (3.3). Indeed, by (3.13), (3.16), and

interpolation, we have that [lwyl ;s < 2F;15;/2)\q5/ = 21“(1_1/\(1l’+l)ﬂ/zx\qfwf’8 ),

which is summable for ¢ > 0 whenever 5’ < 5. By appealing to the bound (3.28),

we furthermore obtain that vaq - U‘IHHB’ hS )\(1_2(5;/2/\5, S A(lﬂ 1)/3/2)\;27(ﬁ7ﬂ ),

which is again summable over ¢ > 0. This justifies the definition of v in (3.35),

IWe may equivalently define v = limg— o0 vq = limg— o0 wq + Zg,_:lo Ugr =350 Ugr - We
choose to work with (3.35) because it highlights the dependence on vg.
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and the fact that v € C°(0,T; H?' (T?)) for any £’ < B. Finally, we note that
by additionally appealing to (3.15), which yields ||Rq||1 < Ty 41 — 0 as
q — oo, in view of (3.1) the function v defined in (3.35) is a weak solution of
the Euler equations on [0, T].

In order to complete the proof, we return to (3.35) and note that due to
(3.14) (with ¢ = 1), the property (3.32) of Ry, and the fact that )\05(1)/2 =
)\(1)_/6/\(; e/ > 4/1, (which holds upon choosing a sufficiently large with respect
to Ty, 3,b), we have that w1 = 0 on the set [0, 7o/a] x T3U[T —To/a, T] x T3. Thus,
from (3.35) and the previously established bounds for w, (via (3.13), (3.16)) and
v, — Vg (via (3.28)), we have that

flv— UO||Loo([0,T0/4]U[T—TU/4,T];L2(Ts))

<> lwall oo (0,77 L2 (72y) T > lve, - Vall Lo (o 17:22 (79
q>2 q2>0
S 2)\(1b +1B/2 Z Fq_l )\;B + )\gval)ﬁ Z )\(1—2—5
q>2 920
< 4)\(15 + 1)[3/2F2_1>\2—[3 + 2)\§b+1)B>\82—B
< 8F2_1>\(1b + 1)[3/2>\1_[3b + 4/\éb+1)b6)\62—f3

<A TN

IN
NN e

(3.36)

once a (and thus Ay and A;) is taken to be sufficiently large with respect to
b, 3, and €. Here, in the second to last inequality we have used that 5(b* + b —
1) < 3/2, which holds since 8 < 1/2 and b < 3/2. Combining (3.36) with the
definition of the functions v, v and vy, and the bound (3.29), we deduce
that [[v(-,0) — vstart || p2(psy < € and [[v(-,T') — Venallp2(ps) < €. This concludes
the proof of Theorem 1.1, with 3 being replaced by an arbitrary 8’ € (0, 3).

Remark 3.7. The proof outlined above may be easily modified to show the
existence of infinitely many weak solutions in C’?H;/ >~ which are nontrivial
and have compact support in time, as mentioned in Remark 1.2. The argu-
ment is as follows. Let ¢(t) be a C*° smooth cutoff function, with ¢ = 1 on
—[T/a,T/a] and o = 0 on R\ [-T'/2, T/2]. Then, instead of (3.30), we define define
vo(z,t) = Eo(t)(sin(zs),0,0). Note that the kinetic energy of vy at time ¢t = 0
is larger than E(27)°?/2 > 2E, and that vy has time support in [-T/2,7/2].
Since (sin(x3),0,0) is a shear flow, the zero order stress Ry is given by E¢'(t)
multiplied by a matrix whose entries are zero, except for the (1,3) and (3,1)
entries, which equal — cos(z3) (see [12, Section 5.2] for details). The point is
that Ry is smooth, and its time support lies in the interval 7/4 < [t| < T/2,
which plays the role of (3.32). Using the same argument used in the proof of
Theorem 1.1, we may show that for a sufficiently large, the above defined pair
(vo, Ro) satisfies the inductive assumptions at level ¢ = 0, and that these in-
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ductive assumptions may be propagated to all ¢ > 0. As in (3.36), we deduce
that the limiting weak solution solution v has kinetic energy at time ¢t = 0
which is strictly larger than E. The fact that supp ,vo,supp,Ro C [-T/2,T/2],
combined with the inductive assumption (3.14) and the fact that the mollifi-
cation procedure in Lemma 5.1 expands time supports by at most a factor of
Tg—1 <K ()\q_léé/_zl)_l, implies that the weak solution v has time support in the
set [t| < T/a+ 42(120()\,15;/2)_1 < T/y+ 8\, Choosing a sufficiently large
shows that supp v C [-T,T).

Remark 3.8. The intermittent convex integration scheme described in this book
may be modified to show that within the regularity class CEH;/ *7, weak solu-
tions of 3D Euler may be constructed to attain any given smooth energy profile,
as mentioned in Remark 1.2. The main modifications required to prove this
fact are as follows. As in previous schemes (see, e.g., De Lellis and Székelyhidi
Jr. [31], equations (7) and (9), or [13], equations (2.5) and (2.6)) we need to
measure the distance between the energy resolved at step ¢ in the iteration and
the desired energy profile e(¢). The energy pumping produced in steps ¢ — g+1
by the additions of pipe flows which comprise the velocity increments wq41, and
the error due to mollification, was already understood in detail in Daneri and
Székelyhidi Jr. [27] and in [11]. An additional difficulty in this book is due to
the presence of the higher order stresses: the energy profile would have to be
inductively adjusted also throughout the steps n — n+ 1 and p — p+ 1. The
other difficulty is the presence of the cutoff functions. This issue was, however,
already addressed in [13]- cf. Sections 4.5, 4.5, 6— albeit for a simpler version of
the cutoff functions, which only included the stress cutoffs. With some effort,
the argument in [13] may be indeed modified to deal with the cutoff functions
present in this work.



Chapter Four

Building blocks

4.1 A CAREFUL CONSTRUCTION OF INTERMITTENT PIPE
FLOWS

We recall from [54, Lemma 1] or [27, Lemma 2.4] a version of the following
geometric decomposition:

Proposition 4.1 (Choosing vectors for the axes). Let Bij,(Id) denote the
ball of symmetric 3 x 3 matrices, centered at 1d, of radius 1/2. Then, there exists
a finite subset = C S? N Q3, such that for every & € Z there exists a smooth
positive function ve: C*° (Biy(Id)) — R, such that for each R € Bij(1d) we
have the identity

R=) (x(R) €®¢ (4.1)

cex

Additionally, for every & in Z, there exist vectors €2),6B) € SN Q3 such that
{£,62) ¢B)) s an orthonormal basis of R®, and there exists a least positive
integer ny such that n&,n.e® n, &3 € 73, for every € € E.

In order to adapt the proof of Proposition 4.8 to pipe flows oriented around
axes which are not parallel to the standard basis vectors e1, es, or es, it is helpful
to consider functions which are periodic not only with respect to T3, but also
with respect to a torus for which one face is perpendicular to the axis of the
pipe (i.e., one edge of the torus is parallel to the axis).

Definition 4.2 (Tg-periodicity). Let {£,6?) 3} € S2NQ3 be an orthonor-
mal basis for R3, and let f : R® — R™. We say that f is Tg’—periodic if for all
(kl,/{iz,kg) € 73 and (561,1‘2,333) € R3

f ((961,332,%3) + 27 (klf + kot @ 4 k3§(3))) = f(x1, 22, 23), (4.2)

and we write f : Tg’ — R If{£,6@) 3)) = {eg eq,e3}, i.c., the standard
basis for R?, we drop the subscript & and write T3. For sets S C R®, we say
that S is Tg’-periodic if the indicator function of S is Tg’—pem'odic. Additionally,

3
if L is a positive number, we say that f is (%)—pem’odic if

f <($17I2,l’3) + 2% (lﬁf + kot® 4 k3€(3))) = f(z1,22,23)
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Figure 4.1: The torus on the left, T3, has axes parallel to the usual coordinate axes,
while the torus on the right, denoted by 'H‘g, has been rotated and has axes parallel to
a new set of vectors &, 5(2), and §(3>.

for all (ky, ko, k3) € Z3 and (x1, 22, 23) € R3. Note that if L is a positive integer,
—-pemod@czty implies ’]I‘g -periodicity. See Figure 4.1.

We can now construct shifted intermittent pipe flows concentrated around
axes with a prescribed vector direction £ while imposing that each flow be sup-
ported in a single member of a large collection of disjoint sets. For the sake of
clarity, we split the construction into two steps. First, in Proposition 4.3 we
construct the shifts and then periodize and rotate the scalar-valued flow profiles
and potentials associated to the pipe flows W¢ y ... The support and placement
properties are ensured at the level of the flow profile and potential. Next, we
use the flow profiles to construct the pipe flows themselves in Proposition 4.4.

Proposition 4.3 (Rotating, shifting, and periodizing). Fiz £ € 2, where
is as in Proposition 4.1. Let r—', A\ €N be given such that \r € N. Let
:R? = R be a smooth function with support contained inside a ball of radius
Then for k € {0,...,r=1 — 1}2, there exist functions %];,7'75 :R? = R defined
in terms of », satisfying the following additional properties:

U G

) -periodic.

P 3
1. We have that %)\ ¢ s simultaneously ( 3) -periodic and (Jn
3

2. Let F¢ be one of the two faces of the cube )\Tfl* which is perpendicular to

€. Let Gy, C FeN2nQ3 be the grid consisting of r~2-many points spaced
evenly at distance 2m(An.) "t on F¢ and containing the origin. Then each
grid point gy, for k € {0,....,r=1 — 1}? satisfies

(supp %];\,r,f NFe) C {3: D — g <27 (4)\71*)_1} . (4.3)

3. The support of %§7T7§ consists of a pipe (cylinder) centered around a (E—i) -
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3
periodic and (T—)-perzodzc line parallel to &, which passes through the

point g. The radius of the cylinder’s cross-section is as given in (4.3).
4. For k # K, supp %];,T,E N supp %,;,r,ﬁ = 0. See Figure 4.2.

A 4

Figure 4.2: We have pictured above a grid on the front face of T3, in which there
are 4> = (A\r)? many periodic cells, each with 4> = =2 many subcells of diameter
16~ = A7!. The periodized axes of the pipes are the line segments extending from
the front face of the torus.

Proof of Proposition 4.3. For r—! € N, which quantifies the rescaling, and for
k = (ki,k2) € {0,...,r~t — 1}2, which quantifies the shifts, define »”* to be the
rescaled and shifted function

1 T T2
s1F (21, 20) = P (2—7:71 — k1, — o kg) (4.4)

Then (x1,79) € supp »¥ if and only if

x

2 T 2 1

——k‘ ’——k‘ <—. 4.
‘271'7" o 27r 2l =16 (45)

This implies that
1 T 1 1 To 1

—< < - 155 < - 4.
k1 4 Y- k1 + 7 ko — 1550 ko + 1 (4.6)
Since these inequalities cannot be satisfied by a single pair (x,y) for both k =
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(k1, ko) and k' = (K1, k%) simultaneously when k # £/, it follows that
supp ¥ N supp %f/ =0 (4.7)

for all k # k’. Also, notice that plugging k; = 0 and k; = r—! — 1 into (4.6)
shows that the set of x; for which there exists (kq,ks) such that s*(x) # 0 is

contained in
rT 3rm
—— <z <2r— — 7,
2 2

which is a set with diameter strictly less than 27w. Therefore, periodizing in
z1 will not cause overlap in the supports of the periodized objects. Arguing
similarly for xo and enumerating the pairs (ki, ko) with k € {0,...,r=t — 1}2,
we overload notation and denote by »* the T?-periodized version of »*. Thus
we have produced r~2-many functions which are T2-periodic and which have
disjoint supports.

Now define G, C T? to be the grid containing r~
at distance 27r and containing the origin. Then

2_many points evenly spaced

G, ={gp:=2mrk:k €{0,..,r ' —1}*} C 27Q°.
Thus the support of each function s*
grid points.
Let ¢ € = be fixed, with the associated orthonormal basis {£,£()¢®3)}. For
r = (71,72, 73) € R3 and A\ € N, define

contains gg as its center, but no other

%lf\mg(x) = (n*)\rx @ nrx 5(3)) . (4.8)

Then for (k‘l, ko, k’3) S Z3,

2
e (93 + ﬁ(kh ka, k‘:s))
2
== <TL*)\7’ (l’ + — r (kla k27 k3)> : 5(2),TL*>\7’ (l’ + ;(kla kQa k3)> : 5(3))
f (n*)\rx f( S M AT - 5(3)>
%’)f,r E(x)

since n,&® n,£G) € 73 and »F is T2-periodic, and thus %];,r,g is g—:-periodic.
Similarly,

& n 2
P4 T4+ —
A€ AT

2
— %f (n*)\r(m + il
ATy

(k1€ + kot ® + k3£<3>))

(k& + ko€ + k) - €2,
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2
o (
n rm—i—)\

TNy

(i€ + ko + kse ™)) - £<3>>

= %,’f (n*)\rx . 5(2),71*)\7”17 . 5(3))
= %];,T,E ($)
since

27 (k1€ + kob@ + kae®) - €@ = 27ky, 21 (ki€ + ko€® + k3@ - €®) = 211k,

3 3
k - 2 .. k . Tg . . Tg
anq 18 T=-periodic. Thus sy, . is W—per.lodlc7 and as a consequence -
periodic as well. Therefore, we have proved point 1.
To prove point 2, define

Gar={ g0 =27 (k1 On) 7 €® 1k (An) ™€) sk kz € {0, e — 11}

(4.9)
We claim that %§,T,E|F§ is supported in a 27(4An, )~ t-neighborhood of g,. To
prove the claim, let € F¢ be such that %];m& (x) # 0. Then since

%’f,r,g(x) = %f (n*)\rx . 5(2),71*)\7"30 . 5(3)) ’

we can use (4.5) to assert that x € supp %’j\'m if and only if x = (21,22, 23)
satisfies

2 2

neArz - £ neAre - £3) 1
S xS <
21 R+ 2mr k2 S 16
21 2 2 o2 \?2
_ k£ kof®) <
> |(w1,22,23) (n*)\ 1§ + - 2§ S\

which proves the claim.

Items 3 and 4 follow immediately after noting that %I;,né is constant on
every plane parallel to F¢, and that the grid points g, € Gy, around which
the supports of %I;\:,T’,E are centered are spaced at a distance which is twice the
diameters of the supports. O

Proposition 4.4 (Construction and properties of shifted intermittent
pipe flows). Fiz a vector ¢ belonging to the set of rational vectors = C Q°
from Proposition 4.3, r~1, A € N with \r € N, and large integers 2Ng, and d.
There exist vector fields W’g,/\m : T3 = R3 for k € {0,...,r=1 — 1}? and implicit
constants depending on Ng, and d but not on A or r such that:

1. There exists o : R2 — R given by the iterated Laplacian A% =: o of a
potential ¥ : R? — R with compact support in a ball of radius i such that
the following holds. Let Q’E,AJ and 19’3)\77, be defined as in Proposition 4.3.
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Then there exist Ug)\,T : T3 — R? such that
curlUg 5, = EA2AY (98 ,) = €0En, = Wi, - (4.10)

2. Each of the sets of functions {UZ/\,T}k, {ng,/\7T}k, {19’57/\7T}k, and {ng,,\,r}k
satisfy items 1—4. In particular, when k # k', we have that the intersec-
tion of the supports of Wi)"r and W?:Am is empty, and similarly for the
other sets of functions.

3. W’g’)\’r is a stationary, pressureless solution to the Euler equations, i.e.,

divWg,, =0,  div (Wg,,@Wg,,)=0.

1 k k
g /]I‘?’ Wer,r @Wey, =E®¢
5. For all n < 2Ngy,

1979 sl ooy S Anr(5-1) 1970 sl ooy S (371 (4.11)
and
HVTLUE)\ ’I”HLp (T3) ~ ST ! (7_1); HV”WZ)\»THLP(’]I‘S) 5 )\nr(%_l).
(4.12)

6. Let ® : T3 x [0, T] — T3 be the periodic solution to the transport equation

0P +v-VO =0, (4.13a)
q)t:to =, (413]:))

with a smooth, divergence-free, periodic velocity field v. Then
VO (WE,, 0®) =curl (VOT - (Uf,,0®)). (4.14)

7. For P, ,) a Littlewood-Paley projector, ® as in (4.13), and A = (V®)~*

{V : (A Pinyxg) (Wenr @ We 3 1) )]
= A P)\17>\2](W§/\r 5)\7")((1)8] ;
= AJEFE DA P, ) ( %) ) (4.15)

fori=1,23.

Remark 4.5. The identity (4.15) is one of the main advantages of pipe flows over
Beltrami flows. The utility of this identity is that when checking whether a pipe
flow We¢ », which has been deformed by @ is still an approximately stationary
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solution of the pressureless Euler equations, one does not need to estimate any
derivatives of W¢ » ,—only derivatives on the flow map ®, which will cost much
less than A.

Remark 4.6. The formulation of (4.15) is useful for our inversion of the diver-
gence operator, which is presented in Proposition A.17 and the subsequent re-
mark. We refer to the statement of that proposition and the subsequent remark
for further properties related to (4.15).

Proof of Proposition 4.4. With the definition Wg)\’r = fglg)\’r, the equality
/\’QdAd(ﬁgA’r) = ng,)\”l‘ follows from the proof of Proposition 4.3, specifically
equations (4.4), (4.4), and (4.8). The equality curlU’gA?T = We »,» follows as
well using the standard vector calculus identity curl o curl = Vodiv — A. Sec-
ondly, properties (1), (2), and (4) from Proposition 4.3 for 192)“ follow from
Proposition 4.3 applied to > = . The same properties for glg)\,r, U’g,)\’r, and
W’g A, follow from differentiating. Next, it is clear that W’g A, Solves the pres-
sureless Euler equations since ¢ - Vg’g) »r = 0. The normalization in (4) follows
from imposing that

1
(27‘(‘)2/ (Adﬁ(ZL’l,CEQ))2 d.Tl dl‘g = ].,
R2

recalling that orthogonal transformations, shifts, and scaling do not alter the
LP norms of T3-periodic functions, and using (4.4). The estimates in (5) follow
similarly, using (4.4). The proof of (4.14) in (6) can be found in the paper of
Daneri and Székelyhidi Jr. [27].

The proof of (4.15) from (7) is simple and similar in spirit to (6) but perhaps
not standard, and so we will check it explicitly here. We first set P to be the
T3-periodic convolution kernel associated with the projector [y, ,x,) and write

. (NCD)_WWZ] (Werr ® We ) (<I>)(V<I>)—T> ()

= ((V0) @) ([ PO Wers @ W)@l =) dy ) (70) 7))

Va - </ (V)™ (@) P(y)(We s @ We ) (@(z — ) (V) (2) dy)
’]TB

V- ( . Py) (VO) (@) Werr (B(z — y)))

® (V@) (z)We r (®(z — y))) dy> . (4.16)
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Then applying (4.14), we obtain that (4.16) is equal to
/TS Ply) (VO) H(2)Wer(®(z —y))) - Vi (VE)"H(@)We o (®(x — y))) dy.

Writing out the " component of this vector and using the notation A =
(V®)~!, we obtain

[ - P(y) (A@)We . (®(x = y))) - Vi (A2)We r, - (@(z = y))) dy|

7

= [ PWALWE (0 ) A0, W, (0 )05 () dy

/. P(y)AL(2)WE 5 . (B(x — )04 (2)WE 5 ((x —y))dy.  (4.17)

Since the second term in (4.17) can be rewritten as
P(y) A (@)WE 5 1 (D(x — )0 A} (1) W 5 (B (x — y)) dy

= AL(@)Pp, ng) (WE L, WE L) (@(2))0; 41 (),

T3

to conclude the proof, we must show that the first term in (4.17) is equal to 0.
Using that ,
AL0; 0" = Oy

and
k 1
WE’/\’rakW&)\’r == 0
for all I, we can simplify the first term as

[ POAL@WE (@ = ) A )0 W (Bl — )0y () dy

=/, P)0nkWE 5 (®(x — y)) A} (2)0, W . (B(z — y)) dy

= /. Py)WE . (D(z — ) Aj(2) W 5 . (D(z — y)) dy
=0,

proving (4.15). O

4.2 DEFORMED PIPE FLOWS AND CURVED AXES

Lemma 4.7 (Control on axes, support, and spacing). Consider a convex
neighborhood of space 0 C T2. Let v be an incompressible velocity field, and
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define the flow X (z,t)

WX (z,t) =v(X(x,t),1) (4.18a)
K=ty = T, (4.18b)

and inverse ®(x,t) = X ~1(z,t)

9P +v-VO =0 (4.19a)
®t=to =T. (419b)

Define Q(t) := {z € T3 : ®(x,t) € Q} = X(Q,t). For an arbitrary C > 0, let
7 > 0 be a parameter such that

1
r< (61/2/\ Ffjf) . (4.20)
Furthermore, suppose that the vector field v satisfies the Lipschitz bound!

s 900, Ol ey S OV AT (4.21)
te[tofT,tOJrT]

Let W§q+1,r,§ : T3 — R® be a set of straight pipe flows constructed as in Propo-

sition 4.3 and Proposition 4.4, which are )\ " —-periodic for )\
(I

concentrated around azes {A;}iez oriented in the vector dzrectzon f forf € E.
Then W := W’f\ﬁhr’ﬁ(@(z,t)) 2 Q) x [to — 7,to + 7] satisfies the following
conditions:

1. We have the inequality
diam(Q(t)) < (1+T,},) diam(Q). (4.22)
2. If x and y with © # y belong to a particular axis A; C §2, then

X(Z‘,t)—X(y,t) Ty (z
X0 X)) oy T o@D, (4.23)

where |0;(x,y,t)| < Fq-i-l
3. Let x and y belong to a particular axis A; C Q. Denote the length of the
azis A;(t) = X(A4; NQ,t) in between X (x,t) and X (y,t) by L(x,y,t).
Then
L(z,y,t) < (L+T.1) |z —yl. (4.24)

IThe implicit constant in this inequality is assumed to be independent of ¢; cf. (6.60).
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2
4. The support of W is contained in a (1 + Fq_h) #—neighborhood of
N Ag+1

U Aq(t). (4.25)

5. W is “approzimately periodic” in the sense that for distinct azes A;, A;
with i # j and dist (4; NQ, 4; N Q) =d,

(1-T L) d < dist (Ai(t), A;(t) < (1+T,}) d (4.26)

Proof of Lemma 4.7. First, we have that for z,y € 0,

(X (1) = X(y, 1) =

t
x —y+/ 0s X (,8) — 05X (y, s) ds
to

<lz—yl +/t v (X (2,5),5) — v (X(5,5),5)| ds.
Furthermore,
|U€ (X(.’t, S)a S) - UZ (X(y7 S), S)|

[ 0t Gt oy = 21,50, 0o+ ey = ), 5) 0 - )

IN

IVl e (s VX oo sy 12 = Wl

IN

3.1
S8 ALl —yl.

Integrating this bound from ¢y to ¢ and using a factor of I'y;1 to absorb the
constant, we deduce that

(1T h) o =yl < [X(2,8) = X(y, )] < (1+Tg) 2 —yl. (4.27)

The inequality in (4.22) follows immediately.
To prove (4.23), we will show that for z,y € QN A, for a chosen axis A;,

r—y Xzt - X(y,t)

- <T7}

q+1°

At time tg, the above quantity vanishes. Differentiating inside the absolute value
in time, we have that

4 [ X=X
dt [ X (z,t) = X(y, 1)
3tX Z, — 8tX(y, t)
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X t) = X(y,t) (0 X(2,t) = 0 X(y, 1)) - (X (1) — X(y,1))
(X (2, 1) = X(y,1)[? [ X(2,1) = X(y 1)

_ U(X(xvt)at) — U(X(yvt)at)
‘X(.Z‘,t) _X(yat)|

_ X t) = X(y, 1) (0(X(x,1),8) = v(X(y,1),¢)) - (X(,1) = X(y,1))
[ X (1) = X(y, 1) (X (2,t) = X(y, 1)[? '

Utilizing the mean value theorem and the Lipschitz bound on v and (4.27), we
deduce

U(X({E,t),t) — 'U(X(yvt)»t)
[ X (2, 8) = X(y, 1)
_ X(.%',t) — X(yat) (U(X(,'L‘7t),t) — U(X(y’t)>t)) ) (X(l‘,t) — X(yat))
[ X (z,t) = X(y,1)] | X (2, t) = X(y, 1)[?
< 2|V ;e

1
<262 AT

1 -1
Integrating in time from ¢q to ¢ for |t —to| < (65 )\qucﬁ2) and using the extra

factors of I';11 to again kill the constants, we obtain (4.23).
To prove (4.24), we parametrize the curve using X to obtain

Le.yt) = [ IVX(e+ry=a)0)- =yl dr < (1+T;0) o=l

The claims in (4.25) and (4.26) follow immediately from (4.27) and (4.3). O

4.3 PLACEMENTS VIA RELATIVE INTERMITTENCY

We now state and prove the main proposition regarding the placement of a
new set of intermittent pipe flows which do not intersect with previously placed
and possibly deformed pipes within a subset Q of the full torus T2. We do
not claim that intersections do not occur outside of 2. In applications, Q will
be the support of a cutoff function.? We state the proposition for new pipes
periodized to spatial scale ()\q+1r2)_1 with axes parallel to a direction vector
¢ € E. By “relative intermittency,” we mean the inequality (4.31) satisfied by ry
and ro. The proof proceeds, first in the case £ = ez, by an elementary but rather
tedious counting argument for the number of cells in a two-dimensional grid
which may intersect a set concentrated around a smooth curve. In applications,

2Technically, © will be a set slightly larger than the support of a cutoff function. See
(8.117), (8.120), and (8.131).
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this set corresponds to a piece of a periodic pipe flow concentrated around its
deformed axis and then projected onto a plane. Then using (1) and (2) from
Proposition 4.3, we describe the minor adjustments needed to obtain the same
result for new pipes with axes parallel to arbitrary direction vectors £ € Z.

Proposition 4.8 (Placing straight pipes which avoid bent pipes). Con-
sider a neighborhood of space Q C T? such that

diam(Q) < 16(Ag4171) "1, (4.28)

where Aafa,1 < 1 < 1. Assume that there exist smooth ']I‘?’-periodic curves
{A N2 Q3 and T3-periodic sets {S,}N2, C Q satisfying the following prop-
erties:

1. There exists a positive constant C4 and a parameter ro, with r1 < ro <1,
such that
Nq < Cariry?. (4.29)

2. For any x,2’ € A,, let the length of the curve A, which lies between x
and z', be denoted by Ly, 5 .. Then, for every 1 <n < Nq we have

Ln,a:,:z:’ S 2 |:E - il'/| . (430)

3. For every 1 < n < Ngq, S, is contained in a 2mw(1 + I‘q;ll) (4n*)\q+1)71_
neighborhood of A,,.

Then, there exists a geometric constant Cy, > 1 such that if
C.Cars <73, (4.31)

then, for any & € 2 (recall the set Z from Proposition 4.1), we can find a set of
pipe flows W§2+1,r27£: T3 — R3 which are

o -periodic, concentrated to width
a+172

4)\27” around azes with vector direction &, that satisfy the properties listed in
q+17x
Proposition 4.4, and for alln € {1,..., Nq},

supp W’;O

q

e NS =10. (4.32)

Remark 4.9. As mentioned previously, the sets S, will be supports of previously
placed pipes oriented around deformed axes A,,. The properties of S,, and A,
will follow from Lemma 4.7.

Proof of Proposition 4.8. For simplicity, we first give the proof for £ = e3, and
explain how to treat the case of general £ € = at the end of the proof.

3That is, the range of each curve is contained in €; otherwise replace the curves with
A, NQ.
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The proof will proceed by measuring the size of the shadows of the {Sn}g‘:zl
when projected onto the face of the cube T? which is perpendicular to es, so it
will be helpful to set some notation related to this projection. Let F,, be the
face of the torus T2 which is perpendicular to es. For the sake of concreteness,
we will occasionally identify F,, with the set of points z = (z1,72,23) € T3
such that x3 = 0, or use that F., is isomorphic to T2. Let A2 be the projection
of A,, onto F¢, defined by

Aﬁ = {($1,$2) c F€3 : (.’El,$271'3) S An}, (433)

and let S? be defined similarly as the projection of S, onto F.,. For x =
(r1,22,73) € T3 and 2/ = (z},7h,24) € T? we let P(z) = (v1,22) € F,
and P(z') = (z),2}) € F., be the projection of these points onto F.,. Since
projections do not increase distances, we have that

|P(x) — P(2')| < |z —2']. (4.34)

Since both A,, and AP are smooth curves? and can be approximated by piecewise

linear polygonal paths, (4.34), (4.28), and (4.30) imply that if wa . is the

length of the projected curve AP in between the points P(z) and P(z'), then
LP

n,r,x’

<2z — 2| <32(A\gy1m1) " (4.35)

In particular, taking = and z’ to be the endpoints of the curve A,,, we obtain a
bound for the total length of A2. Additionally, (4.34) and the third assumption
of the lemma imply that SE is contained inside a 27(1 + F;_&l)(éln*)\q_,_l)_l-
neighborhood of AP. Finally, since W’f\ﬁhrz’eg
k€ {0,..,m3 " — 1}2, it is clear that the conclusion (4.32) will be achieved if
we can show that there exists a shift ky such that

is independent of x3 for all

SP N (supp Who N{zs = 0}) =0, (4.36)

q+1,72,€3

for all 1 <n < Ng. To prove (4.36), we will apply a covering argument to each
SP.
Let Sy,., be the grid of ()\(H_ln*)z—many open squares contained in Fg,,

evenly centered around a grid of (Aq+1n*)2—many points Gy,,, which contains

the origin. By Proposition 4.3, for each choice of k = (ky,k2) € {0,...,r5 " —
1}2, the support of the shifted pipe W§q+177"2763 intersects F,, in a 4Aq2+”1n*-
neighborhood of a finite subcollection of grid points from G, ,, which we call
G’/{qﬂ, and which by construction is ﬁjrm*

collections for k # k' contain no grid points in common. Let S’/{qﬂ be the set of

-periodic. Furthermore, two sub-

4Technically, the proof still applies if AL is self-intersecting, but the conclusions of
Lemma 4.7 eliminate this possibility, so we shall ignore this issue and use the word “smooth.”
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open squares centered around grid points in G’}\qﬂ, so that S’/{QH and S§;+l are
disjoint if k # k’. To prove (4.36), we will identify a shift ko such that the set of
squares S§2+1 has empty intersection with S? for all n. Then by Proposition 4.3,
we have that the pipe flow ko

Mt1or2 e intersects F, inside of S’/{zﬂ, and so we
will have verified (4.36).

27
Sample grid cell in S ,, AP . Agr1T2M
Sample point in G,,_, /Sfj 2 Sy Su9
'—’ - .
i = / —~ o
L~
// )‘q+1n*
N
N
| \
\
V/ -
/ ¥
/
N - /
™~~~ /,
\-_ e
W

The diameter of the projection of  onto F, is < 16(Ag117m1) 7!

Figure 4.3: The boundary of the projection of Q onto the face F., is represented
by the large dark oval. The small grid cells of sidelength 27 (Aq+17+) ' represent the
elements of Sx_ ,, while the center points are the elements of G_,,. A projected pipe
SP with axis AP is represented in gray shading. A point x; € AL its associated grid
cell sz;, and its 3 x 3 cluster S, 9 are represented in the center of the image. The
union of the 3 x 3 clusters, U; Sz, 9, generously covers the gray shaded projected pipe
SP.

In order to identify a suitable shift kg such that Sko has empty intersection
with S?, we first present a generous cover for S?; see Flgure 4.3. Let z1 € AP be
arbitrary. Set s, € Sy, to be the grid square of sidelength m containing

q+1
z1,” and let S;, ¢ be the 3 x 3 cluster of squares surrounding s;,. Then either
x1 18 w1th1n distance /\ of an endpoint of A%, or the length of AL NS, ¢ is

at least — A - It posmble, choose x5 € AP so that S, ¢ is disjoint from Sy, 9,

and iteratively continue choosing z; € A} with Sy, ¢ disjoint from S, ¢ with

51f x1 is on the boundary of more than one square, any choice of s, will work.
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1 < j <i—1. Due to aforementioned observation about the lower bound on
the length of AP in each Sy, 9, after a finite number of steps, which we denote
by i,, one cannot choose z;,, , € AP so that S;,,,.0 1s disjoint from previous
clusters; see Figure 4.3. By the length constraint on A? and the observations
on the length of AP NS, ¢ for each i, we obtain the bound

82(Ag41r1) " > [AB| > (in — 2)27 (nug1)
which implies that i,, may be bounded from above as

327“;171*
n = 2

+2 < 6n.ryt +2 < 8nrp ! (4.37)
since 1 > By the definition of i,, any point x € A? which does not
belong to any of the clusters {Sg, 9};”, must be such that S, ¢ has non-empty
intersection with S, ¢ for some j <i,. Thus, if we denote by S, g1 the cluster
of 9 x 9 grid squares centered at x;, it follows that x belongs to S;; s1, and
thus A? C U,<;, Sz, 81. Furthermore, since it was observed earlier that SZ is
contained inside a 27 (1 + Fq__&l) (4n*/\q+1)—1_neighborhood of AP we have in
addition that

Z4n
SPC | Sais1-

i=1

Thus, we have covered S? using no more than
81i,, < 81-8n,r; ' = 648n,r7"

grid squares. Set C, = 1300n.. Repeating this argument for every 1 < n < Ng
and taking the union over n, we have thus covered U, <y, S? using no more than

1
§C*CA et orrt <2 (4.38)
grid squares of sidelength ﬁ; the strict inequality in (4.38) follows from the

assumption (4.31).

In order to conclude the proof, we appeal to a pigeonhole argument, made
possible by the bound (4.38). Indeed, the left side of (4.38) represents as an
upper bound on the number of grid cells in Sy, which are deemed “occupied”
by Un<n, ST, while the right side of (4.38) represents the number of possible

2

choices for the shifts kg € {0,...,r; ' — 1}? belonging to the ﬁ—periodic
q

1727

subcollection S§3+1~ See Figure 4.4 for details. We conclude by (4.38) and the
pigeonhole principle that there exists a “free” shift ko € {0,...,75 1~ 1}2 such
that none of the squares in S’;‘;H intersect the covering U;<;, Sz, 81 of Up<n, SE.

Choosing the pipe flow Pyko

Ag+1,72,€3’
of the lemma when £ = eg3.

we have proven (4.36), concluding the proof
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— 3t
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Xl/ )\q+17’2n*
N -
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In this periodic cell, we check which grid cells are available.

Figure 4.4: We revisit Figure 4.3. Each cluster Sy, 9 of nine cells covers a portion

of SZ; their union covers the entirety. We would like to determine which set S’;‘;H

)\f#—periodic grid cells is free (we index these cells by the shift parameter ko),
4 -

so that we can place a 2n____periodic pipe flow W’f\o
q+1T27x q+1,72,€3
cells. This pipe flow then will not intersect the cells taken up by the union of the

clusters U; Sz, 9. Towards this purpose, consider one of the periodic cells of sidelength

of

at the centers of the

ﬁ, e.g., bottom row, second from left. This cell contains ry 2_many sub-cells

q N

of sidelength %, which in the figure we index by an integer k € {1,...,36}. In
a1

”

order to determine which of these sub-cells are “free,” we verify for every k whether a
periodic copy of the k-cell lies in the union of the clusters U; Sz, 9; if yes, we may not
place a pipe in any periodic copies of this sub-cell. For instance, the cell with label 9
appears three times within the union of the clusters; the cell with label 3 appears twice;
while the cell with label 36 appears just once. In the above figure we discover that
there are only three “free” sub-cells, corresponding to the indices 7, 12, and 20. Any
of these indices indicates a location where we may place a new pipe flow W§3+1,r2,63;
in the figure, we have chosen k¢ to correspond to the label 7, and have represented by

. . . . . . . k .
—2m___periodic array of circles the intersections of the pipes in Wio with
Ag+1T2mx q+1:72,€3

F.,.

To prove the proposition when & # es, first consider the portion® of Q2 c R?

SRecall that  is a T3-periodic set but can be considered as a subset of R3; cf. Definition 4.2.
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restricted to the cube [—, 7|3, denoted by Q|(—r,x]3, and consider similarly
Snll—mxp and Apl—r 3. Let 3']T§’ be the 3 x 3 x 3 cluster of periodic cells
for TZ’ centered at the origin. Then [, 7]? is contained in this cluster, and in
particular [, 7]® has empty intersection with the boundary of 3T (understood
as the boundary of the STg—periodic cell centered at the origin when simply
viewed as a subset of R3). Thus Qo275 Snl[—mx)3, and Ay|[_z xs also have
empty intersection with the boundary of 3']1‘2 and may be viewed as 3Tg’—periodic
sets. Up to a dilation which replaces 3']1‘2’ with ']I‘z’ , we have exactly satisfied
the assumptions of the proposition, but with T3-periodicity replaced by Tg—
periodicity. This dilation will shrink everything by a factor of 3, which we
may compensate for by choosing a pipe flow W3y ., , ¢, and then undoing the
dilation at the end. Any constants related to this dilation are g-independent
and may be absorbed into the geometric constant C, at the end of the proof.
At this point we may then redo the proof of the proposition with minimal
adjustments. In particular, we replace the projection of S, and A, onto the
face F,, of the box T? with the projection of the restricted and dilated versions
of S, and A,, onto the face F¢ of the box TZ’. We similarly replace the grids
and squares on F., with grids and squares on F¢, analogously to (4.3). The
covering argument then proceeds exactly as before. The proof produces pipes
W—periodic
and disjoint from the dilated and restricted versions of the S,’s. Undoing the
dilation, we find that WI;\(;+177'27£ s %—periodic and disjoint from each S,,.
Then all the conclusions of Proposition 4.8 have been achieved, finishing the
proof. [

belonging to the intermittent pipe flow W’;Rqﬂ -y which are






Chapter Five

Mollification

Because the principal inductive assumptions for the velocity increments (3.13)
and the Reynolds stress (3.15) are assumed to hold only for a limited number
of space and material derivatives (< 7Ninq, and < 3Ninq,, respectively), and
because in our proof we need to appeal to derivative bounds of much higher
orders, it is customary to employ a mollification step prior to adding the convex
integration perturbation. This mollification step is discussed in Lemma 5.1.
Note that the mollification step is only employed once (for every inductive step
g — q+1), and is not repeated for the higher order stresses Ry, . In particular,
Lemma 5.1 already shows that the inductive assumption (3.12) holds for ¢’ = q.

o

Lemma 5.1 (Mollifying the Euler-Reynolds system). Let (vq, Rq) solve
the Euler-Reynolds system (3.1), and assume that ¥; ¢, uy for ¢ < q, wg, and

éq satisfy (3.12)—(3.25b). Then, we mollify (vq,f%q) at spatial scale Xq’l and
temporal scale T,—1 (cf. the notation in (9.64)), and accordingly define

Vp = ,Pq,z,tvq and .éfq = Pq,:v,t-éq . (51)

q

The mollified pair (ve,, }Olgq) satisfies

Opvg, + div (ve, ® vy, ) + Vg, = div ]D%gq + div é;omm , (5.2a)
divwe, = 0. (5.2b)

The commutator stress égomln satisfies the estimate (consistent with (3.15) at
level g+ 1)

|prpp || < DT G A i M (m Nina, 7, T 7 ) (5:3)

for all n,m < 3Ninqg,, and then we have that

DDy (e, = v < A5 26 M (2, 2Nina 0 g, )

x M (m,Nina,e, 7, 4T 7 50T (5.4)

for all n,m < 3Ning,. Furthermore,

Ug = Ve, — Vey_y
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satisfies the bound (3.12) with q' replaced by q, namely

[iq-1D" Dy yug|,0 < 812 M (n,ZNindm,)\q,Xq)
X M (m de t7 7, ! ) (55)

qql’ql

for alln+m < 2Ngy. In fact, when either n > 3Ning,, 0or m > 3Ning,, are such
that n +m < 2Ngyn, then the above estimate holds uniformly:

|D" Dy, _yuy|,.. <T;'6.2M (n MNind.o, Aq,Xq>
x M (m, Nina s, 7,1, 75 1) (5.6)

Finally, ézq satisfies bounds which extend (3.15) to

for all n +m < 2Ngy,. In fact, the above estimate holds uniformly,

n ym >
Yiq-1 D" D1 Ry,

o < Fq_CR(SqulM (77/, 2Nind,v> >\q> 3‘1q>
x M (ma Nind, ¢, Pé+2T(;j17 ;;}1> (5.7)

HD”Dt Ry,

. < I—\q—ll—\q—CR(‘)'qulM (n7 2Nind, vy Ag, Xq)
X M (ma Nind,tv T;jla ;;}1) ’ (58)
whenever either n > 3Ning,v 0r m > 3Ning,o are such that n +m < 2Ngy,.

Remark 5.2. The bounds (5.6) and (5.8) provide L*° estimates for D" D} _;
applied to u, and égq, respectively, but only when either n or m is sufficiently
large. In the remaining cases, we note that (5.5), combined with the partition
of unity property (3.16), and the inductive assumption (3.19) (with M = 0 and
K =4), implies the bound

DDy < 8PN M (n ONind.os Ags A )

x M (m, Nina,e, 7, 4 Tot, 774 (5.9)

ug|
=174l Loo (supp ps,g—1) ~

for all n,m < 3Njuq,,. Indeed, we may apply Lemma A.3 (estimate (A.18b))
with ¢ = Vg1, f = tg, Cp = 84, p = Ag_1Tq_1 < Ag (cf. (9.38)), A = A,,
X = Xq? Hi = T(;lFZa Hi = Tq 117 r = 2Nind7v7 Nt = Nind,tv and No = 2Nﬁna
to conclude that (5.9) holds for all n +m < 2Ng, — 2, and in particular for
17, M < 3Ning v

A similar argument, shows that estimate (5.7) and Lemma A.3 imply

DD, foe,

m < T-Crg, A3 M <n72N~ B )
b= Lo (suppapig 1) 1 1T ind,v> 2> g

X M (ma Nind,t7 FngBTq_,ll, ?(1—711) (510)
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for n +m < 2Ng, — 4, and in particular for n,m < 3Njng,v.

Proof of Lemma 5.1. The bound (5.3) requires a different proof than (5.5) and
(5.7), so that we start with the former.
Proof of (5.3). Recall that

égomm = 7)<L:Jv,tvq(§>7) z,tUq — Pq,z,t(vqévq) . (5.11)

We note—cf. (9.64)—that P, ;. mollifies in space at length scale Xq, and in
time at timescale ?q_}l. Let us denote by K, the space-time mollification kernel

for Py 2.+, which thus equals the product of the bump functions (b(;)qﬁ(;_l . For

q—1
brevity of notation (locally in this proof) it is convenient to denote space-time

points as (z,t), (y,s), (z,7) € T3> x R
(557 t) =0, (y, S) =R, (Zv ’1") =q. (5‘12)

Using this notation we may write out the commutator stress Iilgomm explicitly,
and symmetrizing the resulting expression leads to the formula

Hpcomm -1 °
femmo) =5 [ o - - ufo-0)
(T3 xR)2
® (vg(0 = K) = v4(0 = () Kq(r) Ky (C) drdC. (5.13)
Expanding v, in a Taylor series in space and time around 6 yields the formula

N.—1
00— k) = 0g(0)+ Y =D, (0)(—k) @) + Ry, (0.5),  (5.14)

alm!
|a]+m=1

where the remainder term with N, derivatives is given by

NC a,m ! - aaqm
Ry (0,k) = Z W(—n)( : )/ (1 —n)Ne"tD0M v, (0 — nk) dn.
la|+m=N. 0

(5.15)

The value of N, will be chosen later so that Ning; < Ne = Ning,» — 2, more
precisely, such that conditions (5.24) and (9.50a) hold.

Using the fact that by (9.62) all moments of K, vanish up to order N, we
rewrite (5.13) as

écomm(a) :/
q Im)
a:m.
T3 xR lal+m=1

7/ RNC(Q,H)®RNC(9,H)Kq(H) dk
T3 xR

Ne—1
D*0;"vq(0) Rs Ry, (0, r)Kq(k) dr
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] BB R 0.0 K (K, () dr g
(T3 xR)2
—: REOP™(0) + RE0) + R (6), (5.16)

where we have used the notation (9.66).

In order to prove (5.3), we first show that every term in D"D?fqégomm can be
decomposed into products of pure space and time differential operators applied
to products of vy, and v,. More generally, for any sufficiently smooth function
F = F(z,t) and for any n, m > 0, the Leibniz rule implies that

D"DYF =D"(0 +vy, - Vo)"F= > dpmuw (@)D" O F

!
m'<m
n’+m’§n+m

(5.17a)
m—m’ k
ot me (2, 1) = Z Z c(m,n, k,~v, B H (Dwﬁﬁ%g T t))
k=0 {yeN: |y|=n—n'+k, £=1
BeNF: |B|l=m—m'—k}
(5.17b)

where ¢(m,n, k,v, ) denotes explicitly computable combinatorial coefficients
which depend only on the factors inside the parentheses, which are in particular
independent of ¢ (which is why we do not carefully track these coeflicients).
Identity (5.17a)—(5.17b) holds because D and 0; commute; the proof is based
on induction on n and m. Clearly, if D, , in (5.17a) is replaced by Dy 4_1, then
the same formula holds, with the vy, factors in (5.17b) being replaced by vy, .
In order to prove (5.3) we consider (5.17a)—(5.17b) for n,m < 3Njnq v, with
F = égor“m. In order to estimate the factors dy, m n/.m/ in (5.17b), we need to
bound D"0"vq for n < 6Ning,, + Ne and m < 3Nijpg,n + N, with n+m <
6Nina,v + Nc. Recall that v, = wy + vg,_,, and thus we will obtain the needed
estimate from bounds on D"0;"w, and D"0{" vy, ,. We start with the latter.
We recall that v,,_, = wg—1 + vg,_,. Using (3.16) with ¢’ = ¢ — 2 and
the inductive assumption (3.13) with ¢ replaced with ¢ — 1, we obtain from
Sobolev interpolation that ||'wq_1||Loo llwq— 1||1/4 | D?wq— 1HL2 RS ;/21)\2/,21.
Additionally, combining (3.24) with ¢ = ¢ — 2 and (3.18) with ¢’ = ¢ — 2, we

obtain HWEFQHLOO S )\2 I‘Zm“‘Hél/Q <N\ 8 Jointly, these two estimates

q—1 ~ "qg—2%q—1"
imply
1
og-1ll e S gl + e, [l S 620051 -
Now, using that v, _ q—1,2,tVg— 1, and that the mollifier operator Py_1 »

localizes at scale )\ _1 in space and T, To- 2 in time, we deduce the global estimate

LA P (5.18)

D q

q—1 ||LOC ~ (
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for n + m < 2Ng,. Note that from the definitions (9.19) and (9.20), it is
immediate that 7, %, < I, 17,7
As mentioned earlier, the bound for the space-time derivatives of vy, _, needs
to be combined with similar estimates for w, in order to yield a control of v,.
For this purpose, we appeal to the Sobolev embedding H? C L and the bound
(3.13) (in which we take a supremum over 0 < i < ipax and use (9.43)) to
deduce
1D Dl oo S D" DFy—rwg| o S O NN FATT™ - (5:19)
for all n < 7Nijng,, — 2 and m < 7Njnq,. Using the above estimate we may
apply Lemma A.10 with the decomposition 0y = vy, , -V + Dy 1 = A+ B,
v = —vy,_, and f = wy. The conditions (A.40) in Lemma A.10 holds in view
of the inductive estimate (3.24) at level ¢ — 1, with the following choice of

parameters: p = oo, Q = T3, C, = )\3715;/_21, Nz = Ningw — 2, Ay =Tqo1g-1,
XU = Xq_l, Nt = Ninagt, o = /\2_17'(1__11, y = Fq_l?q__ll, and N, = 3N/,
On the other hand, using (5.19) we have that condition (A.41) holds with the

parameters: p = oo, Q = T3, Cy = 531/2)\5, Af = Xf =Ny, f = fif = F;l?q:ll,
and N, = TNipq,, — 2. We deduce from (A.44) and the inequalities Xq,l < g
and A2_,8,% Ay < T1770 (cf. (9.39), (9.43), and (9.20)) that

D™ 0] wgl o S (83NN (7 i T )™ (5.20)

holds for n +m < 7Njpq,, — 2.
By combining (5.18) and (5.20) with the definition (3.3) we thus deduce
nam 1 n(=— - m
1707 gl e S Ngo10, 20N (7T (5.21)

~ q—1%¢—1

for all n4+m < 7Njnq,, — 2, where we have used that )\3715;/721 > 5;/2)\3 and that

7~'q__12 < F;17~_q—_11_ By the definition of vg, in (5.1) we thus also deduce that

D0 e, || e S (X182 N7 4T ™ (5.22)

q—1%g—1

for all n +m < 7Ning,, — 2. Note that by the definition of the mollifier operator

Py,z,t» any further space derivative on vy, costs a factor of Xq, while additional
temporal derivatives cost 7,1, up to a 2Ng, total number of derivatives.

With (5.22) in hand, we may return to (5.17b) and deduce that for n,m <
3Nind,v, we have

m—m/’

n—n’ ~ —1\m—m'— 1
ldrnm. | o S Z Ag +k(Tq—11Fq1) k(>‘3—1rq5q/_21)k
k=0
SATEATH (5.23)
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In the last inequality above we have used that Aq)\gflfqé;/_? 1 < 77;_1111;1, which
is a consequence of (9.39), (9.43), and (9.20).

Returning to (5.17a) with F' = R{™", we use the expansion in (5.16),
the definition (5.15), and the bound (5.21) to estimate D”/@m/]%gomm when
n’,m’ < 3Nipg,». Using (5.21) and the choice

Nc = Nind,v - 27 (524)

which is required in order to ensure that n’ +m’ + N, < TNind,v — 2, we first
obtain the pointwise estimate

Doy By (0.0) £ (a8, 3[R G e

|a|4+m1 =N,

(5.25)

where we recall the notation in (5.12). Using (5.25), the Leibniz rule, and the
fact that A\;I'y < Aq, we may estimate

HD” 8m COmIn
L
( 151/2 )2 Z Z )\Z/-Hal-&-\a/l(;qillpq—l)m'+m1+m2

|a|[+m1=Nc |a’|+ma=N,

/ (et || K (1) dr
T3 xR

( 15 /2 ) Z Z )‘Z +al+|a |(7-q—_11r;1)m +mi1+ma

|a]+mi=N¢ |a/|+m2=N,

N —|al=|a| zmi+m2
x)\q To—1
1/2 ~—1 p—1\ym/ p—2N,
( 16 ) (Tq—ll—‘q ) Fq

whenever n’,m’ < 3Njyq,. It is clear that a very similar argument also gives
the bound

HDn am RcommH )\4 1/2 ) A"

! ~—1 p—1\ym'—2N,
g-10,-1)" Ay (T4 )™ Ty

for the same range of n’ and m/. Lastly, by combining (5.25), (5.21), and the
Leibniz rule, we similarly deduce

HDTL am Rcomm H

,S (/\4 1(51/2 ) Z Z )\2‘/+‘O‘|+|0‘l|(77(1—_11F(1—1)m'+m1+m2

lal+mi=1|a’|+ma=N¢

« / ‘H(a-&-a’ﬂm +ma2)
T3 xR

[Kq(r)|dr
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Nc.—1
1 / AP _ ’
< ()\3715{1/_21)2 § : § : )\g + o+ ‘(Tq—lqu 1>m +m1+ma
|a]+m1=1|a/|+ma=N,
N lal=la/|zmi+ms
XA, To—1

RCTIRT KAt VAN Gt v LS il

Combining the above three bounds, identity (5.16) yields

n’ am’ Hcomm 1 n' f~— —1\m'p—N.—
(2 s PO PR YA DV Gt v e Vet (5.26)
whenever n/,m’ < 3Ning,o.

Lastly, by combining (5.17a) with (5.23) and (5.26) we obtain

1 -~ —1l\ymp—Nc—
SCVRTEN DHCE DL v

n ym pcomm
HD Dy RS

LOO
for all n,m < 3Njnq,,. Therefore, in order to verify (5.3), we need to verify that
1 n~— _ m—N,
OV M £V Comet wm L) wm
_ _C L B
< Fqiqu+f(5q+2)\g+1/\4 (m, Ning,t, 7, 1,7'q 1Fq 1)

. ~_1 ~_ ~_1 _
for 0 < n,m < 3Njpg,. Since Ay < Agy1, To—1 <74 L and Tl > Ty L>

Tl;jl, the above condition is ensured by the more restrictive condition

N; N:
~—1 —1 ind,t ~—1 ind,t
A8 1F1+CR 0g—1 (qurq ) < \8 11—‘1+CR6q71 (Tq1>
q— — 7 q—

q+1 -1 q+1 -1
5q+2 Tq 5q+2 Tq—l
]\]C . Nind,v_2
<TNe =Ty , (5.27)

which holds as soon as Njnq,, is chosen sufficiently large with respect to Ning ¢;
see (9.50a) below. This completes the proof of (5.3).

Proof of (5.5) and (5.6). Using Holder’s inequality and the extra factor
of I';! present in (5.6), it is clear that for all n,m such that (5.6) holds, the
estimate (5.5) is also true. The proof is thus split in three parts: first we
consider n,m < 3Ninq,», then we consider m > 3Ninq,,, and lastly we consider
n > 3Nind,v-

We start with the proof of (5.5). In view of (3.4), we first bound the main
term, Py . ¢+wq, which we claim may be estimated as

n m
||1/’i7q—1D Dy 1Pgzwq HLz

1 ~ o
< 30 M (n MNind.os Ags /\q) M (1, Nipa gy 7 T L) (5.28)

= g 'g—1
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for all n,m < 3Nipq,,, and as
n m
HD Dt,q—lpq»zvtquLoo

S F(;Q(S;/QM (na 2Nind,v7 /\q7xq) M (m) Nind,t7 Tq__lla ;q__ll) . (529)
when n +m < 2Ngy,, and either n > 3Njnq,, or m > 3Njnq,. By the definition
of Py .y in (9.64), in view of the moment condition (9.62) for the associated
mollifier kernel, we have that

Pq,w,twq(e) - wq(H) = a'm”' /TS K n)(a,m )

|a\+m” N
x/ (1 —np)Ne—1Dgr” wq(0 — nk) dndk, (5.30)
0
where we have appealed to the notation in (5.12), and N. = Njnq, — 2. For

n,m < 3Nind,u, we appeal to the identity (5.17a) with F = P, , ;w, — wy, and
with Dy 4 replaced by D; 4_1, to obtain

||DnDZ7q—1(Pq’:r,twq - wq)HLoo
S Y Mummwin e [ D70 Prawy —w))| . (5:3D)
m'<m

where

m—m/

k
o’ m! = Z Z c(m,n, k,v,B) H (D’V’f@fzwqfl(x,t» .
=1

k=0 {yeNF: |y|=n—n'+k,
BEN®: |Bl=m—m'—k}

From (5.18), and the parameter inequality A;‘_lé;/f1~q 1 ST, ~1 we deduce
the bound

" 1" ~_ 1 ~_ 17
HDn 8tm ’Ulq71 < )\n 71(11—17_ 1 )m +1

oo ™~ Ta—1 q 'g—1
for n” +m/ < 2Ng,, and therefore
dnmn m oo S A" (77;_1111;1)’”77” . (5.32)

Combining this estimate with the bound (5.20), we deduce that

HDnD?,lqA(Pq,x,twq - wq)HLoo
S Z )\Z*n’ (?q__lquil)mfm' HD’ﬂlalnl (Pqﬂ«;’twll — UJq) HLDO
m’'<m

n'+m'§n+m
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§ § n—n' ~=—1 p—1ym—m'
5 >‘q (qul]"—‘q )
m’'<m |a|+m’’ =N,

n'+m/§n+m

(A T [ e K )

T3 xR
SO DI R R AT
|a]4+m/" =N,
S (S ADN (7 AT T N (5.33)

Next, we claim that the above estimate is consistent with (5.28): for n,m <
3Ning,» we have

O (F AT T N ST Y6 2A0 M (m, Nind,t,rq—_llrg—l,%;jlrgz) . |
5.34

Recalling the definition of N, in (5.24), the above bound is in turn implied by

the estimate
5_,,1 Nina,¢
312 g—1 Nind, o
rqu<_1> < e

which holds since Ninq,, > Ning,¢; in fact, it is easy to see that the above condi-
tion is less stringent than (5.27). Summarizing (5.33)—(5.34), and appealing to
the inductive assumption (3.13), we deduce that

n m
Hwi,qle Dt,qflpqyfr,twq ||L2

< |¥i.g-1D" Dy ywq| o + | D" DYy 1 (Py o pwg = wo)|

ST PN M (m, Nina,e, 7 5 T 7 4T (5.35)
for all 0 < n,m < 3Njuq,,. The above estimate verifies (5.28).

We next turn to the proof of (5.29). The key observation is that when estab-
lishing (5.35), the two main properties of the mollification kernel K, (x) which we
have used are: the vanishing of the moments [[1s, K, (k) (—r) @™ )dr = 0 for
1 < || +m"” < Nipa,, and the fact that | Kq(x)(—) @™ )| 1) S Mg “707
for all |a] + m” < Niya,,. We claim that, for any n + m < 2Ng,, the kernel

K™ (y,5) = Dyol Ky(y. s)A\, "7y
satisfies exactly the same two properties. The second property, about the L'
norm, is immediate by scaling and the above definition, from the properties of
the Friedrichs mollifier densities ¢ and ¢ from (9.62). Concerning the vanishing
moment condition, we note that K\"™ has in fact more vanishing moments
than K, as is easily seen from integration by parts in x. The upshot of this
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observation is that in precisely the same way that (5.35) was proven, we may
show that

n ym n am
HD Dy, 1D 0, Pq,ac,tquL2

imax

< Z Hq/;z g1 D"DY 1wq||L2 + HD"DZlq_l(DﬁafLPq,x,twq - wq)HLOQ

< r;lég/agxg(q,qu—l)m( )" (5.36)
for all 0 < n,m < 3Njnq,v, and for all 0 < n+m < 2Ng,. Here we have used
(3.16) and (3.18) with ¢’ = ¢ — 1, and the parameter inequality T{fﬂ‘émx*l <
A <A

Next, consider n+m < 2Ngy, such that n < 3Njnq,, and m > 3Njnq,,. Define
m = m — 3Ninga,» > 0, which is the number of excess material derivatives not
covered by the bound (5.35). We rewrite the term which we need to estimate
n (5.29) as

| D" D Pt o = [ D" DI2Y Dy Py (5.37)

Using (5.17a)~(5.17b) we expand Dy, ; into space and time derivatives and
apply the Leibniz rule to deduce

Dy 1Py pwg = dpm n m/D” 0;” Py.z1q (5.38a)
m' <m
A’ +m’ <m
m—m’ k
7 e (1) = Z c(m, k,, B) H (Dveﬁf’zvzq,l(x,t)) :
k=0 {yeNF: |y|=—7'+k, (=1

BeNF: |B|l=m—m'—k}
(5.38b)

Using the Leibniz rule, the previously established bound (5.36), and the Sobolev
embedding H? C L™, we deduce that

n lnd‘U m
HD t,q—1 th 1Pgz,1wq

3de,v

SN DD} s di

a=0 b=0 m' <m
A’ +m’ <m

n—a 3N][ld U_b 'n, m
><HD Dy D" O Py wy ||

I
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n p
a b

/S E HD Dt,q—ldmﬁ'7m/

a=0 b=0 m

'+

X Do P An o NT 42 (7 T 1) 3Nma e =0 (7 (5.39)

Lo

'<
iy
m

IN3

Thus, in order to obtain the desired bound on (5.37), we need to estimate
space and material derivatives DD}, of the term defined in (5.38b), and

in particular D'“@fzwqfl. We may, however, appeal to (5.31)—(5.32) with

(Pg,z,twq — wq) replaced by Dwﬁf‘wq_l and to the bound (5.18) to deduce
that

DYDY _ DV
t,q—1 t Vlg_y

Loo
a —a'" —1~—1\b —b" PN e Be
S Y AR oo o, |
b <b’
a”+b”_§a'+b'
4 1/2 a’ Yve —1=—1\b'+5,
S ()‘qfléq—l))‘q )‘q—1<Fq Tq—l)

a’ Yve—1/p—12=—1 \b'+8e+1
< g Mgt (Fq qul) )

In the last estimate we have used the parameter inequality )\3715;/72 1Ag—1 <

qu17~_q—_11. Using the above bound and the definition (5.38b) we deduce that

[DUDY i disr i || oo S AZNT (D 7 )P (5.40)

Lo ~ q7'q—1 q—1

The above display may be combined with (5.39) and yields

n 13Nind,v ym
HD Dy Dl Pty
3Nind.v
—151/2yn\2 N—n' (p—1z—1 \b+m—m (=—1 1—1\3Ning,, —bz—m’
qu 5r1 )‘q>‘q § : E , /\q—l(Fq qul) (qull—‘q ) Tg—1
b=0 m’' <m
A’ +m’ <atm
—151/2yny2 —1~—1 \ym—m' (=—1 \m'
ST AN Y T 7)™ @)™ (5.41)
m/ <m

where we have recalled that 3Niuq,, + M = m. The above estimate has to be
compared with the right side of (5.29), and for this purpose we note that for
m' < m =m — 3Njpg,» we have

N @ T )T EL)™

<M (n MNind.os Ags Xq) T, =) )

—3Nind,v (~—1 Nin Y -1 ~—1
S./ Pq v (ququfl) 4.t A (TL, 2Nind,v7 )\,17 )\q) M (TTL7 Nind,thqflaqul) R
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where we have used the fact that m —m’ > m — m = 3Njpqa,». Taking Nipg,, >
Ning,+ such that

N2 (g )Nimae < pMimdn =2 (5.42)

a condition which is satisfied due to (9.50c), it follows from (5.41) that (5.29)
holds whenever m > 3Ning v, 7 < 3Ning,v, and m +n < 2Ng,.

It remains to consider the case n > 3Ninq,v, 7 +m < 2Ngy,. In this case we
still use (5.38a)—(5.38b), but with m replaced by m, and similarly to (5.39), but
by appealing to the bounds (5.18) and (5.32) instead of (5.40), we obtain

n m
||D Dtaqfllpqﬂ‘,vtwq ||Loo

n
S D% HD”*a%'aﬁ’Pq,z,tqum

a=0 m'<m
A’ +m’ <m

< Z Z )\a n’ 1~—1 ) —m/

m <m
+m <m

X I‘;léé/QXf]M (n —a+7,3Ning va)‘qv)‘ ) (T— "
S; F;l(S;/z)\gM (n, 3Nind,7j7 >\qv )\q) (?;jl)m

To conclude the proof of (5.29) in this case, we note that for n > 3Njpq,, the
definition (9.19) implies

M <n7 3Nind,v7 )\qa Xq) S Fq__fil\lmd'UM <n7 2Nind,v7 )\qa Xq) )

and this factor is sufficiently small to absorb losses due to bad material derivative
estimates. Indeed, we have that

T, 0 R2M (1 3Nin s Mgy A ) (7)™

ST, 3642 M (n IMNind.o, Ags /\q>

N,l de,t
-1 2372 g—1 —5Nind,»
XM(mlendtv q la q— 1)F A <T_1> Fq-‘rl
qg—1

ST 0 M (1, 2N Ags A ) M (N o, 747307471

by appealing to the condition Ninq,, > Ning, given in (9.50b). This concludes
the proof of (5.29) for all n +m < 2Ng, if either n or m is larger than 3Ninq ..

The bounds (5.28)—(5.29) estimate the leading order contribution to ug. Ac-
cording to the decomposition (3.4), the proofs of (5.5) and (5.6) are completed
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if we are able to verify that

HDnDqu—l(Pq,w,t - Id)wq—l ”Loc

< T, 252 M (n,2Nin,U,Aq,Xq) M (1, Niga e, 774, 74 (5.43)

holds for all n +m < 2Ng,.
In order to establish this bound, we appeal to (5.31)—(5.32) and obtain

HD”Dt q— 1(Pg,at — Id)wq_l HLOO
S Y NTTEATY HD”’@;"’ Py — Td)ug

~

(549

q—1
m’'<m
n'+m'§n+m
for n,m > 0 such that n + m < 2Ng,. Here we distinguish two cases. If either
n > 3Nipd,w or M > 3Nind,., then we simply appeal to (5.18), use that Py, ¢
commutes with D and J;, and obtain from the above display that

HDnDt 1—1(Pgat —Id)vg, HLOO

n—n' ~— —1ym—m’ ! n ~7m
5 Z )‘q (ququ ) ()\3 15q/21))\ —2

!
m'<m
n’+m’'<n+m

1 " e
CYRT X IVICt vty
()\i]lfléq—l)(’rq 17- ) mdtl" 3Nind,u

x M (n7 2Nind,v, )\q’ )‘q) M (TI’L, Nind,t7T(;j1,F;}1>

S CHIURLN 1 Gl CARE it TS VR F s

S
S

X M (na 2Nind,v; Aanq) M (ma Nind7t7T[1__11,7A:L1__11) .

Using that Ning» > Nipdt, as described in (9.50c), the above estimate then
readily implies (5.43).

We are thus left to consider (5.44) for n,m < 3Nind,. In this case, the
bound for the term || D™ 31" (Py 4.s — Id)vg, ||z~ present in (5.44) is different.
Similarly to (5.30) we use the fact that the kernel K, has vanishing moments of
orders between 1 and Ning ., and thus we have

Pq T tvlq 1 (9) 'UZ

o 1ndv (a,m’”)
- X / [ Kl
« m'= ind,v
/(1777) “‘d”*lDo‘(?;” v, (0 — k) dnds . (5.45)
0
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Using (5.18) and (5.45), we may then estimate

|07 0 (Pysa =1, ||

1 ~_ @ "’m” ~n/ o 1~ m/ m//
5 (>\4 4 & ) Z >‘q| |7—q 1)‘,135‘ |(Fq qu 1) *

q—1%g—1 -
|a‘+m”:Nind,u

1 —Nind,o yn/ (p—1=—1\ym/
< (gad,ng ey (g

Combining the above display with (5.44) we arrive at

HDnDZLq—l(,Pq,Lt - Id)U@

1 —Nind,v yn/p—1~—1 \m
5 (Aé—ldq/—zl)rq ‘ Aq (Fq 17—q—ll)

S (A?I_l(s;/fl)(;(1_7117'(1_1)Nind,tI‘q_Nind,u

x M (n, 2Nind, v, )\q,Xq) M (m, Nind,t77'q_—1177~'q_—11) : (5.46)

471HL°°

Using the fact that Ning,w > Ning—see condition (9.50c)—the above estimate
concludes the proof of (5.43).

Combining the bounds (5.28), (5.29), and (5.43) concludes the proofs of (5.5)
and (5.6).

Proof of (5.4). By (3.3) we have that

vg, = Vg = (Pt — 1d)vg = (Pgat — Id)wg + (Pgape — Id)ve, _, -

From (5.33) and (5.34) we deduce that the first term on the right side of the
above display is bounded as

HDnDZLq—l (Pq,ﬂmt - Id)wq HLoo

121242/ ~—1 Ning,: 77— Nind,v ) yn . -1 ri—1 ~—1 -1
< (5q T2N2 (7, 71V T )/\q./\/l(m, Nina,e 75 4T 75T

while the second term is estimated from (5.46) as
HDnDZLq—l(P‘L%t - Id)w%l HLoo

12 4 ~—1 Nind.¢ 7~ Nind,»
S <6q71)\q71(Tq71TQ*1) T

X M (n, 2Nind,va )\qaxq) M (ma Nind,t,Tq_,lp?q_,ll) s

for n,m < 3Nind,. Since Ning, > Ning,+—see, e.g., the parameter inequality
(9.50a)—the above two displays directly imply (5.4).

Proof of (5.7) and (5.8). The argument is nearly identical to how the
inductive bounds on wy in (3.13) were shown earlier to imply bounds for Py , wq
as in (5.28). The crucial ingredients in this proof were that for each material
derivative the bound on the mollified function P, , +w, is relaxed by a factor of
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I'y, the cost of space derivatives is relaxed from A, to Xq when n > Njnq,,, and
the available number of estimates on the unmollified function w, is much larger
than Njna,, (more precisely, 7Ninq,,). But the same ingredients are available for
the transfer of estimates from ]%q to .é[q = q,m]o%q. Indeed, the derivatives
available in (3.15) extend significantly past Ning, (this time up to 3Ning,v)-
When comparing the desired bound on é@q in (5.7) with the available inductive
bound in (3.15) we note that the cost of each material derivative is relaxed by
a factor of I'y, and that the cost of each additional space derivative is relaxed

from A, to Xq when n is sufficiently large. To avoid redundancy, we omit these
details. 0






Chapter Six

Cutoffs

This section is dedicated to the construction of the cutoff functions described in
Section 2.5, which play the role of a joint Eulerian-and-Lagrangian Littlewood-
Paley frequency decompositon, which in addition keeps track of the size of ob-
jects in physical space. During a first pass at the book, the reader may skip
this technical section—if the Lemmas 6.8, 6.14, 6.18, 6.21, 6.35, 6.36, 6.38, 6.40,
and 6.41, and Corollaries 6.27 and 6.33 are taken for granted.

This section is organized as follows. In Section 6.1 we define the velocity
cutoff functions ¥, 4, recursively in terms of the previous level (meaning g — 1)
velocity cutoff functions v 4_1, which are assumed to satisfy the inductive
bounds and properties mentioned in Section 3.2.3. In Section 6.2 we then verify
that the velocity cutoff functions at level ¢, and the velocity fields u, and vy,
satisfy all the inductive estimates claimed in Sections 3.2.3 and 3.2.4, for ¢’ = q.
This section is the bulk of Chapter 6; and it is here that the various commutators
between Eulerian (space and time) derivatives and Lagrangian derivatives cause
a plethora of difficulties.

Remark 6.1. We note that by the conclusion of Section 6.2 we have verified
all the inductive assumptions from Section 3.2, except for (3.13)-(3.14) for the
new velocity increment wq41, and (3.15) for the new stress Rq41. These three
inductive assumptions will be revisited, broken down, and restated in Chapter 7
and proven in Chapter 8.

Next, in Section 6.3 we introduce the temporal cutoffs x; 1 q, indexed by k,
which are meant to subdivide the support of the velocity cutoff i; , into time
slices of width inversely to the local Lipschitz norm of vy,. This allows us in
Section 6.4 to properly define and estimate the Lagrangian flow maps induced
by the incompressible vector field vy, , on the support of v¥; ¢Xi k4. We next
turn to defining the stress cutoff functions w; j ¢ n,p, indexed by j, for the stress

o

Ry n.p, on the support of 1; .. Coupling the stress and velocity cutoffs in this
way allows us in Section 6.7 to sharply estimate spatial and material derivatives
of these higher order stresses, but also to estimate the derivatives of the stress
cutoffs themselves. At last, we define in Section 6.8 the checkerboard cutoffs
Cq,i, kD indexed by an address | = (I, w, h) which identifies a specific cube of
sidelength 27 /A, , 0 within T3. This specific size of the support of Cq,i,k,n
important for ensuring that Oscillation Type 2 errors vanish (see Lemmas 8.11
and 8.12). These cutoff functions are flowed by the backward Lagrangian flows
®; 1,q defined earlier, explaining their dependence on the indices ¢, %, k. Lastly,

the cumulative cutoff function 7 b 1S defined in Section 6.9, along with

,f 1S

1,7,k,q,n
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some of its principal properties. We emphasize that this cumulative cutoff has
embedded into it information about the local size and cost of space/Lagrangian
derivatives of the velocity, the stress, and the Lagrangian maps.

6.1 DEFINITION OF THE VELOCITY CUTOFF FUNCTIONS

For all ¢ > 1 and 0 < m < Ngys,¢, we construct the following cutoff functions.
The proof is contained in Appendix A.2.

Lemma 6~.2. For all g > 1 and 0 < m < Ney,e, there exist smooth cutoff
functions ¥, q, Ym.q : [0,00) = [0, 1] which satisfy the following.
1. The support of {/zvmq is precisely the set [O,Fg(mﬂ)} , and furthermore
a) on the interval [O, irﬁ(m“)} , Jm’q =1;
b) on the interval [iri(m“),rﬁ(m“)}, Jm,q decreases from 1 to 0.

2. The support of Py, 4 is precisely the set [i,Fi(mH)}, and furthermore

a) on the interval [%, 1], Ym,q tncreases from 0 to 1;

b) on the interval [1, il‘z(mﬂ)} s Ymg = 15
¢) on the interval [irﬁ(m“lrﬁ(m“)}, Ym,q decreases from 1 to 0.

3. For all y > 0, a partition of unity is formed as

U2+ vk, (F;%(m“)y) =1 (6.1)

i>1

4 {/;m,,q and wmg (Fzz_QL(m+1)) satisfy

SUPP i g (+) 1 SUPD Y g (ngi(m“)~> =0 if i>2,
SUPD Ui q (F(;Qi(m-i-l).) A SUPD Y g (ngi/(m-&-l).) =0 if |i— il‘ > 9.
(6.2)
2(m+1)
5. For 0 < N < Ngy, when 0 <y < Ty we have
N
|D wm,q(y)‘ < F72N(m+1)' (63)

()= N
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Fori<y<1wehave

DY)

W)= S o0
while for irﬁ(m“) <y< 1“3(”‘“) we have
|DN'(/Jm,q(y)| < P—QN(m—i—l). (65)

(?ﬁm,q(y))l*N/Nﬁn ~q

In each of the above inequalities, the implicit constants depend on N but
not m or q.

Definition 6.3. Given i,j,q > 0, we define
i» =1:(j,q) = ix(j) =min{i > 0: T, > T/}

In view of the definition (3.10), we see that

o [dog0) —dogry )] _ [ Tos([a”'T) —1os ([ ])
)= [Jloi(/\qﬂ) —%Og(kq)-‘ K log ([a*"']) — log ([a**])

One may check that as ¢ — 0o or a — 00, i.(j) converges to [4] for any j, and
so if a is sufficiently large, i.(j) is bounded from above and below independently
of ¢q for each j. Note that in particular, for j = 0 we have that i,(j) = 0.

At stage ¢ > 1 of the iteration (by convention wy = ug = 0) and for m <
Neut,: and jn, > 0, we can now define

Ncut,z

i (J C (s —2m
E ~2ieUm) 5 =2n (-1 e (Gm)+2
Mg (2:1) 1= Lo v )511 F(AqTy) (Tq}1FZq(Jr(]1 : )
n=0
% DDy vy (a0, (66)

Definition 6.4 (Intermediate cutoff functions). Given ¢ > 1, m < Ny,
and .]m Z 0 we deﬁne wm,im,jqu by

—2(im =1 (Jm))(m+1
Vimimjma(T5 ) = Y1 (Fq+§ (m)) et )h,zn)j,"“q(x,t)) (6.7)
for im > ix(Jm), while for iy = ix(jm),

Ui G a (@ 8) = g1 (5, o (2:1)) - (6.8)
The intermediate cutoff functions ¢, ;,, .. q ore equal to zero for im < ix(jm)-

The indices i, and j,, will be shown to run up to some maximal values &yax
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and imayx to be determined in the proof (see Lemma 6.14 and (6.27)). With this
notation and in view of (6.1) and (6.2), it immediately follows that

2 _ 2 _ 2 —
Z /l’/}mvimvjqu - Z /l’[}mvimvjqu - Z Myim,Jm,q 1 (69)

im >0 im0 (Jrm) {im : riﬁlzrgm}
. y
for any m, and for |i,, —i,,| > 2

Yminm im,aWm,it, jmeg = 0- (6.10)

Definition 6.5 (m'" velocity cutoff function). For ¢ > 1 and i,, > 0,' we
inductively define the m'™ velocity cutoff function

2 _ § 2 2
Myim,q Jmsq—1Fmyim jm,q" (611)
{jm, Dl >l (.j'm)}

In order to define the full velocity cutoff function, we use the notation

- . Ncu . - Ncu 1
= {im oy = (zo, ...,ZNC“M) €Ny A (6.12)

m=0 "
to denote a tuple of non-negative integers of length Ncy¢,: + 1.

Definition 6.6 (Velocity cutoff function). For 0 < i < i,4:(q) and ¢ > 0,
we inductively define the velocity cutoff function ;4 as follows. When q = 0,
we let

0 otherwise.

Vi = {1 #i=0 (6.13)

Then, we inductively on q define

Ncut,t

2 2

1,9 Z H wm,im,q (614)
. m=0
v osfgﬁut,t m=

The sum used to define 1); 4 for ¢ > 1 is over all tuples with a maximum entry
of i. The number of such tuples is clearly g-independent once it is demonstrated
in Lemma 6.14 that i, < imax(q) (which implies ¢ < imax(q)), and imax(q) is
bounded above independently of g.

forallg>1.

ILater we will show that ., i,,,.q = 0 if i > imax-
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For notational convenience, given an 7 as in the sum of (6.14), we shall denote

cut t Ncut,t

supp H '(/)m im,q | — ﬂ supp (¢m,im,q) =:supp (wfyq) . (615)

m=0

In particular, we will frequently use that (z,t) € supp (¢ ) if and only if there

Neut,¢+1

exists i € Ny such that maxo<m<nNey,., im = %, and (z,t) € supp (w;q).

6.2 PROPERTIES OF THE VELOCITY CUTOFF FUNCTIONS

6.2.1 Partitions of unity

Lemma 6.7 (¢, ,, ,—Partition of unity). For all m, we have that

Z w?n,im,q =1, wm,im’qwm,i;n’q =0 for [ip— Z;n' > 2. (6.16)

i >0

Proof of Lemma 6.7. The proof proceeds inductively. When ¢ = 0 there is
nothing to prove as ¥y, ;,, . is not defined. Thus we assume ¢ > 1. From (6.13)
for ¢ = 0 and (3.16) for ¢ > 1, we assume that the functions {1/1]2-’(171}]-20 form a
partition of unity. To show the first part of (6.16), we may use (6.9) and (6.11)
and reorder the summation to obtain

Z wmlmq Z Z meyq 1 mzm sJm s q(x’t)

im >0 im >0 {]m - (]m)flm}
= Z w]m q—1 Z MyimJm,q Z w]qu 1 =
Jm =0 {lm: imzi*(jnz)} Jm=>0

=1 by (6.9)

The last equality follows from the inductive assumption (3.16).
The proof of the second claim is more involved and will be split into cases.
Using the definition in (6.11), we have that

@Z’m,im,q@[’m,iin,q

_ 2 2 2 2
- Z ¢jm»q_le;n7q_1wmvim7jquwmvirlm7j;n7q.
{Fmiim Zis (Gm) } {7,097, 28 (37,)

Recalling the inductive assumption (3.16), we have that the above sum only
includes pairs of indices j,, and j/, such that |j,, —j/.] < 1. So we may assume
that

(w,t) € SUPD Y, iy, jm.q O SUPP Vit it g5 (6.17)
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where |, — j/,] < 1. The first and simplest case is the case j,, = jI,. We then
appeal to (6.10) to deduce that it must be the case that |i,, —i,,| <1 in order
for (6.17) to be true.

Before moving to the second and third cases, we first show that by symmetry
it will suffice to prove that ¥y, i, ¢¥m.i;, ¢ = 0 when il < iy — 2. Assuming
this has been proven, let i,,,,%m, be given with |im, — ém,| > 2. Without
loss of generality we may assume that é,,, > %m,, which implies that i,,, >
im, + 2. Using the assumption and setting ip,, = i, and é,,, = iy, we deduce
that Yum i, .q¥m,im,,q = 0. Thus, we have reduced the proof to showing that
’é/}m,z‘m,q’l/fm,z‘;mq = 0 when ¢/, <4,,—2, which we will show next by contradiction.

Let us consider the second case, jI, = jm + 1. When i, = i.(jm), using that
ix(Jm) < 4x(Jm + 1), we obtain

i < im =2 =1 () — 2 < ix (G + 1) = ix(50.),

and so by Definition 6.4, we have that ¢, i ;s ,= 0. Thus, in this case there
is nothing to prove, and we need to only consider the case i, > 7«(jm). From

(6.17), points 1 and 2 from Lemma 6.2, and Definition 6.4, we have that

1 mA41) (i —ix (Jm m4+1) (im+1—ix(Gm
hmvjmv‘l(x?t) S §Fg+1 )( (] ))7Fg+1 )( (] )) 5 (618&)
41, 8) < Ty G170 Gt (6.18b)

Note that from the definition of A, j,, 4 in (6.6), we have that

(mA+1) (s (Fm+1) —ix(Gm))
Fqu Y Y b jm+1,a = Min g .g-

Then, since #}, < i,, — 2, from (6.18b) we have that

F—(m+1)(im—i*(jm,))h

q+1 My Jm g
= DDl =i Gy DO e Gt )i ()
< r;ff“)(“"*i*(j’"))rgﬁfl)(”in“’i*“’"“”Fflﬁfl)“*(jm“)’i*(j’"))
_ F((Iiwirl)(iin+17im)
< F;ﬁrﬁl) '

Since m > 0, the above estimate contradicts the lower bound on A, ;, 4 in
(6.18a) because Fq_jl < 1/2 for a sufficiently large.

We move to the third and final case, j;, = jn, — 1. As before, if 4., = 04 (jm ),
then since ix(jm) < ix(jm — 1) + 1, we have that

b < im = 2= 02 (fm) = 2 < du(fm — 1) = 1 <iu(fn — 1) = iu (i),

which by Definition 6.4 implies that ¥, ;s , = 0, and there is nothing to
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prove. Thus, we only must consider the case i,, > ix(jm). Using the definition
(6.6) we have that

— ]_"(m""l)(l «(Gm—=1)— 'L*(]m))h

P jma = mjm—1,q -

On the other hand, for i/, <4, — 2 we have from (6.18b) that

m+1) (i, +1—is (Gm—1 mA41) (i —1—i4 (fm—1
B g1, < TV (Gm=1)) ¢ plmt1) (Gm=1))

Therefore, combining the above two displays and the inequality —is(jm,) >
—ix(jm — 1) — 1, we obtain the bound

—(mA+1)(im —ix(Jm
Fq—‘,(-l ! v ))hmvjqu
—(’H’L-‘rl)(im,—i*( im ) (A1) (i (G —1) =% (Gm ) 7 (Mm+1) (i —1—s (Jm —1))
< F J Fq+1 J J Fq+1 J

(m+1)
- Fqul :

As before, since m > 0 this produces a contradiction with the lower bound on
R j...q given in (6.18a), since F;+11 <L 1f. O

With Lemma 6.7 in hand, we can now verify the inductive assumption (3.16)
at level q.

Lemma 6.8 (¢; , is a partition of unity). We have that for ¢ > 0,

S, =1, thigrg=0 for [i—i|>2. (6.19)

>0

Proof of Lemma 6.8. When ¢ = 0, both statements are immediate from (6.13).
To prove the first claim for ¢ > 1, let us introduce the notation

A =0 =(ig,ring,): MaX ip=1ig. 6.20
T ( ) ) cut,t) OSWSNcut,t m ( )
Then
= H m71m7q’
; m=0
and thus
cutt cutt
2 _
PIEAEDIDIN | K- FIEEDY H Urnimsa
>0 120 Fep, m=0 ;‘GNNcut,t+1
0

Neut,¢ Neut, ¢

H Z Urivea | = H 1=1
m=0

m=0 im >0
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after using (6.16).
To prove the second claim, assume towards a contradiction that there exists
|i —i'| > 2 such that 1; g0 ¢ > 0. Then

cut t

0# Y7k, =Y Z H Vi a Vit g (6.21)

ich; 77 en, m=0

In order for (6.21) to be non—vanishing7 by (6.16), there must exist indexes
i = (ig, .-y iNew,.) € Ai and @' = (ig, ..., 4y _ ) € Ay such that [iy, —i),| <1 for
all 0 < m < Ngyge- By the definition of ¢ and 4/, there exist m, and m/, such
that

’H’L

i, = MaX iy, = 1, iy = maxi,, =1.
m * m
But then
P =, <y, +1<i, +1=4"4+1
i =iy <dm A1 <y, +1=104+1,
implying that |¢ — /| < 1, a contradiction. O

In view of the preceding two lemmas and (6.10), and for convenience of
notation, we define

1
ik (,8) = (V2 g (1) + 02, (2, 1) + 02, (@, 0) 7, (622)
which are cutoffs with the property that
Yizg=1 on supp(¢;gq). (6.23)

Remark 6.9. The definition (6.14) is not convenient to use directly for estimat-
ing material derivatives of the 1); , cutoffs, because differentiating the terms
Ym,in,q ndividually ignores certain cancellations which arise due to the fact
that {¢m i, ¢ }i,.>0 is a partition of unity (as was shown above in Lemma 6.7).
For this purpose, we re-sum the terms in the definition (6.14) as follows. For
any given 0 < m < Nyt ¢, we introduce the summed cutoff function

m i, Z ’(/Jm yim»q (624)

i =0

and note via Lemma 6.7 its chief property:

D(\IITQTL ) q) = D(wzz,i,q)lsupp (Ym,it1,q) — D(w?n,i,q)lsupp (Ym,i+1,q) * (625)

The above inclusion holds because on the support of ¥y, ;. 4 With i, < i, we
have that ¥,,, ; , = 1. With the notation (6.24) we return to the definition (6.14)
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and note that

cut t Ncut,t

Z 1/) m,i,q H \Ijm ,8,q H (\Ilm”iq En”,i,q)

m' =m+1

(‘ut t cut t

Z wm ,0,q H \IIm ,1,q H \I’m ’i—1,q (626)

m=0 m’’ =m+1

Remark 6.10. Define j.(i,q) = max{j: i.(j) < i} to be the largest index of j,,
appearing in the sum in (6.11). We note here that

Iy <mta <Ti, (6.27)

holds. This fact will be used later on in the proof in conjunction with Lemma 6.14
to bound the maximal values of j,,.

The following lemma is a direct consequence of the definitions of the cutoffs.

Lemma 6.11. If (z,t) € supp (¥m,in.jm.q) then
m~+1)(Gm+1—ix(Jm
i g < Ty P00, (6.28)
Moreover, if iy, > ix(jm) we have

B g > (12) T D = ) (6.29)

on the support of VY i, i, q- AS a consequence, we have

1DV Dy vl e upp iy S 0 T L)V (4 Tge™)™(6.30)
HDNDt’qfluqHLoo(auppwi q) 51/21—‘3]4-&:1].()\ r ) ( ! F;i%.) (631)

for all 0 <m, M < Neyst, and 0 < N < Neyt -

Proof of Lemma 6.11. Estimates (6.28) and (6.29) follow directly from the def-
initions of ¥, q+1 and ¥m g+1. In order to prove (6.30), we note that for
(x,t) € supp (Ym,i,,.q)s by (6.11) there must exist a jp, with ix(jm) < 4 such
that (x,t) € supp (¥m,i,.jm.q)- Using (6.28), we conclude that
N
||D Dt 4= 1uqHL°°(f’uPPw'm imodma)

< F(m+1)(1m,+1 T (Jm))]_—‘Z (Jm)(r A )N( ijjlm)-ﬁ‘?,rq—ll)mél/z

=6,/ Tin i (AT DY (T, 4T )™ (6.32)

which completes the proof of (6.30). The proof of (6.31) follows from the fact
that we have employed the mazimum over m of i,, to define ¥ , in (6.6). [
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An immediate corollary of the bound (5.9) and of the previous lemma is
that estimates for the derivatives of u, are also available on the support of 1; 4,
instead of 1; 4—1.

Corollary 6.12. For N, M < 3Nin4,,, and i > 0, we have the bound
N M
||D DtvqfluqHLOO(suppwi,q)

ST 02 M (N, 2N, Todgs Ag ) M (M, Nina o T3 77 )+ (6.33)

Recall that if either N > 3Ninq,, or M > 3Ninq,, are such that N + M < 2Ngy,
suitable estimates for DY DM ug are already provided by (5.6).

Proof of Corollary 6.12. When 0 < N < Neye,» and 0 < M < Neyst < Nind ¢,
the desired bound was already established in (6.31).

For the remaining cases, note that if 0 < m < Ny ¢ and (z,t) € SUpp Yum.i,,.q»
there exists jn, > 0 with 44 (jm) < im, such that (z,t) € supp;,, q—1. Thus, we
may appeal to (5.9) and deduce that

g—1> 'g—1

|DNDM _uy| < 612N M (N,QNind,v,Aq,Xq) M (M, Nipq g, DI 71 )
Since @4 (Jm) < iy, implies Fg'" < 1"211, we deduce that
N M
HD Dtvq_luqHL‘”(Suppwm,im,q)

S 5;/2}:(31/2-/\/1 (Na 2Nind,m )\qv Xq) M (Ma Nind,t7 21-1‘_17-;,117 ’7:711) .

q—

Note that the above estimate does not have a factor of F;’ﬂ'l next to the 5;/ :
at the amplitude.
We now consider two cases. If Neyt,z < N < 3Njpg,, then

M (N,2Nind,,,,Aq,Xq) ST Newe A (N72Nind,v,rqu,Xq) .
On the other hand, if Ncyt,e < M < 3Njng,0, then

im+1_—1 ~—1 —2Ncug, im+3,_—1 ~—1
M (M7 Nind,tarz}+1 Tq—177—q—1) S Fq-‘,—l M (Ma Nind,t, F;.H Tg—1> Tq—l) .
Combining the above three displays, and recalling the definition of ¢; 4 in (6.14),
we deduce that if either V > N¢ys o or M > Neys ¢, we have

|‘DND%171U¢1 ||L°° (supp ¥i,q)

1/2y3/2 —Ncut,z —2Ncut, ¢
<0 N? max{T', N ) }

q'g—1> "g—1

< M (N, MNin T 3g) M (M N TSR 70
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and the proof of (6.33) is completed by taking Nyt and Nyt sufficiently large
to ensure that

—2N

N3/2 —Neus,z
At max{T Tewes T

w1, (6.34)

This condition holds by (9.51). O

6.2.2 Pure spatial derivatives

In this section we prove that the cutoff functions v; , satisfy sharp spatial deriva-
tive estimates, which are consistent with (3.19) for ¢’ = gq.

Lemma 6.13 (Spatial derivatives for the cutoffs). Fiz ¢ > 1, 0 < m <
Neut,t, and im > 0. For all jp, > 0 such that iy, > ix(jm) and all N < Ng,, we
have

N o
‘D wm77f7n7]'m7q|
supp (¥, ,¢—1) wl_N/Nﬁn
Myim,Jm 4

1 <M (N, Nind.o. Aqrq,erq) , (6.35)

which in turn implies

|DN¢i,q| Y
m 5 M (N, Nind,vy )\qrqa /\qrq) (636)
9

for alli >0, all N < Ngy,.

Proof of Lemma 6.13. We first show that (5.9) implies (6.35). We distinguish
between two cases. The first case is when ¢ = 9., g+1 Or ¥ = ¥y, ¢+1 and we
have the lower bound

2 —2(im =i (Gm))(m+1) & L p2(me1)
W, imsal 41 > qu+1 (6.37)
so that (6.5) applies. The goal is then to apply Lemma A.4 to the function
Y = Y g1 OF P = P, 41 as described above in conjunction with I'y, = 1"2?117

r= Féffl)(i’”'_i*(jm)), and h(z,t) = (hm,j,..qo(x,1))%. The assumption (A.21)
holds by (6.3) or (6.5) for all N < Ng,, and so we need to obtain bounds
on the derivatives of h, ; ., which are consistent with assumption (A.22) of
Lemma A.4. For B < Ng,, the Leibniz rule gives

B Ncut,z

_i* 'm, - T 4777, 2 —m —n— fe—
LI <0V VA L SO S amri e C it wal et R OV O el
B’=0 n=0

x [D"B D |

—x(Jm) (=1 pix(Gm)+2\—m —n— f o
X Fq+1(J )(Tq—lll_‘q-ﬁfjl ) ) (/\qrq) B+B 5q 1/2
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x |[DB=B D . (6.38)

For the terms with L € {n+B’,n+B— B’} < N¢y » we may appeal to estimate
(6.28), which gives
—iu(im) [ =1 e Gm)+2\—m L m
IRy IOV o Rl ol 21

q+1 q+1 Uq ||L°°(supp Ymim . im.a)

m+1)(im+1—%x (Jm
<rimie ), (6.39)
On the other hand, for Neyo < L € {n+B',n+B—B'} < Neyt,o + B < 2Ng, —
Nind,;, we may appeal to estimates (5.6) and (5.9), and since m < Neyg,r < Nind s
we deduce that

—ix(m) (=1 i (Gm)+2y—m —Ls—1/2 L nym
FqulJ (qull—‘q+{ ) (Aqrq) 6q / ||D Dt’qfluq||L°°(supp1/)jm,q,1)

: —iu (m)—2ym (= LX8/2) \ - 5
S (O D 502y (0 RN M (L 2N A0 A )
<M (L7 Nind.o; 1, Aq—qu)

+1) (i A+ 15w (G -1y
< F((I’le )@ iy (J ))M (L,QNind,va ]-a)‘q 1>\q) . (640)

In the last inequality we have used that i,, > . (j,,), while in the second to last
inequality we have used that if L > Ny, then 1"5 > XZ/ ? which follows once
Neut,» is chosen to be sufficiently large, as in (9.51). Summarizing the bounds
(6.38)—(6.40), since n < Neyt o, We arrive at

1 |DPh?,

m,jm,q|

5 ()\qrq)BM (QNcut,m + B;2Nind,7ja 17)\;1}:[1) Fzﬁfll-‘rl)(lm-i-l—u(.?m))

SUPP (V) ,a—1%m,im im.a)

3 2(m=+1) (im+1—%x (Jm
5 M (Bv Nind,v; /\qrcp Aqrq> Fq-‘,—l ( im))

whenever B < Ng,. Here we have used that 2N¢y¢,o < Ning,. Thus, assumption

(A.22) holds with Oy, = T2} D=0 0m) X — P X A = ATy, No = Nin,on

Note that with these choices of parameters, we have C’hF;2F_2 = 1. We may
thus apply Lemma A.4 and conclude that

N
|D /l/}mvimvjmwQ|
supp (Y, ,q—1) wl—N/Nﬁn
Myim,Jm g

1 <M (N, Nind.os AdTgs erq)

for all N < Ng,, proving (6.35) in the first case.
Recalling the inequality (6.37), the second case is when 9 = 1, 441 and

—2(ip —ix (5 1
g2 L, a1
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However, since 9, 441 is uniformly equal to 1 when the left hand side of the

above display takes values in [1, %szﬁl)} , (6.35) is trivially satisfied. Thus we

may reduce to the case that

2 —=2(im —ix (jm)) (m+1)
T im0 < (6.42)
As in the first case, we aim to apply Lemma A.4 with h = hfn,jm,q, but now with
'y =1land I' = Féﬁfl)(i’”*i*(jm)). From (6.4), the assumption (A.21) holds.

Towards estimating derivatives of h, for the terms with L € {n+B’,n+B—-B'} <
Neut,z, (6.42) gives immediately that
—tx 'm - e ‘771 +2 —m — — m
I )(Tq—llr (Gm) )T (A Ty) L5q /2 HDLDt,q—l

g+l q+1 uq||Lo°(supp'¢’nhim,jm,,q)

m+1) (4 —T4 (Jm
< PO n=ie ) (6.43)

Conversely, when Ncut > > L, we may argue as in the estimates which gave
(6.40), only this time using the fact that since i,, > 4 (jm ), we can achieve the
slightly improved bound?

PO =) p g <L7 MNind.o, 1, A;lxq) , (6.44)
We then arrive at

1 ) [DP il

S ()\ql—\q)BM <2Ncut,z + Ba2Nind,vv 1))\(]—1}?(1) inﬂll-‘rl)(lm—l*(ﬂm))

SUPP (V) qa—1¥m,im jm.a

by 2(m+1 7:7n_i* 4m
SM(RNind,U,/\qu,)\qu) P2+ i i i)

whenever B < Ngj, again using that 2Neys,z < Nipd,. Thus, assumption (A.22)

now holds with C;, = Fgg_’rfﬂ)(i"”*i*(j”)), A=Ty ), A = erq7 N, = Nind,o-
Note that with these new choices of parameters, we still have ChI‘QfI‘_2 = 1.

We may thus apply Lemma A.4 and conclude that

N o
[P i i
Supp (Y ,q—1) ¢1—N/Nﬁ,,
Myim,Jmq

1 S M (N7 Nind,’ua )‘quXqFQ)

for all N < Ng,, proving (6.35) in the second case.
From the definition (6.11), and the bound (6.35), we next estimate deriva-

2This bound was also available in (6.40), but we wrote the worse bound there to match
the chosen value of Cp,.
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tives of the m'" velocity cutoff function v, ;. 4, and claim that

|DNwm77;qu|
77Zjl—N/'\'ﬁn

m,tm,q

S/ M (N, Nind,va /\qrcp erq> (645)

for all i, > 0, all N < Ng,. We prove (6.45) by induction on N. When N =0
the bound trivially holds, which gives the induction base. For the induction
step, assume that (6.45) holds for all N’ < N —1. By the Leibniz rule we obtain

N-1
N / /
N2 N N N—N
D (wm,im,q) = 2¢m,inqu me,im,q + Z (N’)D wm,imqD wm,im,q
N’'=1

(6.46)

and thus
N-1 ’ N
DNwmviqu _ DN( m vaq) 1 N DN wm,im,q DN N wmaimaq
Z N/ 1—N’/Ngin 1—(N—=N’)/Ngy
djm im g 1/}

m,tm,q

1—N/Ngn 2—N/Ntin
NN 22 NN 2 £

M,lm, ,q Myim,q

Since N’ N — N’ < N — 1 by the induction assumption (6.45) we obtain

|DNwm,im,q| |DN( m,i q)‘ e
et et M (N Ninao AT ATy ) - (647)
,(/Jm,im,q wm,im,q
Thus, establishing (6.45) for the Nth derivative reduces to bounding the first
term on the right side of the above. For this purpose we recall (6.11) and
compute

DY (W)

2—N/Ngip
wm,im,q

1 N
K N-K
= d)Q—N/Nﬁn Z Z( )D (,(/)%nvq 1)D ( mlmmmq)

Myim,q  {m: @ (jm) im}K:O
2—K/Niin 2—(N—K) /Nein
SR YR o o ol (T [QRR == e
L1 L, 2 /N
{Jm : i (Gm ) <im } K=0L1=0 L2=0 Myim, ,q
L K—L L N—-K-L
D 1¢jm7q_1 D 177[}jm=q_1 D 2¢maimajm7q D 2w"”7imvjmaq

q/}1—111/Nfin wl_(K_Ll)/Nfin ,ll)l_L?/Nfin wl—(N—K—Lz)/me
Jm,q—1 Jm»q—1 Myim,Jmq Myim,Jmq

Since K, N — K < N, and ¥j,, q—1,%m.i,..j.q < 1, we have by (6.14) that

2— K /Ngin (N—K)/Nsin 2—N/Nfin ; 2—N/Ngin
wjm,qfl wm VimsJmsq < wjm,q 1 wm imsJmsq <1.
¢2 N/Ngin = ¢2 N/Ngin

My, ,q mMyim,,q
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Furthermore, the estimate (6.35) and the inductive assumption (3.19), combined
with the parameter estimate Fq_qu_l < T'yAq (see (9.38)) and the previous
three displays, conclude the proof of (6.45). In particular, note that this upper
bound is independent of the value of i,,.
In order to conclude the proof of the lemma, we argue that (6.45) implies
(6.36). Recalling (6.14), we have that wiq is given as a sum of products of
v..i, q» for which suitable derivative bounds are available (due to (6.45)). Thus,
the proof of (6.36) is again done by induction on N, mutatis mutandi to the
proof of (6.45): indeed, we note that wﬁmm,q was also given as a sum of squares
of cutoff functions, for which derivative bounds were available. The proof of the
induction step is thus again based on the application of the Leibniz rule for ¢z‘2, o
in order to avoid redundancy we omit these details.

6.2.3 Maximal indices appearing in the cutoff

A consequence of the inductive assumptions, Lemma 6.11, and of Lemma 6.13
above is that we may a priori estimate the maximal ¢ appearing in 1); 4, labeled

as imax(q)-

Lemma 6.14 (Maximal i index in the definition of the cutoff). There
exists imax = tmax(q) > 0, determined by the formula (6.53) below, such that

Yiqg =0 forall @> imax (6.48)
and
[imex < A (6.49)

holds for all ¢ > 0, where the implicit constant is independent of q. Moreover
imax(q) is bounded uniformly in q as

4

L (6.50)

imax(Q) <

assuming Ao 18 sufficiently large.

Proof of Lemma 6.14. Assume i > 0 is such that supp (¢;,4) # 0. Our goal is
to prove that I',; < A
From (6.14) it follows that for any (z,t) € supp(¢i4), there must ex-

ist at least one i = (ig,...,In,,,) such that max i, = i, and with
’ OSWLSNcut,t

Ymin.q(@,t) # 0 for all 0 < m < Ngyug¢. Therefore, in light of (6.11), for
each such m there exists a maximal j,, such that i,(jm,) < i, with (z,t) €
supp (¥j,.,q—1) N SUPP (Vi irn,jm,q)- 11 particular, this holds for any of the in-
dices m such that i,, = i. For the remainder of the proof, we fix such an index
0<m< Ncut,t-
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If we have i = iy, = 05(jm) = %4 (Jm, q), since (x,t) € supp (¢}, q—1), by the
inductive assumption (3.18) we have that j,, < imax(¢—1). Then, due to (6.27),
we have I[')7} < TUn < rim( @1 and thus

i,y < Ty Dimes(@D <7 A2 < A5, (6.51)
The last inequality above uses the fact that )\;H K& < Ag+1 since b > 1 and a

is taken sufficiently large.

On the other hand, if § = 4, > 44 (j)+1, from (6.29) we have |hy, j,. 4(z, )] >
(1/2)I‘((1Tf1)(1’"_“(7’"’)), and by the pigeonhole principle there exists 0 < n <
Ncut,x with

i (m) - o
n m +1 m+1) (i —is (Gm n(_— ix (Jm)+2\m
D" DY yg )] > et DD = 0D 0 L) T )
1

>

im  sl/2yn( _—1 Pim+2\ym
QNcu”Fquq )‘q(Tq—quH )"

and we also know that (z,t) € supp (¢, q—1)- By (5.9), the fact that Neyg . <
2Nind,» — 2, and Neyg,t < Ning,¢, we know that
D™D} _ug(x, t)] < Myd,/P AR N/ (Y Timtym
< MR Gy
< Mb5¢11/2)\2xz/2(7¢;—11r211)m

for some constant M, which is the maximal constant appearing in the < symbol
of (5.9) with n +m < Ngy. In particular, M, is independent of g. The proof
is now completed, since the previous two inequalities and the assumption that
im =1 > imax(q) + 1 imply that

i1 < 2Newe o MuA/2 < AP (6.52)
In view of (6.51) and (6.52), the value of 4y is chosen as
imax(q) = sup {i/: Fg—&-l < )\Z/s} : (6.53)

To show that imax(g) < 00, and in particular that it is bounded independently
of ¢, note that

log(A") ¥

log(Ty41)  er(b—1)

as ¢ — oco. Thus, assuming )\, is sufficiently large, since (b — 1)er < 1/5, the
bound (6.50) holds. O
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6.2.4 Mixed derivative estimates

Recall from (3.7) the notation D, = u, - V for the directional derivative in the
direction of ug. With this notation—cf. (3.6)—we have Dy, = Dy 41 + D,.
Thus, D, derivatives are useful for transferring bounds on D, 41 derivatives to
bounds on Dy 4 derivatives.

From the Leibniz rule we have that

K
DE = "fxD, (6.54)
j=1
where

K
fix = > cixoy | [ D g, (6.55)

{veNK: |y|=K—j} =1

where ¢; k, are explicitly computable coefficients that depend only on K, j, and
7. Similarly to the coefficients in (A.49), the precise value of these constants is
not important, since all the indices appearing throughout the proof are taken
to be less than 2Ng,. The decomposition (6.54)—(6.55) will be used frequently
in this section.

Remark 6.15. Since throughout the book the maximal number of spatial or
material derivatives is bounded from above by 2Ng,, which is a number that is
independent of ¢, we have not explicitly stated the formula for the coefficients
Cak,p I (A.49), as all these constants will be absorbed in a < symbol. We note,
however, that the proof of Lemma A.13 does yield a recursion relation for the
Ca,k,3, Which may be used if desired to compute the c, 1,z explicitly.

With the notation in (6.55) we have the following bounds.

Lemma 6.16. For ¢ > 1 and 1 < K < 2Ng,,, the functions {fj,K}le defined
in (6.55) obey the estimate

1D Fyoi e ouppn .y S (TEEASYYE M (a + K — j,2Nind 0, Tghg, Xq) . (6.56)

for any a < 2Ng, — K 4+ j and any 0 < i < imax(q).

Proof of Lemma 6.16. Note that no material derivative appears in (6.55), and
thus to establish (6.56) we appeal to Corollary 6.12 with M = 0, and to the
bound (5.6) with m = 0. From the product rule we obtain that

| D* f; ||L°°(supp Yi,q)

K
S Z Z H HDanuqHLw(suppwi,q)

{7eNE: |v|=K—j} {a€NF: |a|=a} (=1
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K
N > D | EVART Y (az + 76, 2Nind.o» Ty Ag, /\q)

{YENK : |y|=K—j} {a€NF: |a|=a} £=1

S (THE0/ M (0 K = . 2Ninao Todgs g )

since |y| = K — j. O

Next, we supplement the space and material derivative estimates for u, ob-
tained in (5.6) and (6.33), with derivatives bounds that combine space, direc-
tional, and material derivatives.

Lemma 6.17. For ¢ > 1 and 0 <1 < imax, we have that

||DNDKDt q— 1“(1HL°o (supp ¥i,q)

< (0 TIMN + K, 2Nind o, Tghgs Ag)M (M, Nina e, THS 7Y 1)

S (inll(gl/z)M(Na 2Nind,va Fq)\Q’ )‘q)(FZquclo ;1)KM (M Nlnd it Ffﬁi q_lla ;(1—711)

holds for 0 < K + N + M < 2Ngy,.

Proof of Lemma 6.17. The second estimate in the lemma follows from the pa-
rameter inequality F}IEO)\ 51/ 2 < T 1 which is a consequence of (9.39). In
order to prove the first statement, we let 0 < a < N and 1 < j < K. From

estimate (6.33) and (5.6) we obtain

HDN aﬂD%y IU'QHLOC (supp i q) ™~ (sz-ﬁ(sl/rz)/\/l (N — a+ 7, 2Ninq, U’Fq/\q’/\q)

X M (Mv Nind,t7]-—‘qi317—7113 ~¢; 1)
which may be combined with (6.54)—(6.55), and the bound (6.56), to obtain
that
1D Dy Dy

N K

rS Z Z HDafj,K”Loc(Supp’lbi,q) ||DN7a+jD%I—1wq{|L°°(supp71[)i’q)
a=0 j=1

< (T2 KM (N+K IMNind.or Tgdgs Mg )M (M, Niga e, T3 771 77

uqHL""(Suppwi,q)

holds, concluding the proof of the lemma. O

The next lemma shows that the inductive assumptions (3.22)—(3.25b) hold
also for ¢’ = q.
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Lemma 6.18. Forq> 1,k > 1, a, 8 € N* with |a| = K and |3| = M, we have

k
‘ (TI P01 )ua
i=1 Le° (supp i, q)

S (DL 8/)M (K, 2w, Todgs Ag ) M (M, Ninao, T m 2 T 77

(6.57)
for all K + M < 3Nuu/o+ 1. Additionally, for N >0, the bound
k
HDN<HDZ"7D52_1)uq
=1 Le° (supp i q)
S R0 HM (N + K 2Nindo Tydgs Ay )
X M (M, Niwa, T35 778, T 7 ) (6.58)
< (M52 M (N, IMNind.o; Ty, Xq) (IS )K
X M (M, Nina o, T3 7,00 T 7y ) (6.59)
holds for all 0 < K + M + N <3Nsn/o 4 1. Lastly, we have the estimate
k
‘ (IToD3) D,
=1 Lo (supp i, q)
S (D80 M (K 2Nina 0 Ty Ag ) M (M, N oo T 07, Tl 7 )
(6.60)

for all K + M < 3Nun/2. and

k
| (TT o D2,)w,
i=1 Lo (supp ;)

< (L 61202) M (K, INind.o, Dy, )\q) M (M Niga e, T3 07, T 7o)
(6.61)

for all K 4+ M < 3Ntin/2 4 1.

Remark 6.19. As shown in Remark 3.4, the bound (6.59) and identity (A.39)
imply that estimate (3.26) also holds with ¢’ = q.
Proof of Lemma 6.18. We note that (6.59) follows directly from (6.58), by ap-

pealing to the parameter inequality I‘;ﬁ“&}/ QX,I <7, 1 which is a consequence
of (9.39). We first show that (6.57) holds, then establish (6.58), and lastly prove
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the bounds (6.60)—(6.61).

Proof of (6.57). The statement is proven by induction on k. For k =1
the estimate is given by Corollary 6.12 and the bound (5.6); in fact, for k = 1
we have derivatives estimates up to level 2Ng,,, and not just 3Nan/2 4+ 1. For the
induction step, assume that (6.57) holds for any k' < k — 1. We denote

k/
Pk’ — (H DaiDgiI,])uq (662)
i=1
and write
k
(HDainfq—l)“q
i=1

= (D:DJs | )(D=1 D7) Py
— (Dt DI Py 4 D [ DY D DRV Py (6.63)
The first term in (6.63) already obeys the correct bound, since we know that

(6.57) holds for k' = k — 1. In order to treat the second term on the right side
of (6.63), we use Lemma A.12 to write the commutator as

Do {Dgsza’“’l} D7 P

Ap—1
= D% Z 57]“ <H (ad Dy q—1) (D)) Dg’;tf’“‘ﬁm&_z.

| — |
1<z, B =D o
(6.64)
From Lemma A.13 and the Leibniz rule we claim that one may expand
A —1 A —1 )
I @d D g-1)*(D) = > g; D’ (6.65)
=1 j=1

for some explicit functions g; which obey the estimate

|D?g; ST M (] Ninae, Ty Ty 0 1 T 1707 ) (6.66)

||L°°(5uppwi,q) ~ “q-1 q 'q=1
for all @ such that a4+ ay_1 —j+|y| < 3Nsn/2. The claim (6.66) requires a proof,
which we sketch next. Using the definition (6.11), the inductive estimate (3.23)
at level ¢/ = ¢— 1, k = 1, and the parameter inequality (9.39) at level ¢ — 1, for
any 0 < m < Ney,r we have that

"Dk, D

a-1 ||L°°(Supp¢m,im,q)
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b
< > | DD}, Dvg
{j”m B F‘;m' SF:;Il
im+1lg5'/2 Yo+l jm—co.—1 T—lx—1

Z (I'g i 5(1/—1)/\31_1'/\4 (b’Niﬂdat’thJ 1T Tq—l)
{jm: Dy <Dim }

im /2 \Na+1 im T—co—1 p—l~—1
< (FqHI‘qéqfl))\‘q’flM (b, Nind,t, Uy g 7,21, T qul)

S M (b+ 1, Nigae, Doy Ty T )

q—1 HL‘X’(suppwjm,q—l)

A

for all @ + b < 3Niin /2. Thus, from the definition (6.14) we deduce that

HD“D?’q71DWq71 HL(X,(SUPP b0)
SN M (b4 1, Nia, Th D7 D7) (6.67)

q 'g—1

for all a+b < 3Niin /2. When combined with the formula (A.49), which allows us
to write

(ad Dyg1) (D) = frger -V (6.68)

for an explicit function f, 4—1 which is defined in terms of vy, _,, estimate (6.67)
and the Leibniz rule gives the estimate

1D g1l oo (supp ) S g1t M (% Nina e T n Ty, T 7)) (6.69)

for all @ + < 3Nsan/2. In order to conclude the proof of (6.65)—(6.66), we use
(6.68) to write

Q1 Qp—1 Qp—1
H (ad Dy g-1)"(D) = H (fryea—1-V) = Z ngj’
(=1 =1 j=1

and now the claimed estimate for g; follows from the previously established
bound (6.69) for the f,, —1’s and their derivatives, and the Leibniz rule.

With (6.65)—(6.66) in hand, and using estimate (6.57) with &' = k — 1, we
return to (6.64) and obtain

o Bk Ok — Bk_l
HD ' [Dt,q—l’D ' 1] Dt’q_lpk_QHLW(supqu)

A —1

Sy ot n)
J=1 1< Y] < By (supp i.q)

A —1 Qg ,
<5 Sl
J=1 1<|y|<Bx /=0

)Da,—i_ng};_‘_—[ljkil_"”Pk_QH

supp ¥i,q)

X

Loe(supp vi,q)
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Ap—1 g
Z Z Z/\ak—i-ak 1—j— a./\/l(|’)/| det’ q+1F co T 1,F_1~_1)
i=1 |y=1a/=

(FZEL(SIN)M (K —agp —ag—1+j+d,2Nina,v, Fq}‘q’xq)
x M ( "}/| Nlndt7Fq+3 q_l Fq_-i}1~q 1)
(F:;l_-ll(sl/2)M <K7 2Nind,va Fq/\Qa /\q> M (M’ Nindvt’ lei?i (1 1’ Fq_'&lqu 1)
(6.70)

for M < Nipg,s and K + M < 3Nsn/2 4 1. The +1 in the range of derivatives
is simply a consequence of the fact that the summand in the third line of the
above display starts with j > 1 and with |y| > 1. This concludes the proof of
the inductive step for (6.57).

Proof of (6.58). This estimate follows from Lemma A.10. Indeed, letting
v=f =1y, B= D41, =suppv;q, and p = oo, the previously established
bound (6.57) allows us to verify conditions (A.40)—(A.41) of Lemma A.10 with
N, = MNmf+ 1, C, = cf = rj;ll(s;/i Ay = Af = T Ay hy = Af = Aq,N
2Nind,v7//fv = uf = F + 17/1411 ﬁf = Fq+1Tq ,and Ny = dett- As |a| =
and || = M, the bound (6 58) now is a direct consequence of (A.42).

Proof of (6.60) and (6.61). First we consider the bound (6.60), inductively
on k. For the case k = 1 the main idea is to appeal to estimate (A.44) in
Lemma A.10 with the operators A = D, and B = D; 41 and the functions
v = ug and f = Duy,, so that D"(A + B)mf DDy, sz As before, the
assumption (A.40) holds due to (6.57) with = supp Vig gy N =3Neinfo+1,C, =

P00, Ao = Tydgs o = Agy N = 2Nina o, o = D377 iy = T 0 77, and

N¢ = Ning,¢- Verlfylng condltlon (A.41) is this time more involved, and follows
by rewriting f = DW = Duq + Dwg,_,. By using (6.57), and the parameter
inequality T'2, 7.~ 1< L 57" (cf. (9.40)), we conveniently obtain

k
‘ (TIp* D1 Py
i=1 Lo (supp i q)

< (AR M (I 2N Ty ) M (M N Ty T 7

(6.71)

for all |a]+|8| = K+ M < 3Nsin /2 (note that the maximal number of derivatives

is not 3Nsin /2 + 1 anymore, but instead is just 3Nmn/2; the reason is that we are

estimating Dug and not ug). On the other hand, from the inductive assumption
(3.23) with ¢’ = ¢ — 1 we obtain that

k
(T1 P D) Do,
i=1

Lo (supp ¢j,q—1)
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S (LI Y (Agm) M (M, Ny, T3S0 771

q—1
for K + M < 3Nsn/2. Recalling the definitions (6.11)—(6.14) and the notation
(6.15), we have that (z,t) € supp (¢4) if and only if (z,?) € supp (4;,), and

thus for every m € {0,...,Ncy,.}, there exists j,, with F{;" < Fjﬁq < Fq+1
and (z,t) € supp (¥j,,.q—1). Thus, the above stated estimate and our usual
parameter inequalities imply that

k
(TI D) Do,
=1

Lo (supp ¥i,q)

S (Fjlilltsq/zl/\ 1)(Ag=1) M (M, Nipa,e, Tl T, Tq 1177'(1_11)
S (T8 X) (T Ag) M (M, Niga o, T 07 T 77 (6.72)

whenever K —|— M < 3Nsin /2, Here we have used that 5;/_21Xq_1 < (5;/2Xq and that
I Y Dt I‘Z Tt < T LT L for all 4 < imax. In the last inequality, we
have used (9 20) and (6.49). Comblning (6.71) and (6.72) we may now verify
condition (A.41) for f = Duy,, with p = oo, @ = supp (¢;, q) Cf = Ff;llél/ﬁm
/\f = Fq)\q,Xf = Xq,Nm = 2Nind,vaﬂf = Ff;_clqu_l,ﬁf =TI +1T Nt = de t
and N, = 3Nsa /2. We may thus appeal to (A.44) and obtam that

|D% DM Dy, HLoo(buppwi,q)

< (ML )M (K, Nind.o, TgAg, Xq)

xM (M Nind,, max{Tg 507, T 6,70 b, max{ 7, TR 6,0 })

whenever K + M < 3Nin/2. The parameter inequalities FCOH(S / 2)\ <7, ~! from

(9.39) and FZJfléq/z)\q < 7,7, which follow from (9.43) and (6.49), conclude the
proof of (6.60) for k = 1.

In order to prove (6.60) for a general k, we proceed by induction. Assume
the estimate holds for every ¥’ < k — 1. Proving (6.60) at level k is done in the
same way as we have established the induction step (in k) for (6.57). We let

ﬁk’ = H Dathqu D”U[q
and decompose

k
(H D%D%) Dug, = (DF DY B
=1
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+ D D, D*= | DY P
and note that the first term is directly bounded using the induction assumption
(at level k — 1). To bound the commutator term, similarly to (6.64)—(6.66), we
obtain from Lemmas A.12 and A.13 that

DO* [Df,’;,Do‘kfl} DBy

B! Otk—1~ ‘ ‘ .
D S D E A Pl
1<iyl<p, PR T ITDEA G5

where one may use the previously established bound (6.60) with & = 1 (instead
of (6.67)) to estimate

a~
”D 9j HLW(SHPP¢1‘,q)

,S M (a +ap_1— j7 2Nind,vu Fqu,Xq> M (|’Y|7 Nind,ta FZ:»CloTz;lv]-—‘;iqu_l) .

(6.73)

Note that the above estimate is not merely (6.66) with ¢ increased by 1. Rather,
the above estimate is proven in the same way that (6.66) was proven, by first
showing that the analogous version of (6.69) is

”Daf’YyQHLOO(supp Yi,q)
S M (0, 2Nind0s Togs Mg ) M (3 Nina s Tig 07,7 T 77

from which the claimed estimate (6.73) on D?g; follows. The estimate

_ Br-1 7
HDak [leB,Z’Dak 1} Dt”; 1Pk_2HL°°(Supp’L[Jiq)

< (Fgfla;/a)M (K + 1, 2Nind, v, Fqu,Xq) M (M, Nind’t,rélioT(;l,F;jl?;1>

(6.74)

follows similarly to (6.70), from the estimate (6.73) for g;, and the bound (6.60)
with & — 1 terms in the product. This concludes the proof of estimate (6.60).
To conclude the proof of the lemma, we also need to establish the estimates
for vy, claimed in (6.61). The proof of this bound is nearly identical to that of
(6.60), as is readily seen for k = 1: we just need to replace Du, estimates with
uq estimates, and Dvg,_, bounds with vy,_, bounds. For instance, instead of
(6.71), we appeal to (6.59) and obtain a bound for D* D u, which is better than

(6.71) by a factor of Xq, and which holds for K + M < 3Nsn/241. This estimate
is sharper than required by (6.61). The estimate for DKD%]W(F1 is obtained
similarly to (6.72), except that instead of appealing to the induction assumption
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(3.23) at level ¢ = ¢ — 1, we use (3.24) with ¢ = ¢ — 1. The Sobolev loss A2_,
is then apparent from (3.24), and the estimates hold for K + M < 3Nsn/2 4 1.
These arguments establish (6.61) with & = 1. The case of general k¥ > 2 is
treated inductively exactly as before, because the commutator term is bounded
in the same way as in (6.74), except that K + 1 is replaced by K. To avoid

redundancy, we omit these details. O

6.2.5 Material derivatives

The estimates in the previous sections, which have led up to Lemma 6.18, allow
us to estimate mixed space, directional, and material derivatives of the velocity
cutoff functions 1); 4, which in turn allow us to establish the inductive bounds
(3.19) and (3.20) with ¢’ = q.

In order to achieve this we crucially recall Remark 6.9. Note that if we
were to directly differentiate (6.14), then we would need to consider all vectors
ie Ng““”“ such that maxg<,,<n,.,, im = i, and then for each one of these 7
consider the term 1y, ('«/);,Q)Dtvq—l(wsn,im,q) for each 0 < m < Neyt,; however,
in this situation we encounter for instance a term with ig = 0 and 4,,,» = 7 for all
1 < m' < Ngyt,t; the bounds available on this term would be catastrophic due
to the mismatch iy < i, for all m’ > 0. Identity (6.26) precisely permits us to
avoid this situation, because it has essentially ordered the indices {im}xf;td‘ to
be non-increasing in m. Indeed, inspecting (6.26) and using identity (6.25) and
the definitions (6.15), (6.24), we see that

(z,t) € supp (Dy 197 )
& FeNy™ " and 30 < m < Neyes

with i, € {i — 1,4} and max iy =1
OSmISNcut,t

such that (z,t) € supp (¢;,) Nsupp (Dt,g—1¥m, i, q)

and i, < iy, whenever m < m’ < Neygt - (6.75)

The generalization of characterization (6.75) to higher order material derivatives
DM, is direct: (x,t) € supp (D} 147 ) if and only if there exists ie Ny““t’tﬂ
with maximal index equal to ¢, such that for every 0 < m < Ngy,+ for which
(z,t) € supp (7/’2(1) N supp (Dt,q—1%¥m. i, q) (there is potentially more than one
such m if M > 2 due to the Leibniz rule), we have iy, <4, € {i—1,i} whenever

m < m’. In light of this characterization, we have the following bounds:

Lemma 6.20. Let ¢ > 1 and 0 < i < inmax(q), and fix ie Ng‘“‘t’t“ such that
MAX0< m<New, , bm = 1, as in the right side of (6.75). Fiz 0 < m < Ngyy, such
that iy, € {i — 1,1} and such that ipy < im for allm < m’ < New . Lastly, fiz
Gm such that iy (jm) < im. For NJK, M,k >0, o, 3 € N¥ such that |a| = K
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and |B8] = M, we have

Lsupp (¥7.4) Lsupp (5,0-1)

¢17(K+M)/Nﬁn

k
a pHb . .
HD Dt,qfl wmﬂ”mn]qu
MymsJm g =1

S M (K Nina .o Todg ATy ) M (M, Nina s = New,o Ty 7 T 7,70

(6.76)
for all K such that 0 < K + M < Ng,. Moreover,
Liupp (w;q)lsupp (Yjm.a—1) DN b Dot phi
17(N+K+]VI)/Nﬁn H q t,g—1 wm’im:jm,q
wm,im,jm,q =1
<M (N, Nind.os Dy, Aqrq) (TS0 )K
x M (Ma Nind,t - Ncut,m; F2+1Tq_*11’rq_4il?(;1) (677)

holds whenever 0 < N + K + M < Ngp.

Proof of Lemma 6.20. Note that for M = 0 estimate (6.76) was already es-
tablished in (6.35). The bound (6.77) with M = 0, i.e., an estimate for the
DNwam,im,jm,q, holds by appealing to the expansion (6.54)—(6.55) to the
bound (6.56) (which is applicable since in the context of estimate (6.77) we
work on the support of ¢, ,), to the bound (6.76) with M = 0, and to the

parameter inequality ngi"&l}/ ZXq < 7' (which follows from (9.39)). The rest
of the proof is dedicated to the case M > 1. The proofs are very similar to
the proof of Lemma 6.13, but we additionally need to appeal to bounds and
arguments from the proof of Lemma 6.18.

Proof of (6.76). As in the proof of Lemma 6.13, we start with the case
k = 1, and estimate DKD%_1¢m,z'm,jm,q for K + M < Ngp, with M > 1.
We note that just like D, the operator D, 1 is a scalar differential operator,
and thus the Faa di Bruno argument which was used to bound (6.35) may be
repeated. As was done there, we recall the definitions (6.7)—(6.8) and split the
analysis in two cases, according to whether (6.37) or (6.42) holds.

Let us first consider the case (6.37). Our goal is to apply Lemma A.5 to the
function 1 = Py g1 OF Y = Uy g1, with Ty = I T = P D= (),
h(z,t) = hy, ;. (x,t), and Dy = D;4 1. Estimate (A.24) holds by (6.3)
and (6.5), so that it remains to obtain a bound on the material derivatives
of (hm.j.. q(z,t))* and establish a bound which corresponds to (A.25) on the set
supp (¥7 ,) N SUPP (¥j,,,q—1Vm,im jm,q)- Similarly to (6.38), for K’ + M’ < Ny
the Leibniz rule and definition (6.6) gives

DX DM |k

™, jm,q

v ' =2(mA1)in (Gm
N (Aqu)K (Tq—11F§+1)M Fq—&-g Jielgm)
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K/ M/ Ncut,a:
_ _ _ 1" PSS 1" 1 1" MH
x Z Z Z (TqJ1F3+1) mM ()\qfq) K 5q /2|Dn+K Dtn,lqtl uq|
K""=0M"=0 n=0
_ _ _ ’ " _ _ ! " _ /7 " M/_MN
X (Tq}1F2+1) mo MM (ALg)™" forK d 1/2‘DH+K K D:thl ?q|' )
6.78

By the characterization (6.75), for every (z,t) in the support described on the left
side of (6.76) we have that for every m < R < N¢yy,¢ there exists ip < iy, and jg
with i, (jr) < ig, such that (z,t) € supp¥j,.q—1¥R,in,jn,q- AS & consequence,
for the terms in the sum (6.78) with L € {n + K", n+ K’ — K"} < Ngy;,, and
Re{m+M" m+M —M"} < Ngyt, we may appeal to estimate (6.28) which
gives a bound on hg j,.q, and thus obtain
(T, T2, ) "B (\Ty) 1o, 2| DE D,

u,
at+l -1 qHLm(SuPpr,iR,jR,q)

R+1)i.(j R+1)(ir+1—i.(j
< PRV GR) PR 1 ()

(R+1) (im+1)
<l .

On the other hand, if L > Ngygp, or if R > Neyg,t, then by (5.6) and (5.9) we
have that

— — — —1
(qulrg+1) R()\q]_'\q) L(sq > HDLDﬁqfluqHLoo(Sprwjm,qil)
< N T M (L, 2N 01,0, A ) MR, Niga s T 717
<M (L, MNind.o; 1, Aq—qu) M (R, Niga i, Tt 7y 0771 (6.79)

since Neyt,, and Ny were taken sufficiently large to obey (9.51). Combining
(6.78)—(6.79), we may derive that

1

K' M’ 2
supp(¢z,q)lsupp(wjm,q—1) D Dt,q—lhm,jm,q’

< F2(m+1)(im_i*(jrn)+1) (/\qrq)K' (Tq_—11F2 )M’

q+1 Y
x M (2Ncut,x + K', 2Nipa, v, 1, A;lxq) Fq—f;n(zm-i-l)
M’ '
3 M N
M!"=0

/ " Tm+1 ~—1
x M (m+ M —M" Nyay, Tintt g7, 7)

ST DU D O D) ()M M (K Ninao, 1,012 )

/ —(tm+1)~—1
X M (M aNind,t - Ncut,t; 1qu—1Fq_~(_1 )Tq_l)

< FjiﬂIJrl)(imfi*(jm)Jrl)M (K’, Nind,v>Fq>\q7Fqu)
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x M (M/7 Nind,t - Ncut ts T q— 1Fqi?j)[>1—‘2 T, 11)
< Fjg:rlt+1)(im7i*(jm)+1)M (K’, Nind.o, oA, Iy X )
X M (M,7 Ninda,t — Neut, ¢, T, a— 1F21317F;.&17~' 1) (6.80)

for all K'+ M’ < Ng,. Here we have used that Ning, > 2Ning ¢, that m < Neyg ¢,

and that 4, < 4. The upshot of (6.80) is that condition (A.25) in Lemma A.5

is now verified, with C, = F2(m+1)(l’"7l*(j'")+l), and A = I'j)Ag, A=T )\q,

-1 m+3 o~
po=r T =T2,,77", No = Nindw, and Ny = Ninay — Neatr. We

obtaln from (A.26) and the fact that (I'yI')72C, = 1 that (6.76) holds when
k = 1 for those (x,t) such that h,, ;. 4(z,t) satisfies (6.37). The case when
R j.q(z,t) satisfies the bound (6.42) is nearly identical, as was the case in
the proof of Lemma 6.13. The only changes are that now I'y, = 1 (according

0 (6.4)), and that the constant C; which we read from the right side of (6.80)

is now improved to FQ(mH)(lm =) These two changes offset each other,

resulting in the same exact bound. Thus, we have shown that (6.76) holds when
kE=1.

The general case k > 1 in (6.76) is obtained via induction on k, in precisely
the same fashion as the proof of estimate (6.57) in Lemma 6.18. At the heart
of the matter lies a commutator bound similar to (6.70), which is proven in
precisely the same way by appealing to the fact that we work on supp (w;’ q) -
supp (15,4), and thus bound (6.66) is available; in turn, this bound provides
sharper space and material estimates than required in (6.76), completing the
proof. In order to avoid redundancy we omit further details.

Proof of (6.77). This estimate follows from Lemma A.10 with v = ug,
B=D, ,q—1) f = wm G sJm 4 Q= supp (1/’* )ﬂsupp (%m,q 1)ﬂsupp (¢m zm,jm,q)
and p = oo. Technically, the presence of the 1+(Nrj§+M)/N““ factor on the
left side of (6.77) means that the bound doesn’t follow from the statement of
Lemma A.10, but instead, it follows from its proof; the changes to the argu-
ment are minor and we ignore this distinction. First, we note that since 2 C
supp (¢;.q), estimate (6.57) allows us to verify condltlon (A 40) of Lemma A.10
with N, = 3Nan /2 +1 Co = rzqfla;/i Ao = Dodgs Ao = A, Np = 2Nipgy >
Nind,vvﬂv ]-—‘1131 q 17 F 1 T, ; and Nt - Nlnd,t Z Nlnd,t - Ncut,t- On
the other hand, condltlon (A. 41) of Lemma A.10 holds in View of (6.76) with
Cf =1, )‘f = Fq/\qv/\f = Fq/\quw = Nil’ld,U7/~‘Lf = FZI——T—% 17p“f =T —i{l;_l
and Ny = Ninat — Neut,e. As || = K and || = M, the bound (6. 77) is now
a direct consequence of (A.42) and the parameter inequality Ff;llél/ 2F /\ <

Tr, b = TOF20,° A, < 7% of. (9.39). 0

A direct consequence of Lemma 6.20 and identity (6.75) is that the inductive
bounds (3.19) and (3.20) hold for ¢’ = ¢, as is shown by the following Lemma.

Lemma 6.21 (Mixed spatial and material derivatives for velocity cutoffs). Let
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q>1,0<1i<imax(q), N,K,M,k >0, and o, 3 € N¥ be such that |a| = K and
|B| = M. Then we have

(o)

5 M (K, Nind,va Fqu,Fqu) M (M, Nind,t - Ncut,tarq—:ngl Fqil; 1)

,(/}1 (K+M)/Ntm
iy

(6.81)
for K + M < Ngn, and
. DN HD(”D bi
1—(N+K+M) /N, taq—1 | Vig
%’,q =1
<M (N, Nind,v,rq/\qquq) (DiSor 1)K
% M (M, Nina,t = News,e, Tot3 7 D7) (6.82)

holds for N + K + M < Ngy,.

Remark 6.22. As shown in Remark 3.4, the bound (6.82) and identity (A.39)
imply that estimate (3.27) also holds with ¢’ = ¢, namely that

1

,l/):‘L_(N‘i‘M)/Nfin
i,q

NDsz

al

S M (Nv Nind,va Fq>\q7 ]-—‘qxq) M (M7 Nind,t - Ncut,t7 F;Jrclo q_l FqilF_l)
(6.83)

for N + M < Ng,. Note that for all M > 0 we have
M (M Nind t Ncut ty Ffﬁ-l T_l Fq—&l?_l)

(de t—Necut, t) -1 ~—1 Neut i—c +1 ,1 —1 ~—1
< Fq+1 ( Fq+1 q ) M (M’ Nind,t>Fq+10 Fq+1 q )
< M (M, Nia e, T 97 L T L7 Y
once Nipq+ is taken to be sufficiently large when compared to Ngys+ to ensure
that

(rai ) <

for all ¢ > 1. This condition holds in view of (9.52). In summary, we have thus
obtained

1
1—(N+M)/Ngin
Vig ‘

17

DN DM

a
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<M (N, Nind,v, I'gAg, Fqu) M (M, Njnd,thHCfH ;1 Fqil?fl) (6.84)

for N + M < Ng,.

Proof of Lemma 6.21. Note that for M = 0 estimate (6.81) holds by (6.36).
The bound (6.82) holds for M = 0, due to the expansion (6.54)—(6.55), to the
bound (6.56) on the support of ¥; 4, to the bound (6.82) with M = 0, and to

the parameter inequality ngi"é /2)\ <77t (cf. (9.39)). The rest of the proof is
dedicated to the case M > 1.

The argument is very similar to the proof of Lemma 6.13 and so we only
emphasize the main differences. We start with the proof of (6.81). We claim
that in the same way that (6.35) was shown to imply (6.45), one may show that
estimate (6.76) implies that for any iand 0 <m < Ncut,: as on the right side of

(6.75) (in particular, as in Lemma 6.18), we have that

k
(H DalDflq 1> Vi,

=1

Lsupp (¥7,4)
wlf(K+M)/me

mytm,q

S M (B Nin s Tadgs Ml ) M (M Nty = Newro T3 7 Ty 771
(6.85)
The proof of the above estimate is done by induction on k. For & = 1, the

first step in establishing (6.85) is to use the Leibniz rule and induction on
the number of material derivatives to reduce the problem to an estimate for

wm2:n(2{+M)/ Nim DK DM (w2, i,,.q); this is achieved in precisely the same way
that (6.47) was proven. The derivatives of z/Jm i g A€ NOW bounded via the Leib-

niz rule and the definition (6.11). Indeed, When DX’ DM’ 'g—1 derivatives fall on

fnyl-m’ . the required bound is obtained from (6.76), which gives the same up-

per bound as the one required by (6.85). On the other hand, if DK-K’ D%]ijlwl
derivatives fall on ¢? |, the required estimate is provided by (3.27) with
¢ = q — 1 and i replaced by j,,; the resulting estimates are strictly better than
what is required by (6.85). This shows that estimate (6.85) holds for k = 1. We
then proceed inductively in & > 1, in the same fashion as the proof of estimate
(6.57) in Lemma 6.18; the corresponding commutator bound is applicable be-
cause we work on supp (¥ i,,,q) N Supp (¢ 4). In order to avoid redundancy we
omit these details, and conclude the proof of (6.85).

As in the proof of Lemma 6.13, we are now able to show that (6.81) is
a consequence of (6.85). As before, by induction on the number of material
derivatives and the Leibniz rule we reduce the problem to an estimate for
P Nan T8 perpft | (42,); see the proof of (6.47) for details. In

iq iq
order to estimate derivatives of 17 , we use identities (6.25) and (6.26), which

i,q°
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imply upon applying a differential operator, say D; 41, that

Dig1(¥7,)

Neut,t m—1 Necus,t
— 2
- DtaQ*l Z H \Ij 3 wm,i,q : H lem”,i 1,9
m=0 m’'= m’’ =m-+1
Neut, e m—1 Neut,t
2 2
§ : Dt q— 1 m 1,q) H \Ij'm’,i,q : wm,i,q ! H \Ilm”,i 1,q
m=0 m’'=0 0<m’'<m—1 m’ =m+1
’ — /
m'#m
cut t cut t
2 2
+ E : H \Ilm Ji,q " mzq th 1(\:[/11’1”,7271,(1) H \Ilm”,ifl,q
m=0 m’" =m+1m’'= m~+1<m” <Ncut. ¢
7;”;67”7_1” :
Ncut,t m—1 Neut,t
2
+ E : ‘Ilm ,i,q Dtﬂl 1(¢7n,i,q) ' H \Ijm”,i 1,9 ° (686)
m=0 m’/=0 m/'=m+1

Higher order material derivatives of 1? ,» and mixtures of space and mate-
rial derivatives, are obtained similarly, by an application of the Leibniz rule.
Equality (6.86) in particular justifies why we have only proven (6.85) for i and
0 < m < Neyg,t, as on the right side of (6.75)! With (6.85) and (6.86) in hand,
we now repeat the argument from the proof of Lemma 6.13 (see the two displays
below (6.47)) and conclude that (6.81) holds.

In order to conclude the proof of the lemma, it remains to establish (6.82).
This bound follows now directly from (6.81) and an application of Lemma A.10
(to be more precise, we need to use the proof of this lemma), in precisely the
same way that (6.76) was shown earlier to imply (6.77). As there are no changes
to be made to this argument, we omit these details. O

6.2.6 L' size of the velocity cutoffs

The purpose of this section is to show that the inductive estimate (3.21) holds
with ¢’ = q.

Lemma 6.23 (Support estimate). For all 0 < i < ipax(q) we have that

[Wigll S quzlJer’ (6.87)
where Cy, is defined in (3.21) and thus depends only on b.

Proof of Lemma 6.23. If i < (C, — 1)/2 then (6.87) trivially holds because 0 <
Vi <1, and |T3| < T4qq for all ¢ > 1, once a is chosen to be sufficiently large.
Thus, we only need to be concerned with 4 such that (Cp +1)/2 <@ < imax(q).

First, we note that Lemma 6.7 implies that the functions ¥,, ;/ , defined in
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(6.24) satisfy 0 < W2 ., <1, and thus (6.26) implies that

cut t

I < Z [¥m.iall L - (6.88)

Next, we let j. (i) = j(4,q) be the mazimal index of j,,, appearing in (6.11). In
particular, recalling also (6.27), we have that

IV VADES VAPIRS VADARD (6.89)
Usmg (6.11), in which we simply write j instead of j,,, the fact that 0 <

q L2 ijq < 1, and the inductive assumption (3.21) at level ¢ — 1, we
may deduce that

Jx(i)—2
v < sialln + 185 0-1allp+ D 1¥50-1%m,igall oo
=0
Jx(i)—2
< I‘q—2j*(i)+cb +I‘;2j*(i)+2+cb + Z |supp (Q/Jj,qfl’l/)m,i,j,q)l _
=0

Hz/)m,i’q

(6.90)

The second term on the right side of (6.90) is estimated using the last inequality
n (6.89) as

F(;Zj*(i)+2+Cb < F;—E§F3+Cb < Fq—fiﬁ‘cb—lrgprcb*b(cb*l) — F;—E§+Cb_17 (691)
where in the last equality we have used the definition of Cp in (3.21). Clearly,
the first term on the right side of (6.90) is also bounded by the right side of
(6.91). We are left to estimate the terms appearing in the sum on the right side
of (6.90). The key fact is that for any j < j.(¢) — 2 we have that i > i..(j) + 1;
this can be seen to hold because b < 2. Recalling the definition (6.7) and item 2
of Lemma 6.2, we obtain that for j < j.(¢) — 2 we have

Supp (¥j,g—1%m,ijq) C {(:c t) € supp (¢j,q-1): hi j Zpﬁﬁﬂ)(z z*m)}

1 2(m+1
< {(Ivt): 7/’Jiq 1h2 m,j,q = qu(m+ o (J))} - (6.92)

In the second inclusion of (6.92) we have appealed to (6.23) at level ¢ — 1. By
Chebyshev’s inequality and the definition of Ay, ;4 in (6.6) we deduce that

Supp (¥,g—1%m.i.j.0)|
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Ncut T
L i} .o —2m
—2(m—+1)(i—174 — 274 _ —2n — T +2
< 4]‘—‘q+§ )( (4 § Fq+1 (])5q I(Aq]_-\q) 2 ( 1 Fqu({) )
n=0

5 [[j.q1 DDy -

Since in the above display we have that 7 < Ncut,z < 2Ning,» and m < Neygp <
Nina ¢, we may combine the above estimate with (5.5) and deduce that

|Supp (¥,g—1%m.ij.q)|
(‘\lt , T

§4Fq 2(m~+1)(i— Z*(J))l—\ 2’@(]) (FJ+1F T ( ) Z F om

g+1
n=0

<812 ()

<T. e (6.93)

In the last inequality we have used that FJ < Ffﬁ_l, that m > 0, and that C, > 2
(since b < 6).
Combining (6.88), (6.90), (6.91), and (6.93) we deduce that

Hwi,q”LI S Ncut,t ]*( )Fq_f?r(:b 1

In order to conclude the proof of the lemma, we use the fact that Ncyt; is a
constant independent of ¢, and that by (6.90) and (3.17) we have

. Jdoglgy1 . 4b
«(1) <i——— <limax(Q)b < ——— .
Ju(i) <1 log, = 'ma (q) =1

Thus j.(7) is also bounded from above by a constant independent of g and upon
taking a sufficiently large we have

. ANcyt tb
Ncut,t]*( )F 4}1 < th)rqil < 1

which concludes the proof. O

6.3 DEFINITION OF THE TEMPORAL CUTOFF FUNCTIONS

Let x : (—=1,1) — [0,1] be a C* function which induces a partition of unity
according to

D XP(—k) =1 (6.94)

keZ
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Consider the translated and rescaled function

X (tr TR = k)

which is supported in the set of times ¢ satisfying

|t — 7 T 1%k < 7 T 7%

q+1 q+1
= te[(k—1)r D37 (k+ D7l 7277 (6.95)

We then define temporal cutoff functions

Xika(t) = X (t) = x (b7, T35+ — k) (6.96)
It is then clear that

107" Xi kgl S (Tos ™2™ (6.97)

for m > 0 and
Xi,k17q(t)Xi,k27q(t) =0 (6.98)

for all ¢ € R unless |k1 — k2| < 1. In analogy with ;4 4, we define

1
3
X (i, kot q) () := (X%i,k—l,q) (t) + X?i,k,q) (t) + X?i,k—i—l,q)(t)) ) (6.99)
which are cutoffs with the property that

X(i,k+,q) = 1 00 supp (X(i,k,q))- (6.100)

Next, we define the cutoffs x; x4 by
Xika(t) = Xy () = x (t7 'Ti5T — T 5% k) - (6.101)

For comparison with (6.95), we have that X, 4 is supported in the set of times
t satisfying

|t — 7D k| < 7ol 7. (6.102)

As a consequence of these definitions and a sufficiently large choice of Ao, let (i, k)
and (i*, k*) be such that supp xi k,q N Supp xi= k=g # 0 and i* € {i — 14,7+ 1};
then
SUPP Xi,k,g C SUPP Xi* k" q- (6.103)
Finally, we shall require cutoffs X, ,, ,, which satisfy the following three prop-
erties:

1. yq7n7p(t) =1 on suppRgn,p-

2. Xgnp(t) = 0 if ’Rq,n,p('vt/) g+1

=0 for all |t —¢'| < ((5;/2Aqr2 )7

‘L‘”(’W)
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— 1/2 m
8 0P Xy S (0 AT 20)
For the sake of specificity, recalling (9.63), we may set

() 1
547 A T2 .
( q q q+1) {t:”Rq’n’p”Lw([t(Jé/quFg_'_l)1,t+(5é/2AqF§+l)l]XT3)>O
(6.104)
It is then clear that X, ,, , slightly expands and then mollifies the characteristic

yq,n,p = (;S

function of the time support of ]O%q,n’p so that the inductive assumptions (7.12),
(7.19), and (7.26) regarding the time support of wy41,,, may be verified.

6.4 ESTIMATES ON FLOW MAPS

We can now make estimates regarding the flows of the vector field vy, on the
support of a cutoff function.

Lemma 6.24 (Lagrangian paths don’t jump many supports). Let ¢ >0

and (zo,to) be given. Assume that the index i is such that ;7 (zo,t0) > K2,

where k € [5,1]. Then the forward flow (X (t),t) := (X(xo,to;t),t) of the

velocity field vy, originating at (xo,to) has the property that wf’q(X(t),t) > &% [2
NS

for all t be such that |t — to] < (5;/2)\qFZ+3) , which by (9.39) and (9.19) is

q+1
) —it5
satisfied for |t — to| < qu—‘qflr e,

Proof of Lemma 6.24. By the mean value theorem in time along the Lagrangian
flow (X (¢),t) and (6.83), we have that

i, g (X (t), ) — i g(zo,to)| < [t —tol | De.g¥igll
<[t —tol |1 Dt,g—1%iqll oo + [t —tol llug - Vi gll oo -

From Lemma 6.21, Lemma 6.13, Lemma 6.11, and (9.41), we have that

P s
HDt,qle/}i,q”Loo + Huq : sz',qllLoo < F;iqu—ll + 5q/21—‘2111)‘q1—‘q
1 i-2

S 6P A TS,

and hence, under the working assumption on |t — tg| we obtain

|9i.q(X (0, o3 1), 1) = i g(w0,0)| S Ty (6.105)

for some implicit constant C' > 0 which is independent of ¢ > 0. From the
assumption of the lemma and (6.105) it follows that

Gig(X (1)) > k= CT [} > 5/v2
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for all ¢ > 0, since we have that £ > 1/16 and CI‘qJrl < 1/100, which holds
independently of g once )\ is chosen sufficiently large. O

Corollary 6.25. Suppose (x,t) is such that 7 ,(x,t) > K, where & € [1/16,1].
1

For ty such that |t —to] < (5 ) F;ﬁl) , which is in particular satisfied for

[t —to| < Tqu_ﬂ_Zl"’_CO define xq to satisfy

x = X(xo,to; t).

That is, the forward flow X of the velocity field vy, originating at xo at time
to, reaches the point x at time t. Then we have

i q(z0,t0) # 0.

Proof of Corollary 6.25. By contradiction, suppose that v; 4(xo,tg) = 0. With-
out loss of generality we can assume ¢ < ty. By continuity, there exists a minimal
time ¢’ € (¢, to] such that for 2’ = 2/(¢') defined by

x=X(',t'51),

we have
wi,q($/, t/) =0.

By minimality and (6.19), there exists an i’ € {i — 1,4 + 1} such that
Virg(a’,t') =1,

Applying Lemma 6.24, estimate (6.105), we obtain

[Yirq (X (2 85),1) = Y g (2, )] = [hir g (2,) — g (a”, ) STy - (6.106)

g+1
so that Lemma 6.24 is applicable. Since 1/)1/ q(@',t') =1, from (6.106) we see
that ¢y 4(2,t) > 0, and so 7 (x,t) =1 — 7 4(z,t). Then we obtain

1
Here we have used that [t —t| < [tp — t] < ( 52\ FZJ:i) < (6;/2 AT +3) )

Polwt) =1 =97 (2,1)
=1+ wz (@) (1 =ty q(2, 1))
= (L + i g(2,1)) (Yir g (2 ') — i g(,1))
ST,

which is a contradiction once \g is chosen sufficiently large, since we assumed
that ¢7 (z,t) > x? and & > 1/16. O
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Definition 6.26. We define ®; i 4(z,t) := @ 1) (x,t) to be the flows induced

—i

by ve, with initial datum at time kt,U' 1y given by the identity, i.e.,

{ (at + Ve, - V)(I)i_,k_,q =0

(bi,k,q(x7 kTqF;il) =7xq. (6107)

We will use D®; 1y to denote the gradient of ®(; ;) (which is thus a matrix-

valued function). The inverse of the matrix D®; ;) is denoted by (Dq>(i,k))7l7
in contrast to D<I>(_i1k), which is the gradient of the inverse map (D&lk).

Corollary 6.27 (Deformation bounds). For k € Z, 0 < i < ipax, ¢ >
0, and 2 < N < 3Nan/fo 4+ 1, we have the following bounds on the support of

Viq (2, 1) Xi kg (L)
DD iy —1d]| <r.t (6.108)

supp (Yi,qXi k,q)) ~ = 9+1
N —1 Y
1D | s (51 oy S Tt M (N - 1,2Nind’y,rqxq,xq) (6.109)
[(D® i) ™" =~ 1d]| r 5 (6.110)

_ <
supp (Yi,qXi,k,q)) ™~
DY (D@ gy LohM (N -1 2Ni“d’”’rq)‘q’x‘1)

(6.111)

STAAM (N = 12Nian T Ag)  (6:112)

)_1) HLOO(supp (¥i,4Xi,k,q)) S

|
H @R | oo (supp (11,4%1,5.0))

Furthermore, we have the following bounds for 1 < N + M < 3Ntin/2:

HDN—N/DtJ\’/{IDN'-&-ICI)(i’k) H

Lo (supp (Yi,qXi,k,q))
<ANM (M Nipa g, T L 710 (6.113)
HDN*N'D%DN/(D@(,-JC))*H

Lo (supp (Yi,qXi,k,q))

<A M (M, N, T3 7 1 77T (6.114)

for all0 < N’ < N.

Proof of Corollary 6.27. Let t, := Tqu__ilk. For t is on the support of X; k.4,
we may assume from (6.102) that |t —tg| < TqF;ﬂ'CO. Moreover, since the
{Wir ¢ }ir>0 form a partition of unity, we know that there exists i’ such that

?,’q(ac,t) > 1/ and ¢ € {i — 1,4, + 1}. Thus, we have that |t —tg| <

TqF;i/1+1+CO, and Corollary 6.25 is applicable. For this purpose, let xo be de-
fined by X (g, tx;t) = 2, where X is the forward flow of the velocity field vy,
which equals the identity at time tj. Corollary 6.25 guarantees that (zg,tx) €

supp (Yir,q)-
The above argument shows that the flow (X (xo, tx;t),t) remains in the sup-
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port of 1y 4 for all ¢ such that [t — 5] < TqF;jTC", where i’ € {i —1,4,i+1}. In

turn, using estimate (6.60), this shows that

sup  [Dvg, (X (20, tk3t), )] S ”quHLm(Supp Wis.a)) S Féﬁﬁﬁ/\q.
|t7tk|§‘qu;_:_‘1*'Co )

To conclude, using (4) from Lemma A.1 and (9.39), we obtain

eyt s1/aY -1
HD(I)(%I") - IdHLOQ(supp (Yi,q Xi.k,q)) ’S TqFQ+1COFf1+16q/2Aq S’ Fq+1’

which implies the desired estimate in (6.108).

Similarly, since the flow (X (o, tx;t),t) remains in the support of v,/ 4 for all
t such that |t —¢;| < TqI‘q_ffco, for N > 2 the estimates in (3) from Lemma A.1
give that

HDN(I>(iak) ||L°° (supp (¥i,q Xi,k.q))

S 7l i1 [PV v,

Lo (supp (Yi+,q))

< 7D (2 5123, M (N — 1, 2Nind o, T g, Xq)

<T, M (N —1, 2de7v,rqxq,iq) .

Here we have used the bound (6.60) with M =0 and K = N —1up to N =
3Ntin /2 4 1.

The first bound on the inverse matrix follows from the fact that matrix
inversion is a smooth function in a neighborhood of the identity and fixes the
identity. The second bound on the inverse matrix follows from the fact that
det D®; 1,y = 1, so that we have the formula

cof Dq)ak) = (D®; )"

Then since the cofactor matrix is a C°° function of the entries of D®, we can
apply Lemma A.4 and the bound on DNtb(i}k). Note that in the application of
Lemma A.4, we set h = D®; ;) —1d, ' =Ty =1, C = Fq;ll, and the cost
of the spatial derivatives to be that given in (6.109). The final bound on the
inverse flow <I>(_i71k) follows from the identity

DY (03}) (@) = DN (D)~ (@71 (@) (6.115)

the Faa di Bruno formula in Lemma A.4, induction on N, and the previously
demonstrated bounds.
The bound in (6.113) will be achieved by bounding

N—N' M N’'+1
DNN DM DN @y
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which after using that Dy (®; 1) = 0 will conclude the proof. Towards this end,
we apply Lemma A.14, specifically Remark A.16 and Remark A.15, with v = vy,
and f = ®(; ). The assumption (A.50) (adjusted to fit Remark A.15) follows

from (6.60) with Ng = 3Nmn/2, C, = TiH16,” A, = X, = A, p, = T ;17

Ty = I‘qilT’l and N; = Nina,¢+. The assumption (A.51) follows with Cy = q+1
from (6.109) and the fact that D; ®(; ) = 0. The desired bound then follows
from the conclusion (A.56) from Remark A.16 after using Fq__&l to absorb implicit
constants. The bound in (6.114) will follow again from Lemma A.5 after using
the fact that (Dfl)(@k))il is a smooth function of D®(; ;) in a neighborhood of
the identity, which is guaranteed from (6.108). As before, weset I' =T'y, = 1 and
Cp = 1";1 in the application of Lemma A.5. The derivative costs are precisely
those in (6.113). O

6.5 STRESS ESTIMATES ON THE SUPPORT OF THE NEW
VELOCITY CUTOFF FUNCTIONS

Before giving the definition of the stress cutoffs, we first note that we can up-
grade the L' bounds for ¢; ;1 D"Dj" | Ry, available in (5.7), to L' bounds for

Vi D" DY, Rg We claim that:

Lemma 6.28 (L' estimates for zeroth order stress). Let f%gq be as defined
n (5.1). For ¢ > 1 and 0 < i < imax(q) we have the estimate

HDk Dm °

L (supp (¢;. )) = R(5q+1M (k 2Nind, v, Aq Fq,/\ )

x M (mv Nind,t; FZ+C10 ;1 qul,vq 1) (6116)

for all k +m < 3Nein /2.

Proof of Lemma 6.28. The first step is to apply Remark A.15, to the functions
v=wg,_,, [ = ]i?; with p = 1, and on the domain = supp (1/11 q—1). The
bound (A.50) holds in view of the inductive assumption (3.23) with ¢’ = ¢—1, for
the parameters C, = 1“”’15(1 A=Ay = Ng_1, fly = rimeor Y, =747,
Ny = 2Nind v, Ni = Ninga ¢, and Ny = 3Nein /2. On the other hand, the assumption
(A.51) holds due to (5 7) and the fact that Yit,g—1 = 1 on supp (i g—1), With
the parameters Cr =T, Rbg11, Ap = Ag, Xf = Ag» Np = 2Ningo, oy = ritsr L,
Ly 1, Ny = de ‘ and N, = 2Ng,. We thus conclude from (A. 54) that

k
i=1

L (supp (¥i,q—1))
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ST %011 M (1ol 2Niaos Ags g ) M (1B Niaes Ty 7 7Y

q17q1

whenever |a| + |5] < 3Niin/fa. Here we have used that Xq_l < A, and that
TEF162 Ngoy < TEP877L < 74 (in view of (9.39), (9.43), and (3.18)). In

17'q q— 1
particular, the definitions of ¢; 4 in (6.14) and of ¥y, ;,, 4 in (6.11) imply that

H ( DalDtqu 1) éeq
i=1 L (supp (vi,q))

§I‘;CR5Q+1M<|o¢|,2Nind7v,/\q,Xq) (18], Nina,, T3 71 774) (6.117)

for all |a| 4 |B] < 3Niin /2.

The second step is to apply Lemma A.10 with B = Dy 41, A = u4 -V,
v=ug f= Io%gq, p =1, and Q = supp (¢;4). In this case D¥(A + B)™f =
DkDm Rg , which is exactly the object that we need to estimate in (6.116).
The assumption (A.40) holds due to (6.57) with C, Ff]f_llééh, A = Ty,

/\v - )\qa Nac = 2Nlnd vy v = Fz-:_giT__lp ,E'U = Fq_+ Nt = deta and
N, = 3N /24-1. The assumption (A.41) holds due to (6. 117) w1th the parameters
Cr =T R(5q+1, Ar = Ag, /\f = )\q, Ny = 2Nind,v, b5 = Fq:?iTq ! , iy = _11,

N; = Nind’t, and N, = 3Nan/2. The bound (A.44) and the parameter 1nequaht1eb
T8,/ " N, < Tim9™27 1 <ULt and b3l < T2 (which hold due
0 (9.40), (9.39), (9.43), and (3.18)) then directly 1mply (6. 116) concluding the

proof. [

Remark 6.29. As discussed in Sections 2.4 and 2.7, in order to verify at level
g + 1 the inductive assumptions in (3.13) for the new stress Rqy1, it will be
necessary to consider a sequence of intermediate (in terms of the cost of a spatial
derivative) objects Ry, p indexed by n for 1 < n < npax and 1 < p < ppax.
For notational convenience, when n = 0 and p = 1, we define ID%q 0,1 := ]o%g , and
estimates on Rq o are already provided by Lemma 6.28. When n = 0 and p= > 2,
Rq7 0p =0. For 1 <n < npax and 1 < p < prax, the higher order stresses qu n,p
are defined in Section 8.1, specifically in (8 7) Note that the definition of Rq n.p
is given as a finite sum of sub- objects H" forn’ <n—1 and thus requires

4,n.p
induction on n. The definition of H, ;Ln » is contained in Section 8.3, specifically
in (8.36) and (8.53). Estimates on Hq n,p On the support of ¢; , are stated in

(7.15), (7.22), and (7.29) and proven in Section 8.6. For the time being, we
assume that anp is well-defined and satisfies L' estimates similar to those
alluded to in (2.19); more precisely, we assume that

-
| D2ty o

k i—cC 1 1 ~—1
S 6q+l,n,p>\q7n,pM (m, Nind,t, ]_—‘q+1“7' ]_—‘q+17_ )

(6.118)

L (supp vi,q)
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for all 0 < k4+m < Ngyp . For the purpose of defining the stress cutoff functions,
the precise definitions of the n- and p-dependent parameters 6g11,n.p, Agn.ps
Nfin,n, and c, present in (6.118) are not relevant. Note, however, that definitions
for Agnp for n = 0 are given in (9.26), while for 1 < n < Ny and 1 <
D < DPmax, the definitions are given in (9.29). Similarly, when n = 0, we let
Og41,0p = ]_'*q—CR(qu as is consistent with (9.32), and when 1 < n < npy.y and
1 < p < Pmax; Og+1,n,p is defined in (9.34). Finally, note that there are losses in
the sharpness and order of the available derivative estimates in (6.118) relative
o (6.116). Specifically, the higher order estimates will only be proven up to
Nfn,n, which is a parameter that is decreasing with respect to n and defined in
(9.37). For the moment it is only important to note that Ngy n > 14Njpq,, for
all 0 < n < Npax, which is necessary in order to establish (3.13) and (3.15) at
level ¢ + 1. Similarly, there is a loss in the cost of sharp material derivatives
n (6.118), as ¢, will be a parameter which is decreasing with respect to n.
When n = 0, we set ¢, = cg so that (6.116) is consistent with (6.118). For
1 <1 < Nmax, Cn 18 defined in (9.35).

6.6 DEFINITION OF THE STRESS CUTOFF FUNCTIONS

For ¢ > 1,0 < i < imax, 0 <n < Npax, and 1 < p < puax, in analogy with the
functions Ay, j,, .4 in (6.6), and keeping in mind the bound (6.118), we define

Ncut x cut t

2 2k (Ti—ca+2,_—1\—2m
Giqnp(T,1) § : E : 5q+1np Lgt1Agnp)” (Fq+1n T, )
k=0 m=0

X |DFDI™ Ry (1) (6.119)
With this notation, for j > 1 the stress cutoff functions are defined by
wi,j,q,n,p(mv t) = Q;Z}O,qul (Fqu{ gi,q,n,p(xa t)) ’ (6120)

while for j = 0 we let
Wi,O,q,n,p(l'v t) = {/JVO,qul (gi,q,n,p(xa t)) ) (6]—21)

where 19 411 and zzo,qﬂ are as in Lemma 6.2. The above defined cutoff functions
Wi j,q.n,p Will be shown to obey good estimates on the support of the velocity
cutoffs 9; 4 defined earlier.
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6.7 PROPERTIES OF THE STRESS CUTOFF FUNCTIONS

6.7.1 Partition of unity

An immediate consequence of (6.1) with m = 0 is that for every fixed i,n, we
have

Wi jamp =1 (6.122)
5>0

on T3 x R. Thus, {w? }j>0 is a partition of unity.

4,5,4,7,p

6.7.2 L estimates for the higher order stresses

We recall from (6.4) and (6.5) that the cutoff function g 4+1 appearing in the
definition (6.120) satisfies different derivative bounds according to the size of its
argument. Accordingly, we introduce the following notation.

Definition 6.30 (Left side of the cutoff function w; j ., p). Forj > 1 we
say that

(z,t) € supp (wr Wijamp) if 1< F;f{gi7q7n,p(x,t) <1. (6.123)
When j =0 we do not define the left side of the cutoff function w; o.qn.p-

Directly from the definition (6.119)—(6.121) and the support properties of
the functions 1 441 and 9,441 stated in Lemma 6.2, and using Definition 6.30,
it follows that:

Lemma 6.31. For all 0 <m < Neweyt, 0 <k < Newyz, and j > 0, we have that

k o
]-supp (Wi,] q,mn, p)|‘D Dzanq,n,p(xa t)|

2(j+1) |
<Fq+1 5q+1,n,p(rq+1)‘q,n’p) (FZ+C1 Tq )"

In the above estimate, if we replace Lsupp (w; ;40 0) WiER Lgpp (o (cf Def-

inition 6.30), then the factor Fqgfl) may be sharpened to Fq+1 Moreover, if
J =1, then gigmp(x,t) > (1/4) q+1

Lemma 6.31 provides sharp L* bounds for the space and material derivatives
of foiqm,,p, at least when the number of space derivatives is less than Nyt ., and
the number of material derivatives is less than Ney . If we are willing to pay a
Sobolev-embedding loss, then (6.118) implies lossy L bounds for large numbers
of space and material derivatives.

Lemma 6.32 (Derivative bounds with Sobolev loss). For ¢ > 1, n > 0,
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and 0 <1 < imax, we have that:

k » k+3 i—cn+1_—1 1—1 ~—1
D" D By S Bt AT M (0, Niga g, T L T2 701

’ Lo° (supp s ,4) ”
(6.124)

for all k +m < Ngy ,, — 4.

Proof of Lemma 6.32. We apply Lemma A.3 to f = ]f%q,mp, with ¥; = 1; 4, and
with p = 1. Assumption (A.16) holds in view of (6.36), with the parameter
choice p = Pqu < I‘qHXq = Ag,01 < Agn,p, Where the inequalities follow
immediately from (9.26)—(9.29). The assumption (A.17) holds due to (6.118),
with the parameter choices C; = 0gq1.n,p, A = A = Agnps i = F;;T’T;l,
i = Fq_jﬁq_l, Ni¢ = Ning ¢, and No = Ngp . The lemma now directly follows

from (A.18b) with p = 1. O
We note that Lemmas 6.31 and 6.32 imply the following estimate:

Corollary 6.33 (L bounds for the stress). For ¢ > 0, 0 < i < ipax,
0<n<Nmax, and 1 < p < pmax we have

kym 1
(0D

Lo° (supp ¢4, qNSUPp Wi, j,q,n,p)
2(j+1) k i—cnt2_—1 -1 ~—1
SFq+l Sg+1,m.p(Lgt1Agn,p) M(mvNind,tvrq-i-l Tq 7Fq+qu )
(6.125)

for all k+m < Ngn ,—4. In the above estimate, if we replace supp (w; j q.n,p) With

Supp (Wi j 4 np) (¢f- Definition 6.30), then the factor Fzgfl) may be sharpened

2j
to 'ty

Proof of Corollary 6.55. For m < Ngy,; and k < Neyy,z, the bound (6.125) is
already contained in Lemma 6.31 (for both supp (w;,j.q.n,p) and the improved
bound for supp (wi-’j’q’n’p)). When either & > Ngyg z or m > Neyg e, we appeal to
estimate (6.124) and the parameter bound

Sqt1,m.0M hpM (110, Nindvtvszrtzln+17<z_lvrr;17~'¢z_l)

—k—min{m,Ninq,¢} 3 k
< (Fq-i-l ' )‘q,n,p) 5Q+1,R7P(Fq+1/\q7n7p)

i—cn+2 _—1 p—1 ~—1
X M (m, Nina,, Do 357, L T LT )
k i—cat+2_—1 p—1 ~—1
< Ogr1mp(Tgr1Agnp) M (mvNind,tanH Tq ’Fququ ) .

The second estimate in the above display is a consequence of the fact that when
either & > Ncut,» or m > Neyg ¢, since Neyg, > Neut,t, we have

—k—min{m,Nina,¢} y3 —Neut,t y3
Fq+1 o Aq,n,p S Fq+1 t>\q+1 S 1 (6126)
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once Neyt,e (and hence Neyt o) are chosen large enough, as in (9.51). O

_ In the proof of Lemma 6.36 below, we shall require one more L bound for
Ry n,p, which is for iterates of space and material derivatives. It is convenient
to record this bound now, as it follows directly from Corollary 6.33.

Corollary 6.34. For ¢ > 0, 0 < 7 < imax, 0 <1 < Nax, 1 < p < Prmax, and
a, B € N§ we have

H (H DQZD ) D 7
L°°(supp Yi,qMSUPD Wi j q,n,p)

2(j+1) i—cn _ ~
S Fqul 6Q+1,n,p(rq+1)‘q,n,p)|a‘M (|5|aNind,t7Fq+1 27 1 Fq-‘,}l Tq 1) (6-127)

for all |a| + |ﬂ| < Nfin,, —4. In the above estimate, if we replace supp (Wi j.q.n.p)

with supp (wk i.amp) (cf Definition 6.30), then the factor Fqgfl) may be sharp-
ened to quu

Proof of Corollary 6.34. The proof follows from Corollary 6.33 and Lemma A.14.

The bounds corresponding to supp wj j,q,n,p and supp wr are identical (ex-

1,3,0,1,p
cept for the improvement Fzgf Do Fq %1 in the later case), so we only give

details for the former. Since Dy, = 0; + vg, - V, Lemma A.14 is applied with
v =, f= éq,n,pa Q = supp ¥ q N SUPP Wi jg,n,p, a0d p = co. In view of
estimate (6.60) and the fact that 3Nen/2 > Ng,, ,,, the assumption (A.50) holds

with C, = F;flaq/i v = Todgy Ao = Agy No = 2Ninao, pp = DiiSor

Ty = Fq+1; , and N; = Njpa,. On the other hand, the bound (6.127) im-
plies assumptlon (A.51) with Cy = Fqﬁf1)5q+1’n’p, Ap = Xf = Dgr1dgnp
=Tt fip = T 7Y and Ny = Nigagee Since A, < Ay, Mo < A,
Wy < iy, and i, = fiy, we deduce from the bound (A.54) (in fact, its version
mentioned in Remark A.15) that (6.127) holds, thereby concluding the proof.
Here we are also implicitly using the parameter estimate C, A, < iy, which holds
due to (9.39). 0

6.7.3 Maximal j index in the stress cutoffs

Lemma 6.35 (Maximal j index in the stress cutoffs). Fiz ¢ >0,0<n <
Nmaxs; A 1 <P < pax. There exists @ jmax = Jmax(¢; 1, p) > 1, determined by
(6.128) below, which is bounded independently of q, n, and p as in (6.129), such
that for any 0 < i < imax(q), we have

Vi g Wi jgnp =0 Jor all J > Jmax-
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Moreover, the bound

2(Jmax—1) < 3
1—‘q+1 ~ )‘q,n,p

holds, with an implicit constant that is independent of ¢ and n.

Proof of Lemma 6.35. We define jyax by

1 log(Mb\/m/\g,n,p)

jmax = Jmax(q; 7, =35 y 6.128
j Jmax(@:m,p) = 3 ToaTyr) (6.128)

where My, is the implicit ¢-, n-, p-, and i-independent constant in (6.124); that
is, we take the largest such constant among all values of £k and m with k 4+ m <
Nfnn — 4. To see that jmax may be bounded independently of ¢, n, and p, we
note that Ay, p < Ag41, and thus

10g(My\/8Neut,eNeut,t) + 3log(Ag41) 3p

S R
log(I'g+1) er(b—1)

as ¢ — oo. Thus, assuming that a = Ag is sufficiently large, we obtain that

2jmax < 1+

4b

P (6.129)

2jmax(q,m,p) <

forall g > 0,0 <n < npax, and 1 < p < pryax-
To conclude the proof of the lemma, let j > jmax, as defined in (6.128), and
assume by contradiction that there exists a point (x,t) € supp (¥ qwi j.q.n.p) 7

(. In particular, 7 > 1. Then, by (6.119)—(6.120) and the pigeonhole principle,
we see that there exist 0 < k < Ny, and 0 < m < Ny, such that

. r _
c +1 : —Cn —
|DkDZLqRq,n,p<xvt)| > SN 1 N 6q+17n,p(rq+l)‘q,n7p)k(FZ+C1 +27'q 1)m~
cut,z!'Ncut,t

On the other hand, from (6.124), we have that
|D* D Ry np(,8)] < MyAS , 0gi1mph (o e )™,

The above two estimates imply that

2(Jmax+1 25 / —k— 3 3
Fq$1 ) § Fqil S Mb 8Ncut,chut,trq+1 m)\q,n,;m S Mb 8Ncut,chut,t>\q7n,p7

which contradicts the fact that j > jnax, as defined in (6.128). O
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6.7.4 Bounds for space and material derivatives of the stress cutoffs

Lemma 6.36 (Derivative bounds for the stress cutoffs). For ¢ > 0,
0<n<Nmax, 1 <P < Pmax, 0 <@ < ipmax, and 0 < j < Jmax, we have that

N M
1suppwi,q‘D Dt,qwiyj,q-,nﬂ
1—(N+M)/Ngin

4,5,4,1,P

5 (Fq+1>\q,n,p)NM (M7 Nind,t - Ncut,tarz_;_canr? - F;—&l; 1) (6130)

fO’f’ (I” N + M S Nﬁn,n - Ncut,:r - Ncut,t —4.

Remark 6.37. Notice that the sharp derivative bounds in (6.130) are only up to
Nind,t — Ncut,¢- In order to obtain bounds up to Ninq.+, we may argue exactly as
in the string of inequalities which converted (6.83) into (6.84), resulting in the
bound

N M
1SUPpwi,q|D Dt,qwi,j,q,nm‘
1—(N+M)/Ngin

4,7,4,1,p

S (Cgi1Agmp) VM (M, Niwa o, T5 7527 L T LT Y (6.131)

Proof of Lemma 6.36. For simplicity, we only treat here the case j > 1. Indeed,
for j = 0 we simply replace g, ¢+1 With 1 q+1, which by Lemma 6.2 has similar
properties to g g+1.

The goal is to apply the Faa di Bruno Lemma A.5 with ¢ = g 41, ' = Fq+1,
Dy = Dy 4, and h(z,t) = gignp(x,t), so that g = w; j ¢ n.p-

Because the cutoff function ¢ = g 441 satisfies slightly different estimates
depending on whether we are in the case (6. 4) or (6.5), assumption (A.24)
holds with I'y, = 1, and respectively I'y, = Fq +1, depending on whether we
work on the set supp (wj; , p) or on the set supp (Wi j.g.n.p) \ SUPP (WF 4 )
(cf. Definition 6.30). We have in fact encountered this same issue in the proof of
Lemmas 6.13 and 6.20. The slightly worse value of Iy, for (z,t) € supp (wt Gamp)
is, however, precisely balanced out by the fact that in Corollary 6.34 the bound
(6 127) is improved by a factor for I'2,; on supp (wh ij.qmp) Since these two
factors of I'2 2+1 cancel out, as they did in Lemmas 6.13 and 6. 20 we only give
the proof of the bound (6.130) for (z,t) € supp (Wi j,qn,p) \SUPP (W} 4 . p); Which
is equivalent to the condition that 1 < Fqulgz,q,n,p(a:7 t) <T?2,,. Note moreover

that we do not perform any estimates for (z,t) such that 1 < Fq_f{gl,q, plz,t) <
(1/a)T'2,, since in this region ¥g 41 = 1 (see item 2(b) in Lemma 6.2) and so
its derivative is equal to 0. Therefore, for the remainder of the proof we work

with the subset of supp wj j ¢,n,p, on which we have
925
(1/4)F2+1 < Fq+{9i,q,n,p(ma t) < F§+1 : (6.132)

This ensures that assumption (A.24) of Lemma A.5 holds with I'y, = Fq_+1
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In order to verify condition (A.25), the main requirement is a supremum
bound for DND%gi,qmm in L® on the support of 1; 4w; j q.n.p. In this direction,
we claim that for all (x,t) as in (6.132), we have

Lsupp v, ‘DND%JQi,q,n,p(xv t)|

S sziz( q+1/\q7n,p)NM (Mv Nind,t - Ncut7t7F;+C1n+2 - Fr;—'i1~q 1) (6'133)
for all N+ M < Ngnn — Newtw — Ncutt 4. Thus, assumption (A.25) of

Lemma A.5 holds with €, = D242 X = X = Ty dgny, o= D52t i =

F;Jh?{la and Ny = Ninat — Neus,¢- In particular, we note that (I'yI")~ 2Ch =1,
and estimate (A.26) of Lemma A.5 directly implies (6.130).

Thus, in order to complete the proof of the lemma it remains to establish
estimate (6.133). As in the proof of Lemma 6.13, it is more convenient to
first estimate DV DM (gi.q.n.p(2,1)?), as its definition (cf. (6.119)) makes it more
amenable to the use of the Leibniz rule. Indeed, for all N+M < Ngp 5, —Neut,z —

Ncut,t — 4 we have that

5 Ncut.t

Neut,
DNthglqﬂp Z Z (N/> <M’)

=0M'= k=0 m=0
M’ nk Hym N-N'pM-M' pkpm p
DN'DM DDy Ry, DN N DM=M DED R

% q,n,p )

—cnt2_—
5§+1,n,p(rq+1Aq7n,P)2k(F2+C1 * Tq 1)2m

Combining the above display with estimate (6.127) and the fact that k& + m +
N + M < Ngp,p — 4, we deduce

N M
]‘S‘Jppll}i qMNSUPP Wi j,q,n,p |D D glq77«20|
M Necut,o Neut,t

1
Z Z Z Z 52 (l—n Cn+2 —1)

Z0ar=0 =0 m=0 9q+1npLar1Agnp)?* (DL 7

2(3+1)
><Fq-|-1 Sg+1,n,p(Lg1Ag,n,p

/ ) Cn+2 —1 -1 ~—1
X M (M +m,Nind7t,Fq+1 LTy )

2(3+1) N—N’ +k
X T 0g41,mp(Dgr1Agn.p)

X M (M = M +m,Nina,t, 07527, T L7

S Fggfl)( q+1)‘q,n,p)NM (Ma Nind,t — Neut, ¢ F;+C1“+2 1 Fqil?_l) . (6.134)

)N’+k

Lastly, we show that the bound (6.134), and the fact that we work with (z,t)
such that (6.132) holds, implies (6.133). This argument is the same as the one
found earlier in (6.45)—(6.47). We establish (6.133) inductively in K for N+M <
K. We know from (6.132) that (6.133) holds for K = 0, i.e., for N = M = 0.
So let us assume by induction that (6.133) was previously established for any
pair N'+ M’ < K —1, and fix a new pair with N+ M = K. Similarly to (6.46),
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the Leibniz rule gives

NPM/ 2 N M
D™ Dy (95 qnp) — 29600 D " Dy q9isq,n.p

NN\ M\ N~ N—N'M—M’
= Z (N’) (M’)D Dt,q giﬂﬂmD Dt,q gi,q,n,p .

0<N’'<N
0<M'<M
O<N'+M’'<N+M

Since every term in the sum on the right side of the above display satisfies
1< N + M < K — 1, these terms are bounded by our inductive assumption,
and we deduce that

Lsupp i q |DND%19@‘1-'”7P|
< }DNDM (91'27%"71’) ’

t,q
~ Ji,qn.p
2(2j+2) N i—cn+2_—1 p—1 ~—1
+ 1—‘qul (Fqul)\q,n,p) M (M7 Nind,t - Ncut,t7 Fq+1 Tq ,Fququ )

9i,q,n,p

Thus, (6.133) also holds for N + M = K by combining the above display with
(6.132) (which implies g; g.n,p > I‘ifﬁ), and with estimate (6.134) (which gives
the bounds for the derivatives of g7, ). This concludes the proof of (6.133)
and thus of the lemma. O

6.7.5 L" norm of the stress cutoffs

Lemma 6.38. Let ¢ > 0. Forr > 1 we have that

—25/r
L7 (supp ¥i+,q) ~ Fq+1 (6.135)

||Wi,j,q7n7p

holds for all 0 < i <'imax, 0 < J < Jmax, 0 <1 < Nax, and 1 < p < prax. The
implicit constant is independent of i,j,q,n, and p.

Proof of Lemma 6.38. The argument is similar to the proof of (6.87). We begin
with the case r = 1. The other cases r € (1,00] follow from the fact that
Wi j.qn,p < 1 and Lebesgue interpolation.

For j = 0 we are done, since, by definition, 0 < w; jgnp < 1; thus we
consider only j > 1. Since 9,424 = 1 on supp (¢i+ 4), and using Lemma 6.31,
we see that for any (z,t) € supp (Yi+ qwi, j.q,n,p) We have

ut e New ;
cut,x Necut,t |1/)ij:27quDZLqR47"aP(x’ t)|2

N
wiZ:thgzzqnp:d}izj:2q+ Z ;
5 951, 5 2 —cn+2,_—1
k=0 m=0 5q+1,n,p(rq+1)‘qmm)2k (F:1+1 ¢ )M

1 45
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Using that a + b > Va2 + b2 for a,b > 0, and using I'*? | > 64 for j > 1, we

q+1
conclude that
Necu T Ncu‘,, >
zt: < |¢iﬁ:2,quDZn Rynp(z,t)] sz
nt2, _— = 1 gqt+1”
k=0 m=0 5q+1,n,p(rq+1)‘q,n7p) (FZI+C1+ Tq 1) 16 !

Therefore, using Chebyshev’s inequality and the inductive assumption (6.118),
we obtain

|supp (Yi-+,qwi j,q,n.p)|

< |{@: viszagigns = ChoTE, ||
NCllv,ﬂ) NCll 3 5
: <’ Wii?,quD??qRq,n,p(xvt” 1 2j
= (:C’t): Z 5 T A k(Di—eat2, ~1ym z ( /16)Fq+1
k=0 m=0 q+1,n,p( q+1 qyn,p) ( g+1  Ta )
cut x Cut t
_9 a2 —
< 16Fq+{ Z Z 5q+1 n,p q+1)‘q,n,p) (FZ-s-Cl * Tq 1) "
k=0 m=0
X ‘ z/}i:tQ,quD;n éq,n,p‘ L
Ncut x Lut t
2
< 16T, Sl
k=0 m=0
<r;4

q+1

where the implicit constant depends only on Ngyt .. The proof is concluded since
the L' norm of a function with range in [0, 1] is bounded by the measure of its
support. O

6.8 DEFINITION AND PROPERTIES OF THE
CHECKERBOARD CUTOFF FUNCTIONS

For 0 < n < npax, consider all the

3 . . .
/\T O—perlodlc cells contained in T3, of
q,m,

which there are )\an Index these cells by integer triples | = (I,w, h) for
Lw,h €{0,...; gm0 — 1}. Let X, | De a partition of unity adapted to this
checkerboard of periodic cells which satlsﬁes for any ¢ and n,

3 (Xq7n7f>2 —1. (6.136)

I=(l,w,h)
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Furthermore, for | = (l,w,h),l_;‘ = (I*,w*,h*) € {0, ..., \gn.0 — 1} such that
=122 jw-wz2 -k,

we impose that
=0. (6.137)

X X .
q,n,l""g,n,l

Definition 6.39 (Checkerboard cutoff function). Given ¢, 0 < n < Npax,
1 < imax, and k € Z, we define

Cq%k’n’f(x,t) = Xq’nﬁf(@,k,q(x,t)) . (6.138)
Lemma 6.40. The cutoff functions {Cq ikn l~}4 satisfy the following properties:
LRSS AAS) l

1. The material derivative Dy 4 (Cq ik f) vanishes.
2. For eacht € R and all x € T3,

Z (Cq,i,k,n,f(m’t))2 =1 (6.139)

I=(l,w,h)

3. We have the spatial derivative estimate for all m < 3Nfin/a 41,

AT (6.140)

q,n,0"

D™C. a‘
H @ik n,l Lo (supp ¥i g Xi k,q)

4. There exists an implicit dimensional constant independent of q, n, k, 1,
and I such that for all (z,t) € supp i qXi k.qs

diam (supp (Cq,i,k,n,F("t))) < ()\qmp)_l . (6.141)

Proof of Lemma 6.40. The proof of (1) is immediate given that gq,i,k,n,f is pre-
composed with the flow map ®; 5 4. (6.139) follows from (1), (6.136), and the
fact that for each t € R, ®; j 4(¢, ) is a diffeomorphism of T®. The spatial deriva-
tive estimate in (6.140) follows from Lemma A.4, (6.109), and the parameter
definitions in (9.19), (9.26), and (9.29). The property in (6.141) follows from the

construction of the Xq ,,.i functions (which can be taken simply as a dilation by
a factor of Ay ,1 of a g-independent partition of unity on R3) and (6.108). [
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6.9 DEFINITION OF THE CUMULATIVE CUTOFF
FUNCTION

Finally, combining the cutoff functions defined in Definition 6.6, (6.120)—(6.121),
and (6.96), we define the cumulative cutoff function by

ﬂiyj,k,qyn,p,f(% t) = i q(@, t)wi,j.q.np (@, t)Xi,k,q(t)Yq’nyp(t)qui’k,nyf(l', t).

Since the values of ¢ and n are clear from the context, the values in [ are irrele-
vant in many arguments, and the time cutoffs , ,, ,, are only used in Section 8.9,
we may abbreviate the above using any of

i kgm0 1) = Mijkgnp(T:8) = NG ,k) (2, 1)
= ) (@, t)wi ) (T, 0)X (6,0) )ik (2, 1)

It follows from Lemma 6.8, (6.122), (6.94), and (6.139) that for every (q,n,p)
fixed, we have a partition of unity

Z Z Z ”f,j,k,q,n,p,r(w» t)=1. (6.142)

i,j>0keZ |

The sum in ¢ goes up to imax (defined in (6.53)), while the sum in j goes up to
Jmax (defined in (6.128)). In analogy with t;+ 4, we define

1
2
Wi gy (2, 1) = (w@yj_l)(x, £) + Py (@, 1) + WP (2, t)) . (6.143)

which are cutoffs with the property that
Wi, j+) = 1 on supp (W j))- (6.144)
We then define
Nkt o) (%, 1) 7= Vit q (@, )i, ) (T, 8) Xi kg ()G 4 g 25 0), (6.145)
which are cutoffs with the property that
Mt gt k) = Coipnd OB SUPD (VWi )X (k) ) - (6.146)

We conclude this section with estimates on the supports of the cumulative cutoff
function 7 ; x)-

Lemma 6.41. For ri,re € [1,00] with % + % =1 we have

—2( A +L)++2
Z ‘Supp <ni,j,k,q’n,p,f)‘ 5 FqJ"l( ' 2) ' ° (6147)
r



134 CHAPTER 6

Proof of Lemma 6.41. Applying Lemma 6.23, Lemma 6.38, Holder’s inequality,
and interpolating, we obtain

[supp (4,4) N SUPD (Wi jgnp)| < [|Wis qw(i o || o

< iz gl o @i, || oo
261G _2G-1)
ST ™ "

Using % + é =1 and (6.139), which give that the (q i on.p form a partition of
unity, yields (6.147). O



Chapter Seven

From g to ¢ + 1: breaking down the main inductive

estimates

The overarching goal of this section is to state several propositions which de-
compose the verification of the main inductive assumptions (3.13) and (3.14)
for the perturbation w,y1 and assumption (3.15) for the stress ]D%(H_l into di-
gestible components. We remind the reader—cf. Remark 6.1—that the rest of
the inductive estimates stated in Section 3.2.3 are proven in Chapter 6. We
begin in Section 7.1 with Proposition 7.1, which simply translates the main
inductive assumptions into statements phrased at level ¢ + 1. At this point,
we then introduce in Section 7.2 a handful of notations which will be neces-
sary in order to state the propositions which form the constituent parts of the
proof of Proposition 7.1. The next three propositions (7.3, 7.4, and 7.5) are de-
scribed and presented in Section 7.3. They are significantly more detailed than
Proposition 7.1, as they contain the precise estimates that will be propagated
throughout the construction and cancellation of the higher order stresses éq7ﬁ.
These three propositions will be verified in Chapter 8.

7.1 INDUCTION ON @

The main claim of this section is an induction on gq.

Proposition 7.1 (Inductive Step on ¢). Given vy, I‘O{gq, and é;omm satisfy-
ing the Euler-Reynolds system

Orvg, + div (ve, ® ve,) + Vpg, = div }O%gq + div égomm (7.1a)
divuy, =0, (7.1b)

with v, , }O%gq, and ]-02;"“”“ satisfying the conclusions of Lemma 5.1, in addition

to (3.12)-(3.25b), there erist vgy1 = v, + Wey1 and ]:ZqH which satisfy the
following:

1. vgy1 and éq+1 solve the Euler-Reynolds system

o

Ovg41 + div (vg+1 ® vg41) + Vg1 = Rgpa (7.2a)
divvg4 = 0. (7.2b)
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2. For all k,m < "Niyq,v,

kym -1 —1pi—l ~—1p—
Hwiqu Dt,qw‘H‘lHLz <Fq+15q+1 q-HM (m Nind.t, 7, Tq Fq+17 q Fq+(1))
7.3
Furthermore, we have that

SUppt(éq) C [TlaTQ]
= b, (wg11) C [Ti = A0y T+ (07| . (7.4)

3. For all k,m < 3Niya,v,

Remark 7.2. In achieving the conclusions (7.2), (7.3), and (7.5), we have verified
the inductive assumptions (3.13)—(3.15) at level g+1. The inductive assumption
(3.12) at levels ¢’ < g+1 follows from Lemma (5.1). The proof of Proposition 7.1
will entail many estimates which are much more detailed than (7.3) and (7.5),
but for the time being we record only the basic estimates, which are direct
translations of (3.13)—(3.15) at level g + 1.

wi,qD’CD;’qéqHH <006, 0 N M (11, N, T 71 L 701
(7.5)

7.2 NOTATIONS

The proof of Proposition 7.1 will be achieved through an induction with respect
to n, where 0 < n < npax corresponds to the addition of the perturbation

Pmax

Wetl,m = Z Wqgt1,7,5- Lhe addition of each perturbation wgy; 5 will move
p=1

the minimum effective frequency present in the stress terms to Ay 741,0. This

induction on 7 requires three subpropositions; the base case n = 0, the inductive

step from 1 — 1 to n for 7 < npax — 1, and the final step from nmax — 1 0 Nmax.

Throughout these propositions, we shall employ the following notations.

1. n: An integer taking values 0 < 1 < muya over which induction is
performed. At every step in the induction, we add another component
Wq41,7 of the final perturbation

Mmax Pmax

wq+1:§ E Wq+1,n,p-

=0 p=1

We emphasize that the use of n at various points in statements and esti-
mates means that we are currently working on the inductive step at level

n.
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2. m: Aninteger taking values 1 < n < npax which correspond to the higher
order stresses R, .. Occasionally, we shall use the notation R, = Ry,
to streamline an argument. We emphasize that n will be used at various
points in statements and estimates to reference higher order objects in
addition to those at level n, and so will satisfy the inequality n < n.

’

3. H an,p: Lhe component of Ry, originating from an error term pro-
duced by the addition of wg41,,s. The parameter n’ will always be a
subsidiary parameter used to reference objects created at or below the
level 71 that we are currently working on, and so will satisfy n’ < 7.

4. Ig[q,n,p]: We use the spatial Littlewood-Paley projectors Py, ) defined
Yy

(7.6)

o ]P)Z)‘q,nmax,pmax ifn= Nmaxs P = Pmax 1+ 1
lg,n.p]

]P)[)\q,n,p_l,)\q,n,p) if 1 <n< Mmax, 1< p < Pmax ’
where Py, y,) is defined in Section 9.4 as P>y, P<»,. Note that for n =
Nmax a0d P = Pmax + 1, Plgnna. pmaxt1) Projects onto all frequencies
larger than Ag n_... pmex = Ag,nmax+1,0- Brrors which include the frequency
projector Ppy ..o 117 will be small enough to be absorbed into Rq+1.
We shall frequently utilize sums of Littlewood-Paley projectors P, ;, ,; to
decompose products of intermittent pipe flows periodized to scale )\;%.
These sums will be written in terms of three parameters—n, p, and n. As
a consequence of (7.6), (9.29), (9.23), and (9.22), we have that Ay 741,0 <

Agi for 0 <71 < npax, so that

NMmax Pmax
> Y Pl + Plammepmenttl | Porgs = PoayaiioPoa,

n=n+1 p=1

= Psy (7.7)

q,n”

TS
)\q,ﬁ_

A consequence of (7.7) is that for periodic functions' where 0 <7 <

nmaxa

f=1 F+Pf
T3

Mmax Pmax
= ]{r AP ( Y > Plnat P[q,nmax,pmxu]) foo (18)

n=n+1 p=1

These equalities will be useful in the calculations in Section 8.3, and
we will recall their significance when we estimate the Type 1 errors in
Section 8.6.

1We note that in the second equality in (7.8), such functions do not have active frequencies
between A\ 741,0 and Ag 7.
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5. RZ’ ¢ Any stress term which satisfies the estimates required of ,équl
and which has already been estimated at the n'" stage of the induction;
that is, error terms arising from the addition of wg4q s for n’ < 7. We
exclude j%gomm from R? 1, absorbing it only at the very end when we

define éq+1 . Thus

R?j_‘ll = é?—s-l + (errors coming from wg41,7+1 that also go into ]O%q+1)
(7.9)

7.3 INDUCTION ON N

The first proposition asserts that there exists a perturbation wq41,0 which we
add to vy, so that vy o := ve, + wgy1,0 satisfies the following. First, v, solves
the Euler-Reynolds system with a right-hand side consisting of stresses ég 11
and HO which belong respectively to ]o%qH and Ia%q,nﬁp for 1 < n < Npax

a,n,p
and 1 < p < pmax. Secondly, wg41,0 satisfies estimates which in particular

imply the inductive assumptions required of the velocity perturbation wgy; in
(7.3).2 Thirdly, Rg |1 satisfies the estimates required of Rqy; in the inductive
assumption (6.118) (with an extra factor of smallness). Finally, each Iflgymp

satisfies the inductive assumptions required of éq,n,p in (6.118).

Proposition 7.3 (Induction on n: The base case n = 0). Under the
assumptions of Proposition 7.1 (equivalently the conclusions of Lemma 5.1),

Pmax

there exist wyy1,0 = Z Wq41,0,p = Wg+1,0,15 Rgﬂ, and Hg’n,p for1 <n < npax
p=1

and 1 < p < pmax such that the following hold.

1. vg,0 = v, +wWgy1,0 s0lves

Ovg,0 + div (V4,0 ® vg,0) + Vg0

Mmax Pmax

= div (fzg +1) +div (Z > I?Ig,n’p) +divRE™™  (7.10a)

n=1 p=1

div g = 0. (7.10Db)

2. For all k +m S Nﬁn,O - Ncut,t - Ncut,z - 2Ndec -9 and 1 S 5 S Pmax
(although only wqy1,01 s non-zero)

HD’CDZlqwq-‘rLOvﬁH L2 (supp vi,q)

2This is checked in Remark 8.3.
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3 3+% & —1pi—co+4 ~—1p—1
2 2 7 . 0
< (5q+1,0’511q+1 Ag1M (m7 Nind,t, 7y Lgidl " 5 7q Fq+1) . (7.11)

Furthermore, we have that

o

supp ¢(Ry) C [T1, T3]

= supp (Wg+1,0,5) C [Tl — (A8 Tgp1) " T + (/\q5;/2rq+1)_1}
(7.12)

3. For all k,m < 3Ning v,

Furthermore, we have that

k ym Do
1/’i,qD t,qRqul‘

Ll

—Cry— _ i ~ _
ST T 0gaaXe g M (m, Nina e, 7, ' Tk 70 T ) . (7.13)

suppth_H C Supp ;Wq+1,0 - (7.14)
4. For allk+m < Ngppn and 1 <n < npax, 1 <P < Pmaxs

t,q 7 q,n,p

Hkam o

L1 (supp 9i,q)
k —1lpi—cy ~=—1p—1
S Ogt+1,m,p A pM (m7 Nind,t, g Lgiis Tq Fqﬂ) . (7.15)

Furthermore, we have that

o

supp tHg,n,p C Supp ;Wg+1,0 - (7.16)

The second proposition assumes that perturbations wgy1,, have been added

for n’ < n—1 while satisfying four criteria. Firstly, vg5-1 = ve, + Y.  Wgg1,n’
n'<n—1

solves an Euler-Reynolds system with stresses R?;ll and I g,np Secondly, the
perturbations wg41,, satisty the inductive assumptions required of wg41 in (7.3)
for n’ <7 — 1. Thirdly, R;:ll satisfies the inductive assumption (7.5) at level
q + 1. Finally, Ij[;ﬁ/nm satisfies the assumption (6.118) in the parameter regime
<N < Nmax, W <—1,1 < p < pmax. The conclusion of the proposition
replaces each m — 1 in the assumptions with 7.

Proposition 7.4 (Induction on n: From 7 —1 to 7 for 1 <71 < nyax — 1).
Let 1 <n < npax — 1 be given, and let

n—1 Pmax

n—1
Vgfie1 i= Vg, + E Wet1,n = Ve, + E § Wa+1,n’,p’5
n’=0

n'=0p'=1

I%?;ll, and ISI(Z;M) be given forn’ <n—1,1<n < npax and 1 < p,p" < prax
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such that the following are satisfied.

1. vg7-1 solves:

atvq,ﬁ_l + div (Uqﬁ—l &® Uqﬁ—l) + qu,ﬁ—l

Nmax Pmax N—1
= div (RI71) + div (Z Yy H> T div freomm
n=n p=1 n'=0
(7.17a)
div Vg n—1 = 0. (717b)

2. For all k+m < Nannw — Neutt — Newt,w — 2Ngec — 9, ' < n — 1, and
1 <p" < Pmax;

H-Dk-DZquQ+17n,’p/ HLQ(SUPP Yi,q)

3 3+% k —ipi—cy+4 ~—11—1
2 2 n
g 5q+1,n’,p’rq+1 )‘q+1M <ma Nind,tv Tq Fq+1 ,Tq Fq+1> . (718)

Furthermore, we have that

o

SUPPt(Rq,n’,p’) C [Tl,n’,p’vTZn’,p’}
= supp 4 (Wy+1,n’p")
C [Tl,n’,p’ - (/\q5;/2rq+1)_1aT2,n',p’ + (/\q5<11/2rq+1)_1] . (7-19)

3. For all k,m < 3Niya,v,

Furthermore, we have that

krym pn—1
@/’i,qD Dt,qRqul‘

L1

Chro— ; _ 1 o~
ST T 8gs2Aq i M (m, Nina o, Ty T 7 - (7.20)

supptthllg U SUpPP ;Wq+1,n’ - (7.21)

n'<mn—1

4- For all k+m < Ny pn, 1 <N < Npax, 7' <=1, and 1 < p < prax,

|\ p* Dy, iy

q,m,p

L (supp i,q)
<4 AE oM (my Niga g, 7o T, 70T (7.22)
~ %¢+1,n,pN\gn,p »Nind,ty Tg Lg+10 g Lqt1) - :

Furthermore, we have that
supptﬁgn’p C Supp ;Wq+1,n’ - (7.23)

Then there exists wyq1,n such that (1)-(4) are satisfied with n — 1 replaced by
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The final proposition considers the case 7 = nyax and shows that, under
assumptions analogous to those in Proposition 7.4, there exists wg11,n,,.. such
that all remaining errors after the addition of wg1,p,.,, can be absorbed into

o

Rg41, thus verifying the conclusions of Proposition 7.1.

Proposition 7.5 (Induction on 7: The final case 7 = ny.y). Let

nmax_l 7'7fmax_1 Pmax
Vg nmax—1 = VL, + g Wq+1,n' = Vg, + E E Wq+1,n",p’>
n/=0 n’'=0 p'=1
o M —1 rn’ . / /
Ry, and Hp,, ., be given for n < Muax — 1 and 1 < p,p" < pmax such

that the following are satisfied.

1. Vgmpan—1 SOlves:

8tvqanmax_l + le (vqanmax_l ® ,UQ7nmax_1) + qu;nmax_l

Nmax— 1 Pmax
. PNmax — 1 . rn’ . pcomm
= le (RQ+1 ) + le ( Z Z HQ»”mava) + le Rq
n’=0 p=1
(7.24a)
divvgn,..—1=0. (7.24b)

2. For all k4+m < Napn — Neut,t — Newt,e — 2Ndec — 9, 7 < nmax — 1, and
1 <9 < Pmaxs

HDkDZquq-i-l,n’m' HL2(supp i q)

3 3+C*b k _1pi—Cc s +4 ~—11+—1
2 2 9 n
5 6q+17n’7p’rq+1 )‘q+1M (m7 Nind,t, Tq Fq+1 7Tq Fq+1> . (725)

Furthermore, we have that

o

supp ¢ (Rg,n' pr) C [T1 00 prs T2 ]
= Supp ¢ (Wg+1,n ')

C [Timr = Oabif Tasn) ™ T + a8y Tosn) ™| - (7.26)

3. For all k,m < 3Ninq v,

q+1

k ym PNmax—1
i D" DI R ‘

L1

< r;f§r;j15q+2A’;+1M (m, Ninat, T 7 D7) . (7.27)
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Furthermore, we have that

supp tﬁi;‘;i"_l - U SUPD {Wqt1,n/ - (7.28)

n'<nmax—1

4' For all k+m S Nﬁn,nmax; 77,/ S Nmax — 17 and 1 S p S Pmax

q;Mmax P

|p*pr

L (supp vi,q)

—1pi—Comax ~—1p—1
§5Q+11nmax1p)\Q7nmax1pM (m’Nind,thq Fq+1 * )y Tq Fq+1>- (729)

Furthermore, we have that

o

’
supp ;H;',, ,  SUpp ;We+1,n - (7.30)
Then there exist Wqt1,ny., @nd Rgy1 such that Vg4 = Vg np—1 T Wet1 nmax

and ]o%qH satisfy conclusions (7.2), (7.3), (7.4), and (7.5) from Proposition 7.1.



Chapter Eight

Proving the main inductive estimates

Because the proofs of Propositions 7.3, 7.4, and 7.5 will be comprised of multiple
arguments with many similarities, we divide up the proofs of the propositions
into sections corresponding to these arguments." First, we define R, 5 5 and
Wq41,7,5 in Section 8.1 for each 0 < N < npax and 1 < p < pyax. Then,
Section 8.2 collects estimates on wy41 5,5, thus verifying (7.11) and (7.12), (7.18)
and (7.19), and (7.25) and (7.26) at levels n = 0, 1 < . < npax — 1, and
T = Nmax, respectively. Next, in Section 8.3 we separate out the different types
of error terms and write down the Euler-Reynolds system satisfied by v, 7, which
verifies (7.10), (7.17), and (7.24), again at the respective values of 7.

The error estimates are then divided into five sections. We first estimate
the transport and Nash errors in Sections 8.4 and 8.5. The next section esti-
mates the Type 1 oscillation errors (notated with ]?I;”n’p), which are obtained
via Littlewood-Paley projectors Pl , 5. In the parameter regime 1 < n < nyax
and 1 < p < pmax, Type 1 oscillation errors will satisfy the estimates (7.15),
(7.22), and (7.29) at respective parameter values 7 = 0, 1 < 1 < npax — 1,
and 7 = Npax. Type 1 oscillation errors obtained from P, . »...4+1) have a
sufficiently high minimum frequency (from (7.6), specifically A, ... +1,0, which
by a large choice of nmax is very close to Ag41) to be absorbed into éq+1. Then
in Section 8.7, we use Proposition 4.8 to show that on the support of a checker-
board cutoff function, Type 2 oscillation errors vanish. The divergence corrector
errors are estimated in Sections 8.8. The divergence corrector, Nash, and trans-
port errors will always be absorbed into R,; and thus must again satisfy one of
(7.13), (7.20), and (7.27). Finally, the conclusions (7.12), (7.14), (7.16), (7.19),
(7.21), (7.23), (7.26), (7.28), and (7.30) concerning the time support will be
verified in Section 8.9.

8.1 DEFINITION OF R, 5 AND W, 155

In this section we construct the perturbations wg1,5. Before doing so, we recall
the significance of each parameter used to define the perturbations.

IThis organization of proof avoids having to alternate between the definitions of Wy i1,7,5
and ﬁu’.qﬁﬁ for all 1 < 7 < nmax and 1 < p < pmax. We judge that it is wiser to define
all the perturbations simultaneously under the assumptions of Propositions 7.3, 7.4, and 7.5.
Namely, we assume that each R, 7 5 exists and satisfies the enumerated properties, some of
which may not be verified until later.
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1. £ is the vector direction of the axis of the pipe.

i quantifies the amplitude of the velocity field vy, along which the pipe

will flow.

J quantifies the amplitude of the Reynolds stress.

k describes which time cutoff x; 1 4 is active.

g+ 1 is the stage of the overall convex integration scheme.

n and p signify which higher order stress R, 7 5 is being corrected, and n

also denotes the intermittency parameter r441 7.

7.0 = (I,w,h) is used to index the checkerboard cutoff functions. Recall
that the admissible values of I, w, and h range from 0 to A, 50 — 1 and
thus depend on 7.

N

S G W

8.1.1 The case n =0
Pmax

To define wgy1,0 = Z Wq+1,0,p = Wq+1,0,1, We recall the notation Rg = Rq 0
p=1

Rgo,1,5.ik = V3 (5q+1 0 1Fq+1 Id - R, 0) V‘I) (i.k)- (8.1)

and set

For p > 2, we set Ry 05,k = 0. Fix values of 4, j, and k. Let { € = be a
vector from Proposition 4.1. For all £ € =, we define the coefficient function

g ;5 kg 057 OY

Qe i jk,q,0.5.0 "~ 3&:1,3,%,4,0,p
= A
rit2 _Raopiik
6Q+1 0,p quln ,5,k,q, O,p,ﬂi (5 ~F2]+4 . (82)
q+1,0,p+ g+1

From Lemma 6.31, we see that on the support of 7 ;i) we have |Rq 05l <

55{2(2&1 0.5, and thus by estimate (6.108) from Corollary 6.27, for p = 1 we
have that
Ry.05.4.i.k -1 1
— LoBhor T4 < T < =
> +1
5q+1 0,prq+t4 / 2

once ) is sufficiently large. Thus we may apply Proposition 4.1.
The coefficient function a) is then multiplied by an intermittent pipe flow

Vo, L B Wegr1,0 © gy,

where we have used the objects defined in Proposition 4.4 and the shorthand
notation

(5,3,k,0,) _ _
We,q+1,0 = Wg q+1,0 — Wg,q+1,0 = Wg,/\qﬂ,rqﬂo- (8.3)
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The superscript s = (4,4, k, 0,1_3 indicates the placement of the intermittent pipe
flow Wg{lif’é}’ (cf. (2) from Proposition 4.4), which depends on 4, j, k, n = 0,
and [ and is only relevant in Section 8.7.2 To ease notation, we will suppress
the superscript except in Section 8.7. Furthermore, item 1 from Proposition 4.4

gives that
VO We g0 0 @i = curl (vqﬂ;’k)tu@qﬂ,o o <I>(i7k)) .

We can now write the principal part of the first term of the perturbation as
o= 3 T agent (VT tiun) = 3 T we
ij,kp [ ¢ i3,k T
(8.4)

The notation we) implicitly encodes all indices and thus will be a useful short-
hand for the principal part of the perturbation. To make the perturbation
divergence-free, we add

weho= D, ZZV% (V‘I’a,k)Ug,q+1,OO¢’<m> ) ZZ%

i.5.kp [ i,j,k,p
(8.5)
so that
Wq+1,0 = ’LU((I_,'_)l 0 + wq+1 0= Z Z Z curl ((Z(g)vq)(z k)UE q+1,0 © ‘I)(l k))
i,5,kp [
(8.6)

is divergence-free and mean-zero.

8.1.2 The case 1 <71 < Npax

Pmax

With wq41,0 constructed, we construct wy415 = E Wet1,7,5 for 1 <1 < npax.

p=1
For 1 < p < pmax, we define
Ryaz= Y, Hpsp (87)
1<m—1
With this definition in hand, we set
2]+4
Ry 5k = Ve (5q+1,n,p q+1 Id — Rq n p) V(I)(z k)» (8-8)

2Note that for p > 2, dg+1,0,5 = 0, so there is no need for the placement to depend on p
in this case, as wq1,0,5 Will uniformly vanish.
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and define the coefficient function g i i kgl by
Ji,3,k,q,7,5,

Qe i g k,qmpl — isgkan,p
_ /2 ri+2 Ry ik
=0 = 5 +1,7,p q+1771 ,J.k,q, n,p,ﬂﬁ (5 F +4> . (89)
q+1,7,p g+1
By Lemma 6.31 and Corollary 6.27 as before, R, 5 5.j.i.k/(0g+1, ,M,I‘qﬂj ) lies in

the domain of ¢, as soon as Ag is sufﬁ01ently large (similarly to the display
below (8.2)). The coefficient function is multiplied by an intermittent pipe flow

V(I)(_z k)Wf q+1,7 (iyk) = curl (V(I)g;k)[ué,qul,ﬁ o (I)(i,k)) s

where we have used the shorthand notation

__wybdkapl _ s _ WS
Wﬁ,qul,n - Wg,q+1,ﬁ - Wﬁ,q-{-l,ﬁ - WE,)\Q+1,TQ+1);L . (810)

As before, the superscript s = (3, j, k, ﬁ,ﬁ,f) refers to the placement of the pipe,
depends on i, j, k, n, p, and [, and will be chosen in Section 8.7. Thus the
principal part of the perturbation is defined by

t(zﬁ-)l P Z Z Z agecurl (VCI)(Z kUeq+1,7 © P, k))

1,5,k

= Zzzw (8.11)

1,5,k

As before, we add a corrector

(c)
Wot1,m,p Z Z Z Vag % (V(I)(z Ueq+1,7 © PG, k))

N

= ZZZW (8.12)

1,5,k

producing the divergence-free perturbation

Pmax Pmax

_ o (p) (o)
Wq+1,m = § :MQ+17W7P = E : (wq+1,ﬁ,ﬁ+wq+1,ﬁ,ﬁ

=1

Z churl (a(s)vq’ (i,k) Ug,q+1,m (I)(i,k)) . (8.13)

i,5.k0 [
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8.2 ESTIMATES FOR W 155

In this section, we verify (7.11), (7.18), and (7.25). We first estimate the L"
norms of the coefficient functions a(¢). We have consolidated the proofs for each
value of 7 into the following lemma.

Lemma 8.1. For N+ M < Ng, 5 —Neutt —News,e —4, 7 > 1, and r1, 72 € [1, 0]
with % + % =1, we have

N M
HD thl §1gkqnpl‘L
1 4 .
< NTg2 o a2
~ |supp (niJ?k,qﬁ,ﬁ,l) q+1,n,p" q+1

X (Cgs1rgnp) M (M, Nind,t, 7, F;+°1“+3,~;1Fq+1> (8.14)
Proof of Lemma 8.1. We begin by considering the case r = co. The general case
r > 1 will then follow from the size of the support of a(). Recalling estimate

(6.125), we have that for all N + M < Ng, 5 — 4,

NpPMp _
DY D%y

Lo (supp i, j,k))

2j+2 N i—Cx ~—1p—
5 6q+1,ﬁ,'ﬁrqi_—~i (Fq-l-lAq,ﬁ,ﬁ) M <M7 Nlnd ty T, q 1_‘q.|-1 +27 q 1Fq+1)
From Corollary 6.27, we have that for all N + M < 3N /2,

[P DDt | g gy < A0 M (s Nina TR 7 T )

Thus from the Leibniz rule and the definitions (8.8), (8.1), for N+M < Ng, z—4,

1PN D7 Ry 5

\Dodyisk HL‘”(bUPP N(i,3,k))

S 5q+17ﬁ,ﬁ]‘—‘q£§ (Fq+1>‘q,ﬁ7§)NM (M7 Nlnd t) Tq FZ+C1U+27~q_1Fq+1> . (815)

The above estimates allow us to apply Lemma A.5 with N = N, M = M’ so
that N+ M < Ngy 7 —4, ¥ = ¢, (which is allowable since by Proposition 4.1 we
have that DB’}/g is bounded uniformly with respect to ¢, and we have checked
in Section 8.1 that the argument of ¢ remains strictly within a ball of radius
e of the identity), I'y = 1, v = vy, D = Dygq, Mz, t) = Ryz5.4k(T,1),
Ch = 5q+1,ﬁ,przﬁ4 =T X = A= Agplg41s 1= 7'_11124:1n+2 p= Tq_lf;m
and N; = Nipq,. We obtam that for all N + M < Ng, 7 — 4,

R,

N M q,1,p,J,1,k

HD Dt’q’)% (6 n ~F2]+4>
q+1,m,p* g+1

Lee(supp 1, j,k))
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< Tgndgap) M (M, Nind,t,Tq’ll“f];i“”,?;ll“;jl) .
From the above bound, definitions (8.2) and (8.9), the Leibniz rule, estimates
(6.84), (6.97), and (6.131), and Lemma 6.40, we obtain that for N + M <
Nﬁn,ﬁ - Ncut,t - NCU.\:,(/C - 473

|DYDage HL‘X’(SUPP LICRNSY)

N )
< si/2 J+2 E
~ 5q+1,ﬁ,ﬁrq+l

N'4+N"=N,
M/ +M"=M

N" yM" Rq,ﬁ,ﬁ,jmk
D™ Dy e 5 . T2+
q+1,n,pt g+1

’

N’ M
‘D Dt,qn(i,j,k)

HL°°

X

Lo (supp i, j,k))
1/2 j+2 N’ / lpi—c43 ~—11—1
SO0 mpl g Z (Lgr1rgmp) M (M Nina s, 7, T 7777, T

q 1 g gt+1
N’+N"=N,
M'+M"=M
N " —1pi—cg+2 ~—1p—1
x (Fg1Aq7,5) M(M sNind,t, 75 T T 57 T

1/2 j+2 N —1pi—ci+3 ~—1p—1
<O L DI (D Agp) M(M, Nina,i, 75 T3, 7 rqH).

This concludes the proof of (8.14) when r = oo. Recall from Lemma 6.41 that

(F+ib)+Cot2

—2
[supp (ni,j.0)) | S Tgun (8.16)

The general result then follows. O

An immediate consequence of Lemma 8.1 is that we have estimates for the
velocity increments themselves. These are summarized in the following corollary.

Corollary 8.2. For N + M < Ngn 5 — Neut,t — Neut,e — 2Ndec — 8 we have the
following estimate:

T 542 j+2
L S1SUPP (1 05 501 06 5 a1 (Mg

N —1pi—ci+3 ~—1p—1
x AN M (M,Nind’t,Tq it Fq+1).

(8.17)

| DY Dwe |

)

For N+M S Nﬁn,'ﬁ_Ncut,t_Ncut,m_2Ndec_9 and (717 T1, T2) S {(]-7 27 2)7 (27 o0, 1)}7

3The limit on the number of derivatives comes from (6.131) and (8.15). The sharp cost of
a material derivative comes from (6.131).
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we have the following estimates:

N M, (c) Uot1Agip 1/2 i+2 2/r—1
HD Dy qwie) L S A1 |supp ( ,J,k,q,ﬁ,ﬁ,f) crraplast (Tg+1,7)
1—Cx+3 F-
q+lM ( md ty T, q Fq+1 + 9 q 1Fq+1> (818)
—2i4Cy 2
N M 1/2 i T2E 2/p—1
HD Dt’qwq+1’ﬁ’ﬁ| L7 (supp ¢i,q) ~ a+L,7.p g+1 "(ret+1,7) )‘q+1
T n+4 ~—1
XM(M’ ind,t) Tq Fq—&-cl 1 Tq Fq—&-l)
(8.19)
Finally, we have that
supp ,(Ry) C [T1, T
= supp t(wq-i-l,%b') C |1 - (>‘q5¢11/2)_17T2 + ()‘q(s;h)_l} : (8.20)

Remark 8.3. By choosing r = 2, ro = 1, and r; = oo in (8.19) and recalling that
(9.56) and (9.60b) give
5;:51 n,p = qfl(st;/jla Nﬁn,ﬁ - Ncut,t - Ncut,z - 2Ndec -9 Z 14Nind,'u7

we may sum over n and p in (8.19) and use the extra negative factor of I'y41q
to absorb any implicit constants. Finally, from (9.42), we have that the cost of
a sharp material derivative in (8.19) is sufficient to meet the bounds in (7.3).
Then we have verified (7.11), (7.18), and (7.25) at levels n = 0, 1 <1 < Nmax,
and T = npax, respectively, and (7.3).

Proof of Corollary 8.2. Recalling the definition of w(¢) from (8.4) and (8.13), we
alm to prove the first estimate by applying Remark A.9, with f = a(E)Vq)(_ilk),

/2 J+2 _ _ _ _

Cr = |bupp i 3.k ,q,ﬁ7177f) 6q+1 onq-H’ D =Pipy, v =10, A=Toprdgap ¢ =
. /r—1 _ —1 i—cg+3 ~ _ ~—1p-—1

C - )\q+17 C(p - qul’ﬁ’ n= )‘q,n - )‘q+17'q+1ﬁ7 V= Fq+1 V= T Pq+17

g = Wf7q+l7ﬁa Nt = Nind,ta and No = Nﬁn,ﬁ - Ncut,t Ncut,x 4. FI'OIII (8 14)
and Corollary 6.27, we have that for N + M < Ngn 5 — Neue,t — Neut,o — 4,

2 N
DY Diace ||, < [supp (6,5.0)|" 5qf1npféil( a+1q,7,5)
XM(M, ind,ts T, F;ff”f;lrﬁll) (8.21)

N
|DY D2 (D® i 1y) IHLoo(supp(wzqmq))

<A M (M Niga,, T 70 T ) (8.22)

ST )\N L (8.23)

HDN(I) (¢ k)HL‘X’(supp (¥i,aXik,q)) ™ 7 aFL
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HDN@ ST AN, (8.24)

(i.k) HLC>o (supp (¥i,qXi,k.q))

showing that (A.30), (A.31), and (A.32) are satisfied. Recall that We o415 is
periodic to scale:

- 3 4)AFL g (aytl -1
)\q%: (Aq+1Tq+1,ﬁ) = ()\ga) >\q+£5) ) :

By (9.48) and (9.60a), we have that for all ¢, 7, and p,

N ec
Moo Aem d 2Ngee + 4 < Ngn7 — News.t — Neut.o — 5
q+1 = 27T\/§Fq+1)\qﬁ7;‘5 ) dec > Nfinn cut,t cut,z ’

(8.25)

and so the assumptions (A.34) and (A.35) from Lemma A.5 are satisfied. From
the estimates in Proposition 4.4, we have that (A.33) is satisfied with ¢ = =
Ag+1- We may thus apply Lemma A.7, Remark A.9 to obtain that for both
choices of (r,r1,r2) and N + M < Ngu 5 — Neut,t — Neut,z — 2Ndec — 8,

HDN (Dtﬂfq (‘1(5)V‘I’(Z,1k>) We g1, © %‘,k)) .

1/2 F]+2

N—
q+1,n,p q+1 ( q+1)‘qﬁyﬁ) "

N
<> |supp ()|

3
Il
=

x M (M Nind.ts 73 T, % oty ) 1D We g1l

N
<> [supp (ng,
m=0

~_ _ 2/r—1
x M (M ind,t, Tg Ffﬁ»cln 33 Tq 1Fq+1) )‘:;i-l (Tq+1,n) /
2 |42
< [supp (16,50 |76, 5 TS

i—cz+3 ~—1 — N 2/r—1
x M (M7 ind,t, 7, q Fq+1 ’ q Fq+1) Aq~|>]. (Tq+1,7l) .

F5i a2 (p

N—
g+1,m7,p q+1 ( ‘1+1/\q7ﬁ,17) "

Here we have used that Ag41 > Igp1Agmp for all 0 < n < npax and 1 < p <
Pmax, and thus we have proven (8.17).

The argument for the corrector is similar, save for the fact that D; , will land
on Va, and so we require an extra commutator estimate from Lemma A.14,
specifically Remark A.15. Note that D; (®; ) = 0 gives

M, () _ nM T
Diqwiey = Dig <Va(£) X (V@(; 1y Ue.gsr © ‘I’(i,k)))

= Y M M) (DY Vag) x (DM VL)) Ueqrim0Pn)
M'+M"=M
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Using (6.60) and (8.21) shows that (A.50) and (A.51) are satisfied with f =
Vage,

/2 J+2 .
q+1,ﬁ,5rq+1rq+1 )‘q,nmv

1
Cr=[supp (0, ;4 05 50| "0

1 N < i—co _— ~ ~ 1
gv = 64121_‘311117 )‘v = )\v = )‘Q7_ Ho = P;Jrclqu 1’ Nt = Nind,t7 Ho = Tq 11—‘11*&1’ )\f =
A =LgpiAgmp pf = Tq_lFfZ:_Clﬁ"'?’, and iy = ?q_lI’;_&l. Applying Lemma A.14

(estimate (A.54)) as before, we obtain that for N+M < Ngy 7—Neue,t —Neut,z —5,

1 .
IDN DMV ae |, < |supp (i) 0,57 50500

X (Tgr1gmp) T M (M, Nind,t,T;1F;135+3,?;1F;_&1> . (8.26)

In view of (8.22) and (8.25), we may apply Lemma A.7, Remark A.9, and the
estimates from Proposition 4.4 to obtain that for N + M < Ngp i — Newt,e —
Ncut,z - 2Ndec -9

HDND% (Va(g) X (V(I),'(Z;k)Ug’q_s_Lﬁ o q)(z,k)>)‘
N

LT

T 5l/2 J+2 N-
S ’SUPP (n(i,j,k))‘ Opr1mpl gl a1 A mpAymp

m=0
—1pi—cg+3 ~—1p—1 m
xM(M, Nina,i 75 T3, 7 rqH) ID™Ue g1l
N
SN S [supb (g )| 702 n ST g A gAY
RS PP \"(3,5,k) g+1,7,5 g1t a+17en,p g 7.5

m=0
—1pi—cE+3 ~—1p—1 21
><M<M, Nina,i, 7y ' TE55 2, 7, FQH) (Fas1m)

< Fq-&-l’\q,ﬁﬁ)\N

¥ 5l j+2
~ )\ 41 q+1 |Supp (n(ZJ,k)) 5 /2 ~]'—‘j+
q

q+1,n,p" q+1

x M (M, Nim,Tglr;;§ﬁ+3,%;1r;+11) (rer1n)™",  (8.27)

proving (8.18).

The final estimate (8.19) follows from the first two after recalling that ¢, 4
may overlap with ;41 4, so that on the support of ¥; 4, we will have to appeal
to (8.14) at level i + 1. Then, we sum over [ and appeal to the bound (6.147).
Next, we may sum on j, the index which we recall from Lemma 6.35 is bounded
independently of ¢, and p, k. The powers of Ffz 41 cancel out since rry = 1.
Next, we sum over p, which is bounded independently of ¢, and recall that
the parameter k, although not bounded independently of ¢, corresponds to a
partition of unity, so that the number of cutoff functions which may overlap at
any fixed point is finite and bounded independently of q. O
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8.3 IDENTIFICATION OF ERROR TERMS

In this section, we identify the error terms arising from the addition of w415 =

Pmax

Wq41,7,5- After doing so, we can write down the Euler-Reynolds system
p=1
satisfied by v, 7, in turn verifying at level n the conclusions (7.10), (7.17), and
(7.24) of Propositions 7.3, 7.4, and 7.5, respectively.

8.3.1 The case n =0

By the inductive assumption of Proposition 7.3, we have that divv, = 0, and
(9tv4q + div (U@q X ’Uzq) + Vpgq = div ézq + div ]%Zomm.
Adding wgy1,0 as defined in (8.6), we obtain that v, o := vy, + wgy1,0 solves

Orvg,0 + div (vg,0 ® vg,0) + Ve,
= (Or + e, - V)Wgi1,0 +wgy1,0 - Vg,
+ div (wq+1,0 & ’LUqul,o) + div }?gq + div é;omm
i=To +No + Op + div Ry, + div RO™™. (8.28)

For a fixed m, throughout this section we will consider sums over indices

=

(§7i’j7k7§7l)’

where the direction vector £ takes on one of the finitely many values in Propo-
sition 4.4, 0 < i < i;max(q) indexes the velocity cutoffs (there are finitely many
such values; cf. (6.50)), 0 < j < Jmax(q, 7, D) indexes the stress cutoffs (there are
finitely many such values; cf. (6.129)), the parameter k indexes the time cutoffs
defined in (6.96) (the number of values of k is g-dependent, but this is irrelevant
because they form a partition of unity; cf. (6.94)), the parameter 1 < p < puax
indexes which component of R, 55 we are working with (there are finitely
many such values; cf. (9.3)), and, lastly, ['indexes the checkerboard cutoffs from
Definition 6.39 (again, the number of such indexes is g-dependent, but this is
acceptable because they form a partition of unity; cf. (6.139)). For brevity of
notation, we denote sums over such indexes as

by

§,1,5,k,p,1

> (8.29)

#{€,4,5,k,5,0}

Moreover, we shall denote as
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the double-summation over indexes (&, 1, j, k,ﬁ,l_j and (£*,4*, 5%, k*, p*, l_;‘) which
belong to the set

{(GIEASARSNONINN NS
:5#5*\/1'7&@'*\/]'#j*vk#k*vﬁ;ép*vf#f“}, (8.30)

although we remind the reader that at the current stage, n = 0, the sum over
p is superfluous since wg41,0 = Wq+1,0,1- For the sake of consistency between
Wq1,0 and w15 for 1 < N < npax, we shall include the index p throughout
this section. Expanding out the oscillation error Oy, we have that

Oy = Z div (curl (a(g)V@{i’k)UgﬁqH’o o ¢(i7k))
&g,k Bil

® curl (a(&)v@g;k)U{,q-{-l,o o @(@k)))

+ Z div (curl (a(g)vq)z;k)[[}g,qﬂ,o o ‘I’(i,k))

#{&0.5.kB.0}
&® Curl (a(g*)v(P%;*’k*)UE*’q+LO (o] é(z*,k*)))
= div 00,1 + div 0072. (831)

In Section 8.7, we will show that Og 2 is a Type 2 oscillation error so that
00’2 =0.

Recalling identity (4.14) and the notation (9.65), we further split Op 1 as

div 0071 = Z div <<G/(£)V‘I)(_i71k)w€‘,q+1,o o (b(z,k))

&§51,,k,p)l
® (%)V‘P&}@Ws,qﬂ,o ° ‘I’a,k)))

+2 3 div ((a(é)VQ&}k)Wg,q-t,-l,O o (I)(i,k)>

€47,k 5.0
®s (V@(g) X (Vq)g;,k)[uﬁ,trl’l,o o (I)(Z,k))))
+ Y aiv((Va ¢ (VO Ueario0 P )
&ingk il
® (Va(ﬁ) X (V‘I)(T;‘,k)U&q-ﬁ-l,O ° ‘I’(i,k)>))
= div ((9071,1 + 00’1’2 + 00,1’3) . (8.32)
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Aside from Oy ; 1, each of these terms is a divergence corrector error and will
therefore be estimated in Section 8.8.

Recall by Propositions 4.3, 4.4 and by (8.3) that W¢ 4410 is periodized to
scale ()\q+17’q+1’0)71 = )\;(1). Using the definition of Py, , , and (7.8), we have
that*

We g+1,0 @ We g41.0

:][3 Wg,q+170 & Wg,q+170
v

Mmax Pmax
+P>x0 (Z Z P[q,nm} + ]P[(I7nmax7pmax+1]> (We,g+1,0 ® We g11,0) -

n=1 p=1

Combining this observation with identity (4.15) from Proposition 4.4, and with
the definition of the a() in (8.2), we further split Op 11 as

diV (0071,1)
= ) d <a(£)v(I> ( We,g+1,0 © We g41,0(P(, k))) Vq)&_%)
RRNR A
nrﬂ'dx pmax
; -1
+ Z div (aé)V(I>(i7k)P2/\q.o (Z Z Py np + P[q,nmax,pmaxﬂ])
&ingk il n=1 p=1

X (W@ W)eg41,0(R(ik)) VO, k))

: R oo~
. 2j+4 2 2 0, — T
= div ( E E :5q+1,0,17rqi1 M j,k) Ve (45 = ]2j+4)v®(z k) (=39 V(I) (i k))

id.kpl € q+1,0,p FqH
NMmax Pmax
2 -1
"> OIS (Z > Pl +]P[q,nmax,pmax+1]>
&£0,3, kBl n=1 p=1

X (W& W)e g+1,0 (‘I’(i,k))vq)&?;;)

Mmax Pmax
-1
+ Z “?ﬁ)(vq)(i,k))aepzkw (Z Z Prg,n,p) + P[q’nmx,pmxﬂ])

£,5,0,k,B)1 n=1 p=1

X (Wew’y)f,q+l70(q)( )8 (V(I)(Z k)) (8.33)

By Proposition 4.1, equation (4.1), and the definition (8.1), we may rewrite the

4The case 7 = 0 is exceptional in the sense that the minimum frequency of ]P‘>>\q o and the

minimum frequency of P, 1 o) are in fact both equal to Ag,0 = Ag,1,0 = )\ )‘q+1 from (9.27)

and (9.22). For the sake of consistency with the 7 > 1 cases, we will 1nclude the superfluous
PZM o in the calculations in this section.
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first term on the right side of the above display as

. R .
i 2j+4, 2 2 ,0,8,4,4,k -1 T
div Z Z‘;ﬁmﬁrqil M(i,5.k) Ve <5qpfﬂzy+4> VO (@8 Ve,

ig.kpl & q+1,0,5% g31

=div > i (5q+1,o,1fiiﬁ4ld - f%)
igoke T

_ 2 3 2 2j+4
= —div Z n(i,jk)qu +V E : W(i,j,k)5q+1,0,1rq+1
ikl Wikl

= —div (J%ZQ) + V. (8.34)

In the last equality of the above display we have used the fact that by (6.142)
we have

Re, = Yt mBe, - (8.35)
iydik,l
We apply Proposition A.18 to the remaining two terms from (8.33) to define for
1<n < Npax and 1 < p < prax

0 . 2 -1
. ( Z Vaigy VO P, o Plgn.p)
&ingik il
X (We,g41,0 © We g41,0)(R(ik) VO

+ Z a(f) v(I)(zlk )QGIPZ%q,OP[q,mP]
&ig. k.l

X (qu+1,owg7q+l7o)(<I>(i,k))aa(v<1>(—i}k))C,y>. (8.36)

The last terms from (8.33) with Pry,, . 4y will be absorbed into IquH,
whereas the terms in (8.36) correspond to the error terms in (7.15).

Before amalgamating the preceding calculations, we pause to calculate the
means of various terms to which the inverse divergence operator from Proposi-
tion A.18 will be applied. Examining the equality

Brvg.0 + div (vg0 @ vg0) + Ve, = To + Ny + Og + div Ry, + div RE™™ (8.37)

and recalling the definitions of Ty, Ny, and Og, we see immediately that every

5Recall that H is the local portion of the inverse divergence operator. The pressure and the
nonlocal portion will be accounted for shortly. We will check in Section 8.6 that these errors
are of the form required by the inverse divergence operator as well as check the associated
estimates.
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term can be written as the divergence of a tensor except for d:v,0 and 7p.
Note, however, that vy 0 = vy, + wgi1,0, that ng, Oyvy, = 0 (by integrating in
space (5.2)), and that wg41,0 is the curl of a vector field; cf. (8.13). This shows
that [ 9;vg,0 = 0, and thus [, 7o = 0 as well. Therefore, we may use (A.72)
and (A.78) to write

To=div (H+R")To) + VP.

We can now combine the calculations of (8.28), (8.31), (8.32), (8.33), (8.34)
(8.35), and (8.36) and let the notation V7 change from line to line to incorporate
all the pressure terms to write that

Orvg,0 + div (vg,0 ® vg,0) + Ve,
=To + Ny + Op + div Ry, + div RZo™
= To +No + div (Op,1) + div (Op2) + div Ry, + div R™
= To + Ny + div (Io%gq + (’)07171) +div (012 + 0,13 + Op2) + div REO™™
=To+No —
+div(H+RY)| Y Vai Ve,
§,5,5,k,p,1

M max Pmax
B (35 3 Bat + P

n=1 p=1

X (We g41,0 @ We 41, 0)(¢’(i,k))v¢’@i)
+ Yl (VL) as

£,i,5.k,P,0

Mmax Pmax
X IP>2>\q,0 Z Z IPD[q,n,p] + HD[q,nmax,pmax+1]

n=1 p=1
< W ) 11000000900 (T2 s | (5.39)
+div (Op,1,2 + Oo,1,3 + Op2) + div égomm :

After separating out the local H from the nonlocal R* parts of the inverse
divergence operator in the last two terms of the above, we may rewrite

0rvg,0 + div (vg,0 ® vg,0) + Vpe, + VT

= div [(7—[ +RY) (To) + (H + R*) (Np) +Rem™™ (8.39)

transport Nash

HHAR) (D Valy VO Planmmepmact1

€,i,5.k, B0
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X (Weg1,0 © Weg41,0)(P(a) ) VR (8.40)

1
+ Z a(&) v(b(l k)) 9P[Q7nxnax7pmax+1]

€,i,5.k,B,0

X (WE 441 0WE 1 0) (@i )00 (VY e ) (8.41)

Mmax Pmax
Z Vat oV, k)]P>/\q,o (Z Z P[tmm])

£i,9.kBl n=1 p=1
X (We g11,0 @ We,g11,0)(®(ip)) VO 1y (8.42)
Mmax Pmax
2 -1
+ > @l (Ve))aoPzx, (Z >, E”[q,n,p]>
&g kBl n=1 p=1
X (ngqul,Oqu-‘rl,O)((P(i,k))aa(v(ﬁ(i’lk))C*y) (843)
+ 00,12+ 0013 + Op2 } (8.44)
— =~

divergence corrector  Type 2

Mmax Pmax
—|—div’H( S Ve, Ve L Paa,, (Z > P[q,n,p]>

&gk pol n=1 p=1
x (Weg+1,0 ® Wg,qﬂ,o)(@(i,k))V(I)(’iﬁ) (8.45)
Mmax Pmax
2 —1
+ D a4l (Ve )aoP2a,0 (Z > P[q,n,p]>
&gk pl n=1 p=1

X (W i 1.0WE 411,00 (®(i.k)) Oa (V5 ) (8.46)

Mmax Pmax

= div (Rq+1 + div (Z Z an p> + div é;omm7

n=1 p=1

thus verifying (7.10) from Proposition 7.3, after condensing the terms from
(8.40), (8.41), (8.42), and (8.43) into Rq+1v and using (8.36) to place the terms

from (8.45) and (8.46) into H?

@m,p°
8.3.2 Thecase 1 <7 < Npax — 1
From (7.17), we assume that v, 51 is divergence-free and is a solution to

Ovgr—1+div (vg5-1 ® vg7-1) + VPgr—1
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Nmax Pmax 1—1

= div (Rq+1> + div (Z Z Z qnp> +diV}%20mm.

n=n p=1n'=

Now using the definition of Io{qﬁﬁ from (8.7) and adding wg41,5 as defined in
(8.13), we have that v 7 = vg7-1+Wet1,7 = Ve, D g<pr<i_1 Wat1,0 T Woi1,7
solves

O0rvg 5+div (vgm ® vg5) + Vg m-1

Nmax Pmax n—1

= div (Rq+1)+dlv<z ZZ qnp>+divlo%20mm

n=n+1 p=1n’
+ (0 + Ve, - v)wq+1,ﬁ + wgt1,7 - VWQ

+ > div (Wer1m ® Wept . + Wert @ We1,7)

n/<mi—1
Pmax .
+ div <’wq+1’ﬁ @ Wyy1,7 + Z Rq’ﬁJT) . (8.47)
=1

The first term on the right-hand side is R +1 , which satisfies the same estimates
as Rq+1 by (7.20) and will thus be absorbed into R”+1 (these estimates do not
change in 7 save for implicit constants). The second term, save for the fact that
the sum is over n’ < n —1 rather than n’ < 7 and is therefore missing the terms
H;’n > matches (7.17) at level 71 (i.e., replacing every instance of n — 1 with 7).
As before, we apply the inverse divergence operators from Proposition A.18 to

the transport and Nash errors to obtain

(0r + e, - Vwgr1m + werr5m - Vg, + V7
= div ((H + R*) ((8t + Ueq . V)qurl_’ﬁ + Wy41,7 ° V’Ueq)) )
and these errors are absorbed into R? 1 or the new pressure. We will show in

Section 8.7 that the interaction of wq41 7 with previous terms wq41., is a Type
2 oscillation error so that

Y (Wer1 ® Wertw + Wartn © War1m) = 0. (8.48)
n’'<n—1

So to verify (7.17) at level 7, only the analysis of

Pmax

div Wyt1,7m @ Wyr1,7 + E Rq-ﬂﬁ

=1
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remains. Reusing the notations from (8.29)% and writing out the self-interaction
of wyy1,7 yields

div (wg41.5 @ wat1,7)

= Y div (Curl(a(S)V®E,k)U§,q+1ﬁ)®Cur1(a(£)v¢ZkU£,q+l,ﬁ))

&gkl

+ 0> div (curl (ae) VO( oy Ue.gr1) ® curl (aen VO 1y Uer +1ﬁ))
#L&i.0,k. 5.0}

i=div Oy 1 + div Oz 0. (8.49)

As before, we will show that O 2 is a Type 2 oscillation error so that
Oz.2=0.

Splitting Oz 1 gives

divO5; 1 = Z div ((a(g)v(b(_i,lk)WE’qulﬁ o ‘I)(i,lc)>

€idoh ]
® (a(f)V@&}k)Ws,qHﬁ ° %‘Jc)))

+2 Z div ((a(g)VQJ(_i}k)Wquﬂﬁ o (I)(z,k)>

&,1,5,k,p,1
o (Faio = (987, e 0)

+ Z div ((Va(g) X (v¢67k)U£,q+1,ﬁ ° ‘I)(i,k)))

&gkl
® (V%) X (V(I)%;,k)UE,tﬁlﬁ ° ‘P(i,k))))
=div (0511 + 0512+ 05.13). (8.50)

The last two of these terms are again divergence corrector errors and will there-
fore be absorbed into R? 1 and estimated in Section 8.8. So the only terms
remaining from (8.47) are On 11 and Zg:al" ]%qﬁ,ﬁ, which are analyzed in a
fashion similar to the m = 0 case, save for the fact that summation over p is now
crucial.

Recall—cf. (8.10)—that W¢ 415 is periodized to scale ()\q+17"q+17ﬁ)71 =

SIn a slight abuse of notation, notice that the admissible values of I have changed, since
these parameters describe the checkerboard cutoff functions at scale /\;% ; and thus depend
on n.
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)\;%. Using (7.8), we have that

We g+1,7 @ We gr1,7

:][ We g+1,n @ We g11m
TS

NMmax Pmax
‘Pon, ( S n»[]) (Weysrn & Wearrn).

n=n+1 p=1

Combining this division with identity (4.15) from Proposition 4.4, we further
split Oz 1,1 as

div (Oﬁ,l,l)

Z div {a(ﬁ)vq’(z k) ( . We g41,7 ® Wﬁ,qul,ﬁ((I’(i’k))) Vo k)]

£,i,5.k, 5,0

Mmax Pmax
: 2 —1
—+ Z le |:a/(§)v¢(i)k)P>)\q(ﬁ ( Z Z ]P)[q’n,p] + P[q,n,nax,pn)ax+l]>

€5,k 5,0 n=n+1 p=1

x (We W)&q%—l,ﬁ(q)(iyk))Vq)(i?;;)}

R,

T +4 q,7,P,J, 1,k -1 -

= div [ Z Og+1, ”vprqil Mg Ve (5q+1 ,,szl“) D DV k)]
n,pt g

€,i,5.k, B0

Mmax Pmax
+ Z Va k)P>)‘qn ( Z ZP[‘L”’P] +P[q,nmax,pmax+1]>

IXRA RN n=n+1 p=1
x (W W)&q-&-l,ﬁ(q}(i,k))vq)&?;;)

Mmax Pmax
2 —1
+ 2 6l (VOGh)aoP, ( > > P +P[q,nmx,pmx+u>

€5,k B0 n=n+1 p=1

X (WBWW)&(J—FLE(@( )8 (V(I)(llk)) (8.51)

By Proposition 4.1, equation (4.1), and identity (8.8), we obtain that

Ry7 ,1,D,J,1,k _
div Z ZétﬁLlﬂPF +1 77(173 k?),yg ((5 = 11112j+4> Vo zk) (5®§) Vq)(lk

i.5.kB0 € a+1npT g+l

Pmax

. 2 +4
= div Z Mg k) | Oarraplyhs 1d = ZRq,np

i,4,k,p,0
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Pmax
= —div Z Z ”?i,j,k)Rq,ﬁ,ﬁ‘*‘ \% Z W(Zi,j,k)5q+1,ﬁ,z7rt2;ﬁ4
i,5,k, P=1 i,g,k, 0
Pmax B
= —div Z Rymp+Vm, (8.52)
=1

where in the last equality we have appealed to (6.142). We can finally apply
Proposition A.18 to the remaining terms in (8.51) for 7+ 1 < n < npax and
1 < p < Pmax, to define

[ Z Va(f (b(z k)P>>\q ﬁP[q,n,p]
§,4.9,k.p

X (Wﬁ g+1,a @ Wﬁ,qﬂ,ﬁ)(‘l’(i,k))V@@ 0

+ > a4l (VO))aoPor, - Plany)
&,1.5,k,p
X (Wg,qu1,%“’qu+1,ﬁ)((I’(i,k))af%(vq)(_i,ll'c))@7 ’ (8.53)

As before, the terms from (8.51) with Plgnumax pimaxt1] Will be absorbed into

Rq+1 We will show shortly that the terms H" np 0 (8.53) are precisely the
terms needed to make (8.47) match (7.17) at level n. As before, any nonlocal
inverse divergence terms will be absorbed into Rq e

Recall from (7.9) that Rq 1 will include RZ +11 in addition to error terms

arising from the addition of wq41,7 which are small enough to be absorbed in

Ry11. Then to check (7.17), we return to (8.47) and use (8.49), (8.50), (8.51),
(8.52), and (8.53) to write

8,51}(1’% + div (Uqﬁ ® 'Uq’ﬁ) + qu,ﬁ,1

Nmax Pmax n—1
= div ( >y Z W) +div (R7!) + div Rgome

n=n+1 p=1 n'=
+ (0 + v, - V)wq-i-l,ﬁ +wey1,7 - Vg,

> div (Wer15 ® Wer1 s + Wept . @ Wit )

n'<n—1
pmax
+ div { wgt1,5 @ Wey1,7 + E , Rym5
=1

Nmax Pmax n—1
e ( ¥ 35, )

n=n+1 p=1 n'=
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+ div (fi’?lf +(H+R") (3twq+1,ﬁ + g, - quJrl,ﬁ)
+ (H+R*) (wgs1,n - Vg,)

+ Z (Wqt1,7 @ Wat1,07 + Wat1,n @ wq+1,ﬁ))
n'<n—1

pmax
+div (0512 + O3+ On2) + Vr +div ((957171 + Z Rqﬁ,ﬁ>

= div R®™™ 4 div < ”Z pi: nZl )
: q q n,p

n=n+1 p=1n’
+ div (é?-&jll + (H + R*) (atwq+1,ﬁ + Ve, * qu+1,ﬁ)
+ (H+R*) (wgs1,7 - Vg, )

+ E:WHW®%HW+%HW®%Hﬂ>
n'<n—1

+ div (0571)2 + Oﬁ,l,B + 05,2) + Vr

+div (H +RY) < Y. Vai, Vo,

€,i,5.k,5,0
NMmax Pmax
X P, n z: 2 : Prg,n,p] T Plg.mma pmax+1]
n=n+1 p=1

x (W® W) e.q+1,7(P(, k))v‘l)(_l k)
(VO

»M

Mmax Pmax
2Xq, 7 ( Z Z P[Qan7p] + ]P)[‘anax;pmax"l'l])

n=n+1 p=1
x (WQW’Y)&,Q-H,?L((I)(LM)8Oé(vq)(i,1k))CW) - (854)
In order to check which contributions go into R? "1 and which go into H ;Ln .
we further decompose the above as

(“)tvqﬁ + div (Uqﬁ ® ’Uqﬁ) +Vm

Nmax Pmax n—1
— M comin :
VR D D) Hiy

n=n+1 p=1 n'=
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+ div (I'o{?;ll + (H + R*) (at’qurLﬁ + ’qu . quJrl,ﬁ) (855)

transport
+(H+RY) (wq+1ﬁ . qu) (8.56)

Nash
+ Z (wq-i-lﬁ & Wq+1,n' + Wq41,n' ® wq+17ﬁ)) (857)
n/<n—1

Type 2

+ div < 05,1,2 + 05,1,3 + 0572 > (8.58)
—_—— ~—~—~

divergence corrector  Type 2

+div { (H+R") Z VCL(E vq)(zlk)P (¢, Panax Pmax+1]
&.isg kBl
X (We g1, ® Weg1,7) (k) VR ) (8.59)
+ Z a?&)(Vq)(_i,lk))aGP[q,nmx,pmerl]

€15,k B0

X (W i1 iWE 1) (@) (V) ) (8.60)

Mmax Pmax

R’ < Z va%&) (i k)]P>’\q 7 ( Z Z Plgn.p + P[q,nmax,pmﬁl])

£,i,4.k,Bl n=n+1 p=1
X (W®W)E,Hl,ﬁ(@(i,k))vq)(_i?;;) (8.61)
NMmax Pmax
+ Y ai(V (k)a9P>x\qn( > > Pl + Plama. pmxﬂ])
€5,k 5,0 n=n+1 p=1
X (WOW) e g11,7(Pi,k))0a (VO )¢ )] (8.62)
Mmax Pmax
+div {7—[( Y Va Ve k)ﬂ%w( > ZP[QW])
&4kl n=n+1 p=1
X (W& W)e q41.7(P(i k) ) VR (8.63)

Mmax Pmax

+ ) (Vv D0 ))aoPn, (Z Zp[q,n,po

€i,3.k. Bl n=n+1 p=1

< O 1250000020 (V251 ) ) (5.64)

Mmax Pmax

_dlchomm+dlqu+1+le Z ZZ q'n,p’

n=n+1 p=1 n'/=
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so that the terms in (8.55), (8.56), (8.57), (8.58), (8.59), (8.60), (8.61), and

(8.62) are placed into R, ;, while the terms in (8.63) and (8.64), and the triple
sum of H (;f;l’p terms in the first line, are incorporated into the new triple sum

of ﬁ;;,p terms. Note that we have implicitly used in the above equalities that

(at + g, - V) Wq+1,7 has zero mean, which can be deduced in the same fashion
as for the case n = 0.

8.3.3 The case T = nyax

From (7.24), we assume that v, —1 is divergence-free and is a solution to

MNmax

OtV s —1+div (UQ>nmax_1 & ”q,nmax—l) + VDg nmax—1

Nmax —1 Pmax

= div (ﬁzgﬁfl) +div ( Y ﬁ;;max,p> + div RE™™

n’=0 p=1

Now using the definition of }o%q,nmmp from (8.7) and adding wq+1,p,,,, as defined
in (8.13), we have that vg11 1= Vg nuu—1 T Wet1,mma, SOIVES

Opvgi1 +div (Vg1 @ vg11) + VDgnpae—1

= le égomm + diV (REZ-T:TX71> + (8t + ,Ulq ' V)wq+17nmax + wq+17nmax ' VU@

q

+ E diV (Wgt1,nmex @ Wat1,m/ + Wat1,n/ @ Wat1 mpmas)

n/<nmax—1

Prmax
+div <wq+1,nmx ® Wgt1,nmax t Z Rq,nmaxm> : (8.65)

p=1

We absorb the term div (égfix_l> into éq+] immediately. We will then show

that, up to a pressure term,
HAR) (0 + vty V) Wortine )y (H+RY) (Wettme - V02, )

can be absorbed into ]f%qH in Sections 8.4 and 8.5, respectively. We will show
in 8.7 that the interaction of wg1,n,,,, With previous perturbations w1,/ will
satisfy

3 (Wattim ® Wartar + Wt © Wapt ) = 0. (8.66)

’
N/ <Mmax—1

Thus it remains to analyze

Prmax
div | Wet1,nmax @ Wat1,npmay + E R mmax
p=1
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from (8.65). Reusing the notations from (8.29)—(8.30), we can write out the
self-interaction of wq41,n,,.. as

iV (W1 nmax @ Wet1,nmay)

Z div (Curl (a(g)V<I>ak)U57q+1,nmx) ® curl (a(f)quZkU&q-&-anax))

€., k)]
+ ) div (Cuﬂ(a(s)V‘I’a,k)Ug,qul,nm)®Cuﬂ(a(wV‘PZ/,;@/)Ué',q+1,nmax))
#{&,0.5,k,p,0}

=divOy,,.1+divO,, .. 2. (8.67)

As before, we will show in Section 8.7 that O

nmax,2 15 @ Type 2 oscillation error
and so

Onpax2 = 0.
Splitting O, 1 gives

divO,,a= > div ((a(g)vq@}k)wg’qﬂ,nm o D)

&,4,5,k,p,l
1
® (a(ﬁ)vq)(i,k)wf,qﬂ,nmax o ‘I’(i,k)))

+ 2 Z div ((a(g)v¢6}k)wﬁ,q+l,n,,,ax © (I>(i,k:))

&,1,3,k,p,l
®s (Vage x (V@E,k)wg,qﬂ,nmx o (I)(i,k)))>

+ ) div ((V%) X (VO 1)Ut 41 mmar © Pisk)))

&isgkp,l
® (Vage) X (VO 1y Utq41,mmax © (I)(i,k))))
= le (Onmax7171 + OnmaX7112 + OnmaX7113) . (868)

The last two of these three terms are again divergence corrector errors and will
therefore be absorbed into R, and estimated in Section 8.8.

Recall—cf. (8.3)—that W¢ 411 5., is periodized to scale ()\quqH,nmx)*l
Agm.. . Combining this observation with (4.15) from Proposition 4.4 and (7.8),
we further split O, 11 as’

diV (Onmax1171)

“In this case, the projection P>y na, Das a greater minimum frequency than the pro-
jection Ppg o bax+1]; - (9:28), (9.223, and (7.6). For the sake of consistency, we write
PZAq.nmax Py nmax.pmax+1] throughout this section.
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Z div a(g)vq)(z k) We g+ 1mmax @ We,g1,nmax (i k)) V@(_i:‘,,;)
T3

&i,5,k,p,0

+ Y div[ 02 VO P, o Pl e 1]

X (We g1 mmax © We g 1mm0) (R(i,1) )V O k)]

= di 2j+4 Ry ninase,pgii ke
=V D et oD 008 <5r2j+4
€.isgk,pil 4+1,nmasxpd g41

X VO L (@& Ve T,

-1
+ Z V“(f v<1>( k)P>Aq,nmaxP[q,nmax,pmxﬂ]
€i,5,k,p,0

X (Wﬁ,qul,nmax ® W£7Q+17nmdx)(¢(lvk))v¢6’7];)

2 —1
+ Z a(e) (V‘D(i,k))wpqu,nrm P[q,nmax,pmaxﬂ]
&i,5,k.p,0

X AWE gt s W2 gt ) (R (00 ) 00 (VO )y (8.69)

By (4.1) from Proposition 4.1 and (8.8), we obtain that

R(],"Lma:np Jyi,k
D D FEPR o T <r

)
&ingkopl g+1,nmax,pt g+1

x VoL (@& Ve T,

. 2 [2i+4
= div Z 77(1,],1@) (6q+17nma:c7p (]i—l Id — Rq nma:np)
irjk,p,l
Pmax 4
. 2 . 2 +
= —div Z Z n(i,j,k)R(bnmamP + v Z n(i7j7k)5q+1,nmaX7quil
ik, P=1 ijikpl
Pmax B
i=—div Y Rynppep + V7, (8.70)
p=1
where in the last line we have used (6.142). We can apply Proposition A.18 to
the remaining two terms in (8.69) to produce the terms

(H+RY) Z V“(é V(D(_ k)P>Aq,nmaxP[q,nmax,pmxﬂ]
£, k,p,l

x (W® W)g,qﬂ,nm(cb(i,k))v%fc)
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2 —1
+ Y a4l (V)P e Pla o pmas +1]
£ig.k,p,l

X (WOW) g g1, mmae (B6.0) )0 (VR e | (8:71)

which will be absorbed into }c?q_H and estimated in Section 8.6.
Before combining the previous steps, we remind the reader that at this point,
Ry41 will be fully defined, and will include Rgi‘{x_l, all the error terms arising

from the addition of wq1,n,,.,, and é(c]omm. Then from (8.65), (8.66), (8.67),
(8.68), (8.69), (8.70), and (8.71), we can finally write that

Opvg+1 + div (Vg1 ® Vgt1) + VDo nman—1
= div égomm + div (éZ—T-‘TX71> + (8t + Ve - v)wq+117lmax t Wat 1, mmax Vg

q

+ E AV (W1 nmax @ Wat1,n7 + Wot1,07 @ Wt mpmas)

1/ <nmax—1

Pmax
+div | Wot1,mmax @ Wat1,mma T § R nmaseop

p=1
— div R 4 div [R+ (M R) (Dutgs 1 e + 0y + Vigs )
+ (H + R*) (quFl;nmax . vv‘eq)

+ E (W1 mmax @ Wat1,n + Wog1,n @ wq+1,nmax)}

n'<nmax—1
Pmax
Onmaxyl;l + Onmaxyl;2 + Onmaxyly?’ + (/)nmax;2 + z R(anax;p

p=1

+ div + V7

= div RS™™ + div [f%’;ﬁ*l + (H+ R*) (Wat 1,nmar + V0, - Va1 )

transport

(8.72)
+ (H + R*) (wq+17nmx . V’U@q)

Nash

+ E (Wat1,mmax ® Wat1,n/ + Wat1,n/ @ Wa1,np0x)

’
n/ <nNmax—1

Type 2

(8.73)

+div | O 1724’0 17354’0

nma)u nma)u nmaxa

2] +Vr (8.74)

divergence corrector Type 2
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+ div

H + R* Z va v¢( k)]P)>)‘q,"max]P)[qvnmampmax‘i‘l]
&isdik,pil
X (W& W)e g4 1,mman (B0 VO ) (8.75)

+ Z a%&) (VQ)&}]{;))QGPZAq,nmaxP[qwnmmupmax-"l}

&:0,3,k.p
X (W9W7)§,q+1,nmax(q)(i,k))aa(vq)(i}k))C’Y)] (8.76)
= div (Rg41) + V,

where the terms in (8.75) and (8.76) are Type 1 errors. This concludes the proof
after again noting that (&g + v, - V) Wq+1,7 has zero mean.

8.4 TRANSPORT ERRORS
Lemma 8.4. For all 0 < n < nyax, the transport errors satisfy

Dy qwgt1m = Owgi17 +ve, - Vg1
=div o (H+ R*) (Qywg1, + ve, - Vwgi1,n) + Vg

with the estimates

(|5, DY DM (H + R*) (Bywqi17 + ve, - Vigir,7))
S Og42l’

I,

Cr—1 i o~

a1 ’\év-s-lM (M, Nina,t, 7, Fqill’rqilT Y

for all N, M < 3Ning,v-

Proof of Lemma 8.4. The transport errors are given in (8.39), (8.55), and (8.72).
Writing out the transport error, we have that

(8t + ’qu . V) Wq+41,7

=0 +ve, V)| D cul (%,i,j,k,q,ﬁ,ﬁ,z”vq)ak>Uf,qﬂ,ﬁ o %yk))
TN R AN
> (Gt V) (“(é)v‘p(;,lk)) We g41,7 0 P p)
TN R AR
+ Y (04w, - V) Vagg) x (Vi 1 Ue g1 0 i)
RN R AR
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+ > Vae x (0 +ve, - V) VOk) U grimo i) - (8.77)

Due to the fact that the second two terms arise from the addition of the corrector
defined in (8.5) and (8.12), and the fact that the bounds for the corrector in
(8.18) are stronger than that of the principal part of the perturbation, we shall
completely estimate only the first term and simply indicate the setup for the
second and third. Before applying Proposition A.18, recall that the inverse
divergence of (8.77) needs to be estimated on the support of a cutoff ¢; , in
order to verify (7.13), and (7.20), and (7.27). Recall from the identification
of the error terms (cf. (8.37) and the subsequent argument) that for all 7,
(8,5 + vy, - V) Wq+1,7 has zero mean. Thus, although each individual term in the
final equality in (8.77) may not have zero mean, we can safely apply H and R*
to each term and estimate the outputs while ignoring the last term in (A.78).
We will apply Proposition A.18, specifically Remark A.19, to each summand
in the first term on the right side of (8.77), with the following choices. We
set v = vy, and Dy = Dy = Oy + ve, - V as usual. We set N, = M, =
[1/2 (Nin,7w — Neut,t — Newt,e — 5) |, with Ngee and d satisfying (9.60a). We define

G = (9 + v, - V)(ag) VP )E,

. o _1 1—cg+3 _ ~_ ~1
with A =T 1 \gmp v = 1—‘q—l-l y My = Ninas, v = Tq 1—‘q—i-l’ and
12 i—catits_—1
CG - |bupp n; 7k ,q,ﬁ,ﬁ,l)’5q+l,ﬁ7qu+1 Tq >

which is the correct amplitude in view of (8.14) with r = 1, 1y = ry = 2, and
(6.114). Thus, we have that

IDY DM G|, S Ca MgmaTar)™ M (M Ny — 1,7, Tis§ 2,7, )
(8.78)

for all N,M < [1/2(Ngy 5 — Neus,t — Neut,z — 5)| after using (9.42) and (9.52),
and so (A.66) is satisfied. We set ® = &, ;, and X = Xq. Appealing as usual to
Corollary 6.27 and (6.60), we have that (A.67) and (A.68) are satisfied.
Referring to (1) from Proposition 4.4, we set 0 = 0¢ x,4y,rpr, and U =
Ve Agsrrgrrn- Setting ¢ = Xgy1, we have that (1) is satisfied. Setting pu =
Ag+1Tq+1,7 = Ag,n and referring to (2) from Proposition 4.4, we have that (2)
is satisfied. Setting A = { = A\g41 and Cy = 714415 and referring to (4. 11)
and (4.12) from Proposition 4.4, we have that (A.69) is satisfied. (A.70) is
immediate from the definitions. Referring to (9.48), we have that (A.71) is
satisfied. Thus, we conclude from (A.73) with agr as in (9.53), that for N, M <

L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,ac - 5)J - dv

DY (1 (@1 + ve, - W) a VR E) )|

1
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= ||DND1\/I GQO(I)))HLl

1/2 i—cz+j+6_—
< |supp (nijlc,q,N,;B,l)’équl,ﬁ,qu-i-l Ty Terim

1 _
XA AN LM (M, N, 7 Ty, 7 T L)
after appealing to (9.42). From (9.60c), these bounds are valid for all N, M <

3Nina,»- The bound obtained above is next summed over (4, j, k, D, 7, f) First,

we treat the sum over . By noting that (6.147) with 7, = 2 and 7, = 2 and
(9.42) imply

3 i—catj+6 25+8)+ P2 nicatit6 _ pF43
’Sllpp T; 7.k,q,m,p, l)|Fq+1 < Fq+1 Fq+1 Fqul ’

T
we conclude that

||DND%I (7‘[ (3twq+1,ﬁ + Ve, - quJrlﬁ))

1+1

b+3 1/2 ~1
E § 2
Fq-‘rl q+1,m,1 11 Tq+1,m

v'=i—1j,k,p,§

—1
X)\qulAq—‘rlM (M7Nind,t7 q Fq+1, q Fq+1)

HLI(Suppwi,q)

< F:ilz 5;-1—1 7,17q TIJ+1 n’\q+1 q+1M (M Ning it Tq F;—fl?Nq 1Fq_Jrl)

q-& K +2)‘qul'/\/l (M Nind,z, 7 q 1F311117~q_1rq-i}1) (8'79)
after also using (9.57).

To finish the proof for the first term in (8.77), we must provide a matching
estimate for the R* portion. Following again the parameter choices in Re-
mark A.19, we set No = Mo = 3Njnq,. As in the argument from Lemma 8.6,
we have that (A.75), (A.76), and (A.77) are satisfied, this time with ¢ = Ag41.
Thus we achieve the estimate in (A.79). Summing over I'loses a factor less than
)\2 11, while summing over the other indices costs a constant independent of q.
This completes the estimate for the first term from (8.77).

For the second and third terms, we explain how to identify G and g in order
to give an idea of how to obtain similar estimates. Using 1 from Proposition 4.4
and the vector calculus identity curl o curl = V odiv — A, we obtain that

U€ g+1ln = = curl (gAq—EcliAd ' (195 >\q+1ﬂ"q+1,ﬁ))

= A6 x V(A% (Ve (8.80)

q+177"q+1,ﬁ)) .

With a little massaging, one can now rewrite the second and third terms in (8.77)
in the form Ggo ®(; ;). Since both terms have traded a spatial derivative on
Ug 4+1,7 for a spatial derivative on a(¢), inducing a gain, one can easily show that
the estimates for these terms will be even stronger than those for the first term.
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Notice that we have set N, = M, = |1/2 (Ngn,5n — Neut,t — Neut, — 7)) since we
have lost a spatial derivative on a(s). We omit the rest of the details. O

8.5 NASH ERRORS
Lemma 8.5. For all 0 <1 < npyax, the Nash errors satisfy
Wot1,7 - Vo, = div ((H + R*) wgq1,7 - Vg, ) + Vs
with
40 D* D7, (3 + R w17 V),
N 511+2Fq_+c¥_1>‘év+1M (M, NindvthrJIFZillvF;Jil?cfl)
for all Ny M < 3Nipg,p-

Proof of Lemma 8.5. The estimates are similar to those in Lemma 8.4. Writing
out the Nash error, we have that

T
worra Vo, = ) D cwl (ag,i,j,k,qﬁvq’@,k)Us,q+1,ﬁ ° ‘P(i,k))
imlsisitljkple

Z va(ﬁ) X ((I)g;,k)[u&,q+l,ﬁ © ‘I)(i,k)> . qu
RN AN

+ Z a(ﬁ)vq)(_i,lk)wi,qﬂ,ﬁO‘D(i,k) Vg,  (8.81)
0.4k, BLE

Due to the fact that the first term arises from the addition of the corrector
defined in (8.5) and (8.12), and the fact that the bounds for the corrector in
(8.18) are stronger than that of the principal part of the perturbation, we shall
completely estimate only the second term and simply indicate the setup for
the first. Before applying Proposition A.18, recall that the inverse divergence
of (8.77) needs to be estimated on the support of a cutoff ¢; , in order to
verify (7.5), (7.13), and (7.20). Note that the Nash error can be written as
div (wq+17ﬁ . vzq) and so has zero mean. Thus, although each individual term
in the final equality in (8.81) may not have zero mean, we can safely apply H
and R* to each term and estimate the outputs while ignoring the last term in
(A.78).

We will apply Proposition A.18 to the second term with the following choices.
We set v = vy, and Dy = Dy = O + vg, - V as usual. We set N, = M, =
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11/2 (Ngn,w — Neut,e — Neut,t —4) |, with Ngee and d satisfying (9.60a). We define
-1
G= a(f)vq)(i,k)g Vg,

and set y
2 i—cg+j+5_—1
Co = ‘Supp (ni,j»k,qﬁ,ﬁf)|6q+1ﬁyqu+cl ! Tq >
A =Tyrdgmp v =71, T 5%, My = Nipay, and 7 = 7,7 '}, From (8.14)
with r = 1 and r; = 7o = 2, (6.114), and (6.60), we have that for N, M <
\_1/2 (Nﬁn,% - Ncut,x - Ncut,t - 4”

N _ i —Cx ~ _
DX DG . 5 Co (Cginda) M (M N7y T 7 T, )

(8.82)

and so (A.66) is satisfied. Note that we have used (9.39) when converting the
5;/2Xq to a7, ' Setting ® = ®; ;) and N = Xq, we have that (A.67) and (A.68)
are satisfied as usual. The choices of g, 9, ¢, i, A, and C, are identical to those
of the transport error (both terms contain We 441 50®; 1)), and so we have that
(1)—(2), (A.69), (A.70), and (A.71) are satisfied as well. Since the bound (8.82)
is identical to that of (8.78), we obtain an estimate identical to (8.79). The
argument for the R* portion follows analogously to that for the first term from
the transport error. Finally, after using (8.80) again, one may obtain similar
estimates for the first term in (8.81), concluding the proof. O

8.6 TYPE 1 OSCILLATION ERRORS

The Type 1 oscillation errors are defined in the three parameter regimes n = 0,
1<n < npmax — 1, and 7 = nyax. In the case n = 0, Type 1 oscillation errors
stem from the term identified in (8.38), which we recall is

Mmax Pmax
* —1
(H+R)| D Vai Ve3P, (Z > Plamp + P[q,nn,ax,pmax+1]>

&g kBl n=1 p=1

X (We,g41,0 © We g1,0)(R(ik)) VO

M max Pmax
2 —1
+ D) aiy (Ve )aoP2a,0 (Z > Plmy) +P[q7nmx,pmax+u>

€5 kBl n=1 p=1

X (Wg,qH,OquH,o)((I)(ka))aa(V‘I)(_i,lk))m]- (8-83)

This sum is divided into the terms identified in (8.40), (8.41), (8.42), (8.43),
(8.45), and (8.46). The errors defined in (8.45) and (8.46) are HC, . errors

q,n,p



PROVING THE MAIN INDUCTIVE ESTIMATES 173

and will be corrected by later perturbations wg41,y,p, while the others will be
immediately absorbed into Rq 11

In the case 1 <71 < npax — 1, Type 1 oscillation errors stem from the term
identified in (8.54):

nmax pmax
* -1
(H+R") { Y Vai Ve i Psy, . < > D Pl +P[q,nm,pm+u>

€5,k n=n+1 p=1

X (We,gi1,5 © Weg1,7) (P(ik) ) VR

Mmax Pmax
EY (VO o, ( S +u»[])

IXRN RN n=n+4+1 p=1
x (Wgﬁlﬁwg,qﬂ,ﬁ)(‘I)(i,k))aa(v‘b(_zlk)) } (8.84)

This sum is divided into the terms identified in (8.59), (8.60), (8.61), (8.62),

(8.63), and (8.64). As before, the last two terms are H,?np errors and will be

corrected by later perturbations, while the others are absorbed into R? 1

In the case T = nmax, Type 1 oscillation errors are identified in (8.75) and
(8.76) as

H+R) | Vaiy Vo P
€,i,5.k,p,0
X (Wg’Q+17nmax ® W£¢Q+17nmax)( Z k))vq)(z’zl;

2 —1
+ Y Al (VLN)a8P2r . Planmas pmas 1]
€,i.5.k.p,0

X (Wg,q+1,nmaxwz,q+1,nmax)((I)( )8 (V(I)(_,L k)) (885)

Ag,nmax [q7nlnax7pn1ax+1]

These errors are completely absorbed into ]o%qﬂ.
To prove the desired estimates on these error terms, we will first analyze a
single term of the form

(H+R") Z Va?g)Vq)( k)P>)‘ ~P[q7n’p]
Eisgik, Bl

X (We 1,5 © Weg1,7) (D(ik) ) VO oy

+ Z a(&) (Ve zlk))a9P>>\ ~]P)[tL 0]
€,i,5.k, B0

X (WE 01 aWE 4113 (0.1 00 (VO L ey
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=: (7—[ + R*) (95757",1, . (8.86)

The estimates in Lemma 8.6 for this term on the support of a cutoff function
;.4 will depend on 7 and p, which range from 0 <7 < npax and 1 <P < prax,
respectively, and n and p, which range from n+1 < n < npax and 1 < p < prax,
with the additional endpoint case n = Npax, P = Pmax + 1. We then use this
general estimate to specify in Remark 8.7 how the terms corresponding to various

values of n, n, p, and p p are absorbed into either higher order stresses HT gn.p OF

RqJr17 and eventually Rq+1.
Lemma 8.6. The terms O 5., defined in (8.86) satisfy the following.

1. For the special case 1 = Nyax, P = Pmax + 1 and for all 0 < n < npyax,
1 <P < pmax, as well as for all cases 0 <N < n < Npax, 1 < 0,0 < Prmax,
the nonlocal portion of the inverse divergence satisfies

< Jar2 )\N ~M (8.87)

HDND]V[ (R*On,p n,p HLl(']I‘:S) —= )\ ‘H’l q

for all N, M < 3Nipq .
2. For n = Nmax, P = Pmax + 1, all 0 <1 < npax, and 1 < p < pmax, the
high frequency, local portion of the inverse divergence satisfies

HDND%] (Hoﬁ,ﬁ,nmmﬁpmax“'l) HLl(supp Yi,q)

ST 002 A0 M (M, Niga 7 T TEL7) (888)

for all N, M < 3Nipg .
3. For 0 <n <n < npax and 1 < p, D < Pmax, the medium frequency, local
portion of the inverse divergence satisfies

HDNDi)Vé (Hoﬁ,ﬁ,n#’) HLlsupp (¥i,q)

N 5q+1,n,p>\é\jn,pM (M Nind,t, 74 1F2+61“+4 Fq+117~' 1) (8.89)

for all N + M < Ngp p.

Remark 8.7. Note that after appealing to n < n — 1, (9.35), and (9.42), (8.89)
matches (7.15), (7.22), and (7.29), or equivalently (6.118). In addition, after
appealing again to n < n —1, (9.35), and (9.42), (8.87) and (8.88) are sufficient
to meet (7.13), (7.20), and (7.27).

Proof of Lemma 8.6. The first step is to use item (1) and (4.15) from Proposi-
tion 4.4 to rewrite (8.86) as

(H+R*) Z Vaiy VO Por, - Plgng)

&gkl
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X (We g1, © Weg1,5) (k) ) VO

2 —1
+ Z a}(g) (V(I)(i,k))Qapqu,ﬁp[q,nm]

&gkl
O 117 g ) P 9)00 (V)
* 2
=) [ S Fan, B ((0600m00)7) (@00
&ing kBl

g (8““%5)(“’(_ ) € (VR Joa
- a?@(wu,k))‘l)eafgma(v%fm)W)] B

Next, we must identify the functions and the values of the parameters which will
be used in the application of Proposition A.18, specifically Remark A.19. We
first address the bounds required in (A.66), (A.67), and (A.68), which we can
treat simultaneously for items (1), (2), and (3). Afterwards, we split the proof
into two parts. First, we set n = npax, P = Pmax + 1 and prove (8.87) for only
these specific values of n and p, as we simultaneously prove (8.88). Next, we
consider n < Nyax and prove (8.87) in the remaining cases, as we simultaneously
prove (8.89).

Returning to (A.66), we will verify that this inequality holds with v = vy,
Dy =Dy g =0+, -V, and N, = M, = [N*/2], where Nt = Nfins — Neut,e —
Neut,z — 5. In order to verify the assumption N, —d > 2Nge. + 4, we use that
Ngec and d satisfy (9.60a), which gives that

2Ndec + 4 S Ll/Z (Nﬁn,ﬁ - Ncut,t - Ncut,z - 5) - dJ . (891)

Denoting the _/@th component of the below vector field G by G, we fiz a value
of (57 ivj» kvﬁ; l) and set

_ 5 2 -1 0 T
G = Doy, (Vé(i,k))wf & (verd)
~1
+afe) (VO3s)  )as€’s0a (V%lk)) (8.92)
We now establish (A.66)—(A.68) with the parameter choices

Co = Isupp (1, 4 o5 T2 Ty 801Xy ] (fqynlfzi(f”) , (8.93)
n'<n

_ o _ N. _ —lpi—cg+4d ~ __ — ’
A= Naplg+1, My = Nipay, v = T Fq+1 , U= Tq Fqul’ and \' =

Applying Lemma 8.1 and estimate (8.26) with r = 2, ro = 1, 11 = 00, and the
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bounds (6.113) and (6.114), we see that

Dbl (ot (vacs,), €0 (voit) )

25+5
S Isupp (10, 5 g5 50 Tt AaisOa+ 1,75

Lt

N —1pi—ca+3 ~—1p—1
X (Tg+12q,7,5) M<MaNind7thq Fq+1 1 Tq Fq+1>
2j—2-C,
S 18P (1, 5 1o 7,50 | Data
—1 —C Y 8+Cy
X Lyl 0117 H (fq,n’rq+1 )

n'<n
x (g1 hgmp) " M (M Nind,t, 7y 1Fﬁ,1§ﬁ+3,?,;1rg+11) (8.94)
holds for all N,M < [1/2(Ngns — Neut,t — Newt,e —5)]. To achieve the last

inequality, we have used the definition of 0441 5 5 in (9.34) and the definition of
fqm in (9.31) to rewrite

Y - 77T+C -1 1—Cr Y 8+Cy
5q+1,n,p>‘q,n,prq+1 _Fq+qu 5q+1)‘q H (fq,n’rqﬂ ) .

n’'<n

For the second half of G, we can appeal to (6.113) and (6.114), and use that
Ag < Ag 5 for all n and p to deduce that

HDNDQ{IE)Q (Vo)

YR Lo (supp i, Xi,k,q)

N+1 —1pi—cy ~—1p—
< Tgsidgnp) M (M, Nina, 7, ' T 9,7, ' T )
for N, M < [1/2(Ngn 7 — Newt,e — Neut,o — 5)]. Combining these estimates shows
that
N i 43 ~— 1y
IDVDMG.||,, S Co (Tarirgmz) M (M, Nina,o, 75 T3 70T ;l)
(8.95)

for N,M < [1/2(Ngns — Neut,t — Neut,z — 5)|, showing that (A.66) has been
satisfied.

We set the flow in Proposition A.18 as ® = ®; 5, which by definition satisfies
Dy @i 1, = 0. Appealing to (6.109) and (6.112), we have that (A.67) is satisfied.
From (6.60), the choice of v from earlier, and (9.39), we have that Dv = Duy,
satisfies the bound (A.68).

Proof of item (2) and of item (1) when n = Nyaxy P = Pmax + 1.
We first assume that 7 < npax. In this case, we have that the minimum fre-
qUENCY Ag npmax+1,0 Of Plgno pmax+1] 18 larger than the minimum frequency A, 7
of P>, . from (9.28) and (9.22). We therefore can discard P>, . from (8.90)
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and with the goal of satisfying verifying (1)—(3) of Proposition A.18, we set

C = Agnmax+1,05 = Ag s A= Ag41, (8.96)

and
0 = Plg nmas,pmax+1] <(9§,Aq+1,rq+l,ﬁ)2) , (8.97a)
D= A 10D P11 (B0 ) (8.97D)

where we recall that o¢ » , is defined via Propositions 4.3 and 4.4. We then have
immediately that

2
0= ]P)[Q7nmaX7pmax+1] ((‘wa/\q+larq+1,ﬁ) )

__y—2d dy2d —d 2
- >\q1nmax+1,oA )\q7nnlax+170A (]P)[(L"max;pxnax""l] (Q£7>\q+larq+1,ﬁ))

= A +1,08%7 (8.98)
and so (1) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3,
we have that the functions ¢ and ¢ defined in (8.97) are both periodic to scale
(Aq+1’]"q+17’ﬁ)71 = )\;%, and so (2) is satisfied. The estimates in (A.69) follow
with C, = 1 from standard Littlewood-Paley arguments (see also the discussion
in part (b) of Remark A.21) and item (5) from Proposition 4.4. Note that in
the case N = 2d in (A.69), the inequality is weakened by a factor of A, for
an arbitrary ag > 0; thus, (2) is satisfied. At this stage let us fix a value for
this parameter ag: we choose it to be sufficiently small (with respect to b and
er) to ensure that the loss )\;"_"‘;1 may be absorbed by the spare negative factor
of T'gy1 in the definition of Cg, as is postulated in (9.53). From (9.19), (9.22),
(9.26), and (9.29), we have that

Ag < )‘qﬁ,ﬁ < )‘qﬁi S A nmax+1,0 < Agt1,

and so (A.70) is satisfied. From (9.48) we have that

N ec
)\4 < A‘Ivﬁ ‘
EAR OV WD W

if Ngec is chosen large enough, and so (A.71) is satisfied. Applying the estimate
(A.73) with « as in (9.53), recalling the value for C in (8.93), using (6.19) and
(6.147) with r, = oo and 7 = 1, we obtain that

||DNDtI\7/{1 (Hoﬁ,ﬁ,nmax,pmaerl) HLl(supp Vi q)
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i+1
@ 27—3—-C —
S D D ATIswD (gD T T
v=imlejkd
% bgeihg [] (FanT5ES) CoCT M N, 1,¢,A) M (M, M, 1, 7)
n'<n
o b C
S Ton (Fq-&qu CRéq-‘rl)‘q H (fq,n’rzilb>)
n’'<n
- lpi—citd ~—1p
X Ag m 10N 1M (M, Ninat, 75 ‘T 5,7, 11“(;1)
—C - — 1—Cq ~_ —
N Fq+frq$15q+2)\év+1/\/l (M, Nind,¢, 7q 1Fq+1 +4,7'q 1Fq4:1) ; (8.99)

for N, M < |!/2(Ngnn — Neut,t — Neut, — 5)] —d. In the last inequality, we have
used the parameter estimate (9.54), which directly implies

T, %60 ] ( fq,n,rgjfb) AL TG 5y, (8.100)

n’'<n
Then, after using (9.60c), which gives that for all n we have
LI/Q (Nﬁn,ﬁ - Ncut,t - Ncut,x - 5)J —d > 3Nind,vv (8101)

the range of derivatives allowed in (8.99) is exactly as needed in (8.88), thereby
proving this bound.

Continuing to follow the parameter choices in Remark A.19, we set N, =
My = 3Njpq,», and as before Nt = Nfin,# — Neut,t — Neut,z — 5. From (9.60d),
we have that the condition N, < N*/4 is satisfied. The inequalities (A.75) and
(A.76) follow from the discussion in Remark A.19. The inequality in (A.77)
follows from (9.43), (9.55), the fact that A = Tg1 1055 < Tgt1Aq5 paax> and
C = Agmmax+1,0 > Agnmax—1 = Mg, as in the discussion in Remark A.19. Having
satisfied these assumptions, we may now appeal to the estimate in (A.79), which
gives (8.87) for the case T < n = Nymax, P = Pmax + 1, and any value of p.

Recall we began this case by assuming that 7 < npax. In the case m = npax
and 1 < P < pmax, we have from (9.22) and (9.29) that A\j ... > Agnmaxt+1,05
and so

]P)[Q7nmax7pmax+1] ]P)ZAQ,TT = ]P)Zk

4,mmax

Then we can set { = t = Agp,... The only change is that (8.100) becomes
stronger, since Mg ... > Agnma+1,0, and so the desired estimates follow by
arguing as before. We omit further details.

Proof of item (3) and of item (1) when p # ppax + 1 and n < npax.
Note that in both of these cases we have n < n. We first point that that we may
assume that n and p are such that Ay 7 < Agnp. If not, then P>y, Py np =0,
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and so the estimate is trivially satisfied. We then set

¢ =max{ A\, Aqnp-1}> = Agw, A=Xgnp, (8.102)
and
2
0= P>)‘q ﬁP[q’"»p] ((Qﬁ,Aqul,qurlﬁ) ) ) (8.103&)
9= Ao, Pgngt (aerrans ) - (8.103b)

We then have from the discussion part (b) of Remark A.21 that

2
0=P>x, 2 Plgnp) ((957/\q+1ﬁq+1.ﬁ) )

= <_2dAd<2dA_d (IP>)\ «P[(bn p] (921)\q+177‘q+1,'ﬁ))
= (HAYY, (8.104)

and so (1) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3,
0 and ¥ are both periodic to scale (A4 17q417) " = )\;%, and so (2) is satisfied.
The estimates in (A.69) follow with C, = 1 from the discussion in part (b)
of Remark A.21. Note that in the case N = 2d in (A.69), the inequality is
weakened by a factor of A% o1, and so (2) is satisfied. Here we again use ag as in
(9.53), so this loss will be absorbed using a factor of I';11. From (9.19), (9.26),
(9.29), and (9.22), and the assumption that Ay 7 < Agn,p, we have that

A S Agap < Mg S max{Aga, Agnp-1} < Agnps

and so, since A < A\;11, (A.70) is satisfied. From (9.48) we have that

A\ Naec
)\4 < q,n )
e <2W\/§Fq+1>\q,ﬁ,ﬁ>

and so (A.71) is satisfied. Applying the estimate (A.73) for the parameter
range in Remark A.19, recalling that (8.92) includes the indicator function of
supp (t,q), recalling the deﬁnltlon of CG in (8.93), using (6.19) and (6.147) with

r1 = oo and r2 = 1, and using (7! < /\q n.p—1+ We have that

N M
HD D /Hoﬁf)»n’p)HLl(suppwi,q)
i+1
S ACR —3— Cbr Cr
Z Z [supp (7 i kg 7.5,0 | q+1
== Lejml

x 5(I+1Xl] H (fqm’rii(l:b) C*CilM (Na 13 Ca A) M (M7 Mta v, i;)

n’'<n
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-1 n—C Y 8+C
< I‘qu1Fq+1Fq R5q+1)‘q H (fq,n’Fqulb)
n’'<n

A MM N, 7y T, 7T

-1
X A g “q+l g q+1)

q,n,p—17%q,n,p

S St MM (M Nina 7 T 7T ) (8.105)
In the last inequality, we have used the fact that since n < 71, by (9.34) we have

Fq_CR‘Sq-‘rl)‘q H (fq,n’rgifb) Aq_,iL,p—l < 5q+17n,p (8-106)

n’'<n

for all N,M < |[1/2(Ngy 5 — News,t — Neut,z — 5)| — d. Then after using (9.61),
which gives that for all n < n

|_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,z - 5)J —d Z Nﬁn,n7 (8107)

we have achieved (8.89).

Continuing to follow the parameter choices in Remark A.19, we set N, =
M, = 3Nina., and as before N* = Nn7 — Neut,t — Neut,e — 5. From (9.60d),
we have that the condition N, < N*/4 is satisfied. The inequalities (A.75) and
(A.76) follow from the discussion in Remark A.19. The inequality in (A.77)
follows from (9.55) and the fact that A = Tg11 0 n.5 < Tgt1Ag 7 pma. a0d ¢ =
max{Ag 7, Agn,p—1} = Ag7i- We then achieve the concluded estimate in (A.79),
which gives (8.87) for the case p # pmax + 1, 7 < Nmax, and any values of 77, p
with n < n. O

8.7 TYPE 2 OSCILLATION ERRORS

In order to show that the Type 2 errors (previously identified in (8.44), (8.57),
(8.58), (8.73), (8.74)) vanish, we will apply Proposition 4.8 on the support of a
specific cutoff function

n= ni,j7k)q)n’p’f: wi,qxi,’%qxq,n,pwivj,q,’fhpci,q,k,n,lﬁ'

Before we apply the proposition, we first estimate in Lemma 8.8 the number
of cutoff functions »* which may overlap with 7, with an eye towards keeping
track of all the pipes that we will have to dodge in order to successfully place
pipes on 7. The next three Lemmas ((8.9)—(8.11)) are technical in nature and
are necessary in order to apply Lemma 4.7. Specifically, we show that given 7,
7n* and a fixed time ¢t*, one may find a convex set which contains the intersection
of the supports of n and n* at t*. The time t* will be the time at which the
pipes on n* are straight, and combined with the convexity, Lemma 4.7 may be
applied. The upshot of this is that the pipes belonging to n* only undergo mild
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deformations on the support of . This allows us to finally apply Proposition 4.8
to place pipes on n which dodge all pipes originating from overlapping cutoff
functions n*. We remark that since , ,, , depends only on n and p, which are
indices already encoded in w; j g n.p, throughout this section we will suppress the
dependence of the cumulative cutoff function n on 'y, ,, , (defined in (6.104)), as
it does not affect any of the estimates.

8.7.1 Preliminary estimates

Lemma 8.8 (Keeping track of overlap). Given a cutoff functionn

i,4,k,q,m,p, 0
consider the set of all tuples (i’ﬂj*7 k*,n*, p*, l_;*) such that the cutoff function
Nix o ko g pe I Satisfies:

1. n* <n,
2. there exists (x,t) such that

ni,j,k,q,n,p,f(x’ t)ni*,j*’k*qu*,p*ﬁ (z,t) #0. (8.108)

Then the cardinality of the set of all such tuples is bounded above by C,I'q11,
where the constant C,, depends only on Nmax; Pmax, Jmax, and dimensional con-
stants. In particular, due to (9.2), (9.3), and (6.129), C, is independent of ¢
and the values of the other parameters indexing the cutoff functions.

Proof of Lemma 8.8. Recall that the cutoff functions are defined by

77i,j,k,q,n,p,l«(x’ t) = d’l)q(% t)Xi,k,q(t)yq’n,p(t)wi,j,q,n,p (ZL’, t)ci,q,k,n,[(x’ t) (8109)

As noted in the outline of this section, we will suppress the dependence on
Xgnps Since the n and p indices are already accounted for in wj jgn,p. The
proof proceeds by first counting the number of combinations (i*, k*) for which
it is possible that there exists (z,t) such that

1/%,q(50, t)Xi,k,q(t)@Z’i*,q(xa t)Xi*,k*,q(t) # 0. (8.110)

Next, for a given (i*, k*), we count the number of values of (j*,n*, p*) such that
there exists (x,t) such that

Wi j,q,n,p (T Wi jx gnx p (T, ) # 0. (8.111)

Finally, for a given (i*,k*, 7*,n*, p*), we count the number of triples (I*,w*, h*)
such that n* < n and there exists (z,t) such that

Ci,qvk%p’l{x, t)Ci*,q,k'* e I (z,t) £ 0. (8.112)

Recalling the definition of x; x , from (6.96) and (6.98), we see that ¥; ¢ Xi k*.q4
may have nonempty overlap with ¢; 4X; k,q if and only if k* € {k — 1,k, k + 1}.
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Next, from (6.19), we have that only ¢;_1 4 and ;11,4 may overlap with t; 4.
Now, let (z,t) € supp ¥; ¢Xi k,q be given such that there exists k;_; such that

7/’2'7(1(5”’ t)Xi,k,q(t)wifl,q(x» t)Xi*l,ki—hq(t) # 0.

From the definition of x;_1,_,,q, it is immediate that the diameter of the sup-
port of Xi—1k,_,,q is larger than the diameter of the support of x; k4. It follows
that there can be at most three values of k* (one of which is k;_1) such that
Xi—1,k*,q has nonempty overlap with x; . Finally, let (z,t) € supp i ¢Xi kg
be given such that there exists k;;1 such that

Vig (T, ) Xi kg (O Vit 1,g(T,8) Xit1 k141 ,4(E) 7 0.

From the definition of x;y1 x4, there exists a constant C,, depending on x but
not i, g, or k* such that for all |k'| > C,I'g41

Xi+1,kip1+k ,q (t)Xi,k,q(t) =0

for all ¢ € R. Therefore, the number of k* such that x;yi =+, may have non-
empty overlap with x; x4 is no more than 2C, I';4; +1. In summary, the number
of pairs (¢*, k*) such that (8.110) holds for some (z,t) is bounded above by

343420, Tyr1 +1<3C, Ty (8.113)

if Ao is sufficiently large, where the implicit constant is independent of g or any
other parameters which index the cutoff functions.

Now let (i*,k*) be given such that 1;« ¢x;= k+ 4 has nonempty overlap with
Vi,qXi,k.q- Once values of n*, p*, and j* are chosen, these three parameters along
with the value of ¢* uniquely determine a stress cutoff function w; j« g.n* p*-
Since i* was fixed, we may let j*, n*, and p* vary. Using that j* < jp.x <
4b/(er(b — 1)) from (6.129), n* < Nmax, P* < Pmax, Where Nyax and Ppax are
independent of ¢, the number of tuples (¢*, k*, j*,n*, p*) such that there exists
(x,t) with

Piq (€, 1) Xi kg (T, )i j.g,m,p (T, )i (T, 1) X ke (T, D)Win = q.n= pe (2, 1) 70

(8.114)

is bounded by a dimensional constant multiplied by I+ 17maxPmax4b/ (e (b—1)).
Finally, fix a tuple (i*, k*, j*,n*,p*) such that (8.114) holds at (x,t). From
(6.139), there exists I* = (I*,w*, h*) such that Gie qukr me 1= (@, 1) # 0. From
(6.141), (6.108), and the fact that n* < n, there exists a dimensional constant C,
such at most C; of the checkerboard cutoffs neighboring (i*% f* e [+ CATL intersect
the support of Ci,q,k,n,F' Since all Lagrangian trajectories originating at (x,t)
follow the same velocity field v, and the checkerboard cutoffs are precomposed
with Lagrangian flows, this property is preserved in time. Thus we have shown
that for each tuple (i*, k*, 7, n*, p*), the number of associated tuples (I*,w*, h*)

such that ¢ can have nonempty intersection with (. ~1is bounded

i*,q,k* n* - i,q,k,n,l
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by a dimensional constant independent of q.
Combining the preceding arguments, we obtain that the number of cutoff

functions Mix jo k* g pe I+ which may overlap nontrivially with Mi i kqmpd is

bounded by a dimensional constant multiplied by I'j+17maxPmax4b/ (e (b — 1)),

finishing the proof. O

Lemma 8.9. Let (z,t),(y,t) € supp;, be such that wzq(x,t) > 1/ and
ﬁq(y,t) < 1/8. Then there exists a geometric constant C,, > 1 such that

|z —y| > C (Tgrg) " (8.115)

Proof Lemma 8.9. Let L(z,y) be the line segment connecting = and y. From
(6.36), we have that for z € L(z,y) (in fact for all z € T?),

1

[Vabig(2)] S iy ™ (2)AT. (8.116)
Thus we can write
1
5 < 102400 = 92,0, )] < 2000a(2) — ia(v)]
1
<2 / Viig(z+tly—z)) - (y—x)dt
0

< 2[x —y|[[Vihig
N Fq)‘q|x -yl

Lo

and (8.115) follows. O

Lemma 8.10. Consider cutoff functions

=" j,k,qn.pd = Yi,qXi kg Wi j,a,m,p ik,q,n,00

* oL __ — . . P -

noi= ni*J*’k*,q’n*’p*’l* = ’(/}Z*,le*,k*,qu*,j*,q,’n*,p* i kg ne I

where n* < n and 1 and n* overlap as in Lemma 8.8. Let t* € supp ;= k+,q be
given. Then there exists a convex set ) := Q(n,n*,t*) with diameter /\q_}L olg+1
such that

(supp Gikgni D {t= t*}) C Q C supp ¥t q- (8.117)

Proof of Lemma 8.10. Let (z,ty) € supp (nn*). Then there exists i’ € {i —
1,4,i+ 1} such that o7 (x,t0) > 1. Consider the flow X (z,t) originating from
(z,t9). Then for any ¢ such that [t —to| < Tqu_j‘{H%, we can apply Lemma 6.24
to deduce that 1/)1-2/7q(t,X(x,t)) > i. By the definition of x;« - 4, the fact that
i* € {i — 1,1, 4+ 1}, the existence of (x,t9) € supp (Xi,k,qXi*,k*,q), and the fact

that t* € supp x;» k4, We in particular deduce that ¢Z-2,’q(t*,X(ac7t*)) > %.
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Now, let y be such that
X (@,t%) =yl < Agholgsn S AT <G

for C, given in (8.115), where we have used the definitions of Ay 0 in (9.26)—
(9.28). Then, from Lemma 8.9, it cannot be the case that 1/11»2/7q(t*,y) < %, and
thus

y esupp vy o N{t =t"} Csuppix s N{t =1t"}. (8.118)

Since y is arbitrary, we conclude that the ball of radius Fq-&-l/\;;,o is contained
in supp iz q N {t = t*}. We let Q(n,n*,t*) be precisely this ball (hence a

convex set). Since Dt»qci,k,q,n,f = 0 and (z,tp) € supp Ci,k,q,n,fv we have that
X (x,t*) € supp kgl {t =t*}. Then, recalling that the support of Cikgn
must obey the diameter bound in (6.141) on the support of X; k.4, which contains

the support of x;+ k= 4 by (6.103), we conclude that
supp G Nt =1} C Q. (8.119)

Combining (8.118) and (8.119) concludes the proof of the lemma. O

Lemma 8.11. As in Lemma 8.8, consider cutoff functions

n-= ni,j,k,q,n,p,f: ’(/}i,qu,lc,qwi,j7q,n,p i,k:,q,n,l_"

* o — . . e -
2= My e g qn* peis = Yix gXix k* ,qWir j* qn* p* Ci*,k*,q,n*,l*'

Let t* € supp X+ i+ ,q be such that @ := P« y«y is the identity at time t*. Using
Lemma 8.10, define Q := Q(n,n*,t*). Define Q(t) := Q(n,n*, t*,t) := X(Q,¢),
where X (-, t*) is the identity.

1. Fort € supp Xi k,q
supp (-, t) C Q(t) C supp Yt - (8.120)

2. Let W* o * := Wz*{;]in:fl* 0 @i vy be an intermittent pipe flow sup-

ported on n*. Then there exists a geometric constant Cpipe sSuch that

N
(suppW* o @*N{t=t"} NQ) C U Shs

n=1

where the sets S, are cylinders concentrated around line segments A, for
ne€{1,... N} with

2
Ag.n
N S Cpipe (") . (8121)

q,n,OFq+1
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3. W* o ®*(-,t) and the associated azes Ay (t) and sets Sp(t) satisfy the
conclusions of Lemma 4.7 on the set Q(t) for t € supp Xi kq-

Proof of Lemma 8.11. From the previous lemma, we have that for all y € €,
Y7s o(y,t*) = 1/8. Applying Lemma 6.24, we have that for all ¢ with [t — ¢*] <

—i+5+co
Tl

a4l , the Lagrangian flow originating from (y,t*) has the property that

2 (6 X(5,8) > ro. (3.122)
Recalling from (6.102) that the diameter of the support of X« k= ¢ is Tqu_j?‘C"
and that i — 1 < ¢* < i+ 1, we have that in particular the Lagrangian flow
originating at (y,t*) satisfies (8.122) for all ¢ € supp X+ k=4 From (6.103),
(8.122) is then satisfied in particular for all ¢ € supp xi,q, thus proving the
second inclusion from (8.120). To prove the first inclusion, we use (8.117), the
definition of (), and the equality Dtvqgi,k,q,n,f: 0 to deduce that

Supp Ci’k,qyn’f('v t) - Q(t)v

finishing the proof of (8.120).

To prove the second claim, recall that W* o ®* at ¢ = t* is periodic to
scale /\q_jﬁ for n* < n, and the diameter of Q is 2)\;;70Fq+1 (in fact 2 is a
ball). Considering the quotient of the respective diameters squared, the claim
then follows after absorbing the geometric constant ng from Proposition 4.3 into
Cpipe'

To see that we may apply Lemma 4.7, first note that Q = Q(¢*) is convex
by construction, and so the first assumption of Lemma 4.7 is met. We choose
v = vy, and X and ® to be the associated backward and forward flows originating
from ty = ¢*. From (6.60), (8.120), and (9.19), we have that for t € supp xi r.q
and z € Q(¢),

Vg, (2, 8)] S 6,20 Ti5 = 6,/ A, Tt (8.123)
and so (4.21) is satisfied with C = ¢ + 7. Recall again from (6.103) that
SUpD X+ k+,q contains the support of x; 4, and that from (6.102) the support

of X+ g+ ¢ has diameter TqF;j*ﬁc". We then use (9.39) and (9.19) to write that
for any ¢ € supp X« i+ 4 we have

* —1*+co+1 —i+co+2
[t —t*| STqu_H STqu_H

S (5;/2'):(11«:0—&-6) -1 F—i—‘ng—‘,—Q

q+1 qg+1
—1
_ 1/2 co+11 —i+co+2
- (6!1 )‘qrq+1 ) 1—‘q-~—1

. -1
< (sart)

so that (4.20) is satisfied since C' 4+ 2 = i+ 9. We can now apply Lemma 4.7,
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concluding the proof of the lemma. O

8.7.2 Applying Proposition 4.8

Lemma 8.12. The Type 2 oscillation errors vanish. More specifically,

1. when n =0, the Type 2 errors identified in (8.44) vanish;

2. when 1 <1 < npax — 1, the Type 2 errors identified in (8.57) and (8.58)
vanish;

3. when T = nmax, the Type 2 errors identified in (8.73) and (8.74) vanish.

Proof of Lemma 8.12. We first recall what the Type 2 oscillation errors are.
When 7 = 0, the errors identified in (8.44) can be written using (8.31) as

Opa= > el (ag VL 1 Ueqr100 i)
#{€.6.4.k.p.1}

® Curl (a(f*)v¢5*,k*)Uf*,q+l,0 o é(l*,k*)) s (8124)

where the notation # {¢&, 1, j, k, D, f} is defined in (8.30) and denotes summation
over all pairs of cutoff function indices for which at least one parameter differs
between the two pairs. When 1 < n < npay, the Type 2 errors identified in
(8.57) and (8.73) can be written as

2 ) wWar1 ®s Woi1

n'<n—1

=2 Z Z Z curl (a(E)VCI)a,k)U&q-Hﬁ o (p(i,k)>

nrSn=lg g gk ple ix g* ke p* I

®S Curl (a(g*)v¢5*7k*)wg*7q+l’n* o (I)(i*,k*)> . (8125)

When 1 < 72 < npax, the Type 2 errors identified in (8.58) and (8.74) can be
written as

> cwl (Wf)v‘l’ak)Us,qHﬁ) ® curl (a<£*)v‘1’5*,k*>U5*,q+1,ﬁ) :
#{&i,5,k,B0}

(8.126)
where the notation # {¢, 14,4, k,p, [} has been reused from (8.30). To show that
the errors defined in (8.124), (8.125), and (8.126) vanish, it suffices to show
the following. For pairs of cutoff functions n, ., ~-rand n,. . ,. . . ¢

d:k.q, 7., 5% kg mt p,
satisfying the two conditions in Lemma 8.8, and vectors &, £* € =,
i5.k,7,5,0
supp (Ws’fqﬂ,g © ‘I)Wc)) AYSUPD N, ;4 g, 7,5,0

F*

ket ] B
N supp (Wé*iﬁl)n’j P o(b(i*’k*)) OVSUDPD My e o g e pe I+ = 0. (8.127)
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The proof of this claim will proceed by fixing n, using the preliminary estimates,
and applying Proposition 4.8.

Let 7 be fixed and assume that wg41,,/ for n’ < 72 has been defined (when 7 =
0, this assumption is vacuous). In particular, placements have been chosen for
all intermittent pipe flows indexed by n/. Now, consider all the cutoff functions

Ny jhaip jutilized at stage n. Since the parameters indexing the cutoff functions

are countable, we may choose any ordering of the tuples (4, j, k, p,1) at level 7.
Combined with an ordering of the direction vectors £ € =, we thus have an
ordering of the cutoff functions n i and the associated intermittent pipe

=

i,5,k,q,m,p,

i,k 7,5,
flows WéiHﬁ?f o.¢(i7k). ‘ ‘ .
To ease notation, we will abbreviate the cutoff functions as 7, and the as-
sociated intermittent pipe flows as (W o ®),, where z € N corresponds to the
ordering. We will apply Proposition 4.8 inductively on z such that the following

two conditions hold. Our goal is to place the pipe flow (W o @), such that
supp (W o @), Nsupp (Wo ®), Nsuppn, =0, (8.128)
for all 2’ < z, and such that
SUPP W41, N supp (Wo @), Nsuppn, =0, (8.129)

for all n’ < n. The first condition shows that all Type 2 errors such as (8.124)
and (8.126) which arise from two sets of pipes both indexed by 7 vanish, while
the second condition shows that the Type 2 errors which arise from pipes indexed
by n’ < 7 interacting with pipes indexed by 7 vanish, such as (8.125).

Throughout the rest of the proof, z’ will only ever denote an integer less
than z such that n, and 7, overlap. Although we have suppressed the in-
dices, note that 7,/ and 7, both correspond to the index n. Conversely, let
1.+ denote a generic cutoff function indexed by n’ which overlaps with 7,. By
Lemma 8.8, there exists a geometric constant C, such that the number of cut-
off functions 7., or n,» which overlap with 7, is bounded above by C,I';41.
Let t., € supp Xi_, k.,,q be the time for which ®; , » , , is the identity, and let
Q (n2,m.,t.) be the convex set constructed in Lemma 8.10, where we have set
t* =t,. Let Q(n,,n.,t.,t) denote the image of Q (1.,7,/,t./) under this flow,
as defined in Lemma 8.11. We then have that the set

supp (W o @) Nsupp Q (12,72, t2) N {t =t} (8.130)

. . . . 4 ’
is contained in the union of sets S? concentrated around axes A7 for

A2
2 q,n

n S Cpipqu+1 2 ’
q,n,0

and the flowed axes AZ and pipes of (W o ®)., satisfy the conclusions of
Lemma 4.7. Furthermore, substituting z” for 2’ in the preceding discussion,
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all the analogous definitions and conclusions can be made for cutoff functions
7.~ and pipe flows (Wo ®),.

We will apply Proposition 4.8 with the following choices. Let ¢, be the time
at which the flow map ®; j , corresponding to 7, is the identity. Set

Q= (U Q(”z’nzwtz"fz)) U ( U Q(nz,nzn,tzn,tz)> (8.131)

2'<z n’'<n

and set

. o T+ ifn>2
rp=TD7L 200 )y NS . 8.132
1 q+1 Agi1 (7)\1;1) Fq+1 ifn=1 ( )
Xq e
N ifn=0

We have used here the definitions of A, 5 ¢ given in (9.27), (9.26), and (9.28).
Note that by (8.120), supp 7. (-, t.) C Q (N2, .7, ter,t,) for each 2/ < z, with the
analogous inclusion holding when 2z’ is replaced by z”. In particular, we have
that suppn.(-,t,) C Q. Furthermore, we have additionally from Lemma 8.11
that Lemma 4.7 may be applied on Q(¢) for all ¢ € x;x,4. Thus, the diameter
of Q(nz,m,tur,t,) satisfies

diam (Q (0., 7., t0r, 1)) < (14 Fq_il)diam (QAUnz,narytar))

=21+ T} A5 oTat (8.133)

Using the fact that the diameter of the support of 7.(-,¢,) is bounded by a
dimensional constant time )\;%’0 from (6.141) and recalling that supp . (-, t.) C
Q (n2,m.r, s, t,) with the analogous conclusion holding for z”, we have that

diam(Q) < 4(1 + Fq_—&l))‘;’rli,OFQ'i‘l + Fq+1>‘;%,o
< 6(14+ T, ) g1 (Ago) "
< 16(Ag4171) 7"
for each value of 7 from (8.132), and so (4.28) is satisfied.
Now set

A (
Ca = Cpipecnrq+17 T2 = Tg41n ~ <)\ ! > y
q+1

where above we have appealed to (9.23) and (9.25). By (8.121) and Lemma 8.8,
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the total number of pipes contained in €2 is no more than

A2
3 q,m
CpipeCnFqul 22 :
q,n,1
Then we can write
2 _ T%
3 gn - To
CpipeCnFqH )2 — VA P2
q,m,0 1

and so (4.29) is satisfied. Furthermore, the assumptions on the axes and the
neighborhoods of the axes required by Proposition 4.8 follow from Lemma 8.11,
which allows us to appeal to the conclusions of Lemma 4.7. Finally, from (9.58a),
we have that for n > 2,

A\ ()T
C*CAT‘g S 160*CpipeC,,Fq+1 ( ! )
Agi1

-1 g

NG
< <qu1) r 2 =ri (8.134)
showing that (4.31) is satisfied for 7 > 2. In the cases n = 0 and . = 1,
the desired inequalities follow from (8.132) and (9.58b) and (9.58c), and so we
have checked that (4.31) is satisfied for all 0 < 7 < npax. Then from the
conclusion (4.32) of Proposition 4.8, we have that on the support of €, which
in particular contains the support of 7,(-,¢.) from (8.120), we can choose the
support of (Wo ®), to be disjoint from the support of (Wo ®@),, and (Wo @),
for all overlapping z” and z’. Then since Dy 4(W o @), = Dy ((Wo @), =
Dy g(Wo ®),» =0, (8.128) and (8.129) are satisfied, concluding the proof. [

8.8 DIVERGENCE CORRECTOR ERRORS

Lemma 8.13. For all 0 < n < Nax, 1 < D < Pmax, and j € {2,3}, the
divergence corrector errors Og 1 ; satisfy

k —Cr—1 k it1_—1 =1 ~—1
Hwi’qD Dglqoﬁvl»jHLl STt Ogr2rg M (k’ Nina,t, 'gfimg - Taii )

for all k,m < 3Ning. .

Proof of Lemma 8.13. The divergence corrector errors are given in (8.32), (8.50),
and (8.68). The estimates for j = {2, 3} are each similar, and so we shall only
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prove the case j = 2. Thus we estimate

Recall that £ takes only six distinct values and that j < jnax, D < Pmax are
bounded independently of ¢. Furthermore, on the support of ¥; 4, only 1;_1 4,
¥i,q, and ¥;11 4 are non-zero from (6.19). As a result, only time cutoffs x;—1.4.4,
Xik,q> a0d Xi41,k,q May be non-zero. Since for each ¢ the x; 1 4’s form a partition
of unity in time for which only two cutoff functions are non-zero at any fixed
time, for every time, the sum in (8.135) is a finite sum for which the number of
non-zero terms in the summand is bounded independently of ¢. Similarly, the
sum over [ forms a partition of unity which only finitely many cutoff functions
overlap at any fixed point in space and time. Therefore we may absorb the
effects of &, 7, k, p, and ['in the implicit constant in the inequality.

Using Hoélder’s inequality and estimates (8.17) and (8.18) from Corollary 8.2
with r = 2, ro = 1, and r; = oo, we have that

>

Vi DDy Y ((CL(@V@G},@W&@H,%O‘I’uyk))
&' gk pl

@ (Vg x (VOF 1 Ueqrii0@6n))) (8.135)

Lt

‘¢i,quDZLq((a(g)vfb(_i,l’k)waq+1ﬁ o q)(i/’k)>

XEYNA
T
® (Va(a X (V‘I’a/,mUs,qH,ﬁ ° q’(f%’ﬂ))))‘ o
. A, =
8+C k — —ci+4 ~—1p— )
ST dgr1mAg M (m» Nind,e, 75 Do 77 1Fq+11> - ilp
q

—Cr—1 k —1pit+l =—1p—1
5 Fq+1 5q+2)\q+1/\/l (m, Nind,t77—q Fqul,Tq Fqul) y

for N, M < |1/2(Nann — Neut,t — Neut,z — 2Ndec — 9) |, which proves the desired

estimate after recalling that for all 7,

L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,ac - 2Ndec - 9)J Z 3Nind,v )
1)

8+C, Og+1,7,5Ag 7.5 —Cr-1
Lo T en S Og+2l'g
—c+4<1,

which follow from (9.60b), (9.34) and (9.54), and (9.42), respectively. O
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8.9 TIME SUPPORT OF PERTURBATIONS AND STRESSES

First, we prove (7.12). Indeed, appealing to (5.1), which defines ézq in terms of

a mollifier applied to éq, (9.20), which defines the scale at which ]j?q is mollified,
and (6.104), which ensures that the time support of wgy1, is only enlarged rela-

-1
tive to the time support of Re by 2 (6 )\ Fqﬂ) , we achieve (7.12). To prove

(7.14) and (7.16), first note that application of the inverse divergence operators
H and R* commutes with multiplication by qu)p.g Then by the definition of

RO q+1 and H n,p 0 Section 8.3, we achieve (7.14) and (7.16). Proving the in-
clusmns in (7 19) (7.21), (7.23), (7.26), (7.28), and (7.30) follows similarly from
(6.104), the properties of H and R*, and the definitions of R w1 and HT anp
Section 8.3. Finally, to see that (7.4) follows from the 1nc1u510ns already demon—
strated, notice that the threshold in (7.4) is weaker than any of the previous
inclusions by a factor of I'g41, and so we may allow the time support of R? 1
to expand slightly as n increases from 0 to ny.x while still meeting the desired

inclusion.

8This is simple to check from the formula given in Proposition A.17 and the formula for
the standard nonlocal inverse divergence operator given in (A.100), both of which involve op-
erations which are purely spatial, such as differentiation and application of Fourier multipliers.






Chapter Nine

Parameters

The purpose of this section is to provide an exhaustive delineation of the many
parameters, inequalities, and notations which arise throughout the bulk of the
book. In Section 9.1, we define the g-independent parameters in order, beginning
with the regularity index 3, and ending with the number a,, which will be used
to absorb every implicit constant throughout the book. Then in Section 9.2,
we define the parameters which depend on ¢, as well as the parameters which
depend in addition on n and p. The definitions of both the g-independent
and ¢-dependent parameters will appear rather arbitrary, but are justified in
Section 9.3. This section contains, in no particular order, consequences of the
definitions made in the previous two sections which are necessary to close the
estimates in the proof. Finally, Sections 9.4 and 9.5 contain the definitions of a
few operators and some notations that are used throughout the book.

9.1 DEFINITIONS AND HIERARCHY OF THE PARAMETERS

The parameters in our construction are chosen as follows:

1. Choose an arbitrary regularity parameter 5 € [1/3,1/2). In light of [11, 43],
there is no reason to consider the regime 8 < 1/s.
2. Choose b € (1,3/2) sufficiently small such that

28b < 1. (9.1)

The heuristic reason for (9.1) is given by (2.8). Note that (9.1) and
the inequality S < 1/2 imply that §(2b+ 1) < 3/2, which is a required
inequality for the heuristic estimate (2.22).

3. With 8 and b chosen, we may now designate a number of parameters:

a) The parameter np,ax, which per Section 2.4.2 denotes the total
number of higher order stresses R, and thus primary frequency
divisions in between A\; and A,y 1, is defined as the smallest integer

for which
5[4\ Mt
1-28b> | = . 9.2
=2 (3) (9.2

b) The parameter ppa.x, which per Section 2.4.2 denotes the total
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number of subdivided components Rq,n,p of a higher order stress

o

Ry, and thus secondary frequency divisions in between A\, and
Ag+1, is defined as the smallest integer for which
1 1—-28b

< . 9.3
pmax 10 ( )

c) The parameter C, appearing in (3.21) is use to quantify the L?
norm of the velocity cutoff functions v; 4. It is defined as

b+4

Cb:m.

(9.4)

d) The exponent Cg is used in order to define a small parameter in the
estimate for the Reynolds stress; cf. (3.15). This parameter is then
used in the proof to absorb geometric constants in the construction.
It is defined as

CrR=4b+1. (9.5)

4. The parameter cg, which is first introduced in (3.20) and utilized in Sec-

tions 7 and 8 to control small losses in the sharp material derivative
estimates, is defined in terms of ny.x as

Co = Mmax + 5. (9.6)

. The parameter er > 0, which is used in (9.18) to quantify the finest

frequency scale between A; and A;4; utilized throughout the scheme, is
defined as the greatest real number for which the following inequalities
hold:

1-2
er (7 + CR + Nmax(8 + Cb))) < b

1[4\ et
< L () (9.7b)

(9.7a)

100 \ 5
b
er < m (97C)
ep(co+7) <1- 4. (9.7d)

. The parameter ag > 0 from the L' loss of the inverse divergence operator

is now defined as

aR = %{1) . (9.8)

. The parameters N¢ys,+ and Neyt  are used in Chapter 6 in order to define

the velocity and stress cutoff functions. Ncyut, is the number of space
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10.

11.

12.

13.

derivatives which are embedded into the definitions of these cutoff func-
tions, while N¢yy,, is the number of material derivatives. See (6.6), (6.14),
and (6.119). These large parameters are chosen solely in terms of b and
Er as

1

7Ncut,x = Ncut,t = ’V

3b 15b
> W (9.9)

Ep(b—l) + 2

The parameter Ninq ¢, which is the number of sharp material derivatives
propagated on stresses and velocities in Chapters 3 through 8, is chosen
as the smallest integer for which we have

4

Nind,t = ’V&“(bl)

-‘ Neut,t - (9.10)

The parameter Njnq,, whose primary role is to quantify the number
of sharp space derivatives propagated on the velocity increments and
stresses—cf. (3.12) and (3.15)—is chosen as the smallest integer for which
we have the bounds

4bNipa,s + 8 + b(Cr + 3)er (b — 1) +28(b* — 1) < ep(b — 1)Nipa,p -
(9.11)

The value of the decoupling parameter Ngec, which is used in the LP
decorrelation Lemma A.2, is chosen as the smallest integer for which we

have
AN 4b
Neeo [ o= (=) - 0 12
dec (30 (5) EF) “h-1 (0.12)

The value of the parameter d, which in essence is used in the inverse
divergence operator of Proposition A.18 to count the order of a parametric
expansion, is chosen as the smallest integer for which we have

1[4 e (12Nind,v +7)b

The value of Ng,, which is introduced in Chapter 3 and used to quantify
the highest order derivative estimates utilized throughout the scheme, is
chosen as the smallest integer such that

3
§Nﬁn > (2Ncut,t + Ncut,ac + 14Nind,v + 2d + 2Ndec + 12)2nmax+1 . (914)

Having chosen all the previous parameters in items (1)—(12), there exists
a sufficiently large parameter a, > 1 which depends on all the parame-
ters listed above (which recursively means that a. = a.(53,b)), and which
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allows us to choose a an arbitrary number in the interval [a,, 00). While
we do not give a formula for a, explicitly, it is chosen so that a&b*””
is at least twice larger than all the implicit constants in the < symbols
throughout the book; note that these constants depend only on the pa-
rameters in items (1)—(12) —never on ¢— which justifies the existence of

Ay

Having made the choices in items (1)—(13) above, we are now ready to define
the g-dependent parameters which appear in the proof.

9.2 DEFINITIONS OF THE Q-DEPENDENT PARAMETERS

9.2.1 Parameters which depend on ¢

For ¢ > 0, we define the fundamental frequency parameter used in this book as

Ay = o[ 0108, a] (9.15)

Definition (9.15) gives that A, is an integer power of 2, and that we have the
bounds

" <A, <24 and AP < Ngp1 <20 (9.16)

W =

for all ¢ > 0. Throughout the book the above two inequalities are used by
putting the factors of 1/3 and 2 into the implicit constants of < symbols. In
terms of Ay, the fundamental amplitude parameter used in the book is

b+1 _
§g = APTDPN28 (9.17)

In terms of the parameter er from (9.7), we introduce a parameter which is
used repeatedly throughout the book to mean “a tiny power of the frequency

parameter”:
A r
Tyi1 = ( q“) . (9.18)
Aq

In order to cap off our derivative losses, we need to mollify in space and time
using the operators described in Section 9.4 below. This is done in terms of the
following space and time parameters:

Ag = A0, (9.19)

Tl = N3 N - (9.20)
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While 7, is used for mollification and thus for rough material derivative bounds,
the fundamental time parameter used in the book for sharp material derivative
bounds is

~ -1

o= (5;/2,\qr‘;fff) . (9.21)
Note that besides depending on the parameters introduced in (1)-(13), the pa-
rameters introduced above only depend on ¢, but are independent of n and

p.

9.2.2 Parameters which depend also on n and p

The rest of the parameters depend on n € {0, ..., nmaxt and p € {0,. .., Pmax -
We start by defining the frequency parameter A, , and the intermittency pa-
rameter rq411,, by

Mg = 21 ()" loma At (1=(3) " ) o Ao (9.22)
Ag,n

Patinm = )\qv (9.23)
g+1

for 0 < n < nypax. In particular, (9.22) shows that Ay417¢+1,, is an integer
power of 2, and we have the bound

é)”+1

A

(1)
Ag+1

4)n+1

(t DR
< Agn < 200"

A

q+1 ’ (924)

while (9.23) implies that rq__&l is an integer power of 2, and we have the estimates

( A >(‘é)"“ . §2(AA">(§)W' (9.25)

Ag+1 q+1

As with (9.16) we absorb the factors of 2 in (9.24) and (9.25) into the implicit
constants in < symbols.
We also define the frequency parameters Ag n p by

Ag,0.p = Fq+1Xq n=0,0<p < pmax (9.26)
4 1

Ag1,0 = Ad Agiq n=1p=0 (9.27)
(878,17

A‘L"»O = /\qo ° )‘q+10 ¢ 2 S n S Nmax 1 1 (928)

Mg = Aailpmes \0/rmes 1<7< a0 < p < prax- (9.29)

For 0 < n < nypax, we define

foo=1, n=0, (9.30)
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Agnit0 1/pmax
fon = | Z22 , 1< n < npax. (9.31)
’ /\qm,O

We define 6441,0, by

dg+1,01 = F;CR%H, p=1, (9.32)
6‘1"1‘170;17 = O’ 2 S P S Pmax- (933)

When 1 S n S Nmax and 1 S p S Pmax, W€ define 5q+1,n,p by

_ by
Og1mp =g ®oqi1 - ( Sy ) T (fanT3i5) (9.34)

q,n,p—1 n'<n

We remark that by the definition of A; 1,0 given in (9.27), and more generally
Ag.n,p 0 (9.29), the fact that n > 1, and a large choice of pyax which makes f; 5,
(defined in (9.31)) small, 441,n,p is significantly smaller than Iy %G,

For 1 < n < npax, we define ¢, in terms of ¢y by

ch =¢Co—4n. (9.35)

For n =0, we set
3
Nﬁn,() - §Nﬁn7 (936)

while for 1 < n < nuyax, we define Ngy ,, inductively on n by using (9.36) and
the formula

1

Nﬁn,n = \‘2 ( finn—1 — Ncut,t - Ncut,x - 6) - dJ . (937)

9.3 INEQUALITIES AND CONSEQUENCES OF THE
PARAMETER DEFINITIONS

The definitions made in the previous two sections have the following conse-
quences, which will be used frequently throughout the book.

Due to (9.15) we have that Tgyy > (1/2)er AL > (1p)ber \(b=er >
(1/2)a5<b_1)gr. As was already mentioned in item (13), we have chosen a. to be
sufficiently large so that afkb_l)er is at least twice larger than all the implicit
constants appearing in all < symbols throughout the book. Therefore, for any
g > 0, we may use a single power of I';y; to absorb any implicit constant in the
book: an inequality of the type A < B may be rewritten as A <T'y+1B.

From (9.18), (9.19), and (9.7¢), we have that

T4 N < Mgt - (9.38)
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From the definition (9.21) of 7, and from (9.35), which gives that c, is decreasing
with respect to n, we have that for all 0 < n < nyax

Tei06,2 N, <77t (9.39)

Using the definitions (9.17), (9.18), (9.19), and (9.21), writing out everything
in terms of A\;_1, and appealing to (9.7d), we have that

T AT <t (9.40)
T 4T < 6,22 (9.41)

From the definitions (9.6) of cg and (9.35) of c,, we have that for all 0 < n <

nmaxa

—Cn+4< 1. (9.42)

From the definition of 7, it is immediate that
T Ay ST ST A A (9.43)

From (9.7d), the assumption that 8 > 1/3, and the assumption that b < 3/2, we
can write everything out in terms of A, to deduce that

T T < (9.44)

From the definitions (9.22) and (9.26)—(9.29), for all 0 < n < npay and
0 < p < Prmax we have

A
anp g
Ag.n

More precisely, when n = 0 we have that

2 N 7 —3+T7er
Por1dgnp _ Toride _ Tgridg _ <)\q+1>

>‘q,n B /\q70 B >‘q,0 a /\q

(9.45)

while for n > 1 it holds that

By(E-5)+e L (4ynmax .
Lyr1Agnp < Lyr1Agn+1,0 _ ()\q_H)(Q) 5—g)ter _ ()‘q+1) 30 (3) r
)\Qan - )\q,n )\q )\q

(9.46)

as it is clear that the quotient on the left-hand side is largest when n = nyax.
Note that due to (9.2) we have - (é)nmx —er < 1_37%& —er < £ — Ter; here

30 \5
we also used that er < 5, which handily follows from (9.7b). Combining (9.45)
and (9.46) we thus arrive at
— L (4ynmax 4
Lotidemp (Ml) T o B )
Ag.n Aq
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for all 0 < n < Npax and 0 < p < ppax- Combining the above estimate with our
choice of Ngec in (9.12), we thus arrive at

Ndec
Mo <[ Den d . (9.48)
=\ 2Bl A s

for all 0 <N < Nppax and 1 < P < Prax.
Next, we a list a few consequences of the fact that Ning,, > Nina ¢, as specified
in (9.11). First, we note from (9.43) that

Ty hTa1 S X0 Ay < A; (9.49)
where in the second inequality we have used the fact that ep < %. In turn,

the above inequality combined with (9.11) implies the following estimates, all of
which are used for the first time in Chapter 5:

0g—1 (~— nd.¢ ind, v
N THS S (o) < e~ (9.500)
q
9 o~ Nind, ¢ ind,v
N (Fhmgm) < Tl (9.50b)
N 82 20 2 (7 g N < T (9.50¢)

Next, as a consequence of our choice of Neyt,r and Nyt o in (9.9), we obtain
the following bounds, which are used in Chapter 6:

33 _Ncut, 3 _Ncut,t
A2 Nevet < N3, <1 (9.51)

for all ¢ > 0. The fact that Ni,q. is taken to be much larger than Nyt ¢, as
expressed in (9.10), implies when combined with (9.49) the following bound,
which is also used in Chapter 6:

~—1\Ncut 4ANcy Nina,
(TqTq ) f < At < I‘q+f ‘ (9.52)

for all ¢ > 1.
The parameter ag is chosen in (9.8) in order to ensure the inequality

A < Ty (9.53)

for all ¢ > 0. This fact is used in Chapter 8. Several other, much more hideous,
parameter inequalities are used in Chapter 8, and for the reader’s convenience
we list them next. First, we claim that

LT, 60 [ ( fq’n,rﬁifﬂ A o STIST 6. (954)

n/ <Nmax

In order to verify the above bound, we appeal to the choices made in (9.1), (9.2),
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and (9.3), to the definitions (9.19), (9.27), (9.28), and (9.31), and to the fact
that 7 < Nmax to deduce that the left side of (9.54) is bounded from above by

1

6 1"6+nmax(8+Cb) )\q )\q7nmax+1’0 Pmax

q+1t g+1 h\ 3
q,Mmax+1,0 q,1,0

g )"max 5

—\5 _ 1 (4_(4ymax 5
=4 1'\6+7Lmax(8+cb) ﬁ (1—( ) @ pmax(5 (%) 5)

at+1tg+1 oot 5
28b 4

1-260)% 1-26b 4
< MF6+n“‘aX(8+Cb) ()‘q+1>( g (Aqul) 105

Agr1 1T g Ay

Agd Agr1 ) 12N E
< (F_C{T_ﬁﬁwz) I ( q+1>
B i Aq+10g+2 I Ag

Crp—1 T4 Crt rmax (84Co) [ Agt1 (=265

- — Mmax q

< (Fq+fl‘q+16q+2) Fq+1R ’ ( 2 ) :
q

The proof of (9.54) is now completed by appealing to (9.7a), which ensures that
I'y+1 represents a sufficiently small power of Xa+1/x,.
Next, we claim that due to our choice of d, we have

~ Lo d-1 3N
—C 8+C +1 3N sPmax 4 ind,v
Fq R5q+1)‘q H (ffIvn/Fqilb) Ag+1 (q)\;tp> ()‘q+1) ’
n/ <Nmax B
1)
< 22 (9.55)

— )
N

In order to verify the above bound we use the previously established estimate
(9.54) in conjunction with (9.47); after dropping the helpful factor of F;ffCR,
we deduce that the left side of (9.55) is bounded from above by

T A~ d—1
S o\ A q+17q, N, pmax ()\4 )3Nind,v
q+27¢,nmax+1,0"g+1 N~ q+1
q,n

Og+2 3 p—1\ —(d=1) (5 ()"™* —er) | 12Njpq v
< )\5+1 )‘q+1 (2)‘11 ) )‘q+1 ’
q

The choice of d in (9.13) shows that the above estimate directly implies (9.55).

The amplitudes of the higher order corrections wg41.5,, must meet the in-
ductive assumptions stated in (3.13). In order to meet the satisfactory bound
in Remark 8.3, from (9.32)—(9.34) we deduce the bound

5 <12

q+1,n,p — ~ q+17q+1" (956)

Indeed, the case m = 0 follows from the definition of Cg in (9.5), while the case
n > 11is a consequence of the definition (9.34), which implies that §, 7 5 < 4,01,
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for any n > 1 and any p > 1.
Another parameter inequality which is necessary to estimate the transport
and Nash errors in Sections 8.4 and 8.5 is
it Esl A <TG 9.57
qg+1 9911.7,17q Te+1,nq+1 S L4 q+2 (9.57)
for all 0 < < npax. When n = 0, this inequality may be deduced by writing
everything out in terms of )\, appealing to the appropriate definitions, and then

using the fact that 8 < 1/2 from item 1, (9.1), (9.4), (9.5), (9.6), and (9.7b),
after which one arrives at

< .

3.9
275

b—4 1 1
4+ —+4+--C 12 2b4+1) < —
ep< t— T35 Crtcot )+B( +1) 00 T
It is clear there is quite a bit of room in the above inequality, and similarly,
(9.57) becomes most restrictive when 1 = npax. In this case, one may again
write everything out in terms of A;, move everything to the left-hand side, and
appeal to most of the same referenced inequalities as before to see that

3 1
er (22 4+ 4nmax) + 5(20+ 1) — 3 <er (22 + 4nmax) + B — 3 < 0,
where in the last inequality we have instead appealed to (9.7a) rather than
(9.7b), proving (9.57) in the remaining cases 1 <1 < nyax.

Parameter inequalities which play a crucial role in showing that the Oscilla-
tion 2 type errors vanish, see—Section 8.7—are:

)\ (%)ﬁ+1_4 )\ (%)ﬁ—l.%.?)
160, CpipeClgs1 <q) << q> T3, for @>2,

Agt1 Ag+1
(9.58a)
4.4 ~ 3
Ag \° Ag
16C.CoipeColgsr | 1= <|3 , (9.58b)
q+1 q+1
2 4
A (2)"4 A 53
16C*Cpipecnr‘3+1 <A4> < <>\ 4 > 5 (958C)
q+1 q+1

where C, is the geometric constant from Lemma 4.8, estimate (4.31), Cpipe 1S
a geometric constant which appears in Lemma 8.11, estimate (8.121), and C,
is the constant from Lemma 8.8. In order to verify (9.58), we first note that
C.CpipeCrn < T'g41, since a, was chosen to be sufficiently large. Inequality (9.58b)
is then an immediate consequence of the fact that 16/5 > 3. The bound (9.58a)
follows from

4)rmax—l(6d_ 5 4\n+1 4\7-1 5
A (3) (%2-3) A ()" ra—(H)" s
s, < ( ;1\+1) < ( q+1>  (959)
q
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The second inequality in the above display is a consequence of 7 < Ny, while
the first one follows from (9.7b). Finally, inequality (9.58¢) is a consequence of
the fact that 64/25 — 12/5 > 64/25 — 5/2 and the first inequality in (9.59), which
bounds I'y , ;.

We conclude this section by verifying a few inequalities concerning the pa-
rameter Ngyp , which counts the number of available space-plus-material deriva-
tives for the residual stress ]ﬂ%qvn. For all 0 < n < nyax we require that

Nind,t 2Ndec +4 < [1/2 (Ngin,n — Neut,t — Neut,z — 5)] —d, (9.60a)
14Nind,0 < Nfinn — Neus,t — Neut,e — 2Ndec — 9, (9.60b)

6Nind,» < L1/2 (Nﬁn,n — Neut,t — Neut,a — G)J —d, (9~60C)

6Nind,» < |1/4(Ngn,n — Neut,t — Newt,e — 7) (9.60d)

for all 0 < n < Nypax. Additionally for 0 < n < n < nyay, we require that

|_1/2 (Nﬁn,:ﬁ - Ncut,t - Ncut,a: - 6)J —d 2 Nﬁn,n (961)
holds. The inequality (9.61) is a direct consequence of the formula (9.37) and
of the fact that the sequence Ng, , is monotone decreasing with respect to n.
Using (9.36) and (9.37) one may show that

Nﬁn,n > 27nNﬁn,O - (2d + Ncut,t + Ncut,m + 8) .

Noting that the bounds (9.60) are most restrictive for n = nmax, they now
readily follow from our choice (9.14).

9.4 MOLLIFIERS AND FOURIER PROJECTORS

Let ¢(¢) : R — R be a smooth, C*° function compactly supported in the set
{¢ : |¢] £ 1}, which in addition satisfies

/qﬁ(() ¢ =1, /qs(g)g” =0 Vn=1,2...,Nindo. (9.62)
Let ¢(z) : R3 — R be defined by ¢(z) = ¢(|z|). For A, u € R, define

o7 (@) = N (M), oP(t) = po(ut). (9.63)

For ¢ € N, we will define the spatial and temporal convolution operators
Poa = ({Z)*, Pyt = ¢(;t211*v Pyat = Pgaw 0 Pyt- (9.64)
o

We will use the notation P<y to denote the standard (Littlewood-Paley)
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Fourier projection operators onto spatial frequencies which are less than or equal
to A, P>y to denote the standard Littlewood-Paley projection operators onto
spatial frequencies which are greater than or equal to A, and the notation

P[>\1~,>\2)

to denote the Fourier projection operator onto spatial frequencies & such that
A1 < €] < A2, If Ay = Ao, we adopt the convention that Py, »,)f = 0 for any f.

9.5 NOTATIONS

M (n) N) /\’ A) _ /\min{n,N}Amax{n—NVO}

1
a®sb:§(a®b+b®a) (9.65)
. 1, & .
a®sb= 5(a®b+b®a) (9.66)
supp f = {t : flrsx ey Z 0} (9.67)

We will use repeatedly the notation (noted in the introduction in (2.3) and (2.4)
and in Remark 3.2)

”f”Lp = Hf”Ltw(Lp(TS)) . (9.68)

That is, all L? norms stand for LP norms in space, uniformly in time. Similarly,
when we wish to emphasize a set dependence on Q C R x T? of an LP norm, we
write

||f||Lp(Q) = |1q fHLtOO(Lp(’]I‘S)) . (9.69)



Appendix A

Useful Lemmas

This appendix contains a collection of auxiliary lemmas which are used through-
out the book:

Section A.1 recalls the classical OV estimates for solutions of the transport
equation. This is, for instance, used in Section 6.4. B
Section A.2 gives the detailed construction of the basic cutoff functions 9y, 4
and v, 4, which are used in Chapter 6 to construct the velocity and the stress
cutoff functions.

Section A.3 recalls the fundamental fact that the LP norm of the product of a
slowly oscillating function and a fast periodic function is essentially bounded
by the product of their L norms.

Section A.4 contains a version of the Sobolev inequality which takes into
account the support of the velocity cutoff functions.

Section A.5 contains a number of consequences of the multivariate Faa di
Bruno formula. Most of the results here are used for bounding the space and
material derivatives of the cutoff functions in Chapter 6. We also present here
—cf. Lemma A.7— a version of the LP decorrelation lemma from Section A.3
in which the fast periodic function is composed with a volume-preserving
flow map. Lemma A.7 plays a crucial role in estimating the L? norms of the
velocity increments in Section 8.2.

Sections A.6 and A.7 contain a number of lemmas which allow us to go
back and forth between information for (arbitrarily) high order derivative
bounds in Eulerian and Lagrangian variables. These lemmas concerning sums
of operators and commutators with material derivatives are frequently used
throughout the book to overcome the fact that material derivatives and spa-
tial/temporal derivatives do not commute.

Section A.8 introduces in Proposition A.18 the inverse divergence operator
used in this book. We call this operator “intermittency friendly” because it is
composed of a principal part which precisely maintains the spatial support of
the vector field it is applied to, plus a secondary part which is nonlocal, but
whose amplitude is incredibly small. It is here that the definition (4.10) for
the density of our pipe flows plays an important role, as the high order d of
the Laplacian present in (4.10) allows us to perform a parametric expansion
which maintains (to leading order) the support of pipes, and also takes into
account deformations due to the flow map.
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A.1 TRANSPORT ESTIMATES

We shall require the following estimates for smooth solutions of transport equa-
tions. For proofs we refer the reader to [8, Appendix D].

Lemma A.1 (Transport estimates). Consider the transport equation

Of+u-Vf=g, flto = fos

where f,g: T" — R and u : T — R™ are smooth functions. Let X be the flow
of u, defined by

%X —w(X,t),  X(to) =,

and let ® be the inverse of the flow of X, which is the identity at time ty. Then
the following hold:

t
L1 Olleo < lolloo + / lg(s)l|co ds.

t

2 IDFOller < IDfllcoe=Ples 1 [ oo g(s) o s
t

3. For any N > 2, there exists a constant C= C(N) such that

1D f(t)llco
< (DY folleo + C(t = to) | D" ul|co|| D || o) et 1Pl

t
+ [ e aeuen (IDVg(s)ov +C(t - 9DV ulcoll Do) o) ds.

to

4. | DO(t) — 1d||co < et TtIPulco — 1 < (¢ —to)[| Duf|coet= o) IPlco
5. For N > 2 and a constant C = C(N),

IDN®(t)|co < Ot = to)[| DN ul|coe” T 1Pleco.

A.2 PROOF OF LEMMA 6.2

We first consider the function
0 ifx <0
= - Al
/(@) {eué if 2 > 0. (A1)
We claim that for all 0 < N < Ng, and = > 0,
|DY f ()]

S (A.2)
(f ()" N

~
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The proof of this is achieved in two steps; first, one can show by induction that
for all 0 < N < Ngy, there exist constants K and ¢ for 0 < k < K such that

DY () =30 ek (4.3)

— 0. (A.4)

Then for 1 < N < Ngp, we see that 0 < 1— % < 1, and so using (A.3), we have
that the left-hand side of (A.2) may be split into a finite linear combination of
terms of the form in (A.4), showing that (A.2) is valid.

We now glue together two versions of f as follows with the goal of forming

a prototypical cutoff function 1. First, let zg = , /ﬁ so that f(z¢) = 1. Now

consider the function f(z) = f(2z¢ — x), and set

Fla) = {f(x) if x <ag (A.5)

1—f(2xg —x) if x> x.

Then F(x) is continuous everywhere, and C* everywhere except g, where it is
not necessarily differentiable. Furthermore, one can check that by the definition
of F and (A.2), for all 0 < N < Ngy,

M Slforall 0 <z <o, (A.6a)
(F(a)'
[DY (1 — (F(2))?)* |

(1 - (P ()

<1 for all zp < x < 2. (A.6D)

-

The latter inequality follows from noticing that for x close to 2xg,

N
N
N

1
(1-(F@)*)” = ((1+F(2))1 - F(x))? = 1+ F(2))? (f(2z0 — ))
Since multiplying by a smooth function strictly larger than 1, rescaling f by a
fixed parameter, and raising f to a positive power preserves the estimate (A.2)
up to implicit constants (in fact, raising f to a power is equivalent to rescaling),
(A.6) is verified.

Towards the goal of adjusting F' to be differentiable at xg, let E be the set

(%0, 320) "and let ¢ be a compactly supported, C° mollifier such that the sup-
port of the mollified characteristic function Xg * ¢(x) is contained in (%7 %)
Setting

(@) = (Xp * ¢(x) ¢+ F(z) + (1 = X+ ¢(x)) F(z), (A7)
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one may check that 1 is C* and has the following properties:

Y(x)=0forxz <0 (A.8)
0<9(z)<lfor0<z<2xg (A.9)
Y(x) =1 for x > 2x¢ (A.10)
|DN“’($1 <lforall0<z (A.11)

<1forall 0 < x < 2. (A.12)

We can now build zF/Jvmyq. By rescaling and translating ¢ and using (A.8)—
(A.10), one can check that

" r— F2(m+1)

2110

satisfies all components of (1). Notice that this rescaling involves a factor pro-
portional to T'y 2mt1) " Then using (A.11) and the fact that every derivative
2+ e have that (6.3) is satisfied.

We now outline how to construct wm_,q(l"f(mﬂ)y), which is the first term

in the series in (6.1), and will define ¢, 4(y). The basic idea is that the region
(ifzfﬁl), Fi(fzﬂ)) where 1, 4 decreases from 1 to 0 will be the region where
w,,L7q(F;ﬂm+l)y) increases from 0 to 1, and furthermore in order to satisfy (6.1),

we have a formula for wmq(F;fgmH)y) for these y-values. Specifically, in order

to ensure (6.1) for y € (il"j(ffﬂ), Pif{“)), we define

¥m,q introduces another factor of I'y

—2(m+1 i
'r2n,q (Fq+g )y> =1- gn,q(y)

in this range of y-values. Then by adjusting (A.12) to reflect the rescalings
present in the definition of ¢y, , and wm)q(ng(mH)y), we have that for y €
(3,1), ¥m,q is well-defined and (6.4) holds. To define wm,q(l"(;z(mﬂ)y) for
y € [ifé(mﬂ),f‘é(mﬂ)] and thus 9., q (y) for y € [iri(m“),rﬁ(m“)], we can
use that for y € [ifé(mﬂ)?]ﬁg(mﬂ)]? the rescaled function wm’q(]f‘;ﬁmﬂ)y)
(i.e., the term in (6.1) with ¢ = 2) is now well-defined. Then we can set

—2(m+1 —4(m+1
¢72n,q (Fq—i-g " )y> =1- ¢72n,q (Fq+§ - )y)

50 that 1y, 4 is well-defined for y € [1T5" ™ T3] and (6.1) holds in this
range of y-values. Appealing again to (A.11) and (A.12), we have that (6.5)
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is satisfied in the claimed range of y-values. Finally, in the missing interval

1, %Fg(mﬂ)], we set ¥, = 1. One can now check that (6.1) holds for all
y > 0, and that (6.2) follows from (1), (2), and (6.1), concluding the proof.

A.3 L7 DECORRELATION

The following lemma may be found in [13, Lemma 3.7].

Lemma A.2 (L? de-correlation estimate). Fiz integers Ngee > 1 and p >
A > 1 and assume that they obey

Ndec
ANdec+4<< H ) . A.14
e (A.14)

Let p € {1,2}, and let f be a T3-periodic function such that

—N N » < )
s ANIDYf < (A.15)

for a constant Cy > 0.1 Then, for any (T/u)3-periodic function g, we have that

Ifalle S Crllgllze

where the implicit constant is universal (in particular, independent of p and X).

A.4 SOBOLEV INEQUALITY WITH CUTOFFS

Lemma A.3. Let 0 < ); <1 be cutoff functions such that ¥+ = (Y2_; +? +

Z_2+1)1/2 =1 on supp (v;), and such that for some p > 0 we have

DR ()| S ol N () oK (A.16)

for all K < 4. Fiz parameters p € [1,00], 0 < A < X, 0 < p; < g, and
Nz, Ny > 0, and assume that the sequences {p; }i>o0 and {fi; }i>0 are nondecreas-
ing. Assume that there exist N., M. > 0 such that the function f: T3 — R
obeys the estimate

[0 DN DM ]|, < €M (N, Nay A X) MM, Noy i i) (A17)

~

IFor instance, if f has frequency support in the ball of radius A around the origin, we have
that Cy = || f]lzp-
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for all N < N, and M < M,. Then, we have that
|7 DN DM f]],. S Cr(max{1, p, A})"”
XM(N,NI,A,X)M(M,Nt,Mi,ﬁi) (Alsa)
HDNDiwaLm(Supplm S Cr(max{1, p, )\})S/P
x M (N7Na:a)‘7x)M(M7Nt7,ui+17ﬁi+l) (Ale)
for all N < N, — [3/p] =1 and M < M,.
Lastly, if the inequality (A.17) holds for all N + M < N, for some N, > 0

(instead of N < N, and M < M,), then the bounds (A.18a) and (A.18b) hold
for N+ M < N, — |3/p] — 1.

Proof of Lemma A.3. The proof uses that [3/p] +1 > 3/p for all p € [1, 00], and
that W*P C L for s > 3/p. Moreover, the proof of (A.18a) is nearly identical
to that of (A.18b), and thus we only give the proof of (A.18b); moreover, for
simplicity we only give the proof for p = 2, as all the other Lebesgue exponents
are treated in the same way. By Gagliardo-Nirenberg-Sobolev interpolation we
have

HDNDiwaLw(suppwi) < |‘¢12iDNDtIVIf|‘L°°(T3)

5 szziDNDf{V[fHZj(Ts) H'(sziDNDiwaZi(Ts)

+ ||w22:|:‘DN‘Dt]V[f||L2(T3) .
Using (A.16), (A.17), and the monotonicity of the u; and f;, we obtain

[97- DY DM F| 1 sy
N ||1/)¢iDN+2DiMf||Lz + |1 D] 0o H?/’z‘iDNHD,foHLz
D?(7y)

+ - =7
H Vit

sz:l:DNDtZVIfHLz
L()C
[0ie DYP2DM || o+ p || DVFIDMF|| o + 02 [0 DY DY

<|

< (max{X, p})2C; M (N, Noy A\ X) MM, N i i)

forall N < N, —2 and M < M,. In the second inequality above we have used
that |D2(¢2,.)| < p?i+(z), which follows from (A.16). Combining the above
two displays proves (A.18b).

Note that for p = 1 we require that |D*(v2.)| < p*ix (), which also follows
from (A.16) since Ng, > 4, and this is why we have assumed this inequality to
hold for all K < 4.

Lastly, assume that (A.17) holds for all N+ M < N,, and fix any N, M’ > 0
such that N'+ M’ < N,—|3/p| —1. Let N. = N'+[3/p]+1 and M, = M’. Then
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(A.17) gives a bound for ||o; DN DM" f||» for all N < N, and M" < M,. The
bounds (A.18a) and (A.18b) thus give an estimate for ||; D DM f| 1», which
concludes the proof. O

A.5 CONSEQUENCES OF THE FAA DI BRUNO FORMULA

We are using the following version of the multivariable Faa di Bruno formula
[25, Theorem 2.1]. Let g = g(x1,...,24) = f(h(z1,...,24)), where f: R™ — R
and h: R? — R™ are C™ smooth functions of their respective variables. Let
a € Nd be s.t. |a] = n, and let 3 € NJ* be such that 1 < |8] < n. We then
define

p(a, B) = {(kl,...,kn;él,...,ﬂn) € (NI)™ x (N&™: 3s with 1 < s < n s.t.

i, 1] >0 1<j<s,0<¥ <... <,
D k=8> kil = a}~ (A.19)
j=1 j=1

Then the multivariable Faa di Bruno formula states that we have the equality

k]

z)=al Y (0°f)(h(z) > H kw' —. (A.20)

18l=1 p(a,B) j=1

Note that in (A.19) we have that k; = 0 € NJ* and ¢; = 0 € N§ for j > s+ 1.
Therefore, we could write the sums and products with j € {1,...,s} as sums
for j € {1,...,n}. Keeping in mind this convention, we importantly note that
in (A.20) we can have |¢;| = 0 only if |k;| = 0, and in this case the entire term
in the product is equal to 1. That is, the product in (A.20) only goes from 1 to
s, and in this case |¢;] > 1 for j € {1,...,s}. This fact will be used frequently.

For applications to cutoff functions we apply this formula for scalar functions
h, i.e., m = 1, while for applications to the perturbation or Reynolds stress
sections we apply this formula for vector fields h, i.e., m = 3.

Since throughout this manuscript the number of derivatives that we need to
estimate is uniformly bounded (say by Ngy), we may ignore the factorial terms
in (A.20) and include them in the implicit constant of <. Using this convention,
we summarize in the following lemma a useful consequence of the Faa di Bruno
formula above.

Lemma A.4 (Faa di Bruno). Fiz N < Ng,. Let ¢: [0,00) — [0,1] be a
smooth function obeying

|DByp| ST 2Pyt BN (A.21)
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for all B < N, and some 'y, > 0. Let ', \, A > 0 and N, < N. Furthermore,
let h: T3 x R = R and denote

g(x) = (I 2h(x)).
Assume the function h obeys
IDP]| L (supp gy S CoM (B, Niy A, A) (A.22)

for all B < N, where the implicit constant is independent of A\, A,T",Cy, > 0.
Then, we have that for all points (x,t) € supp h, the bound

DN
gJN/ﬂL < M (N, N, A, A) max{(TyI) ~2Cy, (D, T)72VCMY (A.23)

holds. If the '~B/Nin factor on the right side of (A.21) is replaced by 1, then
the g*=N/Nen factor on the left side of (A.23) also has to be replaced by 1.

Proof of Lemma A.4. The goal is to apply (A.19)—(A.20) with f(x) = ¢(I'2z).
For (z,t) € supp (g) we obtain from (3.9), (A.21), and (A.23) that

DYyl DByl . ek
1 N/me < Z:l¢l B/me N B)/Nf F 2P Z HHaZ h||L°°(suppg)

p(a,B) j=1
N
<Y @)y H (ChM (£, Ny, X, A))™
B=1 p(a,B) j=1

(TyI)"PCP M (N, N,, A, A)

A
] =

o
Il

1

for any 1 < B < N. The conclusion of the lemma follows upon bounding the
geometric sum. O

Frequently in the book, we need a version of Lemma A.4 which also deals
with mixed spatial and material derivatives. A convenient statement is:

Lemma A.5 (Mixed derivative Faa di Bruno). Fiz N,M € N such that
N+ M < Ngy. Let 9: [0,00) = [0,1] be a smooth function obeying

|DByp| ST 2Pt BN (A.24)

for all B < N and a constant I'y, > 0. Let v be a fized vector field, and denote

= 0y +v -V, which is a scalar differential operator. Let T\, A\, pu, 0 > 1 and
N., Ny < N. Furthermore, let h: T3 x R — R and denote

gz, t) = (P ?h(w,1)).
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Assume the function h obeys

HDNTfoh

‘ ,SChM <N/5N$a)\7X)M(M/7Nt7MaID’/) (A25)
Leo(supp g)

for all N < N and M' < M, where the implicit constant is independent of
M, i, T, and Cp. Then, we have that for all points (x,t) € supp h, the bound

[DND}Mg| N ~
gl—(N+—1\2)/me SM (Nana)‘7>\)M(M7Nthuhu‘)

x max { (T'yI')"2Cy, (TyD)2C,) N M} (A.26)

holds. If the 1'=B/Nin factor on the right side of (A.24) is replaced by 1, then
the gt=(N+M)/Nein foctor on the left side of (A.26) also has to be replaced by 1.

Proof of Lemma A.5. Let X (a,t) be the flow induced by the vector field v, with
initial condition X (a,t) = x. Denote by a = X ~!(x,t) the inverse of the map
X. We then note that

Df\/fg(aj,t) = (815\4((90)()(&775))) |a:X*1(z,t)-

We wish to apply the above with the function g(z,t) = ¥(I'~2h(x,t)). We
apply the Faa di Bruno formula (A.19)—(A.20) with the one-dimensional dif-
ferential operator M to the composition g o X, note that 0 (h(X ( ) t)) =
(DPh)(X (a,t),t), and then evaluate the resulting expression at a = X ~1(z, ),
to obtain

M - B, (B M (D57h)(a: t))m
D;* g(z,t) = M! Z D28y BT~ 2](x, t)) Z H
B=1 {r,BeNM . =1
|| =B - 6=}

We now apply DV to the above expression, use the Leibniz rule, and then
appeal again to the Faa di Bruno formula (A.19)—(A.20), this time for spatial
derivatives. We obtain

DNDMg(z,t) = AJUV'E: }: }: [—2(B+B)y(B+B) (T =2p (g, 1))

B=1K=0B'=
s
< D H klgl
p(K,B") j=1
M By, .
D~ (((Dy t))r
D VD DR | =
{a€NM:  {x,BeNM:. =1 it (Bl

|a|=N—K} |s|=B,x-B=M}
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Upon dividing by g'~(V+M)/Nin and noting that B+ B’ < M + N, from (A.24),
identity (A.27), the Leibniz rule, and assumption (A.25), we obtain

|IDNDMyg|
gl*(N‘FM)/NﬁH
M N K

Z Z (TyT) —2(B+B’)

B:lK 0 B'=
xChA4OQAQAVQCEA4@V—iﬁN@Aﬂ)AﬂAﬂN@%ﬁ)

M N
S M (N N2 AX) MM N ) Y2 D7 (1) 20,

B=1B'=0
from which (A.26) follows by summing the geometric series. O

Lemma A.6. Given a smooth function f: R> x R — R, suppose that for A > 1
the vector field ®: R x R — R3? satisfies the estimate

HDN+1 HLOO(supp f) S-’ )\N <A28)

for 0 < N < N,. Then for any 1 < N < N, we have

N
DN (f o ®) (z,t)] S Y AV (D™ ) 0 @(a, )] (A.29)
m=1
and thus trivially we obtain
N
|DN (f o ®) (z,t)] S Y AN (D™ f) 0 @(a, )]
m=0

for any 0 < N < N,.

Proof of Lemma A.6. Applying (A.20), noting that |[¢;| = 0 implies |k;| = 0,
and employing assumption (A.28), we have that for any multi-index o € N}
with || = N,

N N
ERVERICHIFSS S (CEEICHIN ] DY ’(54@(1’,0)
181=1 J=1p(e,B)
Si‘aﬁf @‘HZAIUUIH
181=1 J=1p(a,B)
N

SO ATT(DT) 0 @

=1
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by the definition (A.19). Thus we obtain (A.29). O

In order to estimate the perturbation in L spaces as well as terms appearing
in the Reynolds stress, we will need the following abstract lemma, which follows
from Lemmas A.2 and A.6.

Lemma A.7. Let p € {1,2}, and fix integers N, > M, > Ngec > 1. Suppose
fiRPxR — R and let ®: R3 x R — R3 be a vector field advected by an
incompressible velocity field v, i.e., Di® = (0; +v - V)® = 0. Denote by ®~*
the inverse of the flow ®, which is the identity at a time slice which intersects
the support of f. Assume that for some A\, v,v > 1 and Cy > 0 the function f
satisfies the estimates

|IDYDYM £ o S CANM (M, Ny, v, ) (A.30)

~

for all N < N, and M < M,, and that ® and d=1 are bounded as

HDN+1©HL°°(suppf) S’ /\N (Agl)
HDN+1(I)_1HL°°(suppf) S’ )\N (A32)

for all N < N,. Lastly, suppose that ¢ is (T/u)®-periodic, and that there exist
parameters ¢ > ¢ > u and C, > 0 such that

HDN¢HLPS<%A4(AﬂAG,QE) (A.33)

for all0 < N < N,. If the parameters

ASpsCs(
satisfy
&< ( al )Ndm (A.34)
=2 )
and we have
2Ngec +4 < N, (A.35)

then the bound
IDYDY (f 90 @), S CCM (N, Ny ¢.C) MM, My, v, 7)  (A.36)

holds for N < N, and M < M,.

Remark A.8. We emphasize that (A.36) holds for the same range of N and M
for which (A.30) holds, as soon as N, is sufficiently large compared to Ngec S0
that (A.35) holds.
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Remark A.9. We note that if estimate (A.30) is known to hold for N+ M < Nj
for some N, > 2Ngec + 4 (instead of for N < N, and M < M,), and if the
bounds (A.31)-(A.32) hold for all N < N,, then it follows from the following
proof that the bound (A.36) holds for N + M < N, and M < Ny, — 2Ngec — 4.
The only modification required to the proof is that instead of considering the
cases N/ < N, —Ngec —4 and N’ > N, —Ngec —4, we now have to split according
to N+ M < Ny — Ngec —4 and N' + M > Ny, — Ngec — 4. In the second case
we use the fact that N — N” > N, — M — Ngee — 4 > Ngece, which holds exactly
because M < Ny — 2Ngec — 4.

Proof of Lemma A.7. Since D;® = 0 we have DM (p o ®) = 0. Using the fact
that dive = 0, so that ® and ®~! preserve volume, and Lemma A.6, which we
may apply due to (A.31), we have

N
IDYDY (f o), 5 > [PV DM DY N (po )
N’=0

Ly
N N-N’
S Y AN DN DM (DY o
N’=0 N"'=0
N N-N’
S AN (DYDY f) e@ DY |
N’=0 N""=0

(A.37)

In (A.37) let us first consider the case N’ < N, —Ngec — 4, so that N'+ M <
N, + M, — Ngec — 4. Under assumption (A.32) we may apply Lemma A.6, and
using (A.30) we have

n

o (@ pine@ o), < 30

n’=0
n

SC AN M (M N, v, D)

n’=0

< (cfAN’M (M, Ny, v, a)) AT, (A38)

‘(D"’+N’Dg‘4f) o qﬂ‘

Lp

for all n < Ngec +4. This bound matches (A.15), with the constant C; replaced
by Cf/\N,./\/l (M, Ny, v, ). Since, like ¢, the function DN" ¢ is (T/u)3-periodic,
due to (A.38), the fact that A < ¢, and assumption (A.34), we may apply
Lemma A.2 to conclude

(% ) w20 o], o saian v 0],

Inserting this bound back into (A.37) and using (A.33) concludes the proof of
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(A.36) for the values of N’ considered in this case.

Next, let us consider the case N/ > N, — Ngec — 4. Since 0 < N’ < N, in
particular, this means that N > N, — Ngec — 4, and since N < N — N’ we also
obtain that N — N” > N’ > N, — Ngec — 4 > Ngec. Here we have used (A.35).
Then the Holder inequality, the fact that ®~! is volume preserving, the Sobolev
embedding W4P C L*, the ordering ¢ > ¢ > p > 1, and assumption (A.34),
imply that

AN*N’*N”

(DN'DtM f) o d 1DN"

< )\N_N/_NII

oV, [P
i I ¥ oo

5 AN_N/_NNCf)\N/M (Mv Nta v, Fl;) C‘F’M (NN + 4’ Nz’ C’ Z>

. " A N-N"
SCfCS@M (NDNIaC7C) M(MthaVag)CZl (4-)

~ —~ Ndec
S CrCaM (NN, €, C) MM, Ny, v, ) (:)
S €M (N, Ny, ¢.C) MM, Niy, D)

Combining the above estimate with (A.37), we deduce that the bound (A.36)
holds also for N/ > N, — Ngec — 4, concluding the proof of the lemma. O

A.6 BOUNDS FOR SUMS AND ITERATES OF OPERATORS

For two differential operators A and B we have the expansion

m k
(A+B)™ > (H A"”Bﬂi> . (A.39)

k=1 o geNt \i=l
| +]B]=m

Clearly (A.39) simplifies if [A, B] = 0. A lot of times we need to apply the above
formula with
A=v-V,

for some vector field v. The question we would like to address in this sec-
tion is the following: Assume that we have already established estimates on
(I1; D2 BP)v, for |a| + |8] < m. Can we deduce estimates for the operator
(A+B)™ = (v-V+ B)™? The answer is yes, and is summarized in the follow-
ing lemma:

Lemma A.10. Fiz N, N¢, N, € N and Q € T3 x R a space-time domain, and
let v be a vector field. For k > 1 and o, 3 € N¥ such that |a| + |3| < N., we
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assume that we have the bounds

()

i=1

S M (Jal, Nos Ao X ) MBI, Nespras i) (A.40)
L (Q)

for some C,y >0, 1 <\, < XU, and 1 < p, < ft,. With the same notation and
restrictions on |al,|B], let f be a function which for some p € [1,00] obeys

k
(o)
i=1

S €M (Jal, Noy Ap, Ap ) MBI Ne g fiy) - (A1)
LP(9)

for someCy >0, 1 < Ap < Xf, and 1 < py < pif. Denote

A =max{As, A\, }, szax{xf,xv}, w=max{uy, o}, [ =max{fy, i}

Then, for
A=v-V
we have the bounds
k
i=1 LP(Q)
S CrClM (n+ Jal, Noy A X) M (18], N s ) (A.42)

S CM (m Nao A X) (€)M (18], N, s 1)
SCM (n, N,, A,X) M (|a| + |ﬁ\,Nt,maX{,u,CUX},max{/7, CUX}) (A.43)

as long as n + |a| + |B] < N.. As a consequence, if k = m then (A.39) and
(A.43) imply the bound

D" (A+B)™ fll Lo (q
SCM (n, Ny, A, X) M (m, Ny, max{y, CyA}, max{Ji, CUX}) (A.44)

forn+m < N,.

Remark A.11. The previous lemma is applied typically with v = u, and B =
Dy q—1 in order to obtain estimates for D"(]], Dg‘iDthqfl)f, and hence for
D™Dy f. A more non-standard application of this lemma uses v = —vg_1
and B = D; 41 in order to obtain estimates for time derivatives via D"9;" f =
D" (—vg—1 -V + Dy g—1)"f.

Proof of Lemma A.10. We recall (6.54)—(6.55) and note that we may write (ig-



APPENDIX A 219

noring the way in which tensors are contracted)

n n
AV =(v-V)" =Y finD? where fin= > cnjc[[(D%v), (A.45)
j=1 | c|eN" =1

Cl=n—j

where the ¢, ; ¢ are certain combinatorial coefficients (tensors) with the depen-
dence given in the subindex, and D represents 0% for some multi-index o with
|a] = a. Inserting (A.45) into the product of operators in (A.39), we see that

k
D" H A% BBi

i=1

k
Z D" H(f%aiD%BBi)
i=1

~ENF
1*<y<a

Y oy oy |IX A (et s

HENF 0<n’<n+ly]  gmeNt | =16l nien” ti=t
1F<y<a 0<mM/<|B| [8|=n+|y|-n/ |67]=5;
|5l =18]—m/ |} =ri

k
X Z C(..) H D" BPs | | (A.46)
s=1

n,pENF
\n\:n’/
lpl=m

where the ¢(),¢(...) > 0 are certain combinatorial coefficients (tensors). Com-
bining (A.39)—(A.46), we obtain that

k
D" (H A%Bﬁi) f

i=1

- Yy x| S (o)

~eENF  0<n'<n+|y|  §keNF n,pENF s=1
1*<y<a 0Sm'<IB] |§|=n+|y|-n' | |n|=n
|k|=]8]—m" \|p|l=m'
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k k o
x H Z E() (H D(S;’ZiBK;"Zi) Z C(..) H (DCivT'iv) ,
i=1g

! ki ENF Li=1 ¢iENYi ri=1
EAETH [Ci|l=ai —s
i 1=rs
(A.47)
where the c(..),¢(..),¢..) = 0 are certain combinatorial coefficients (tensors)
whose dependence is omitted for simplicity (they may depend on all the pa-

rameters in the sums and products). The above expansion combined with the
Leibniz rule, the bound (3.9), and assumptions (A.40)—(A.41), implies

k
i)
i=1

S DD I DY

LP(Q)

({1005

~eNF 0<n/<n+|y|  §reNF n,pENF s=1 L ()
1*<y<a 0<m/<|Bl [§|=n+|y[-n" | |n|=n’
ls|=IB]—m"  \[|pl=m'
C k (e 7}
S’ r! G
Al £ 5 (M etesie) (fwse
i=1  GEN™  § i/ eNF £;=1 ri=1 L= ()

[Cil=ai =i |8/ |=6;

[ ]=rs

<Y Y Y (M NAR) M N )

veNk 0<n'<n+|y|  §,keNF
1*<y<a 0<m/<|B| [§|=n+|y|-n'
|k|=|B]—m'

k
X (H CyiM (ozi =% + i, N, A,X) M (ki, Nt,u,ﬁ)>

i=1

ng Z (CfM (n/yNz7A7X)M(m/7Ntau7ﬁ)>
0<n/<n+|al
0<m/’<|B|

x (CL“'M (\a| fn—n' N, A,X) M (18] —m', Ny, u,ﬁ))
< C,CleM (Ja] +ny Noy A X) MBI, Nos s )

which is precisely the bound claimed in (A.42). Estimate (A.43) follows imme-
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diately, while the bound (A.44) is a consequence of the above and (A.39). O

A.7 COMMUTATORS WITH MATERIAL DERIVATIVES
Let D represent a pure spatial derivative and let
Dt = 8t +ov-V

denote a material derivative along the smooth (incompressible) vector field v.
This vector field v is fixed throughout this section. The question we would like
to address in this section is the following: Assume that for the vector field v
we have D*D?Dv estimates available. Can we then bound the operator norm of
DYD® in terms of the operator norm of D*D??

Following Komatsu [47, Lemma 5.2], a useful ingredient for bounding com-
mutators of Eulerian and material derivatives is the following lemma. We use
the following commutator notation:

(ad Dy)°(D) = D
(ad D))Y(D) = [Dy, D] = —Dv -V
(ad Dy)*(D) = (ad Dy)((ad D;)*~'(D)) = [Ds, (ad D)~ (D)]

for all @ > 2. Note that for any a > 0, (ad D;)*(D) is a differential operator of
order 1.

Lemma A.12. Let m,n > 0. Then we have that the commutator of D" and
D™ is given by

m ny __ m' = [e% m*‘a|
(D", D" = | > al(m —Ja])! (H(ath) Z(D)> Dy (A48)
{aeN™: 1<|a|<m} (=1

By the product in (A.48) we mean the product/composition of operators
H(ad Dy)*(D) = (ad D;)*™(D)(ad Dy)*~~*(D) ... (ad Dy)** (D),
=1
so that on the right side of (A.48) we have a sum of differential operators of

order at most n.

For the above lemma to be useful, we need to be able to characterize the
operator (ad D;)*(D).

Lemma A.13. Let a € N. Then the order 1 differential operator (ad D;)*(D)
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may be expressed as

k
(ad Dy)* Z > Cams [ [(DY Do) -V, (A.49)

k=1{BeN*: |B|=a—k} j=1

where the [] in (A.49) denotes the product of matrices and cq i p are coefficients
which depend only on a,k, [3.

Proof of Lemma A.13. When a = 1 we know that (ad D;)(D) = —Dv -V, so
that the lemma trivially holds. We proceed by induction on a. Using the fact
that [Dy, V] = —Dv - V, we obtain

(ad Dy)* (D Z S cans H DY Do)

k=1 gen(k,a)

+Z > cakgﬂDBJDv Dy, V]

k=1 pgen(k,a)

Z Z CakﬁHD D)

k=1 pen(k,a)

—Z 3 cakﬁﬂpﬁvaDv v,

k=1 Ben(k,a)

where we have denoted by
={BeN":|f|=a—k}

the set of all partitions of a set of a — k elements into k sets. For the first term
we use the Leibniz rule for Dy, so that for any 8 € w(k,a), we obtain an element
B+ej € m(k,a+1), withe; = (0,...,0,1,0,...,0) € N* and the 1 lies in the j*!
coordinate. For 1 < k < a, this in fact lists all the elements in 7(k,a + 1). For
the second sum, we identify 8 € w(k,a) with 8 € 7(k+ 1,a + 1), upon padding
it with a 0 in the k + 1% entry. Changing variables k + 1 — k then recovers an
element § € w(k,a + 1), including the case k = a + 1, which was missing from
the first sum. O

From Lemma A.12 and Lemma A.13 we deduce the following:
Lemma A.14. Let p € [1,00]. Fix Ny, Ny, Noy, M, € N, let v be a vector field,

let Dy = 0¢+v-V be the associated material derivative, and let £ be a space-time
domain. Assume that the vector field v obeys

|IDN DY D[, o) S CoM (N 1N, )\U,Xv> M (M, Ny, o, i) (A.50)

@) ~
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for N < N, and M < M,. Moreover, let f be a function which obeys
||DND£\/If||Lp(Q) 5 CfM (Na Ny, )‘faxf> M (M7 Ntvl“’f?ﬁf) (A51)
for all N < N, and M < M,. Denote

A= max{)‘fv Avts A= maX{Xfa XU}; n= max{:u‘fv Pty B= max{ﬁf, P}

Let m,n,f > 0 be such that n + ¢ < N, and m < M,. Then, we have that the
commutator [D*, D™ is bounded as

1D (D", D) £ gy S CrCoAM (€4, No A, X)
X ./\/l(m — 1, Ny, max{,u,CvXU},maX{ﬁ, chv}) (A.52)
SCM (€4, N AN

x M (m, Ny, max{y, Cury }, max{Ji, CUXU}) . (A.53)

Moreover, we have that for k > 2, and any o,3 € NF with |a| < N, and
|B| < M., the estimate

k
(i)
i=1

§Cf/\/l(\a|,NI,)\,X)M(W,Nt,max{u,cvxv},max{ﬁ,Cva}) (A.54)
holds.

LP(Q)

Remark A.15. If instead of (A.50) and (A.51) holding for N < N, and M < M,,
we know that both of these inequalities hold for all N+M < N, for some N, > 1,
then the conclusions of the lemma hold as follows: the bounds (A.52) and (A.53)
hold for £4+n +m < N, while (A.54) holds for ||+ |3] < N,. This fact follows
immediately from the proof of the lemma, but may alternatively also be derived
from its statement (see also Lemma A.3).

Remark A.16. In Lemma A.14, if the assumption (A.51) is replaced by
1DV DM F gy S CoM (N = 1 Nay Ap, X ) MM, Niypig ig) 5 (A55)

whenever 1 < N < N,, then the conclusion (A.54) changes, and it instead
becomes

k
(i)
i=1

Lr(Q)
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<CpM <|a| ~ 1N, A,X) M (\m, Ny, max{p, Cu Xy}, max{f, chv}) (A.56)

whenever |a| > 1. This follows for instance by noting that the sum on the second
line of (A.61) only contains terms with j > 1, so that (A.55) is not required
when N = 0.

Proof of Lemma A.14. First, we deduce from (A.49) that for any «; > 1 and
1 <1i < n, we have

(ad D;)* Z friai -V, (A.57)

Kki=1
where the functions fy, ., are computed as

i

fni,ai = Z C()H(Dtﬁ7DU)

{BeEN"i: |B|=a;—K;:} j=1

for suitable combinatorial coefficients (tensors) c(...y which depend on £;, a;, and
B. In particular, in view of assumption (A.50), and the Leibniz rule, we have
that

D fis

L) SCEM (ni O N, /\U,XU) M (i — iy Ny, i, Fio) - (A58)

Next, from (A.57) we deduce that for any o € N with |a| > 1, one may write

n

[[(ad Dy)i( Zgj oD (A.59)

i=1
where
n
9j,a = Z Z ~.‘.)HD%fm,a,y-
{keN": 1"<k<a} {yEN": |y|=n—j} i=1
As a consequence of (A.58) we see that

||

1D g5l ey S D CHIM (€40 = j 4[], Noy Aoy X )
|k|=1

XM(|a|_‘H|7Ntvljf’ljvﬁv)~ (AGO)
From (A.48), assumption (A.51), identity (A.59), and bound (A.60), we see that

11D, D) £l o e
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A
NE
M:

o a5 )

2
I
3
<.
I
I

3

A
Ms

1D gs.all oy || 27 DI ‘O"f’

la|=1j=1 Lr(Q)
R L T
SYS oM (e n— ks Noy A, X ) M (7, NoAY)
k=1 j=1

X M(m_kata;u'vﬁ)
+CpCEM (1 =+ K, Nos Au X ) M (5 £ N2 )
X M(m_kaNtauvﬁ)
<epM (e + 1, Ny A, X) S (CA)EM (m — b, Ny, ) (A.61)
k=1

from which (A.53) follows directly.

In order to prove (A.54) we proceed by induction on k. For k = 1 the
statement holds in view of (A.51). We assume that (A.54) holds for ¥’ <k —1,
and denote

k,
Py = ][ p*D | f.
i=1

With this notation we have
Py = D* D} D= D}~ Pj,_,
_ Dak+ak_1ka+ﬂk—1Pk_2 + Do [ka,Dak_l] Dtﬁk_lpk—2~

Using (A.54) with & — 1 gives the desired estimate for the first term above.
For the second term, we appeal to the commutator bound (A.53), applied to

Df"’lPk,g, which obeys condition (A.51) in view of (A.54) at level kK — 1. This
concludes the proof of (A.54) at level k. O

A.8 INTERMITTENCY-FRIENDLY INVERSION OF THE
DIVERGENCE

Given a vector field G?, a zero mean periodic function g, and an incompressible
flow @, our goal in this section is to write G*(z)o(®(x)) as the divergence of a
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symmetric tensor.

Proposition A.17 (Inverse divergence iteration step). Fiz two zero-mean
T3-periodic functions o and ¥, which are related by o0 = AVY. Let ® be a volume
preserving transformation of T2, such that [|[V® — IdHLoc(Tg) < 1/2. Define the

matriz A = (V®)~L. Given a vector field G*, we have
Gloo® =0,R™ + ;P + E', (A.62)
where the traceless symmetric stress R™ is given by
= (G"A} + G A} — AL ARGP0,D") (0p0) 0 @ — Py (A.63)
where the pressure term is given by
P = (2G" A} — AR ALGP9,9") (9,9) o @ (A.64)
and the error term E' is given by
E' = (9, (GPALA} — G"ALAY) 0,8 — 0,G"A}) (9¢9) 0 @. (A.65)

Proof of Proposition A.17. Note that by definition we have A§9;®* = §;;. Since
® is volume preserving, det(V®) = 1, and so each entry of the matrix A equals
the corresponding cofactor of V&, which in three dimensions is a quadratic
function of entries of V& given explicitly by Az = Eipqukgﬁkiwﬁg@q In two
dimensions, A is a linear map in V. Moreover since ® is volume preserving,
the Piola identity 9;A7 = 0 holds for every i € {1,2,3}. The main identity
that we use in the proof is that for any scalar function ¢ we have (9;p) o ® =
ATy (p 0 @) = D (ATp 0 D).
Starting from ¢ = AY, we have

G'oo® =G (OpV) 0 @
= G'A}0,(0x0) o
=0, (G"AL(0kY) 0 @) — 0,G" A} (O9) 0 @
=0, (G’A”(@kﬁ) o ® + G" A} (0rV) o D)

O (G™A},(010) 0 @) — 0,G AL (O0) 0 @

)

Next, we have

O (G™ A} (0k0) 0 @) = 0,, (G" AL ALD, (Y 0 @)
= 0,0, (G" A}, AYY 0 @) — 9, (0,(G" AL AY)Y o @)
= 0, (G" AL (9 0 @)) + 0, (9(G" A4AL)Y 0 @)
— 0y (0,(G™ A}, AL)Y 0 )
= 0y, (GP A} ALO, (0 0 ®)) + 0, (0,(GPALAR)Y 0 D)
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— 0, (9, (GmALADYD 0 @)

where in the last equality we have just switched the letters of summation n and
p. We further massage the last term in the above equality:
On (8,(G"ALAYYY 0 @) = 0, (G ALAY) 0, (0 0 @) + Opyp, (G ALAY) 9 0 @
=0, (G"ALAY) 0, (0 0 @) + 9, (0n (G A}AL) ¥ 0 @)
— On (G”A};Aﬁ) Op(V o).

Combining the above three equalities, we arrive at

G'oo® =0, ((G'A} + G™A},)(0k9) 0 @ — AL ARGPO, (9 0 D))
+ 0n (GPALA} — GMALAY) 0,(0 0 @) — 0,G* A} (V) 0 @
=0, ((G'A} + G™ A}) (9k9) 0 © — A} AL GP, D" (9,9) o )
+ 0, (GPAL AL — G"ALAY) 0,8 (000) 0 @ — 9,G A} (0p0) 0 D .
In the last equality, we have exchanged the order of summation. Identities

(A.62)—(A.65) follow upon declaring that the trace part of the symmetric stress
is the pressure. O

Proposition A.17 allows us to obtain the following result, which is the main
conclusion of this section.

Proposition A.18 (Inverse divergence with error term). Fiz an incom-
pressible vector field v and denote its material derivative by Dy = Oy +v-V. Fix
integers Ny > M, > 1. Also fix Ngec,d > 1 such that N, —d > 2Ngec + 4.

Let G be a vector field and assume there exists a constant Cg > 0 and
parameters \,v > 1 such that

|DYDYM G|, S CaAN M (M, My, v, D) (A.66)

for all N < N, and M < M,.
Let ® be a volume preserving transformation of T3, such that

D=0 and  |IV®—Id| e upp ) < V2

Denote by ®~1 the inverse of the flow ®, which is the identity at a time slice
which intersects the support of G. Assume that the velocity field v and the flow
functions ® and ®~! satisfy the bounds

||DN+1(I)||L°°(supp Q) + ||DN+1(I)71HL°°(supp G) ~ >\,N (A67)
DYDY Dl e qupp ) S VAT M (M, My, v,7) (A.68)

for all N < N,, M < M,, and some X > 0.
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Lastly, let 0,9: T3 = R be two zero mean functions with the following prop-
erties:

1. there exists d > 1 and a parameter ¢ > 1 such that o(x) = (24 A%(x);
2. there exists a parameter i > 1 such that o and 9 are (T/u)3-periodic;
3. there exist parameters A >  and Cx > 1 such that

[DNol|,, SC.AY  and  ||DNY||,, S C.M(N,2d,(,A) (A.69)

for all 0 < N < Ngp, except for the case N = 2d, when the Calderdn-
Zygmund inequality fails. In this exceptional case, the second inequality
in (A.69) is allowed to be weaker by a factor of A, for an arbitrary
a € (0,1]; that is, we only require that ||D2‘119||L1 < C Ae¢,

If the above parameters satisfy
N<A<p< (<A, (A.70)

where by the second inequality in (A.70) we mean that

7Ndec
- > <1, AT1
(271'\/3)\ B ( )

then we have that
Goo®=divR+VP+E =:div (H(Goo®))+VP+E, (A.72)

where the traceless symmetric stress R= H(Gp o ®) and the scalar pressure P
are supported in supp G, and for any fixred o € (0,1) they satisfy

|PYDME|| |+ ||V DY P,
< A“CGC.CTIM(N,1, ¢ A) M (M, My, v, 7) (A.73)
for all N < N, —d and M < M,. The implicit constants depend on N, M, and

a but not on G, o, or ®. Lastly, for N < N, —d and M < M, the error term
E in (A.72) satisfies

|IDVNDYME|,, S CaChA*N¢AN M (M, My, v,7) . (A.74)

We emphasize that the range of M in (A.73) and (A.74) is exactly the same as
the one in (A.66), while the range of permissible values for N shrinks from N,
to N, —d.

Lastly, let No, M, be integers such that 1 < M, < N, < M, /2. Assume that
in addition to the bound (A.68) we have the following global lossy estimates:

DN 00| sy S AT (A.75)
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for all M < M, and N+ M < N, + M,, where

CoAg ST7Y and N <X <A< Ay (A.76)

9~ 'q

If d is chosen large enough so that

d—1 ~1 = Mo
) ’CUA
caCh (2 gy matTy LR CARY g (A.77)
( T 1 )\5
q q+1

then we may write
E = div Ruontocal + g Goo ®dx
=: div (R*(GQO(I)))+]fr3 Goo ®dzx, (A.78)
where ]%nonlocal =R*(Goo ®) is a traceless symmetric stress which satisfies

5q+2 N _—-M
1 < )\2+1 )\ququ (A79)

N M p
HD Dt Rnonlocal

for N < N, and M < M,.

Before turning to the proof of Lemma A.18, let us make three remarks. First,
we highlight certain parameter values which will occur commonly in applications
of the proposition. Second, we comment on a technical aspect of the application
of the proposition in Section 8.3. Finally, we comment on the assumptions (1)—
(3) and (A.71) and (A.77) for the functions g and ¥}, which in applications are
related to the transversal densities of the pipe flows.

Remark A.19. Frequently, G will come with derivative bounds which are satis-
fied for N+ M < N¥. In this case, we set N, = M, = N*/2, so that (A.66) is sat-
isfied. The bounds in (A.67) and (A.68) will be true (due to Corollary 6.27 and
estimate (6.60)) for much higher order derivatives than N*/2; and so we ignore
them. The bounds in (A.69) are given by construction in Proposition 4.4. Then
the bounds (A.73) and (A.74) are satisfied for N < N*/2—d and M < N¥/2, and
in particular for N+ M < N*/2—d. In (A.75) we will then set N, = M, < N¥/a,
which in practice will give N, = M, = 3Njnq,,. Arguing in the same way used
to produce the bound (5.18) shows that for N + M < Ngj,

DY 0w, | 5 (Naoy?) 27 (A.80)
and so (A.75) is satisfied with C,, = )\36;/2 up to N+M < 2Ng, (which will in fact
be far beyond anything required for the inverse divergence). The inequalities in
(A.76) follow from (9.43), (9.39), and the definitions of ' = A\, and A = A\j4.
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In applications, v = Fq_ll"qjl, so that from (9.39) and (9.43) we have that

~ 1 ~ ~173% —1y4
max{Tq U, CuA} < Ty A+l STy Agias

which holds as soon as er is taken to be sufficiently small. Then, (A.77) will
follow from (9.55). Finally, (A.79) will hold for all N, M < N*/4, which will be
taken larger than 3Njpq,,. In summary, if (A.66) is known to hold for N + M <
N¥, then (A.73) holds for N < N*/2 —d and M < N*/2, while (A.79) is valid for
N, M < N*/a.

Remark A.20. In the identification of the error terms in Section 8.3, we apply
Proposition A.18 to write

Goo® =div (H(Goo®)) + VP +div (R* (Goo ®)) + ][ Goo ®dz.
’]TS
The estimates on G, o, and ®, and then the right-hand side of the above equality,
will be checked in later sections. We emphasize that H is a local operator and is
thus well suited to working with estimates on the support of a cutoff function.
Conversely, R* is nonlocal but will always produce extremely small errors which
can be absorbed into éq+1 and for which the cutoff functions are not relevant.

Remark A.21. We consider examples of functions ¥ and ¢ with which Proposi-
tion A.18 is used.

1. This is the case corresponding to the density of a pipe flow. Recalling
the construction of pipe flows from Proposition 4.4, we let o = g’g) A, and
9 = 19’5“7)\#. Set ( = A = X\ (where the A refers to Proposition 4.4, not
the A from Proposition A.18) and p = Ar. To verify (1), we appeal to
item (1) from Proposition 4.4 and our choice of A and u. The periodicity
requirement in (2) follows from item (2) from Proposition 4.4 and, refer-
ring back, from item (1) from Proposition 4.3. Next, (A.69) is satisfied
with C, = r using (4.11). Finally, (A.71) and (A.77) will follow from
large choice of Ngee and d and the fact that our choice of A can always be
related to ¢ and p by a power strictly less than 1 (see (9.48) and (9.55)).
2. This is the case corresponding to the Littlewood-Paley projection for the
square of the density of a pipe flow. Fix 1 < u < { < A, and a constant
C. > 0. Let n(z) be any (T/u)3-periodic function (which need not have zero
mean), with |||, ps) < Cs. In applications, we shall refer to (4.15) from

2
Proposition 4.4 and set n = (‘ng,/\ﬂ“) and p = Ar. This means that we
may write n(z) = 1, (ux) where 7, is T3-periodic, with ||17H||L1(T3) <C..
Following (4.15) from Proposition 4.4 with A\; = {, Ay = A, we may define

o(z) = (Pic,apn) () = (P[57 ]77#) (),

<>
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a function which is (T/u)3-periodic and has zero mean (since ¢ > p > 0),

and clearly
||DNQHL1('1T3) <CAY.

We now define the associated function ¥ by first defining the zero mean

T3-periodic function
¢ 2d
_ (S —d
Oy = (u) AP a1

where the negative powers of the Laplacian are defined simply as a Fourier
multiplier (since the periodic function we apply it to has zero mean). Then
we let

ﬂ(x) = 19/’1’(/1“1:) ’

which has zero mean, is (T/u)3-periodic, and clearly satisfies A% = (29,
as required. It only remains to estimate the W1 norms of ¢, which up
to paying a factor of uV is equivalent to estimating the W™:! norms of
¥,. When 0 < N < 2d, the operator

DNA_dP[g _ A]
R
is a bounded operator on L', whose operator norm is < (¢/u)¥ =24, This
may be verified via a standard Littlewood-Paley argument. The excep-
tional case N = 2d leads to a logarithmic loss since there are roughly
log(A/p)-many Littlewood-Paley shells to estimate; we absorb this loss
into a factor of A%, with o > 0 arbitrarily small. Since [[n,| ;. < C., the
second estimate in (3) above clearly follows, at least when N < 2d. The
case N > 2d follows similarly, except that now DV A~9 is a positive order
operator, and thus the L' operator norm of DNA*C']P’[g Al is bounded by
o
~ (Mu)N =24, We remark that as in the previous case, (A.71) and (A.77)
will follow from large choices of Ngec and d and the fact that our choice

of A can always be related to ( and u by a power strictly less than 1.

Proof of Proposition A.18. Since D;® = 0, we have DY D"V® = DN DM V]®.
We may now appeal to Lemma A.14, more precisely to Remark A.16. Let
Q =suppG and f = @, so that (A.67) implies that (A.55) holds with Cy =1,
A = A = X, and py = iy = 1 (in fact, whenever M > 1 we may replace
the right side of (A.55) by 0). Moreover, (A.68) implies that (A.50) holds with
Co=v/N, X\ = XU =N, Ny = My, pup, = v, and fi,, = v. We deduce from (A.56)
that

HDN”D,{VI DN’D<1>H SNNEN M (M, M, v, D) (A.81)
L (supp G)

whenever N'+ N" < N, and M < M,. Similarly, we use Lemma A.14 with f =
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G, so that due to (A.66) we know that (A.51) holds with Cy = Cq, Ay = Xf =\,
pr = v, gy = v, and Ny = M;. With Q = suppG, since X < )\, as before
we have that (A.68) implies that (A.50) holds with C, = v/A, Ay = Ay = A,
Ny = My, p, = v, and fi,, = V. Therefore, from (A.54) we obtain that

HDN” DMDN'G HL < CeAY N M (M, My, v, D) (A.82)

whenever N'+ N” < N, and M < M,. With (A.81) and (A.82), we turn to the
proof of (A.73). )

Instead of defining R and P separately, we shall simply construct a symmetric
stress R with a prescribed divergence, and use the convention that P = tr (R)
and R = R — tr (R)Id. The construction is based on iterating Proposition A.17,
d times. For notational purposes, let o) = o, and for 1 < k < d we let
Ok)y = (C72A)d7k19. Then O(k—1) = CiZAQ(k) and o) = ¥. We also define
G =G.

Since p() = Q*QAp(l)7 we deduce from Proposition A.17, identities (A.62)—
(A.65), that

Gloy00) © ® = 0, R + GE?)(C71359(1)) od, (A.83)

where the symmetric stress R(g) is given by

o =¢" (Gfo)A? + GloyAr — AL ARG 9p >(C_1aw<1)) °o®  (A84)

int
=:5(0)

and the error terms are computed as
Git) = ¢! (an (GfO)A;;A;; - G?O)A;;Az) apcbf) ~0,Gin Ay, (A85)

where, as before, we denote (V®)~! = A. We first show that the symmetric
stress R(gy defined in (A.84) satisfies the estimate (A.73). First, we note that
the (7! factor has already been accounted for explicitly in (A.84). Second, we
note that since D;® = 0, material derivatives may only land on the components
of the 3-tensor S(py. Third, the function C‘lDQ(l) has zero mean, is (T/u)3
periodic, and satisfies

DV (¢ Do) || 2 S CeM (N, 1,¢,A) (A.86)
for 1 # N < Ngp, in view of (A.69). For N = 1, the above estimate incurs a
logarithmic loss of A, which we can absorb with A for any a > 0 to produce
the estimate

D¢ Dowy)|| 0 S AC.M (N, 1,(,A). (A.87)

Iz
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The implicit constants depend on « and degenerate as a — 0. Fourth, the
components of the 3-tensor S(g) are sums of terms of two kinds: Gy ® A is
a linear function of G () multiplied by a homogeneous quadratic polynomial in
D®, while G® AQ A® D® is a linear function of G multiplied by a homogeneous
polynomial of degree 5 in the entries of D®. In particular, due to our assumption
(A.66) and the previously established bound (A.81), upon applying the Leibniz
rule and using that A’ < )\, we obtain that

| DY DM S0y 2 S CaAN M (M, My, v,v) (A.88)

for N < N, and M < M,. Having collected these estimates, the L norm of the
space and material derivatives of R(g) is obtained from Lemma A.7. As dictated
by (A.84) we apply this lemma with f = C‘lS(O) and ¢ = (_1VQ(1). Due to
(A.88), the bound (A.30) holds with Cy = Cg¢™!. Due to (A.67) and X < ),
the assumptions (A.31) and (A.32) are verified. Next, due to (A.86) and (A.87),
the assumption (A.33) is verified, with N, = 1, Ez A, and C, = C,A®. Lastly,
assumption (A.71) verifies the condition (A.34) of Lemma A.7. Thus, applying
estimate (A.36) we deduce that

DYDY Roy|| ;1 < CaCuh*CT M (N, 1,¢,A) M (M, My, v,0) (A.89)

for all N < N, and M < M,, which is precisely the bound stated in (A.73).
Here we have used that N, > 2Ngec + 4, which was required due to (A.35).

Next we analyze the second term in (A.83). The point is that this term has
the same structure as what we started with; for every fixed £ € {1, 2,3}, we may
replace Géo) by Gl("i), and we replace g(g) with (_13gg(1); the only difference is
that the bounds for this term are better. Indeed, from (A.85) we see that the
2-tensor (1) is the sum of entries in CilDG(o) ® A, CilDG(O) AR AR DY,
and C’lG(O) ® DA® A® D®. Recalling that the entries of A are homogeneous
quadratic polynomials in the entries of D®, from (A.81), (A.82), M < A, and
the Leibniz rule we deduce that

HDN”D;M pN'Gi, HL < CaACTYAN N M (M, My, v, D) (A.90)

for N+ N” < N, —1 and M < M,. Compare the above estimate with (A.82),
and notice that since A\ ™! < 1, the bounds for G(1) are indeed better than those
for G(¢); the only caveat is the bounds hold for one less spatial derivative. In or-
der to iterate Proposition A.17, for simplicity we ignore the ¢ index; since the ar-
gument works in exactly the same way for all values of ¢, we write Gﬁ) simply as
G21)7 and 8gg(1) as DQ(l)- We start by noting that CilDQ(l) = CiQA(CilDQ(Q)).
Thus, using identities (A.62)—(A.65) we obtain that the second term in (A.83)
may be written as

Glyy(¢T' Do) o ® = O R(3) + Gfé)(Cd@’DQ@)) o, (A.91)



234 APPENDIX A

where the symmetric stress R(1) is given by

in = ¢! (Gg’l)Ay + Gy A — A?;AZGﬁ)f’p‘PZ) (C?0Do)) 0@ (A.92)

=50y

and the error terms are computed as
Gy = ¢ (00 (GPALAL = Gy 434D ) 0,0°) = .Gl A7 . (A.93)

We emphasize that by combining (A.85) with (A.92) and (A.93), we may com-
pute the 3-tensor S(;) and the 2-tensor G(o) explicitly in terms of just space
derivatives of G and D®. Using a similar argument to the one which was used
to prove (A.88), but by appealing to (A.90) instead of (A.82), we deduce that
for N < N, —1and M < M,,

|DNDMS,

) S CaATHANYM (M, My, v, D) . (A.94)

Using the bound (A.94) and the estimate

[DN(¢?0¢Do))|| 1 S CeM (N, 2,(,A)

which is a consequence of (A.69)—in the case N = 2, as before, we may weaken
the bound by a factor of A“—we may deduce from Lemma A.7 that

|[DVYDYM Ry || 2 S CaCh*(ACT)IM (N, 2,0, A) M (M, My,v,v)  (A.95)

for N < N, — 1 and M < M,, which is an estimate that is even better than
(A.89), since A < ¢ < A. This shows that the first term in (A.91) satisfies the
expected bound. The second term in (A.91) may in turn be shown to satisfy

HDN”D;W pN'Gil, HL < CoOCOA N A (M, My, v, 7). (A.96)

for N+ N” < N, —2 and M < M,, and it is clear that this procedure may be
iterated d times.

Without spelling out the details, the iteration procedure described above
produces

d—1
G0 0@ =Y divR) + G ® (('D9) 0 @, (A.97)
k=0

=F
where each of the d symmetric stresses satisfies
|DN DM R,

W S CaCh* (N CTFTYM(N, 1, A) M (M, My, v, ), (A.98)
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for N < N, — k and M < M,. Each component of the the error tensor G(d) in
(A.97) is recursively computable solely in terms of G and D® and their spatial
derivatives, and satisfies

DY DMDN G| | S CoOCT N M (M My v D) (A99)

Ll

for N+ N” < N, —d and M < M,. Lastly, since |DN(¢C74DW)||,, <
C.A“M (N,d, ¢, A) and D9 is (T/u)3-periodic, a final application of Lemma A.7
combined with (A.99) and the assumption that N, —d > 2Ngec + 4 show that
estimate (A.74) holds.

Next, we turn to the proof of (A.78) and (A.79). Recall that F is defined
by the second term in (A.97), and thus f., Go o ®dx = f;, Edx. Using the
standard nonlocal inverse divergence operator

Ro=A""(Vu+ (Vo)) — % (Id+vvA~h A ldive, (A.100)

we may define

o

Rnonlocal =RE.

By the definition of R we have that énonlocal is traceless, symmetric, and satisfies
div Ryonlocal = F — fﬂ,g Edz ,i.e., (A.78) holds. In the last equality we have used
the fact that, by assumption, Gp o ® has zero mean, and thus so does E. The
idea here is very simple: because d is very large, the gain of (A\{~1)¢ present in
the E estimate (A.74) is so strong that we may simply convert D and D, bounds
on E to (terrible) d; bounds, which commute with R, and get away with it.

Using the formulas (5.17a) and (5.17b) and the assumption (A.75), since D
and 0; commute with R, we deduce that for every N < N, and M < M, we
have

N M P
HD Dt Rnonlocal
Ll
M-M'
KYN—-N'4+K~—(M—-M'-K) N’ oM’
S S CKX) 7 |pYorrE| |
M'<M K=0
N'+M'<N+M
YN—N'~—(M-M") N’ oM’
< Y v |p¥ore| (A.101)
M'<M

N'+M'<N+M

for any p € (1,3/2), where in the last inequality we have used the facts that, by

assumption, C,A; S 7, " and that R: LP(T?) — L'(T?) is a bounded operator.
Our goal is to appeal to estimate (A.44) in Lemma A.10, with A = —v -V,
B = Dy, and f = E in order to estimate the L? norm of DY 9M E = DN (A +

BYM'E.



236 APPENDIX A

First, we claim that v satisfies the lossy estimate

| DN DM CANFM (A.102)

UHLOO ~

for M < M, and N+ M < N, + M,. This estimate does not follow from (A.68),
which provides bounds for only Dv, instead of v. For this purpose, we apply
Lemma A.10 with f =v, B=030;, A=v-V, and p = co. Using (A.75), and the
fact that B = 9, and D commute, we obtain that bounds (A.40) and (A. 41) hold
with Cy = Cy, Ay = Ao = Af = /\f = )\q, and py, = fly = fiy = fif =T, Smce
A+ B = D;, we obtain from the bound (A.44) and our assumption C, )\q N
that (A.102) holds.
Second, we claim that for any k& > 1 we have

k
(1ot
i=1

whenever |8| < M, and |a| + |8] < No + M,. To see this, we use Lemma A.14

with f = v, p = 00, and = suppG. From (A.68) we have that (A.50) holds

with C, = v/N, A\, = XU = XN, uy = v, and i, = 7. On the other hand,

from (A.102) we have that (A.51) holds with Cy = C,, Ay = Xf = Xq, and

pf =iy =7, . Since Xq > X, we deduce from (A.54) that (A.103) holds.
Third, we claim that

k
i=1

holds whenever |a| < N, —d and |8| < M,. This estimate again follows from
Lemma A.14, this time with f = F, by appealing to the previously established
bound (A.74) and the Sobolev embedding W1 (T3) C LP(T3) for p € (1,3/2).

At last, we are in the position to apply Lemma A.10. The bound (A.103)
implies that assumption (A.40) holds with B = Dy, A\, = XU = Xq7 and
Wy = [y = max{?q_l,ﬁ}. The bound (A.104) implies that assumption (A.41)
of Lemma A.10 holds with C; = CoCo(AC™1)A, A\f = A; = A, pp = v, and
fy = v. We may now use estimate (A.44), and the assumption that A > Xq, to
deduce that

< CoAl (max{w, 7,1 )P (A.103)

L (supp G)

S CaCACTHIATIM (18], My, v, D) (A104)
LP(supp G)

HDN’atM/EHLP < CaC (A AN (max{C, A, 7,7 1 1) M (A.105)

holds whenever M’ < M, and N'+ M’ < N, + M,. Combining (A.101) and
(A.105) we deduce that

N M p
HD Dt Rnonlocal 1
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SCeC.(ATH YT ANE MO AN (max{C, A, 7,7, M
M'<M
N'+M'<N+M

< CaC(ACHIAN T (max{C, A, 7,7, ' HM (A.106)

whenever N < N, and M < M,. Estimate (A.79) follows by appealing to
the assumption (A.77), which ensures that the gain from (A(™1)4~! is already
a sufficiently strong amplitude gain, and we use the leftover factor of A\(~! to
absorb implicit constants. O
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