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Chapter One

Introduction

We consider the homogeneous incompressible Euler equations

@tv + div (v ⌦ v) +rp = 0 (1.1a)

div v = 0 (1.1b)

for the unknown velocity vector field v and scalar pressure field p, posed on the
three-dimensional box T3 = [�⇡,⇡]3 with periodic boundary conditions. We
consider weak solutions of (1.1), which may be defined in the usual way for
v 2 L

2
t
L
2
x
.

We show that within the class of weak solutions of regularity C
0
t
H

1/2�
x , the

3D Euler system (1.1) is flexible.1 An example of this flexibility is provided by:

Theorem 1.1 (Main result). Fix � 2 (0, 1/2). For any divergence-free vec-
tor fields vstart, vend 2 L

2(T3) which have the same mean, any T > 0, and any
✏ > 0, there exists a weak solution v 2 C([0, T ];H�(T3)) to the 3D Euler equa-
tions (1.1) such that kv(·, 0)� vstartkL2(T3)  ✏ and kv(·, T )� vendkL2(T3)  ✏.

Since the vector field vend may be chosen to have a much higher (or much
lower) kinetic energy than the vector field vstart, the above result shows the
existence of infinitely many non-conservative weak solutions of 3D Euler in the

regularity class C
0
t
H

1/2�
x . Theorem 1.1 further shows that the set of so-called

wild initial data is dense in the space of L2 periodic functions of given mean. The
novelty of this result is that these weak solutions have more than 1/3 regularity,
when measured on a L

2
x
-based Banach scale.

Remark 1.2. We have chosen to state the flexibility of the 3D Euler equations
as in Theorem 1.1 because it is a simple way to exhibit weak solutions which are
non-conservative, leaving the entire emphasis of the proof on the regularity class
in which the weak solutions lie. Using by now standard approaches encountered
in convex integration constructions for the Euler equations, we may alternatively

establish the following variants of flexibility for (1.1) within the class of C0
t
H

1/2�
x

weak solutions:

1Loosely speaking, we consider a system of partial di↵erential equations of physical origin
to be flexible in a certain regularity class if at this regularity level the PDEs are not anymore
predictive: there exist infinitely many solutions, which behave in a non-physical way, in stark
contrast to the behavior of the PDE in the smooth category. We refer the interested reader to
the discussion in the surveys of De Lellis and Székelyhidi Jr. [30, 32], which draw the analogy
with the flexibility in Gromov’s h-principle [40].
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CHAPTER 1

1. The proof of Theorem 1.1 also shows that given any � < 1/2, T > 0,
and E > 0, there exists a weak solution v 2 C(R, H�(T 3)) of the 3D
Euler equations such that supp

t
v ⇢ [�T, T ], and kv(·, 0)k

L2 � E. Such
weak solutions are nontrivial and have compact support in time, thereby
implying the non-uniqueness of weak solutions to (1.1) in the regularity

class C0
t
H

1/2�
x . The argument is sketched in Remark 3.7 below.

2. The proof of Theorem 1.1 may be modified to show that given any � 2
(0, 1/2), and any C

1 smooth function e : [0, T ] ! (0,1), there exists a
weak solution v 2 C

0([0, T ];H�(T3)) of the 3D Euler equations, such
that v(·, t) has kinetic energy e(t), for all t 2 [0, T ]. In particular, the

flexibility of 3D Euler in C
0
t
H

1/2�
x may be shown to also hold within the

class of dissipative weak solutions, by choosing e to be a non-increasing
function of time. This is further discussed in Remark 3.8 below.

1.1 CONTEXT AND MOTIVATION

Classical solutions of the Cauchy problem for the 3D Euler equations (1.1) are
known to exist, locally in time, for initial velocities which lie in C

1,↵ for some
↵ > 0 (see, e.g., Lichtenstein [48]). These solutions are unique, and they conserve
(in time) the kinetic energy E(t) = 1

2

´
T3 |v(x, t)|2dx, giving two manifestations

of rigidity of the Euler equations within the class of smooth solutions.
Motivated by hydrodynamic turbulence, it is natural to consider a much

broader class of solutions to the 3D Euler system; these are the distributional
or weak solutions of (1.1), which may be defined in the natural way as soon as
v 2 L

2
t
L
2
x
, since (1.1) is in divergence form. Indeed, one of the fundamental

assumptions of Kolmogorov’s ’41 theory of turbulence [46] is that in the infinite
Reynolds number limit, turbulent solutions of the 3D Navier-Stokes equations
exhibit anomalous dissipation of kinetic energy; by now, this is considered to be
an experimental fact; see, e.g., the book of Frisch [39] for a detailed account. In
particular, this anomalous dissipation of energy necessitates that the family of
Navier-Stokes solutions does not remain uniformly bounded in the topology of
L
3
t
B
↵

3,1,x
for any ↵ > 1/3, as the Reynolds number diverges, as was alluded to

in the work of Onsager [58].2 Thus, in the infinite Reynolds number limit for
turbulent solutions of 3D Navier-Stokes, one expects the convergence to weak
solutions of 3D Euler, not classical ones.

It turns out that even in the context of weak solutions, the 3D Euler equa-

2Onsager did not use the Besov norm

kvk
B↵

p,1
= kvk

Lp + sup
|z|>0

|z|
�↵

kv(·+ z)� v(·)k
Lp ;

here we use this modern notation and the sharp version of this conclusion, cf. Constantin, E,
and Titi [22], Duchon and Robert [35], and Drivas and Eyink [34].
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tions enjoy some conditional variants of rigidity. An example is the classical
weak-strong uniqueness property.3 Another example is the question of whether
weak solutions of the 3D Euler equation conserve kinetic energy. This is the
subject of the Onsager conjecture [58], one of the most celebrated connections
between phenomenological theories in turbulence and the rigorous mathemati-
cal analysis of the PDEs of fluid dynamics. For a detailed account we refer the
reader to the reviews [37, 21, 61, 30, 64, 32, 33, 12, 14] and mention here only
a few of the results in the Onsager program for 3D Euler.

Constantin, E, and Titi [22] established the rigid side of the Onsager con-
jecture, which states that if a weak solution v of (1.1) lies in L

3
t
B
�

3,1,x
for some

� > 1/3, then v conserves its kinetic energy. The endpoint case � = 1/3 was
addressed by Cheskidov, Constantin, Friedlander, and Shvydkoy [16], who es-
tablished a criterion which is known to be sharp in the context of 1D Burgers.
By using the Bernstein inequality to transfer information from L

2
x
into L

3
x
, the

authors of [16] also prove energy-rigidity for weak solutions based on a regularity
condition for an L

2
x
-based scale: if v 2 L

3
t
H
�

x
with � > 5/6, then v conserves

kinetic energy (see also the work of Sulem and Frisch [63]). We emphasize the
discrepancy between the energy-rigidity threshold exponents 5/6 for the L2-based
Sobolev scale, and 1/3 for Lp-based regularity scales with p � 3.

The first flexibility results were obtained by Sche↵er [59], who constructed
nontrivial weak solutions of the 2D Euler system, which lie in L

2
t
L
2
x
and have

compact support in space and time. The existence of infinitely many dissipative
weak solutions to the Euler equations was first proven by Shnirelman in [60],
in the regularity class L

1
t
L
2
x
. Inspired by the work [53] of Müller and Šverak

for Lipschitz di↵erential inclusions, in [29] De Lellis and Székelyhidi Jr. have
constructed infinitely many dissipative weak solutions of (1.1) in the regularity
class L

1
t
L
1
x

and have developed a systematic program towards the resolution
of the flexible part of the Onsager conjecture, using the technique of convex
integration. Inspired by Nash’s paradoxical constructions for the isometric em-
bedding problem [54], the first proof of flexibility of the 3D Euler system in
a Hölder space was given by De Lellis and Székelyhidi Jr. in the work [31].
This breakthrough or crossing of the L

1
x

to C
0
x
barrier in convex integration

for 3D Euler [31] has in turn spurred a number of results [8, 6, 9, 27] which
have used finer properties of the Euler equations to increase the regularity of
the wild weak solutions being constructed. The flexible part of the Onsager
conjecture was finally resolved by Isett [43, 42] in the context of weak solutions
with compact support in time (see also the subsequent work by the first and last
authors with De Lellis and Székelyhidi Jr. [11] for dissipative weak solutions),
by showing that for any regularity parameter � < 1/3, the 3D Euler system (1.1)
is flexible in the class of C�

t,x
weak solutions. We refer the reader to the review

3If v is a strong solution of the Cauchy problem for (1.1) with initial datum v0 2 L
2,

and w 2 L
1
t
L
2
x is merely a weak solution of the Cauchy problem for (1.1), which has the

additional property that its kinetic energy E(t) is less than the kinetic energy of v0, for a.e.
t > 0, then in fact v ⌘ w. See, e.g., the review [66] for a detailed account.
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papers [30, 64, 32, 33, 12, 14] for more details concerning convex integration
constructions in fluid dynamics, and for open problems in this area. We note
that the situation in two dimensions appears considerably more di�cult, as the
full flexible side of the Onsager conjecture remains open in this setting [56]. Suc-
cessfully extending either the homogeneous C1/3� constructions, or the present
construction, to the 2D Euler equations appears to require new ideas.

Since the aforementioned convex integration constructions are spatially ho-
mogenous, they yield weak solutions whose Hölder regularity index cannot be
taken to be larger than 1/3 (recall that weak solutions in L

3
t
C
�

x
with � > 1/3

must conserve kinetic energy). However, the exponent 1/3 is not expected to be a
sharp threshold for energy rigidity/flexibility if the weak solutions’ regularity is
measured on an L

p

x
-based Banach scale with p < 3. This expectation stems from

the measured intermittent nature of turbulent flows; see, e.g., Frisch [39, Figure
8.8, page 132]. In broad terms, intermittency is characterized as a deviation
from the Kolmogorov ’41 scaling laws, which were derived under the assump-
tions of homogeneity and isotropy (for a rigorous way to measure this deviation,
see Cheskidov and Shvydkoy [20]). A common signature of intermittency is
that for p 6= 3, the p

th order structure function4 exponents ⇣p deviate from
the Kolmogorov-predicted values of p/3. We note that the regularity statement
v 2 C

0
t
B

s

p,1 corresponds to a structure function exponent ⇣p = sp; that is, Kol-
mogorov ’41 predicts that s = 1/3 for all p. The exponent p = 2 plays a special
role, as it allows one to measure the intermittent nature of turbulent flows on the
Fourier side as a power-law decay of the energy spectrum. Throughout the last
five decades, the experimentally measured values of ⇣2 (in the inertial range, for
viscous flows at very high Reynolds numbers) have been consistently observed
to exceed the Kolmogorov-predicted value of 2/3 [1, 50, 62, 45, 15, 44, 55], thus
showing a steeper decay rate in the inertial range power spectrum than the one
predicted by the Kolmogorov-Obhukov 5/3 law. Moreover, in the mathematical
literature, Constantin and Fe↵erman [23] and Constantin, Nie, and Tanveer [24]
have used the 3D Navier-Stokes equations to show that the Kolmogorov ’41
prediction ⇣2 = 2/3 is only consistent with a lower bound for ⇣2, instead of an
exact equality.

Prior to this work, it was not known whether the 3D Euler equation can
sustain weak solutions which have kinetic energy that is uniformly bounded in
time but not conserved, and which have spatial regularity equal to or exceeding

H
1/3
x , corresponding to ⇣2 � 2/3; see [12, Open Problem 5] and [14, Conjecture

2.6]. Theorem 1.1 gives the first such existence result. The solutions in Theo-

4In analogy with L
p-based Besov spaces, absolute p

th order structure functions are typi-

cally defined as Sp(`) =
�
T

0

�
T3

�
S2 |v(x + `z, t) � v(x, t)|pdzdxdt. The structure function ex-

ponents in Kolmogorov’s ’41 theory are then given by ⇣p = lim sup
`!0+

log Sp(`)
log(✏`) , where ✏ > 0

is the postulated anomalous dissipation rate in the infinite Reynolds number limit. Of course,

for any non-conservative weak solution we may define a positive number ✏ =
�
T

0 |
d

dt
E(t)|dt as

a substitute for Kolmogorov’s ✏, which allows one to define ⇣p accordingly.
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rem 1.1 may be constructed to have second-order structure function exponent ⇣2
an arbitrary number in (0, 1), showing that (1.1) exhibits weak solutions which
severely deviate from the Kolmogorov-Obhukov 5/3 power spectrum.

We note that in a recent work [18], Cheskidov and Luo established the sharp-
ness of the L2

t
L
1
x

endpoint of the Prodi-Serrin criteria for the 3D Navier-Stokes
equations, by constructing non-unique weak (mild) solutions of these equations
in L

p

t
L
1
x
, for any p < 2.5 As noted in [18, Theorem 1.10], their approach also

applies to the 3D Euler equations, yielding weak solutions that lie in L
1
t
C
�

x
for

any � < 1, and thus these weak solutions also have more than 1/3 regularity.
The drawback is that the solutions constructed in [18] do not have bounded (in
time) kinetic energy, in contrast to Theorem 1.1, which yields weak solutions
with kinetic energy that is continuous in time.

Theorem 1.1 is proven by using an intermittent convex integration scheme,
which is necessary in order to reach beyond the 1/3 regularity exponent, uni-
formly in time. Intermittent convex integration schemes have been introduced
by the first and last authors in [13] in order to prove the non-uniqueness of weak
(mild) solutions of the 3D Navier-Stokes equations with bounded kinetic energy,
and then refined in collaboration with Colombo [7] to construct solutions which
have partial regularity in time. Recently, intermittent convex integration tech-
niques have been used successfully to construct non-unique weak solutions for
the transport equation (cf. Modena and Székelyhidi Jr. [52, 51], Brué, Colombo,
and De Lellis [5], and Cheskidov and Luo [17]), the 2D Euler equations with
vorticity in a Lorentz space (cf. [4]), the stationary 4D Navier-Stokes equations
(cf. Luo [49]), the ↵-Euler equations (cf. [3]), and the MHD equations and re-
lated variants (cf. Dai [26], the first and last authors with Beekie [2]), and the
e↵ect of temporal intermittency has recently been studied by Cheskidov and
Luo [18]. We refer the reader to the reviews [12, 14] for further references, and
for a comparison between intermittent and homogenous convex integration.

When applied to three-dimensional nonlinear problems, intermittent convex
integration has insofar only been successful at producing weak solutions with
negligible spatial regularity indices, uniformly in time. As we explain in Sec-
tion 1.2, there is a fundamental obstruction to achieving high regularity: in
physical space, intermittency causes concentrations that result in the formation
of intermittent peaks, and to handle these peaks the existing techniques have
used an extremely large separation between the frequencies in consecutive steps
of the convex integration scheme.6 This book is the first to successfully imple-
ment a high-regularity (in L

2), spatially intermittent, temporally homogenous,
convex integration scheme in three space dimensions, and shows that for the 3D
Euler system any regularity exponent � < 1/2 may be achieved.7 In fact, the

5See also [19] for a proof that the space C
0
t
L
p

x is critical for uniqueness at p = 2, in two
space dimensions.

6This becomes less of an issue when one considers the equations of fluid dynamics in very
high space dimensions; cf. Tao [65].

7It was known within the community (see Section 2.4.1 for a detailed explanation) that
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techniques developed in this book are the backbone for the recent work [57] of
the last two authors, which gives an alternative, intermittent, proof of the On-
sager conjecture. In general, we expect the framework developed in the present
work to inspire future iterations requiring a combination of intermittency and
sharp regularity estimates.

1.2 IDEAS AND DIFFICULTIES

As alluded to in the previous paragraph, the main di�culty in reaching a high
regularity exponent for weak solutions of (1.1) is that the existing intermittent
convex integration schemes do not allow for consecutive frequency parameters
�q and �q+1 to be close to each other. In essence, this is because intermittency
smears out the set of active frequencies in the approximate solutions to the
Euler system (instead of concentric spheres, they are more akin to thick con-
centric annuli), and several of the key estimates in the scheme require frequency
separation to achieve L

p-decoupling (see Section 2.4.1). Indeed, high regularity
exponents necessitate an almost geometric growth of frequencies (�q = �

q

0), or
at least a barely super-exponential growth rate �q+1 = �

b

q
with 0 < b � 1 ⌧ 1

(in comparison, the schemes in [13, 7] require b ⇡ 103). Essentially every new
idea in this manuscript is aimed either directly or indirectly at rectifying this
issue: how does one take advantage of intermittency, and at the same time keep
the frequency separation nearly geometric?

The building blocks used in the convex integration scheme are intermittent
pipe flows,8 which we describe in Section 2.3. Due to their spatial concentration
and their periodization rate, quadratic interactions of these building blocks pro-
duce both the helpful low frequency term which is used to cancel the previous
Reynolds stress R̊q, and a number of other errors which live at intermediate fre-
quencies. These errors are spread throughout the frequency annulus with inner
radius �q and outer radius �q+1, and may have size only slightly less than that of

R̊q. If left untreated, these errors only allow for a very small regularity parame-
ter �. In order to increase the regularity index of our weak solutions, we need to
take full advantage of the frequency separation between the slow frequency �q
and the fast frequency �q+1. As such, the intermediate-frequency errors need
to be further corrected via velocity increments designed to push these residual
stresses towards the frequency sphere of radius �q+1. The quadratic interactions
among these higher order velocity corrections themselves, and in principle also

there is a key obstruction to reaching a regularity index in L
2 for a solution to the Euler

equations larger than 1/2 via convex integration.
8The moniker used in [27] and the rest of the literature for these stationary solutions has

been “Mikado flows.” However, we rely rather heavily on the geometric properties of these
solutions, such as orientation and concentration around axes, and so to emphasize the tube-like
nature of these objects, we will frequently use the term “pipe flows.”
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with the old velocity increments, in turn create higher order Reynolds stresses,
which live again at intermediate frequencies (slightly higher than before), but
whose amplitude is slightly smaller than before. This process of adding higher
order velocity perturbations designed to cancel intermediate-frequency higher
order stresses has to be repeated many times until all the resulting errors are
either small or live at frequency ⇡ �q+1, and thus are also small upon inverting
the divergence. See Sections 2.4 and 2.6 for a more thorough account of this
iteration.

Throughout the process described in the above paragraph, we need to keep
adding velocity increments, while at the same time keeping the high-high-high
frequency interactions under control. The fundamental obstacle here is that
when composing the intermittent pipe flows with the Lagrangian flow of the slow
velocity field, the resulting deformations are not spatiotemporally homogenous.
In essence, the intermittent nature of the approximate velocity fields implies that
a sharp global control on their Lipschitz norm is unavailable, thus precluding
us from implementing a gluing technique as in [42, 11]. Additionally, we are
faced with the issue that pipe flows which were added at di↵erent stages of the
higher order correction process have di↵erent periodization rates and di↵erent
spatial concentration rates, and may a priori overlap. Our main idea here is to
implement a placement technique which uses the relative intermittency of pipe
flows from previous or same generations, in conjunction with a sharp bound on
their local Lagrangian deformation rate, to determine suitable spatial shifts for
the placement of new pipe flows so that they dodge all other bent pipes which
live in a restricted space-time region. This geometric placement technique is
discussed in Section 2.5.2.

A rigorous mathematical implementation of the heuristic ideas described in
the previous two paragraphs, which crucially allows us to slow down the fre-
quency growth to be almost geometric, requires extremely sharp information on
all higher order errors and their associated velocity increments. For instance, in
order to take advantage of the transport nature of the linearized Euler system
while mitigating the loss of derivatives issue which is characteristic of convex in-
tegration schemes, we need to keep track of essentially infinitely many sharp
material derivative estimates for all velocity increments and stresses. Such
estimates are naturally only attainable on a local inverse Lipschitz timescale,
which in turn necessitates keeping track of the precise location in space of the
peaks in the densities of the pipe flows, and performing a frequency localiza-
tion with respect to both the Eulerian and the Lagrangian coordinates. In
order to achieve this, we introduce carefully designed cuto↵ functions, which
are defined recursively for the velocity increments (in order to keep track of
overlapping pipe flows from di↵erent stages of the iteration), and iteratively
for the Reynolds stresses (in order to keep track of the correct amplitude of
the perturbation which needs to be added to correct these stresses); see Sec-
tion 2.5. The cuto↵ functions we construct e↵ectively play the role of a joint
Eulerian-and-Lagrangian Littlewood-Paley frequency decomposition, which in
addition keeps track of both the position in space and the amplitude of var-
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ious objects (akin to a wavelet decomposition). The analysis of these cuto↵
functions requires estimating very high order commutators between Lagrangian
and Eulerian derivatives (see Chapter 6 and Appendix A). Lastly, we mention
an additional technical complication: since the sharp control of the Lipschitz
norm of the approximate velocities in our scheme is local in space and time, we
need to work with an inverse divergence operator (e.g., for computing higher
order stresses) which, up to much lower order error terms, maintains the spatial
support of the vector fields that it is applied to. Additionally, we need to be
able to estimate an essentially infinite number of material derivatives applied
to the output of this inverse divergence operator. This issue is addressed in
Section A.8.

1.3 ORGANIZATION OF THE BOOK

The goal of this book is to prove Theorem 1.1 through an explicit construction
of satisfactory weak solutions of the 3D Euler equations. Many aspects of this
construction are in fact predicated on several recent advancements in the field
of convex integration, particularly for the Euler and Navier-Stokes equations.
Readers wishing to familiarize themselves with the important concepts can con-
sult the survey paper [12], which provides an excellent overview of the relevant
literature, along with essentially complete proofs of some fundamental results.
We also refer the reader to the foundational papers [31, 8, 43, 11, 13], in which
much of the aforementioned theory for the Euler and Navier-Stokes equations
was developed.

As the complete proof of Theorem 1.1 is quite intricate, we have provided
in Chapter 2 a broad overview of the main ideas, and how they tie together in
order to prove the end result. Any path through this book, whether a short
sojourn or a deep dive, should begin here. Specifically, Chapter 2 contains an
outline of the convex integration scheme, in which we replace some of the actual
(and more complicated) estimates and definitions appearing in the proof with
heuristic ones in order to highlight the new ideas at an intuitive level. Readers
familiar with the aforementioned literature may read only this chapter and still
encounter the inspiration behind every new idea in the proof.

For those readers wishing to move past heuristics, the proof of Theorem 1.1
is given in Chapter 3, assuming that a number of estimates hold true inductively
for the solutions of the Euler-Reynolds system at every step of the convex inte-
gration iteration. The remainder of the book is dedicated to showing that the
inductive bounds stated in Section 3.2 may indeed be propagated from step q

to step q+1. Chapter 4 contains the construction of the intermittent pipe flows
used in this book and describes the careful placement required to show that these
pipe flows do not overlap on a suitable space-time set. The mollification step of
the proof is performed in Chapter 5. Chapter 6 contains the definitions of the
cuto↵ functions used in the proof and establishes their properties. Readers may
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skip the proofs in Chapters 5 and 6, simply take the results for granted, and read
the rest of the book successfully. Chapter 7 breaks down the main inductive
bounds from Section 3.2 into components which take into account the higher
order stresses and perturbations. Chapter 8 then proves the constituent parts
of the inductive bounds outlined in Chapter 7. Chapter 9 carefully defines the
many parameters in the proof, states the precise order in which they are chosen,
and lists a few consequences of their definitions. Finally, Appendix A contains
the analytical toolshed to which we appeal throughout the book. Readers may
also wish to read the proofs in the appendix sparingly, as the statements are
generally su�cient for understanding most of the arguments.
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Chapter Two

Outline of the convex integration scheme

In Section 2.1, we list the set of parameters used throughout this chapter. The
primary inductive assumptions are detailed in Section 2.2. The principal build-
ing blocks of the convex integration scheme, namely, intermittent pipe flows, are
described in Section 2.3. We also elaborate on the intricacies of implementing
these building blocks within the context of a convex integration scheme. In par-
ticular, we will describe the degree of intermittency used in their construction,
the placement of the pipes, and the control of their Lagrangian deformation.
Section 2.4, describes the new concept of higher order stresses that play a key
role in the convex integration scheme. An additional crucial technical ingredient
to the construction, specialized cuto↵ functions, will be described in Section 2.5.
Such cuto↵ functions allow precise localization of scales of both the velocity and
Reynolds stress. In addition, the cuto↵s play a key role in the placement of
pipes. Section 2.6 details the construction of the inductive perturbation to the
velocity designed to correct the Reynolds stress error of the previous iteration.
Finally, heuristic estimates of the new Reynolds stress error resulting from the
perturbation are given in Section 2.7.

2.1 A GUIDE TO THE PARAMETERS

In order to make sharp estimates throughout the scheme, we will require numer-
ous parameters. For the reader’s convenience, we have collected in this section
the heuristic definitions of all the parameters introduced in the following sec-
tions of the outline. The parameters are listed in Section 2.1.1 in the order
corresponding to their first appearance in the outline. We give as well brief
descriptions of the significance of each parameter.

2.1.1 Definitions

Definition 2.1 (Parameters introduced in Chapter 1).

1. �: The regularity exponent corresponding to a solution v 2 CtH
�(T3).

Definition 2.2 (Parameters introduced in Section 2.2).

1. q: The integer which represents the primary stages of the iterative convex
integration scheme.
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2. �q = a
(bq): The primary parameter used to quantify frequencies. a and b

will be chosen later, with a 2 R+ being a su�ciently large positive number
and b 2 R a real number slightly larger than 1.

3. �q = �
�2�
q

: The primary parameter used to quantify amplitudes of stresses
and perturbations.

4. ⌧q = (�
1/2
q �q)�1: The primary parameter used to quantify the cost of a

material derivative @t + vq ·r.1

Definition 2.3 (Parameters introduced in Section 2.3).

1. n: The primary parameter which will be used to divide up the frequencies
between �q and �q+1 and which will take non-negative integer values. The
divisions will be used for both the frequencies of the higher order stresses
in Section 2.4 as well as the thickness of the intermittent pipe flows used
to correct the higher order stresses.

2. nmax: A large integer which is fixed independently of q and which sets the
largest allowable value of n.

3. rq+1,n =
�
�q�

�1
q+1

�( 4
5 )

n+1

: The parameter quantifying intermittency, or
the thickness of a tube periodized at unit scale for values of n such that
0  n  nmax.2

4. �q,n = �q+1rq+1,n = �
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1 : The minimum frequency present

in an intermittent pipe flow Wq+1,n. Equivalently, (�q+1rq+1,n)
�1 is the

scale to which Wq+1,n is periodized. See Figure 2.1.

⁄q

⁄q,0,0
⁄q+1

⁄q,0

⁄q,1,0 ⁄q,2,0

⁄q,1 ⁄q,nmax

⁄q,nmax+1,0

. . . . . .

. . . . . .

⁄q,n,0 ⁄q,n+2,0⁄q,n+1,0

⁄q,n≠1 ⁄q,n

⁄q,n+1,p ⁄q,n+1,p+1⁄q,n,p ⁄q,n,p+1

5

Figure 2.1: Schematic of the frequency parameters appearing in Definitions 2.2

and 2.4.

1For technical reasons, ⌧�1
q will be chosen to be slightly shorter than �

1
2
q �q . For the

heuristic calculations, one may ignore this modification and simply use ⌧�1
q = �

1
2
q �q .

2In particular, this choice gives rq+1,n+1 = r

4
5
q+1,n. In our proof, the inequality r

3
q+1,n ⌧

r
4
q+1,n+1 plays a crucial role. In order to absorb q independent constants, as well as to ensure
that there is a su�cient gap between these parameters to ensure decoupling, we have chosen
to work with the 4

5 instead of the 3
4 geometric scale.
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Definition 2.4 (Parameters introduced in Section 2.4).

1. For 2  n  nmax, �q,n,0 = �
( 4

5 )
n�1· 56

q �
1�( 4

5 )
n�1· 56

q+1 is the minimum fre-

quency present in the higher order stress R̊q,n. Conversely, �q,n+1,0 is

the maximum frequency present in R̊q,n. When n = 0, we set �q,0,0 = �q

to be the maximum frequency present in R̊q,0 = R̊q, and when n = 1,

�q,1,0 = �q,0 is the minimum frequency present in R̊q,1, while �q,2,0 is the
maximum frequency.

2. p: A secondary parameter which takes positive integer values and which
will be used to divide up the frequencies in between �q,n,0 and �q,n+1,0, as
well as the higher order stresses.

3. pmax: A large integer, fixed independently of q, which is the largest allow-
able value of p.

4. �q,n,p = �
1� p

pmax
q,n,0 �

p
pmax
q,n+1,0: The maximum frequency present in the higher

order stress R̊q,n,p for 1  n  nmax and 1  p  pmax. Conversely,

�q,n,p�1 is the minimum frequency in R̊q,n,p. When n = 0 and p takes
any value, we adopt the convention that �q,0,p = �q. See Figure 2.1.

5. fq,n = �

1
pmax
q,n+1,0�

� 1
pmax

q,n,0 : The increment between frequencies �q,n,p�1 and
�q,n,p for n � 1. We have the equalities

�q,n,p = �q,n,0f
p

q,n
, �q,n+1,0 = �q,n,0f

pmax
q,n

.

For ease of notation, when n = 0 we set fq,n = 1.

6. For n = 0 and p = 1, �q+1,0,1 := �q+1 is the amplitude of R̊q := R̊q,0. For
n = 0 and p � 2, �q+1,0,p = 0, since there are no higher order stresses at

n = 0. For n � 1 and any value of p, the amplitude of R̊q,n,p is given by

�q+1,n,p :=
�q+1�q

�q,n,p�1
·
Y

n0<n

fq,n0 .

One should view the product of fq,n0 terms as a negligible error, which is
justified by calculating

Y

0n0nmax

fq,n0 =

✓
�q,nmax+1,0

�q,1,0

◆ 1
pmax


✓
�q+1

�q

◆ 1
pmax

(2.1)

and assuming that pmax is large.

Definition 2.5 (Parameters introduced in Section 2.5).

1. "�: A very small positive number.
2. �q+1 =

�
�q+1�

�1
q

�"� : A parameter which will be used to quantify devia-
tions in amplitude. In particular, �q will be used to quantify amplitudes
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of both velocity fields and (higher order) stresses.

2.2 INDUCTIVE ASSUMPTIONS

For every non-negative integer q we will construct a solution (vq, pq, R̊q) to the
Euler-Reynolds system

@tvq + div (vq ⌦ vq) +rpq = div R̊q (2.2a)

div vq = 0 . (2.2b)

Here R̊q is assumed to be a trace-free symmetric matrix. The relative size of

the approximate solution vq and the Reynolds stress error R̊q will be measured
in terms of the frequency parameter �q and the amplitude parameter �q, which
are defined in Definition 2.2. We will propagate the following basic inductive
estimates on (vq, R̊q):3

kvqkH1  �

1
2
q �q (2.3)

kR̊qkL1  �q+1. (2.4)

We shall see later that in order to build solutions belonging to Ḣ
� for � ap-

proaching 1
2 , we must propagate additional estimates on higher order material

and spatial derivatives of both vq and R̊q in L
2 and L

1, respectively. Roughly

speaking, every spatial derivative on either vq or R̊q costs a factor of �q. Ad-
ditional material derivatives are more delicate and will be discussed further in
Section 2.5, but for the time being, one may imagine that each material deriva-
tive Dt,q := @t + vq ·r on vq or R̊q costs a factor of ⌧�1

q
.

2.3 INTERMITTENT PIPE FLOWS

Pipe flows, both homogeneous and intermittent, have proven to be one of the
most useful components of many convex integration schemes. Homogeneous pipe
flows were introduced first by Daneri and Székelyhidi Jr. [27]. The prototypical
pipe flow in the ~e3 direction is constructed using a smooth function ⇢ : R2 ! R
which is compactly supported, for example in a ball of radius 1 centered at the
origin, and has zero mean. Letting % : T2 ! R be the T2-periodized version of

3By kvqkH1 , we actually mean kvqkC0
t H

1
x
. Similarly, kR̊qkL1 stands for kR̊qkC0

t L
1
x
. Unless

stated explicitly otherwise, all the norms used in this book are uniform in time and will be
abbreviated in the same way as in this example.
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⇢, the T3-periodic pipe flow W : T3 ! R3 is defined as

W(x1, x2, x3) = %(x1, x3)e2 . (2.5)

It is immediate that W is divergence-free and a stationary solution to the Euler
equations. Pipe flows such as W have been used in convex integration schemes
which produce solutions in L

1-based spaces [27, 43, 11]. At the q
th stage of

the iteration, the T3

�q+1
-periodized pipe flow W (�q+1·) is used to construct the

perturbation.
By contrast, intermittent pipe flows are not spatially homogeneous. Inter-

mittency in the context of convex integration schemes was introduced by the first
and last authors in [13] via intermittent Beltrami flows, which are defined via
their Fourier support and may be likened to modified and renormalized Dirich-
let kernels. Intermittent pipe flows were introduced by Modena and Székelyhidi
Jr. in the context of the transport and transport-di↵usion equation [52] and
have also been utilized for the higher dimensional (at least four dimensional4)
Navier-Stokes equations [49, 65]. The precise objects we use are defined in
(4.10) in Proposition 4.4, but let us briefly describe some of their important
attributes. The intermittency is quantified by the parameter rq+1,n ⌧ 1. Let

⇢rq+1,n : R2 ! R be defined by ⇢rq+1,n(·) = ⇢

⇣
·

rq+1,n

⌘
, and let %rq+1,n be the

T2-periodized version of ⇢rq+1,n . Thus one can see that rq+1,n describes the
thickness of the pipes at unit scale. In order to make the intermittent pipe flows
of unit size in L

2(T3), one must multiply by a factor of r�1
q+1,n, meaning that

the Lebesgue norms of the resulting object Wrq+1,n scale as

��Wrq+1,n

��
Lp(T3)

⇠ r

2
p�1

q+1,n. (2.6)

Let Wq+1,n be the T3

(rq+1,n�q+1)
-periodic version of Wrq+1,n . Notice that this

implies that the thickness of the pipes comprising Wq+1,n is of order ��1
q+1 for all

n, and that the Lebesgue norms of the periodized object Wq+1,n depend only
on rq+1,n. Per Definition 2.3, the thickness of the pipes used in the perturbation
at stage q + 1 will be quantified by

rq+1,n =

✓
�q

�q+1

◆( 4
5 )

n+1

.

This choice will be jusified upon calculation of the heuristic bounds.

4In three dimensions, intermittent pipe flows are not su�ciently sparse to handle the error
term arising from the Laplacian. This issue was addressed by Colombo and the first and
last authors in [7] through the usage of intermittent jets, and similar objects have been used
in subsequent papers as well (see work of Brue, Colombo, and De Lellis [5], Cheskidov and
Luo [17, 18]).
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Figure 2.2: A pipe flow Wq+1,n which is periodized to scale (�q+1rq+1,n)
�1

= ��1
q,n is

placed in a direction parallel to the e2 axis. Upon taking into account periodic shifts,

we note that there are r�2
q+1,n many options to place this pipe. This degree of freedom

will be used later; see, e.g., Figure 2.7.

2.3.1 Lagrangian coordinates, intermittency, and placements

In order to achieve the optimum regularity �, we will define the pipe flows which
comprise the perturbation at stage q+1 in Lagrangian coordinates corresponding
to the velocity field vq. Due to the inherent instability of Lagrangian coordinates
over timescales longer than that dictated by the Lipschitz norm of the velocity
field, there will be many sets of coordinates used in di↵erent time intervals which
are then patched together using a partition of unity. This technique has been
used frequently in recent convex integration schemes, beginning with work of
Isett [41], the first author, De Lellis, and Székelyhidi Jr. [10], and Isett, the
first author, De Lellis, and Székelyhidi Jr. [8], but perhaps most notably in the
proof of the Onsager conjecture by Isett [43] and the subsequent strengthening
to dissipative solutions by the first and last authors, De Lellis, and Székelyhidi
Jr. [11].

The proof of Onsager’s conjecture employs the gluing technique to prevent
pipe flows defined using di↵erent Lagrangian coordinate systems from overlap-
ping. The intermittent quality of our building blocks, and thus the approximate
solution vq, appears to obstruct the successful implementation of the gluing
technique, since gluing requires a sharp control on the global Lipschitz norm of
the velocity field, which will be unavailable. Thus, we cannot use the gluing
technique and must control in a di↵erent fashion the possible interactions be-
tween two intermittent pipe flows defined using di↵erent Lagrangian coordinate
systems.

To control these interactions, we have introduced a placement technique
(cf. Proposition 4.8) which is used to completely prevent all such interactions.
This placement technique is predicated on a simple observation about intermit-
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tent pipe flows, which to our knowledge has not yet been used in any convex
integration schemes to date. When the diameter of the pipe at unit scale is of
size rq+1,n, there are (rq+1,n)�2 disjoint choices for the support of pipe. These
choices simply correspond to shifting the intersection of the axis of the pipe in
the plane which is perpendicular to the axis; cf. Proposition 4.3. This degree
of freedom is una↵ected by periodization and is depicted in Figure 2.2 for a

T3

�q+1rq+1,n
-periodic intermittent pipe flow Wq+1,n. We will exploit this degree

of freedom to choose placements for each set of pipes which entirely avoid other
sets of pipes on small discretized regions of space-time. The space-time dis-
cretization is made possible through the usage of cuto↵ functions which will be
discussed in more detail later in Section 2.5. We remark that De Lellis and
Kwon [28] have introduced a placement technique in the context of C↵, globally
dissipative solutions to the 3D Euler equations which is predicated on restricting
the timescale of the Lagrangian coordinate systems to be significantly shorter
than the Lipschitz timescale. This restriction significantly limits the regularity
of the final solution and is thus not suited for an intermittent scheme aimed at
H

1
2� regularity.

2.4 HIGHER ORDER STRESSES

2.4.1 Regularity beyond 1/3

The resolution of the flexible side of the Onsager conjecture in [43] and [11] men-
tioned previously shows that given some prescribed regularity index � 2 (0, 1

3 ),
one can construct dissipative weak solutions u in C

� . Conversely, following on
partial work by Eyink [36], Constantin, E, and Titi [22] have proven that con-
servation of energy in the Euler equations requires only that u 2 L

3
t

�
B
↵

3,1
�
for

↵ > 1/3. This leaves open the possibility of building dissipative weak solutions
with more than 1

3 -many derivatives in L
p
�
T3
�
(uniformly in time in our case)

for p < 3.
Let us present a heuristic estimate which indicates a regularity limit of H

1
2

for solutions produced via convex integration schemes. For this purpose, let
us focus on one of the principal parts of the stress in an intermittent convex
integration scheme (for the familiar reader, this is part of the oscillation error).
The perturbations include a coe�cient function a which depends on R̊q and

thus for which derivatives cost �q and which has amplitude �
1/2

q+1 (the square
root of the amplitude of the stress). These coe�cient functions are multiplied
by intermittent pipe flows Wq+1,0 for which derivatives cost �q+1 and which

have unit size in L
2, but are only periodized to scale (�q+1rq+1,0)

�1. When the
divergence lands on the square of the coe�cient function a

2 in the nonlinear
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term, the resulting error term satisfies the estimate

��div�1 �r(a2)P 6=0(Wq+1,0 ⌦Wq+1,0)
���

L1  �q+1�q

�q+1rq+1,0
. (2.7)

The numerator is the size of r(a2) in L
1, while the denominator is the gain

induced by inverting the divergence at �q+1rq+1,0, which is the minimum fre-
quency of P 6=0(Wq+1,0 ⌦ Wq+1,0) = Wq+1,0 ⌦ Wq+1,0 �

�
T3 Wq+1,0 ⌦ Wq+1,0.

Note that we have used implicitly that Wq+1,0 has unit L
2 norm, and that by

periodicity P 6=0(Wq+1,0 ⌦ Wq+1,0) decouples from r(a2). This error would be
minimized when rq+1,0 = 1, in which case

�q+1�q

�q+1
< �q+2 () �

�2�+ 1
b

q+1 < �
�2�b+1
q+1

() 2�b2 � 2�b < b� 1

() 2�b(b� 1) < b� 1

() � <
1

2b
. (2.8)

Any intermittency parameter rq+1,0 ⌧ 1 would weaken this estimate since the
gain induced from inverting the divergence will only be �q+1rq+1,0 ⌧ �q+1.
On the other hand, we will see that a small choice of rq+1,0 strengthens all
other error terms, and because of this, in our construction we will choose rq+1,0

as in Definition 2.3, item (3). One may refer to the blog post of Tao [65]
for a slightly di↵erent argument which reaches the same apparent regularity
limit. This apparent regularity limit is independent of dimension, and we believe
that the method in this book cannot be modified to yield weak solutions with
regularity L

1
t
W

s,p

x
with s > 1/2, for any p 2 [1, 2].

The higher order stresses mentioned in Section 1.2 will compensate for the
losses incurred in this nonlinear error term when rq+1,0 ⌧ 1. As we shall
describe in the next section, we use the phrase “higher order stresses” to describe
errors which are higher in frequency and smaller in amplitude than R̊q, but

not su�ciently small enough or at high enough frequency to belong to R̊q+1.
Similarly, “higher order perturbations” are used to correct the higher order
stresses and thus increase the extent to which an approximate solution solves
the Euler equations.

2.4.2 Specifics of the higher order stresses

In convex integration schemes which measure regularity in L
1 (i.e., using Hölder

spaces C
↵), pipe flows interact through the nonlinearity to produce low (⇡

�q) and high (⇡ �q+1) frequencies. We denote by wq+1,0 the perturbation

designed to correct R̊q. In the absence of intermittency, the low frequencies from

the self-interaction of wq+1,0 cancel the Reynolds stress error R̊q, and the high
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frequencies are absorbed by the pressure up to an error small enough to be placed
in R̊q+1. In an intermittent scheme, the self-interaction of the intermittent pipe
flows comprising wq+1,0 produces low, intermediate, and high frequencies. The
low and high frequencies play a similar role as before. However, the intermediate
frequencies cannot be written as a gradient, nor are small enough to be absorbed
in R̊q+1. This issue has limited the available regularity on the final solution in
many previous intermittent convex integration schemes. In order to reach the
threshold H

1
2 , we address this issue using higher order Reynolds stress errors

R̊q,n for n = 1, 2, . . . , nmax; cf. Figure 2.3.

R̊q,0 R̊q,1 R̊q,2 R̊q,n R̊q+1

R̊q,0 R̊q,1 R̊q,2 R̊q,n

. . . . . .

. . . . . .

Adding wq+1,0

R̊q+1

1

Figure 2.3: Adding the increment wq+1,0 corrects the stress R̊q,0 = R̊q, but produces

error terms which live at frequencies that are intermediate between �q and �q+1, due

to the intermittency of wq+1,0. These new errors are sorted into higher order stresses

R̊q,n for 1  n  nmax, as depicted above. The heights of the boxes corresponds to the

amplitude of the errors that will fall into them, while the frequency support of each

box increases from �q for R̊q,0 = R̊q, to �q+1 for R̊q+1.

After the addition of wq+1,0 to correct R̊q, which is labeled in Figure 2.4 as

R̊q,0, low frequency error terms are produced, which we divide into higher order
stresses. To correct the error term of this type at the lowest frequency, which is
labeled R̊q,1 in Figure 2.4, we add a sub-perturbation wq+1,1. The subsequent
bins are lighter in color to emphasize that they are not yet full; that is, there
are more error terms which have yet to be constructed but will be sorted into
such bins. The emptying of the bins then proceeds inductively on n, as we
add higher order perturbations wq+1,n, which are designed to correct R̊q,n. For
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1  n  nmax, the frequency support of R̊q,n is5

�
k 2 Z3 : �q,n,0  |k| < �q,n+1,0

 
. (2.9)

This division will be justified upon calculation of the heuristic bounds in Section
2.7.

R̊q,0 R̊q,1 R̊q,n R̊q,n+1 R̊q+1

R̊q,0 R̊q,1 R̊q,n R̊q,n+1

. . . . . .

. . . . . .

Adding wq+1,n

R̊q+1

1

Figure 2.4: Adding wq+1,n to correct R̊q,n produces error terms which are distributed

among the Reynolds stresses R̊q,n0 for n+ 1  n0  nmax.

Let us now explain the motivation for the division of R̊q,n into the further

subcomponents R̊q,n,p. Suppose that we add a perturbation wq+1,n to correct

R̊q,n for n � 1. The amplitude of wq+1,n would depend on the amplitude of

R̊q,n, which in turn depends on the gain induced by inverting the divergence to

produce R̊q,n, which depends then on the minimum frequency �q,n,0. However,
derivatives on the low frequency coe�cient function used to define wq+1,n would

depend on the maximum frequency of R̊q,n, which is �q,n+1,0. The (sharp-eyed)
reader may at this point object that the first derivative on the low frequency
coe�cient function r(a(R̊q,n)) should be cheaper, since R̊q,n is obtained from
inverting the divergence, and taking the gradient of the cuto↵ function written
above should thus morally involve bounding a zero-order operator. However,
constructing the low frequency coe�cient function presents technical di�culties
which prevent us from taking advantage of this intuition. In fact, the failure
of this intuition is the sole reason for the introduction of the parameter p, as

5In reality, the higher order stresses are not compactly supported in frequency. However,
they will satisfy derivative estimates to very high order which are characteristic of functions
with compact frequency support.
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one may see from the heuristic estimates later. In any case, increasing the
regularity � of the final solution requires minimizing this gap between the gain
in amplitude provided by inverting the divergence and the cost of a derivative,
and so we subdivide R̊q,n into further components R̊q,n,p for 1  p  pmax.6

Both nmax and pmax are fixed independently of q. Each component R̊q,n,p then
will have frequency support in the set

�
k 2 Z3 : �q,n,p�1  |k| < �q,n,p

 
=
�
k 2 Z3 : �q,n,0f

p�1
q,n

 |k| < �q,n,0f
p

q,n

 
.

(2.10)
Notice that by the definition of fq,n in Definition 2.4, 2.10 defines a partition
of the frequencies in between �q,n,0 and �q,n+1,0 for 1  p  pmax. Figure 2.5
depicts this division, and we shall describe in the heuristic estimates how each
subcomponent R̊q,n,p is corrected by wq+1,n,p, with all resulting errors absorbed

into either R̊q+1 or R̊q,n0 for n0
> n.

R̊q,n R̊q,n,1 R̊q,n,2 R̊q,n,3 R̊q,n,pmax

wq+1,n wq+1,n,1 wq+1,n,2 wq+1,n,3 wq+1,n,pmax

. . .

4

Figure 2.5: The higher order stress R̊q,n is decomposed into components R̊q,n,p, which

increase in frequency and decrease in amplitude as p increases. We use the bases of the

boxes to indicate support in frequency, where frequency is increasing from left to right,

and the heights to indicate amplitudes. Each subcomponent R̊q,n,p is corrected by its

own corresponding sub-perturbation wq+1,n,p, which has a commensurate frequency

and amplitude.

Thus, the net e↵ect of the higher order stresses is that one may take errors
for which the inverse divergence provides a weak estimate due to the presence
of relatively low frequencies and push them to higher frequencies for which
the inverse divergence estimate is stronger. We will repeat this process until
all errors are moved (almost) all the way to frequency �q+1, at which point

6There are certainly a multitude of ways to manage the bookkeeping for amplitudes and
frequencies. Using both n and p is convenient because then n is the only index which quantifies
the rate of periodization.
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they are absorbed into R̊q+1. Heuristically, this means that in constructing the
perturbation wq+1 at stage q, we have eliminated all the higher order error terms
which arise from self-interactions of intermittent pipe flows, thus producing a
solution vq+1 to the Euler-Reynolds system at level q + 1 which is as close as
possible to a solution of the Euler equations. We point out that one side e↵ect
of the higher order perturbations is that the total perturbation wq+1 has spatial
support which is not particularly sparse, since as n increases the perturbations
wq+1,n become successively less intermittent and thus more homogeneous. At
the same time, the frequency support of our solution is also not too sparse, since

b is close to 1 and rq+1,0 =
�
�q�

�1
q+1

� 4
5 , so that many of the frequencies between

�q and �q+1 are active.

2.5 CUTOFF FUNCTIONS

2.5.1 Velocity and stress cuto↵s

The concept of a turnover time, which is proportional to the inverse of the
gradient of the mean flow vq, is crucial to the convex integration schemes men-
tioned earlier which utilized Lagrangian coordinates. Since the perturbation is
expected to be roughly flowed by the mean flow vq, the turnover time deter-
mines a timescale on which the perturbation is expected to undergo significant
deformations. An important property of pipe flows, first noted by Daneri and
Székelyhidi Jr. in [27] and utilized crucially by Isett [43] towards the proof of
Onsager’s conjecture, is that the length of time for which pipe flows written
in Lagrangian coordinates remain approximately stationary solutions to Euler
depends only on the Lipschitz norm of the transport velocity vq and not on the
Lipschitz norms of the original (undeformed) pipe flow. However, the timescale
under which pipe flows transported by an intermittent velocity field remain
coherent is space-time dependent, in contrast to previous convex integration
schemes in which the timescale was uniform across R ⇥ T3. As such, we will
need to introduce space-time cuto↵s  i,q in order to determine the local turnover
time. In particular, the cuto↵  i,q will be defined such that

krvqkL1(supp i,q)
. �

1/2
q
�q�

i

q+1 := ⌧
�1
q
�i
q+1 . (2.11)

With such cuto↵s defined, we then define in addition a family of temporal cuto↵s
�i,k,q which will be used to restrict the timespan of the intermittent pipe flows
in terms of the local turnover. Each cuto↵ function �i,k,q will have temporal
support contained in an interval of length

⌧q�
�i

q+1. (2.12)

It should be noted that we will design the cuto↵s so that we can deduce
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much more on its support than (2.11). Since the material derivative Dt,q :=
@t+vq ·r will play an important role, we will require estimates involving material
derivatives DN

t,q
of very high order.7 We expect the cost of a material derivative

to be related to the turnover time, which itself is local in nature. As such, high
order material derivative estimates will be done on the support of the cuto↵
functions and will be of the form

��� i,qD
N

t,q
R̊q,n,p

���
Lr

.

In addition to the family of cuto↵s  i,q and �i,k,q, we will also require stress
cuto↵s !i,j,q,n,p which determine the local size of the Reynolds stress errors

R̊q,n,p; in particular !i,j,q,n,p will be defined such that

���rM
R̊q,n,p

���
L1(supp!i,j,q,n,p)

 �q+1,n,p�
2j
q+1�

M

q,n,p
. (2.13)

Previous intermittent convex integration schemes have managed to successfully
cancel intermittent stress terms with much simpler stress cuto↵ functions than
the ones we use. However, mitigating the loss of spatial derivative in the oscilla-
tion error means that we have to propagate sharp spatial derivative estimates of
arbitrarily high order on the stress in order to produce solutions with regularity
approaching Ḣ

1
2 . Due to this requirement, we then have to estimate the second

derivative (and higher) of the stress cuto↵ function

���r2
⇣
!
2
⇣
R̊q,n,p

⌘⌘���
L1

,

which in turn necessitates bounding the local L2 norm of rR̊q,n,p due to the
term ����

�
r2(!2)

� ⇣
R̊q,n,p

⌘ ���rR̊q,n,p

���
2
����
L1

.

Given inductive estimates about the derivatives of R̊q only in L
1 which have

not been upgraded to L
p for p > 1, this term will obey a fatally weak estimate,

which is why we must estimate R̊q,n,p in L
1 as in (2.13).

2.5.2 Checkerboard cuto↵s

As mentioned in the discussion of intermittent pipe flows, we must prevent pipes
originating from di↵erent Lagrangian coordinate systems from intersecting. The
first step is to reduce the complexity of this problem by restricting the size of
the spatial domain on which intersections must be prevented. Towards this end,

7The loss of material derivative in the transport error means that to produce solutions with

regularity approaching Ḣ
1
2 , we have to propagate material derivative estimates of arbitrarily

high order on the stress.
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consider the maximum frequency of the original stress R̊q = R̊q,0, or any of the

higher order stresses R̊q,n for n � 1. We may write these frequencies as �q+1r1

for �q�
�1
q+1  r1 < 1. We then decompose R̊q,n using a checkerboard partition of

unity comprised of bump functions which follow the flow of vq and have support

of diameter (�q+1r1)
�1. These two properties ensure that we have preserved

the derivative bounds on R̊q,n. Thus, we fix the set ⌦ to be the support of an
individual checkerboard cuto↵ function in this partition of unity at a fixed time;
cf. (4.28).

Suppose furthermore that ⌦ is inhabited by disjoint sets of deformed inter-
mittent pipe flows which are periodized to spatial scales no finer than (�q+1r2)

�1

for 0 < r1 < r2 < 1. In practice, r2 will be rq+1,n, where rq+1,n is the amount of
intermittency used in the pipes which comprise the perturbation wq+1,n which

is used to correct R̊q,n. The pipes which already inhabit ⌦ may first be from
previous generations of perturbations wq+1,n0 for n0

< n, in which case they are

periodized to spatial scales much broader than (�q+1r2)
�1, or from an overlap-

ping checkerboard cuto↵ function used to decompose R̊q,n on which a placement

of pipes periodized to spatial scale (�q+1r2)
�1 has already been chosen. In ei-

ther case, these pipes will have been deformed by the velocity field vq on the
timescale given by the inverse of the local Lipschitz norm. We represent the
support of these deformed pipe flows in terms of axes {Ai}i2I around which the
pipes {Pi}i2I are concentrated to thickness ��1

q+1 (recall from Section 2.3 that
all intermittent pipe flows used in our scheme have this thickness).

We will now explain that under appropriate restrictions on r1 and r2, one
may choose a new set of (straight, i.e. not deformed) intermittent pipe flows
Wr2,�q+1 periodized to scale (�q+1r2)

�1 which are disjoint from each deformed
pipe Pi and are on the support of ⌦. Heuristically, this task becomes easier when
r2 is smaller, since this means both that we have more choices of placement for
the new set, and that there are fewer pipes Pi inhabiting ⌦. Conversely, this
task becomes more di�cult when r1 is smaller, since then ⌦ is larger and will
contain more pipes Pi. We assume throughout that the deformations of the
Pis are mild enough to preserve the expected length, curvature, and spacing
bounds between neighboring pipes that arise from writing pipes in Lagrangian
coordinates and flowing for a length of time which is strictly less than the inverse
of the Lipschitz norm of the velocity field.

First, we can estimate the cardinality of the set I (which indexes the axes
Ai and pipes Pi) from above by r

2
2r

�2
1 . To understand this bound, first note

that if we had straight pipes Pi periodized to scale (�q+1r2)
�1 inhabiting a

cube of side length (�q+1r1)
�1, this bound would hold. Using the fact that our

deformed pipes obey similar length, curvature, and spacing bounds as straight
pipes and that our set ⌦ can be considered as a subset of a cube with side
length proportional to (�q+1r1)

�1, the same bound will hold up to dimensional
constants. Secondly, by the intermittency of the desired set of new pipes, we
have r

�2
2 choices for the placement of the new set, as indicated in Figure 2.2.
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To finish the argument, we must estimate how many of these r
�2
2 choices

would lead to non-empty intersections between the new pipes and any Pi. To
calculate this bound, we will imagine the placement of the new set of straight
pipes as occurring on a two-dimensional plane which is perpendicular to the
axes of the pipes. After projecting each Pi onto this two-dimensional plane, our
task is to choose the intersection points of the new pipes with the plane so that
the new pipes do not intersect the shadows of the Pi’s.

2fi

2fi (⁄q+1r1)≠1

2fi (⁄q+1r2)≠1

2fi (⁄q+1r1)≠1

e3 e2

e1

e3 e2

e1

Where to
insert?

3

Figure 2.6: In the figure on the left we display T3
, in which we have four large

deformed pipes, representing a very sparse set of pipe flows from an old generation

that were deformed by vq, and a small subcube depicting the support of a cuto↵

function ⇣
q,i,k,n,~l

, whose diameter is ⇡ (�q+1r1)
�1

. Due to the sparseness, very few

(if any!) of the old generation pipes intersect the support of the cuto↵. The figure on

the right further zooms into the support of the cuto↵, to emphasize its contents. On

the support of ⇣
q,i,k,n,~l

we have displayed two sets of deformed pipe flows, in lighter

and darker shades. These pipes flows were deformed also by vq, from a nearby time

at which they were straight and periodic at scale (�q+1r2)
�1

. At the current time, at

which the above figure is considered, these pipe flows aren’t quite periodic anymore,

but they are close. The question now is: can we place a straight pipe flow, periodic

at scale (�q+1r2)
�1

, whose axis is orthogonal to the front face of the box on the right,

and which does not intersect any of the existing pipes in this region? To see that this

is possible, in Figure 2.7 we will estimate the area of shadows on this face of the cube.

Given one of the deformed pipes Pi, since its thickness is �
�1
q+1 and its length

inside ⌦ is proportional to the diameter of ⌦, specifically (�q+1r1)
�1, we may

cover the shadow of Pi on the plane with ⇡ r
�1
1 many balls of diameter ��1

q+1.

Covering all the Pi’s thus requires ⇡ r
2
2r

�2
1 · r�1

1 balls of diameter ��1
q+1. Now,

imagine the intersection of the new set of pipes with the plane. Each choice of
placement defines this intersection as essentially a set of balls of diameter ⇡ �

�1
q+1
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2fi (⁄q+1r1)≠1

2fi (⁄q+1r2)≠1

2fi (⁄q+1)≠1

e3

e1

1

Figure 2.7: As mentioned in the caption of Figure 2.6, we consider the image on the

right and project all of the pipes present in the box onto the front face of the cube

(parallel to the e3 � e1 plane). Because these existing pipes were deformed by vq, the
shadow does not consist of straight lines, and in fact the projections can overlap. By

estimating the area of this projection, we see that if r42 ⌧ r31 then there is enough room

left to insert a new pipe flow with orientation axis e2 (represented by the dark disks in

the above figure), which will not intersect any of the projections of the existing pipes,

and thus not intersect the existing pipes themselves.

equally spaced at distance (�q+1r2)
�1. The intermittency ensures that there are

r
�2
2 disjoint choices of placement, i.e., r�2

2 disjoint sets of balls which represent
the intersection of a particularly placed new set of pipes with the plane. As long
as

r
2
2r

�2
1 · r�1

1 ⌧ r
�2
2 () r

4
2 ⌧ r

3
1 ,

there must exist at least one choice of placement which does not produce any
intersections between Wr2,�q+1 and the Pis. Notice that if r1 is too small or if
r2 is too large, this inequality will not be satisfied, thus validating our previous
heuristics about r1 and r2.

To obey the relative intermittency inequality between r1 and r2 derived
above for placements of new intermittent pipes on sets of a certain diameter, we
will utilize cuto↵ functions

⇣
q,i,k,n,~l

,

which are defined using a variety of parameters. The index q describes the stage
of the convex integration scheme, while i and k refer to the velocity and temporal
cuto↵s defined above. The parameter n corresponds to a higher order stress R̊q,n

and refers to its minimum frequency �q,n,0, quantifying the value of (�q+1r1)�1

and the diameter of the support as described earlier. The parameter ~l = (l, w, h)
depends on q and n and provides an enumeration of the (three-dimensional)
checkerboard covering T3 at scale (�q,n,0)

�1. On the support of one of these
checkerboard cuto↵ functions, we can inductively place pipes periodized to scale
(�q+1r2)

�1 = �
�1
q,n

which are disjoint. The checkerboard cuto↵ functions and the
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pipes themselves all follow the same velocity field, ensuring that the disjointness
at a single time slice is su�cient.

2.5.3 Cumulative cuto↵ function

Finally, the variety of cuto↵s described above will be combined into the family
of cuto↵s

⌘
i,j,k,q,n,p,~l

:= ⌘i,j,k,q,n,p := �i,k,q i,q!i,j,q,n,p⇣q,i,k,n,~l
,

which have timespans of ⌧q�
�i

q+1 and L
2 norms

���⌘
i,j,k,q,n,p,~l

���
L2

. ��
i
2

q+1 · �
� j

2
q+1 . (2.14)

We will also require a cuto↵ ⌘
i±,j±,k±,q,n,p,~l

which is defined to be 1 on the
support of ⌘

i,j,k,q,n,~l
and satisfies the estimate

���⌘
i±,j±,k±,q,n,~l

���
L2

. ��
i
2

q+1 · �
� j

2
q+1. (2.15)

We remark that (2.14) and (2.15) are only heuristics (see Lemma 6.41 for the
precise estimate). Designing the cuto↵s turned out to be for the authors perhaps
the most significant technical challenge of the book. Their definition will be
inductive and estimates involving them will involve several layers of induction.

2.6 THE PERTURBATION

The intermittent pipe flows of Section 2.3, the higher order stresses of Section
2.4, and the cuto↵ functions of Section 2.5 provide the key ingredients in the
construction of the perturbation

wq+1 :=
nmaxX

n=0

pmaxX

p=1

wq+1,n,p :=
nmaxX

n=0

wq+1,n.

In the above double sum, we will adopt the convention that wq+1,0,p = 0 unless
p = 1 to streamline notation. Let us emphasize that wq+1 is constructed induc-
tively on n for the following reason. Each perturbation wq+1,n =

P
pmax

p=1 wq+1,n,p

will contribute error terms to all higher order stresses R̊q,en,p for en > n and

1  p  pmax, and so R̊q,en =
P

pmax

p=1 R̊q,en,p is not a well-defined object until each
wq+1,n0 has been constructed for all n0

< n. For the purposes of the following
heuristics, we will abbreviate the cuto↵ functions by an,p, and ignore summation
over many of the indexes which parametrize the cuto↵ functions, as they are not
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necessary to understand the heuristic estimates. We will freely use the heuristic
that the cuto↵ functions allow us to use the L

1
t
H

1
x
norm of vq to control terms

(usually related to the turnover time) which previously required global Lipschitz
bounds on vq.

Let �q,k : R⇥ T3 ! T3 be the solution to the transport equation

@t�q,k + vq ·r�q,k = 0

with initial data given to be the identity at time tk = k⌧q. We mention that
this definition is purely heuristic, since as mentioned previously, the Lagrangian
coordinate systems will have to be indexed by another parameter which encodes
the fact that rvq is spatially inhomogeneous.8 For the time being let us ignore

this issue. Each map �q,k has an e↵ective timespan ⌧q = (�
1
2
q �q)�1, at which

point one resets the coordinates and defines a new transport map �q,k+1 starting
from the identity. Let Wq+1,n denote the pipe flow with intermittency rq+1,n

periodized to scale (�q+1rq+1,n)
�1. The perturbation wq+1,n,p is then defined

heuristically by

wq+1,n,p(x, t) =
X

k

an,p

⇣
R̊q,n,p(x, t)

⌘
(r�q,k(x, t))

�1 (x, t)Wq+1,n(�q,k(x, t)).

We have adopted the convention that R̊q = R̊q,0 = R̊q,0,1 and R̊q,0,p = 0 if
p � 2. Composing with �q,k adapts the pipe flows to the Lagrangian coordinate
system associated to vq so that (r�q,k)�1Wq+1,n(�q,k) is Lie-advected and
remains divergence-free to leading order. The perturbation wq+1,n,p has the
following properties:

1. The thickness (at unit scale) of the pipes on which wq+1,n,p is supported
depends only on q and n and is quantified by

rq+1,n =

✓
�q

�q+1

◆( 4
5 )

n+1

. (2.16)

Thus, the perturbations become less intermittent as n increases, since
the thickness of the pipes (periodized at unit scale) becomes larger as
n increases. Notice that the maximum frequency of R̊q,n,p is �q,n,p for
n � 1 per (2.10), and �q for n = 0, while the minimum frequency of the
intermittent pipe flowWq+1,n used to construct wq+1,n,p is �q,n. Referring
back to Definition 2.3 and Definition 2.4, we have that for 1  n  nmax

and 1  p  pmax,

�q,n,p = �
1� p

pmax
q,n,0 �

p
pmax
q,n+1,0  �q,n+1,0

8The actual transport maps used in the proof are defined in Definition 6.26.
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= �
( 4

5 )
n· 56

q �
1�( 4

5 )
n· 56

q+1 ⌧ �
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1 = �q,n,

which ensures that the low frequency portion of wq+1,n,p decouples from
the high frequency intermittent pipe flow Wq+1,n. For n = 0, the max-

imum frequency of R̊q,0 = R̊q is �q, which is much less than �q,0 per
Definition 2.3.

2. The L2 size of wq+1,n,p is equal to the square root of the L1 norm of R̊q,n,p,

which in turn depends on the minimum frequency of R̊q,n,p and will be
�q+1,n,p, where we define �q+1,0,p = �q+1. For n � 1 and 1  p  pmax,
we have from Definition 2.5 that

�q+1,n,p =
�q+1�q

�q,n,p�1

Y

n0<n

fq,n0 .

3. For n � 1, derivatives on the low frequency coe�cient function of wq+1,n,p

cost the maximum frequency of R̊q,n,p, which is �q,n,p. For n = 0, R̊q,0 =

R̊q, so that each spatial derivative on the coe�cient function of wq+1,0

costs �q.
4. The transport error and Nash error created by the addition of wq+1,n,p

are small enough to be absorbed into R̊q+1 for every n .
5. Per Definition 2.3, the oscillation error which results from wq+1,n,p inter-

acting with itself has minimum frequency

�q,n = �q+1rq+1,n = �
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1 .

2.7 THE REYNOLDS STRESS ERROR AND HEURISTIC

ESTIMATES

Note that since the relation (2.2) is linear in the Reynolds stress, replacing q

with q + 1, the right-hand side can be split into three components:

div (wq+1 ⌦ wq+1 + R̊q)

@twq+1 + vq ·rwq+1

wq+1 ·rvq ,

(2.17)

which we call the oscillation error, transport error, and Nash error respectively.

2.7.1 Type 1 oscillation error

In this section, we sketch the heuristic estimates which justify the following prin-
ciple: the low frequency, high amplitude errors arising from the self-interaction
of an intermittent pipe flow can be transferred to higher frequencies and smaller
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amplitudes through the higher order stresses and perturbations. We shall show
that the following estimates are self-consistent and allow for the construction of
solutions approaching the regularity threshold Ḣ

1
2 :

���rM
R̊q

���
L1

 �q+1�
M

q
(2.18)

���rM
R̊q,n,p

���
L1

 �q+1�q

�q,n,p�1

Y

n0<n

fq,n0�
M

q,n,p
= �q+1,n,p�

M

q,n,p
. (2.19)

The higher order stress R̊q,n,p is defined using the spatial Littlewood-Paley pro-
jection operator

P[q,n,p] := P[�q,n,p�1,�q,n,p) = P��q,n,p�1P<�q,n,p ,

which projects onto the frequencies from (2.10). We define R̊q,n,p as follows:

R̊q,n,p :=
X

n0<n

pmaxX

p0=1

div�1
⇣
r
⇣
a
2
n0,p0(R̊q,n0,p0)r��1

q,k
⌦r��T

q,k

⌘

:
�
P[q,n,p] (Wq+1,n0 ⌦Wq+1,n0)

�
(�q,k)

⌘
. (2.20)

We pause here to point out an important consequence of this definition. Let
n
0 be fixed, and consider the right side of the above equality. Then, due to the

periodicity of Wq+1,n0 at scale (�q+1rq+1,n0)�1, we have9

Wq+1,n0 ⌦Wq+1,n0

= P=0 (Wq+1,n0 ⌦Wq+1,n0) + P 6=0 (Wq+1,n0 ⌦Wq+1,n0)

= P=0 (Wq+1,n0 ⌦Wq+1,n0) + P��q+1rq+1,n0 (Wq+1,n0 ⌦Wq+1,n0) .

For n0 � 1, we have that

�q+1rq+1,n0 = �
( 4

5 )
n0+1

q �
1�( 4

5 )
n0+1

q+1 � �
( 4

5 )
n0

· 56
q �

1�( 4
5 )

n0
· 56

q+1 = �q,n0+1,0 = �q,n0,pmax ,

where �q,n0+1,0 is the minimum frequency of R̊q,n0+1 =
P

pmax

p0=0 R̊q,n0+1,p0 , while
for n0 = 0 we have that

�q+1rq+1,0 = �q,1 = �
( 4

5 )
q �

1�( 4
5 )

q+1 = �q,1,0,

which is the minimum frequency of R̊q,1. Therefore, we have shown that the
error terms arising from all non-zero modes of Wq+1,n0 ⌦Wq+1,n0 are accounted

for in the higher order stresses R̊q,en for en > n
0. Thus, the higher order stresses

9We denote by P 6=0 the operator which subtracts from a function its mean in space.
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created by the interaction of wq+1,n0 will be absorbed into higher order stresses
with strictly larger values of n.

Now assuming that R̊q,n0,p0 and wq+1,n0,p0 are well-defined for all n0
< n and

1  p
0  pmax and using the heuristic estimates from the previous section for

wq+1,n0,p0 , we can estimate the component of R̊q,n,p coming from wq+1,n0,p0 by
recalling (2.20) and writing

���R̊q,n,p

���
L1


X

n0<n

�q+1,n0,p0�q,n0,p0

�q,n,p�1

=
X

n0<n

�q+1�q

�q,n0,p0�1

Q
n
00
<n0 fq,n00�q,n0,p0

�q,n,p�1


X

n0<n

�q+1�q

�q,n,p�1

Y

n
00n0

f
q,n

00

. �q+1�q

�q,n,p�1

Y

n
00
<n

f
q,n

00 = �q+1,n,p .

The denominator comes from the gain induced by the combination of the in-
verse divergence and the Littlewood-Paley projector P[q,n,p]. The numerator is

the amplitude of r|an0,p0(R̊q,n0,p0)|2, computed using the chain rule and the as-

sumption (2.19) onrR̊q,n0,p0 . We have used the fact that the L2 norm ofWq+1,n0

is normalized to unit size. Any derivatives on R̊q,n,p will cost �q,n,p, which is the
maximum frequency in the Littlewood-Paley projector P[q,n,p]. Thus, all terms

which will land in R̊q,n,p will satisfy the correct estimates given that R̊q,n0,p0

satisfies the correct estimates for n
0
< n and 1  p

0  pmax. Since R̊q =: R̊q,0

satisfies the inductive assumptions, we can initiate this iteration at level n = 0
while satisfying (2.18).

Now that R̊q,n,p satisfies the appropriate estimates, we can correct it with
a perturbation wq+1,n,p as described in the previous section. As before, since
Wq+1,n has minimum frequency

�q,n = �q+1rq+1,n = �
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1 � �
( 4

5 )
n· 56

q �
1�( 4

5 )
n· 56

q+1 = �q,n+1,0 ,

and the minimum frequency in R̊q,n+1 is �q,n+1,0, every error term resulting
from the self-interaction of wq+1,n,p will be absorbed into higher order stresses

R̊q,en for en > n. Therefore, we can induct on n to add a sequence of perturba-
tions wq+1,n =

P
pmax

p=1 wq+1,n,p such that all nonlinear error terms are canceled
by subsequent perturbations. Upon reaching nmax and recalling (2.1), we can
estimate the final nonlinear error term by

�q+1�q

�q+1rq+1,nmax

Y

n
0
<nmax

f
q,n

0  �q+2
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(= �q+1

✓
�q

�q+1

◆1�( 4
5 )

nmax+1� 1
pmax

 �q+2

() �
�2�
q+1�

( 1
b�1)

⇣
1�( 4

5 )
nmax+1� 1

pmax

⌘

q+1  �
�2�b
q+1

() 2�b(b� 1)  (b� 1)

 
1�

✓
4

5

◆nmax+1

� 1

pmax

!

() �  1

2b

 
1�

✓
4

5

◆nmax+1

� 1

pmax

!
.

Choosing b to be close to 1 and nmax and pmax su�ciently large shows that these
error terms are commensurate with Ḣ

1
2� regularity.

2.7.2 Type 2 oscillation error

We now consider the second type of oscillation error, which would arise as a
result of two distinct pipes intersecting and thus serves no purpose in the can-
cellation of stresses. Beginning with R̊q = R̊q,0, we have that every derivative

on R̊q,0 costs �q. Therefore, we may decompose R̊q,0 using a checkerboard par-
tition of unity at scale ��1

q
. Referring back to the discussion of the checkerboard

cuto↵ functions, this sets the value of r1 to be �q�
�1
q+1. Now, suppose that on

a single square of this checkerboard, we have placed a set of intermittent pipe
flows Wq+1,0 which are periodized to scale (�q+1rq+1,0)

�1. After flowing the
pipes and the checkerboard square by vq for a short length of time,10 we must
place a new set of pipes W0

q+1,0 which are disjoint from the flowed pipes Wq+1,0.
Given the choice of r1, this will be possible provided that

rq+1,0 = r2 ⌧ r

3
4
1 . (2.21)

Thus, the minimum amount of intermittency needed to successfully place dis-

joint sets of intermittent pipes is
�
�q�

�1
q+1

� 3
4 . Per Definition 2.3, our choice of

rq+1,0 is
�
�q�

�1
q+1

� 4
5 , which is then su�ciently small.

Let us now assume that we have successfully corrected R̊q,n0 for n
0
< n,

and that we wish to correct R̊q,n =
P

pmax

p=1 R̊q,n,p with a perturbation wq+1,n =P
pmax

p=1 wq+1,n,p. First, we recall that

���rM
R̊q,n,p

���
L1

. �q+1,n,p�
M

q,n,p
.

Therefore, we can multiply R̊q,n,p by a checkerboard partition of unity at scale

10The length of time is equal to the local Lipschitz norm of vq on the support of the cuto↵
 i,q , given by the time cuto↵ hidden in an,p.
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�
�1
q,n,0 � �

�1
q,n,p

while preserving these bounds. We must choose values of r1 and
r2, as in Section 2.5.2. Since for n � 2

�q+1r1 = �q,n,0 = �
( 4

5 )
n�1· 56

q �
1�( 4

5 )
n�1· 56

q+1 = �q+1 ·
✓

�q

�q+1

◆( 4
5 )

n�1· 56
,

and for n = 1

�q,1,0 = �

4
5
q �

1
5
q+1 � �q+1 ·

✓
�q

�q+1

◆( 4
5 )

1�1· 56
,

we have that for all n � 1

r1 �
✓

�q

�q+1

◆( 4
5 )

n�1· 56
.

Recall that R̊q,n,p will be corrected by wq+1,n,p, which is constructed using
intermittent pipe flows Wq+1,n with intermittency

rq+1,n =

✓
�q

�q+1

◆( 4
5 )

n+1

= r2.

Thus in order to succeed in placing pipes Wq+1,n which avoid both previous
generations of pipes, which are periodized to scales rougher than Wq+1,n, and
pipes from the same generation on overlapping cuto↵ functions, we must ensure
that

r2 ⌧ r

3
4
1

()
✓

�q

�q+1

◆( 4
5 )

n+1

⌧
✓

�q

�q+1

◆( 4
5 )

n�1· 56 ·
3
4

()
✓
4

5

◆n�1

· 5
6
· 3
4
<

✓
4

5

◆n+1

() 1

2
<

✓
4

5

◆3

=
64

125
.

So our choice of rq+1,n is su�cient to ensure that we can successfully place
intermittent pipe flows when constructing wq+1,n,p which are disjoint from all
other pipe flows from either previous generations (n0

< n) or the same generation
(the same value of n).
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2.7.3 Nash and transport errors

The heuristic for the Nash and transport errors is that our choice of rq+1,n

provides much more intermittency than is needed to ensure that linear errors
arising from wq+1,n,p can be absorbed into R̊q+1.11 In other words, the Type 2
oscillation errors required much more intermittency than the Nash and transport
errors will.

Let us start with the Nash error arising from the addition of wq+1,0,1, which

is designed to correct R̊q. Using decoupling, the cost of a derivative on Wq+1,0

being �q+1 (so that inverting the divergence gains a factor of �q+1), the size of
rvq in L

2, and the L
1 size of Wq+1,n being rq+1,0, the size of this error is

1

�q+1
�
1/2

q+1�
1/2
q
�qrq+1,0 =

1

�q+1
�
1/2

q+1�
1/2
q
�q

✓
�q

�q+1

◆( 4
5 )

.

This is (much) less than �q+2 since

�
1/2

q+1�
1/2
q �

3/2
q

�
3/2

q+1

 �q+2 () �
��
q+1�

� �
b

q+1�
1
b ·

3
2

q+1�
� 3

2
q+1  �

�2�b
q+1

() 2�b2 � �b� �  (b� 1) · 3
2

() �(2b+ 1)(b� 1)  (b� 1) · 3
2
. (2.22)

Choosing b close to 1 will make this error commensurate with Ḣ
1
2� regularity.

Let us now estimate the Nash error arising from the addition of wq+1,n,p for
n � 2, given by

���div�1
⇣⇣

an,pr��1
q,k

Wq+1,n(�q,k)
⌘
·rvq

⌘���
L1

.

Using again decoupling, the cost of a derivative on Wq+1,n being �q+1 (so that
inverting the divergence gains a factor of �q+1), the size of rvq in L

2, the L
1

size of Wq+1,n being rq+1,n, and (2.1), we have that for n � 2, the size of this

11One may verify that in three dimensions, the minimum amount of intermittency needed to
absorb the Nash and transport errors arising from wq+1,0 into R̊q+1 at regularity approaching

Ḣ
1
2 is rq+1,0 = �

1
2
q �

� 1
2

q+1. In general, one can further verify that given errors supported

at frequency �
↵
q �

1�↵

q+1 , one could correct them using intermittent pipe flows with minimum

frequency �
↵
2
q �

1�↵
2

q+1 while absorbing the resulting Nash and transport errors into R̊q+1. One

should compare this with (2.21), which shows that the placement technique requires more

intermittency, which at level n = 0 corresponds to �
3
4
q �

� 3
4

q+1.
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error is

1

�q+1
· �

1
2
q+1,n,prq+1,n · �

1
2
q �q

 1

�q+1
· �

1
2
q+1,n,1rq+1,n · �

1
2
q �q

=
1

�q+1

✓
�q+1�q

�q,n,0

◆ 1
2

 
Y

n0<n

fq,n0

! 1
2 ✓

�q

�q+1

◆( 4
5 )

n+1

�

1
2
q �q

 1

�q+1

0

@ �q+1�q

�
( 4

5 )
n�1· 56

q �
1�( 4

5 )
n�1· 56

q+1

1

A

1
2 ✓

�q

�q+1

◆( 4
5 )

n+1� 1
2pmax

�

1
2
q �q .

Since
1

2pmax
+

1

2
· 5
6
·
✓
4

5

◆n�1

<

✓
4

5

◆n+1

independently of n � 2 if pmax is su�ciently large, the Nash error will be smaller
than �q+2 based on the preceding estimates. Furthermore, one may check that

�

1
2
q+1,1,1rq+1,1 < �

1
2
q+1,2,1rq+1,2, so that the Nash error arising from the addition

of wq+1,1,p is also satisfactorily small for all p.
Now let us consider the transport error. The size of the transport error

arising from the addition of wq+1,n,p is

���div�1
⇣
(Dt,qan,p)r��1

q,l
Wq+1,n

⌘���
L1

 1

�q+1
⌧
�1
q
�

1
2
q+1,n,prq+1,n

=
1

�q+1
· �

1
2
q+1,n,prq+1,n · �

1
2
q �q. (2.23)

Thus, the transport error is the same size as the Nash error and is su�ciently
small to be put into R̊q+1.
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Chapter Three

Inductive assumptions

While in Chapter 2 we have outlined in broad terms the main steps in the proof
of Theorem 1.1, along with the heuristics for some of the choices we have made
in our proof, starting with the current section, we work with precise estimates.

In Section 3.1 we introduce some of the notation used in the proof, such
as the Euler-Reynolds system, the mollified velocity, velocity increments, mate-
rial/directional derivatives, our notation for geometric upper bounds with two
di↵erent bases, and our notation for k·k

Lp .
In Section 3.2 we introduce the principal amplitude and frequency param-

eters used in proof (the precise definitions and the order of choosing these pa-
rameters is detailed in Section 9.1). Next, in Sections 3.2.1 and 3.2.2 we state
the primary inductive assumptions for the velocity, velocity increments, and
Reynolds stress. These primary estimates hold on the support of previous gen-
eration velocity cuto↵ functions, which are inductively assumed to satisfy a
number of properties, listed in Section 3.2.3. Lastly, in Section 3.2.4 we list a
number of bounds for the velocity increments and mollified velocities, which in-
volve all possible combinations of space and material derivatives, up to a certain
order. These bounds are technical in nature, and should be ignored at a first
reading; their sole purpose is to allow us to bound commutators between D

n

and D
m

t,q
for very high values of n and m.

In conclusion, in Section 3.4 we show that if we are able to propagate the
previously stated inductive estimates from step q to step q + 1, for every q � 0,
then Theorem 1.1 follows. At the end of the section we discuss the modifications
to the proof which would be necessary in order to obtain other types of flexibility
statements.

3.1 GENERAL NOTATIONS

As is standard in convex integration schemes for the Euler system [29], we
introduce the Euler-Reynolds system for the unknowns (vq, R̊q):

@tvq + div (vq ⌦ vq) +rpq = div R̊q (3.1a)

div vq = 0. (3.1b)

Here and throughout the book, the pressure pq is uniquely defined by solving

�pq = div div (R̊q � vq ⌦ vq), with
´
T3 pqdx = 0.
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In order to avoid the usual derivative loss issue in convex integration schemes,
for q � 0 we use the space-time mollification operator defined in Section 9.4,
equation (9.64), to smooth out the velocity field vq as:

v`q := Pq,x,tvq . (3.2)

In particular, we note that spatial mollification is performed at scale e��1
q

(which
is just slightly smaller than ��1

q
), while temporal mollification is at scale e⌧q�1

(which is a lot smaller than ⌧q�1).
Next, for all q � 1, define

wq := vq � v`q�1 , uq := v`q � v`q�1 . (3.3)

For consistency of notation, define w0 = v0 and u0 = v`0 . Note that

uq = Pq,x,twq + (Pq,x,tv`q�1 � v`q�1) (3.4)

so that we may morally think that uq = wq+(a small error term); the smallness
of this error term will be ensured by choosing a mollifier with a large number of
vanishing moments; cf. (9.62).

We use the following notation for the material derivative corresponding to
the vector field v`q :

Dt,q := @t + v`q ·r. (3.5)

With this notation, we have that

Dt,q = Dt,q�1 + uq ·r. (3.6)

We also introduce the directional derivatives

Dq := uq ·r , (3.7)

which allow us to transfer information between Dt,q�1 and Dt,q via Dt,q =
Dt,q�1 +Dq.

Remark 3.1. If for a sequence of numbers {an}n�0 and for two parameters 0 <

� < ⇤ we have the bounds

an  �
n
, for all n  N⇤

an  �
N⇤⇤n�N⇤ for all n > N⇤,

for some N⇤ � 1, we will abbreviate these bounds as

an  M (n,N⇤,�,⇤) ,
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where we define

M (n,N⇤,�,⇤) := �
min{n,N⇤}⇤max{n�N⇤,0} (3.8)

for all n � 0. The first entry of M (·, ·,�,⇤) measures the index in the sequence
(typically number of derivatives considered) and the second entry determines
the index after which the base of the geometric bound changes from � to ⇤.
This notation has the following consequence, which will be used throughout the
book: if 1  �  ⇤, then

M (a,N⇤,�,⇤)M (b,N⇤,�,⇤)  M (a+ b,N⇤,�,⇤) . (3.9)

When either a or b are larger than N⇤ the above inequality creates a loss; for
a+ b  N⇤, it is an equality.

Remark 3.2. Throughout this section, and the remainder of the book, in order
to abbreviate notation we shall use the notation kfk

Lp to denote kfk
L

1
t (Lp(T3)).

That is, all Lp norms stand for Lp norms in space, uniformly in time. Similarly,
when we wish to emphasize a set dependence of an L

p norm, we write kfk
Lp(⌦),

for some space-time set ⌦ ⇢ R⇥ T3, to stand for k1⌦ fk
L

1
t (Lp(T3)).

3.2 INDUCTIVE ESTIMATES

The proof is based on propagating estimates for solutions (vq, R̊q) of the Euler-
Reynolds system (3.1), inductively for q � 0. In order to state these bounds,
we first need to fix a number of parameters in terms of which these inductive
estimates are stated. We start by picking a regularity exponent � 2 (1/3, 1/2),
and a super-exponential rate parameter b 2 (1, 3/2) such that 2�b < 1. In terms
of this choice of � and b, a number of additional parameters (nmax, . . .Nfin) are
fixed, whose precise definition is summarized for convenience in items (3)–(12)
of Section 9.1. Note that at this point the parameter a⇤(�, b) from item (13) in
Section 9.1 is not yet fixed. With this choice, we then introduce the fundamental
q-dependent frequency and amplitude parameters from Section 9.2. We state
here for convenience the main q-dependent parameters defined in (9.15), (9.17),
(9.18), and (9.21):

�q = 2
⌃
(bq) log2 a

⌥
⇡ �

b

q�1 , �q = �
�(b+1)
1 �

�2�
q

, (3.10a)

⌧
�1
q

= �
1/2
q
�q�

c0+11
q+1 , �q+1 =

✓
�q+1

�q

◆"�
⇡ �

(b�1)"�
q

, (3.10b)

where the constant c0 is defined by (9.6). The ⇡ symbols in (3.10) mean that
the left side of the ⇡ symbol lies between two (universal) constant multiples of
the right side (see e.g. (9.16)).
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Remark 3.3. Throughout the subsequent sections, we will make frequent use
of the symbol .. We emphasize that any implicit constants indicated by .
are allowed to depend only on the parameters defined in Section 9.1, items
(1)–(12). The implicit constants in . are, however, always independent of the
parameters a and q, which appear in (3.10). This allows us at the end of the
proof– cf. item (13) in Section 9.1– to choose a⇤(�, b) to be su�ciently large so
that for all a � a⇤(�, b) and all q � 0, the parameter �q+1 appearing in (3.10) is
larger than all the implicit constants in . symbols encountered throughout the
book. That is, upon choosing a⇤ su�ciently large, any inequality of the type
A . B which appears in this book may be rewritten as A  �q+1B, for any
q � 0.

In order to state the inductive assumptions we use four large integers, defined
precisely in Section 9.1. For the moment it is important to note that these fixed
parameters are independent of q and that they satisfy the ordering

1 ⌧ Ncut,t ⌧ Nind,t ⌧ Nind,v ⌧ Nfin . (3.11)

The precise definitions of these integers, and the meaning of the ⌧ symbols in
(3.11), are given in (9.9), (9.10), (9.11), and (9.14). Roughly speaking, the role
of these parameters is as follows:

• Ncut,t is the number of sharp material derivatives which are built into the
velocity and stress cuto↵ functions.

• Nind,t is the number of sharp material derivatives propagated for velocities
and stresses.

• Nind,v is used to quantify the number of (lossy) higher order space and time
derivatives for velocities and stresses.

• Nfin is used to quantify the highest order derivatives appearing in the proof.

Next, we state the inductive assumptions for the velocity increments and stresses
at various levels q � 0. Throughout the section we frequently refer to the
notation M (n,N⇤,�,⇤) from (3.8).

3.2.1 Primary inductive assumption for velocity increments

We make L
2 inductive assumptions for uq0 = v`q0 � v`q0�1

at levels q
0 strictly

below q. For all 0  q
0  q � 1 we assume that

�� i,q0�1D
n
D

m

t,q0�1uq0
��
L2

 �
1/2

q0 M
⇣
n, 2Nind,v,�q0 ,

e�q0
⌘
M
⇣
m,Nind,t,�

i

q0⌧
�1
q0�1, e⌧

�1
q0�1

⌘
(3.12)

holds for all n+m  Nfin.
At level q, we assume that the velocity increment wq satisfies

�� i,q�1D
n
D

m

t,q�1wq

��
L2  ��1

q
�
1/2
q
�
n

q
M
�
m,Nind,t,�

i�1
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�
(3.13)
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for n,m  7Nind,v. Moreover, recalling from (9.67) that supp
t
f denotes the

temporal support of a function f , we inductively assume that

supp
t
(R̊q�1) ⇢ [T1, T2]

) supp
t
(wq) ⇢

h
T1 � (�q�1�

1/2

q�1)
�1

, T2 + (�q�1�
1/2

q�1)
�1
i
. (3.14)

3.2.2 Inductive assumption for the stress

For the Reynolds stress R̊q, we make L
1 inductive assumptions

��� i,q�1D
n
D

m

t,q�1R̊q

���
L1

 ��CR
q

�q+1�
n

q
M
�
m,Nind,t,�

i+1
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�

(3.15)

for all 0  n,m  3Nind,v.

3.2.3 Inductive assumption for the previous generation velocity
cuto↵ functions

More assumptions are needed in relation to the previous velocity perturbations
and old cuto↵ functions. First, we assume that the velocity cuto↵ functions
form a partition of unity for q0  q � 1:

X

i�0

 
2
i,q0 ⌘ 1, and  i,q0 i0,q0 = 0 for |i� i

0| � 2. (3.16)

Second, we assume that there exists an imax = imax(q) > 0, which is bounded
uniformly in q as

b+ 1

b� 1
 imax(q) 

4

"�(b� 1)
, (3.17)

such that

 i,q0 ⌘ 0 for all i > imax(q
0) , and �imax(q

0)
q0+1  �

5/3

q0 , (3.18)

for all q0  q � 1. For all 0  q
0  q � 1 and 0  i  imax we assume the

following pointwise derivative bounds for the cuto↵ functions  i,q0 . For mixed
space and material derivatives (recall the notation from (3.5)) we assume that

1supp i,q0

 
1�(K+M)/Nfin

i,q0

�����

 
kY

l=1

D
↵lD

�l

t,q0�1

!
 i,q0

�����

. M
⇣
K,Nind,v,�q0�q0 ,�q0e�q0

⌘
M
⇣
M,Nind,t � Ncut,t,�

i+3
q0+1⌧

�1
q0�1,�

�1
q0+1e⌧

�1
q0

⌘

(3.19)
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for K,M, k � 0 with 0  K +M  Nfin, where ↵,� 2 Nk are such that |↵| = K

and |�| = M . Lastly, we consider mixtures of space, material, and directional
derivatives (recall the notation from (3.7)). Then with K,M,↵,� and k as
above, and with N � 0, we assume that

1supp i,q0

 
1�(N+K+M)/Nfin

i,q0

�����D
N

 
kY

l=1

D
↵l
q0 D

�l

t,q0�1

!
 i,q0

�����

. M
⇣
N,Nind,v,�q0�q0 ,�q0e�q0

⌘
(�i�c0

q0+1⌧
�1
q0 )K

⇥M
⇣
M,Nind,t � Ncut,t,�

i+3
q0+1⌧

�1
q0�1,�

�1
q0+1e⌧

�1
q0

⌘
(3.20)

as long as 0  N +K +M  Nfin.
In addition to the above pointwise estimates for the cuto↵ functions  i,q0 ,

we also assume that we have a good L
1 control. More precisely, we postulate

that

k i,q0kL1 . ��2i+Cb
q0+1 where Cb =

4 + b

b� 1
(3.21)

holds for 0  q
0  q � 1 and all 0  i  imax(q0).

3.2.4 Secondary inductive assumptions for velocities

Next, for 0  q
0  q � 1, 0  i  imax, k � 1, K,M � 0, and ↵,� 2 Nk with

|↵| = K and |�| = M , we assume that the following mixed space and material
derivative bounds hold:
�����

⇣ kY

i=1

D
↵iD

�i

t,q0�1

⌘
uq0

�����
L1(supp i,q0 )

. (�i+1
q0+1�

1/2

q0 )M
⇣
K, 2Nind,v,�q0�q0 , e�q0

⌘
M
⇣
M,Nind,t,�

i+3
q0+1⌧

�1
q0�1,�

�1
q0+1e⌧

�1
q0

⌘

(3.22)

for K +M  3Nfin/2 + 1,

�����

⇣ kY

i=1

D
↵iD

�i

t,q0

⌘
Dv`q0

�����
L1(supp i,q0 )

. (�i+1
q0+1�

1/2

q0
e�q0)M

⇣
K, 2Nind,v,�q0�q0 , e�q0

⌘
M
⇣
M,Nind,t,�

i�c0
q0+1⌧

�1
q0 ,��1

q0+1e⌧
�1
q0

⌘

(3.23)



INDUCTIVE ASSUMPTIONS

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

43

for K +M  3Nfin/2, and

�����

⇣ kY

i=1

D
↵iD

�i

t,q0

⌘
v`q0

�����
L1(supp i,q0 )

. (�i+1
q0+1�

1/2

q0 �
2
q0)M

⇣
K, 2Nind,v,�q0�q0 , e�q0

⌘
M
⇣
M,Nind,t,�

i�c0
q0+1⌧

�1
q0 ,��1

q0+1e⌧
�1
q0

⌘

(3.24)

for K+M  3Nfin/2+1. Additionally, for N � 0 we postulate that mixed space,
material, and directional derivatives satisfy

�����D
N

⇣ kY

i=1

D
↵i
q0 D

�i

t,q0�1

⌘
uq0

�����
L1(supp i,q0 )

. (�i+1
q0+1�

1/2

q0 )
K+1M

⇣
N +K, 2Nind,v,�q0�q0 , e�q0

⌘

⇥M
⇣
M,Nind,t,�

i+3
q0+1⌧

�1
q0�1,�

�1
q0+1e⌧

�1
q0

⌘
(3.25a)

. (�i+1
q0+1�

1/2

q0 )M
⇣
N, 2Nind,v,�q0�q0 , e�q0

⌘
(�i�c0

q0+1⌧
�1
q0 )K

⇥M
⇣
M,Nind,t,�

i+3
q0+1⌧

�1
q0�1,�

�1
q0+1e⌧

�1
q0

⌘
(3.25b)

whenever N +K +M  3Nfin/2 + 1.

Remark 3.4. Identity (A.39) shows that (3.25b) automatically implies the bound

��DN
D

M

t,q0uq0
��
L1(supp i,q0 )

. (�i+1
q0+1�

1/2

q0 )M
⇣
N, 2Nind,v,�q0�q0 , e�q0

⌘
M
⇣
M,Nind,t,�

i�c0
q0+1⌧

�1
q0 ,��1

q0+1e⌧
�1
q0

⌘

(3.26)

for all N +M  3Nfin/2 + 1. To see this, we take B = Dt,q0�1 and A = Dq0 , so
that A+B = Dt,q0 . The estimate (3.26) now is a consequence of identity (A.39)
and the parameter inequalities �c0+3

q0+1⌧
�1
q0�1  ⌧

�1
q0 (which follows from (9.40)) and

�i�c0+1
q0+1 ⌧

�1
q0  e⌧�1

q0 (which is a consequence of (3.18) and (9.43)). In a similar
fashion, the bound (3.20) and identity (A.39) imply that

1supp i,q0

 
1�(N+M)/Nfin

i,q0

��DN
D

M

t,q0 i,q0
��

. M
⇣
N,Nind,v,�q0�q0 ,�q0e�q0

⌘
M
⇣
M,Nind,t � Ncut,t,�

i�c0
q0+1⌧

�1
q0 ,��1

q0+1e⌧
�1
q0

⌘

(3.27)

for all N +M  Nfin. Indeed, the above estimates follow from the same param-
eter inequalities mentioned above, and from identity (A.39) with A = Dq0 and
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B = Dt,q0�1.

Remark 3.5. The inductive assumptions for the velocities given in Sections 3.2.1
and 3.2.4, with the definition of the mollifier operator Pq,x,t in Section 9.4, imply
that the new velocity field vq = wq + v`q�1 is very close to its mollification v`q ,
uniformly in space and time. That is, we have

��Dn
D

m

t,q�1(v`q � vq)
��
L1  �

�2
q
�
1/2
q

M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t, ⌧

�1
q�1�

i�1
q

, e⌧�1
q�1�

�1
q

�
(3.28)

for all n,m  3Nind,v. The proof of the above bound is given in Lemma 5.1;
cf. estimate (5.4).

3.3 MAIN INDUCTIVE PROPOSITION

The main inductive proposition, which propagates the inductive estimates in
Section 3.2 from step q to step q + 1, is as follows.

Proposition 3.6. Fix � 2 [1/3, 1/2) and choose b 2 (1, 1/2�). Solely in terms
of � and b, define the parameters nmax, Cb, CR, c0, "�, ↵R, Ncut,t, Ncut,x,
Nind,t, Nind,v, Ndec, d, and Nfin by the definitions in Section 9.1, items (1)–
(12). Then, there exists a su�ciently large a⇤ = a⇤(�, b) � 1, such that for any
a � a⇤, the following statement holds for any q � 0. Given a velocity field vq

which solves the Euler-Reynolds system with stress R̊q, define v`q , wq, and uq

via (3.2)–(3.3). Assume that {uq0}q�1
q0=0 satisfies (3.12), wq obeys (3.13)–(3.14),

R̊q satisfies (3.15), and that for every q
0  q� 1 there exists a partition of unity

{ i,q0}i�0 such that properties (3.16)–(3.18) and estimates (3.19)–(3.25) hold.

Then, there exists a velocity field vq+1, a stress R̊q+1, and a partition of unity

{ i,q}q�0, such that vq+1 solves the Euler-Reynolds system with stress R̊q+1, uq

satisfies (3.12) for q0 7! q, wq+1 obeys (3.13)–(3.14) for q 7! q+1, R̊q+1 satisfies
(3.15) for q 7! q+1, and the  i,q are such that (3.16)–(3.25) hold when q

0 7! q.

3.4 PROOF OF THEOREM 1.1

Choose the parameters �, b, . . . , a⇤, as described in Section 9.1, and assume that
with these parameter choices, and for any a � a⇤, we are able to propagate
the inductive bounds claimed in Sections 3.2.1–3.2.4 from step q to step q + 1,
for all q � 0; this is achieved in Sections 6–8. We next show that if a � a⇤ is
chosen su�ciently large, depending additionally on the vstart, vend, T > 0, and
✏ > 0 from the statement of Theorem 1.1, then the inductive assumptions imply
Theorem 1.1.
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Without loss of generality, assume that
´
T3 vstart(x)dx =

´
T3 vend(x)dx = 0.

Since these functions lie in L
2(T3), there exists R > 0 such that upon defining

v
(1)
0 := PRvstart , and v

(2)
0 := PRvend ,

where PR denotes the Fourier truncation operator to frequencies |⇠|  R, we
have that

kv(1)0 � vstartkL2(T3) + kv(2)0 � vendkL2(T3) 
✏

2
. (3.29)

Note that v
(1)
0 , v

(2)
0 2 C

1(T3), and thus by the classical local well-posedness
theory plus propagation of regularity (see Foias, Frisch, and Temam [38]), there
exists T0 > 0 and unique strong solutions v(1) 2 C

1((�T0, T0)⇥T3) and v
(2) 2

C
1((T � T0, T + T0)⇥ T3) of the 3D Euler system (1.1), such that v(1)(x, 0) =

v
(1)
0 (x) and v

(2)(x, T ) = v
(2)
0 (x). Without loss of generality, we may take T0 

T/2.
Next, let ' : [0, T ] ! [0, 1] be a non-increasing C

1 smooth function such
that ' ⌘ 1 on [0, T0/2] and ' ⌘ 0 on [T0, T ]. Define the C

1-smooth function

v0(x, t) := '(t)v(1)(x, t) + '(T � t)v(2)(x, t) . (3.30)

On [0, T ], v0 solves the Euler-Reynolds system (3.1) for a suitable zero mean
scalar pressure p0, with the C

1-smooth stress R̊0 defined by

R̊0(x, t) := (@t')(t)Rv
(1)(x, t)� (@t')(T � t)Rv

(2)(x, t)

+ '(t)('(t)� 1)(v(1)⌦̊v
(1))(x, t)

+ '(T � t)('(T � t)� 1)(v(2)⌦̊v
(2))(x, t) , (3.31)

where R is the classical nonlocal inverse divergence operator (see (A.100) for
the definition). From the above definition and the fact that ' ⌘ 1 on [0, T0/2],
we deduce that

supp
t
(R̊0) ⇢ [T0/2, T � T0/2] . (3.32)

This fact will be needed towards the end of the proof.
For consistency of notation, we also define v�1 = v`�1 = u�1 = 0, so that

v0 = w0 holds by (3.3). For the velocity cuto↵s, we let  0,�1 = 1 and  i,�1 = 0
for all i � 1. It is then immediate to check that the { i,�1}i�0 satisfy the
inductive assumptions (3.16)–(3.21), for q

0 = �1, with the derivative bounds
(3.19) and (3.20) being empty statements respectively for when K + M � 1
and N +K +M � 1. Moreover, the bounds (3.12) and (3.22)–(3.25b) hold for
q
0 = �1 since the left side of these inequalities vanishes identically. Lastly, the
assumption (3.14) is empty since there is no R̊�1 stress to speak of.

It thus remains to verify that the pair (v0, R̊0) defined in (3.30)–(3.31)
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satisfies the estimates (3.13) and (3.15), where by the above choices we have
Dt,�1 = @t. Note that the parameter Nind,v was already chosen; thus, we have
that

Cdatum := max
0n,m7Nind,v

kDn
@
m

t
v0kL1(0,T ;L2(T3))

+ max
0n,m3Nind,v

���Dn
@
m

t
R̊0

���
L1(0,T ;L1(T3))

< 1 . (3.33)

Note that Cdatum only depends on vstart, vend, the cuto↵ frequency R > 0, the
choice of the cuto↵ function ', T > 0, and the parameter Nind,v. In particular,
Cdatum does not depend on the parameter a, which is the base of the exponential
defining �q in (3.10). Defining ⌧�1 = ��1

0 = �
�"�
0 and e⌧�1 = ��3

0 = �
�3"�
0 (these

parameters are never used again) and using that �0 � a � a⇤ � 1, we thus have
that (3.13) and (3.15) hold if we ensure that

Cdatum  ��1
0 �

1/2

0 and Cdatum  ��CR
0 �1 . (3.34)

Using the fact that "� is su�ciently small with respect to � and b, we have that

��1
0 �

1/2

0 = �
�"�
0 �

(b+1)�/2
1 �

��
0 � (�1�

�1
0 )(b+1)�/2 � (ab�1

/2)� . Also, by using the
fact that "� is chosen to be su�ciently small with respect to � and b, we have

that ��CR
0 �1 = �

(4b+1)"�
0 �

(b�1)�
1 � (�1�

�1
0 )(b�1)� � (ab�1

/2)(b�1)� . Thus, if in
addition to a � a⇤, as specified by item (13) in Section 9.1, we choose a � a⇤
to be su�ciently large in terms of �, b and the constant Cdatum from (3.33) in
order to ensure that

a
(b�1)2� � 4Cdatum ,

then the condition (3.34) is satisfied. We make this choice of a, and thus all
the estimates claimed in Sections 3.2.1–3.2.4 hold true for the base step in the
induction, the case q = 0.

Proceeding inductively, these estimates thus hold true for all q � 0. This
allows us to define a function v 2 C

0(0, T ;H�
0
(T3)) for any �

0
< � via the

absolutely convergent series1

v = lim
q!1

vq = v0 +
X

q�0

(vq+1 � vq) = v0 +
X

q�0

�
wq+1 + (v`q � vq)

�
, (3.35)

where we recall the notation (3.2) and (3.3). Indeed, by (3.13), (3.16), and

interpolation, we have that kwqkH�0  2��1
q
�
1/2
q �

�
0

q
= 2��1

q
�

(b + 1)�/2

1 �
�(���0)
q ,

which is summable for q � 0 whenever �0
< �. By appealing to the bound (3.28),

we furthermore obtain that
��v`q � vq

��
H�0 . �

�2
q
�
1/2
q �

�
0

q
. �

(b + 1)�/2

1 �
�2�(���0)
q ,

which is again summable over q � 0. This justifies the definition of v in (3.35),

1We may equivalently define v = limq!1 vq = limq!1 wq +
P

q�1
q0=0 uq0 =

P
q0�0 uq0 . We

choose to work with (3.35) because it highlights the dependence on v0.
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and the fact that v 2 C
0(0, T ;H�

0
(T3)) for any �0

< �. Finally, we note that
by additionally appealing to (3.15), which yields kR̊qkL1 . ��CR

q
�q+1 ! 0 as

q ! 1, in view of (3.1) the function v defined in (3.35) is a weak solution of
the Euler equations on [0, T ].

In order to complete the proof, we return to (3.35) and note that due to

(3.14) (with q = 1), the property (3.32) of R̊0, and the fact that �0�
1/2

0 =

�
1��
0 �

(b + 1)�/2

1 � 4/T0 (which holds upon choosing a su�ciently large with respect
to T0,�, b), we have that w1 ⌘ 0 on the set [0, T0/4]⇥T3[[T�T0/4, T ]⇥T3. Thus,
from (3.35) and the previously established bounds for wq (via (3.13), (3.16)) and
v`q � vq (via (3.28)), we have that

kv � v0kL1([0,T0/4][[T�T0/4,T ];L2(T3))


X

q�2

kwqkL1([0,T ];L2(T3)) +
X

q�0

��v`q � vq

��
L1([0,T ];L2(T3))

 2�
(b + 1)�/2

1

X

q�2

��1
q
�
��
q

+ �
(b+1)�
1

X

q�0

�
�2��
q

 4�
(b + 1)�/2

1 ��1
2 �

��
2 + 2�(b+1)�

1 �
�2��
0

 8��1
2 �

(b + 1)�/2

1 �
��b
1 + 4�(b+1)b�

0 �
�2��
0

 �
�(b � 1)�/2

1 + 4��
1/2

0

 ✏

2
(3.36)

once a (and thus �0 and �1) is taken to be su�ciently large with respect to
b,�, and ✏. Here, in the second to last inequality we have used that �(b2 + b�
1)  3/2, which holds since � < 1/2 and b < 3/2. Combining (3.36) with the
definition of the functions v

(1), v(2), and v0, and the bound (3.29), we deduce
that kv(·, 0)� vstartkL2(T3)  ✏ and kv(·, T )� vendkL2(T3)  ✏. This concludes
the proof of Theorem 1.1, with � being replaced by an arbitrary �0 2 (0,�).

Remark 3.7. The proof outlined above may be easily modified to show the

existence of infinitely many weak solutions in C
0
t
H

1/2�
x which are nontrivial

and have compact support in time, as mentioned in Remark 1.2. The argu-
ment is as follows. Let '(t) be a C

1 smooth cuto↵ function, with ' ⌘ 1 on
�[T/4, T/4] and ' ⌘ 0 on R\ [�T/2, T/2]. Then, instead of (3.30), we define define
v0(x, t) = E'(t)(sin(x3), 0, 0). Note that the kinetic energy of v0 at time t = 0
is larger than E(2⇡)3/2/2 � 2E, and that v0 has time support in [�T/2, T/2].
Since (sin(x3), 0, 0) is a shear flow, the zero order stress R̊0 is given by E'

0(t)
multiplied by a matrix whose entries are zero, except for the (1, 3) and (3, 1)
entries, which equal � cos(x3) (see [12, Section 5.2] for details). The point is
that R0 is smooth, and its time support lies in the interval T/4  |t|  T/2,
which plays the role of (3.32). Using the same argument used in the proof of
Theorem 1.1, we may show that for a su�ciently large, the above defined pair
(v0, R̊0) satisfies the inductive assumptions at level q = 0, and that these in-
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ductive assumptions may be propagated to all q � 0. As in (3.36), we deduce
that the limiting weak solution solution v has kinetic energy at time t = 0
which is strictly larger than E. The fact that supp

t
v0, supp t

R̊0 ⇢ [�T/2, T/2],
combined with the inductive assumption (3.14) and the fact that the mollifi-
cation procedure in Lemma 5.1 expands time supports by at most a factor of

e⌧q�1 ⌧ (�q�1�
1/2

q�1)
�1, implies that the weak solution v has time support in the

set |t|  T/2 + 4
P

q�0(�q�
1/2
q )�1  T/2 + 8���1

0 . Choosing a su�ciently large
shows that supp

t
v ⇢ [�T, T ].

Remark 3.8. The intermittent convex integration scheme described in this book

may be modified to show that within the regularity class C
0
t
H

1/2�
x , weak solu-

tions of 3D Euler may be constructed to attain any given smooth energy profile,
as mentioned in Remark 1.2. The main modifications required to prove this
fact are as follows. As in previous schemes (see, e.g., De Lellis and Székelyhidi
Jr. [31], equations (7) and (9), or [13], equations (2.5) and (2.6)) we need to
measure the distance between the energy resolved at step q in the iteration and
the desired energy profile e(t). The energy pumping produced in steps q 7! q+1
by the additions of pipe flows which comprise the velocity increments wq+1, and
the error due to mollification, was already understood in detail in Daneri and
Székelyhidi Jr. [27] and in [11]. An additional di�culty in this book is due to
the presence of the higher order stresses: the energy profile would have to be
inductively adjusted also throughout the steps n 7! n + 1 and p 7! p + 1. The
other di�culty is the presence of the cuto↵ functions. This issue was, however,
already addressed in [13]– cf. Sections 4.5, 4.5, 6– albeit for a simpler version of
the cuto↵ functions, which only included the stress cuto↵s. With some e↵ort,
the argument in [13] may be indeed modified to deal with the cuto↵ functions
present in this work.
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Building blocks

4.1 A CAREFUL CONSTRUCTION OF INTERMITTENT PIPE

FLOWS

We recall from [54, Lemma 1] or [27, Lemma 2.4] a version of the following
geometric decomposition:

Proposition 4.1 (Choosing vectors for the axes). Let B1/2(Id) denote the
ball of symmetric 3⇥3 matrices, centered at Id, of radius 1/2. Then, there exists
a finite subset ⌅ ⇢ S2 \ Q3, such that for every ⇠ 2 ⌅ there exists a smooth
positive function �⇠ : C1 �

B1/2(Id)
�
! R, such that for each R 2 B1/2(Id) we

have the identity

R =
X

⇠2⌅

(�⇠(R))2 ⇠ ⌦ ⇠. (4.1)

Additionally, for every ⇠ in ⌅, there exist vectors ⇠(2), ⇠(3) 2 S2 \ Q3 such that
{⇠, ⇠(2), ⇠(3)} is an orthonormal basis of R3, and there exists a least positive
integer n⇤ such that n⇤⇠, n⇤⇠

(2)
, n⇤⇠

(3) 2 Z3, for every ⇠ 2 ⌅.

In order to adapt the proof of Proposition 4.8 to pipe flows oriented around
axes which are not parallel to the standard basis vectors e1, e2, or e3, it is helpful
to consider functions which are periodic not only with respect to T3, but also
with respect to a torus for which one face is perpendicular to the axis of the
pipe (i.e., one edge of the torus is parallel to the axis).

Definition 4.2 (T3
⇠
-periodicity). Let {⇠, ⇠(2), ⇠(3)} ⇢ S2 \Q3 be an orthonor-

mal basis for R3, and let f : R3 ! Rn. We say that f is T3
⇠
-periodic if for all

(k1, k2, k3) 2 Z3 and (x1, x2, x3) 2 R3

f

⇣
(x1, x2, x3) + 2⇡

⇣
k1⇠ + k2⇠

(2) + k3⇠
(3)
⌘⌘

= f(x1, x2, x3), (4.2)

and we write f : T3
⇠
! Rn. If {⇠, ⇠(2), ⇠(3)} = {e1, e2, e3}, i.e., the standard

basis for R3, we drop the subscript ⇠ and write T3. For sets S ⇢ R3, we say
that S is T3

⇠
-periodic if the indicator function of S is T3

⇠
-periodic. Additionally,

if L is a positive number, we say that f is
⇣T3

⇠

L

⌘
-periodic if

f

✓
(x1, x2, x3) +

2⇡

L

⇣
k1⇠ + k2⇠

(2) + k3⇠
(3)
⌘◆

= f(x1, x2, x3)
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e3

e2

e1

e3

e2

e1

›(3)
›

›(2)

›(3)

›

›(2)

2

Figure 4.1: The torus on the left, T3
, has axes parallel to the usual coordinate axes,

while the torus on the right, denoted by T3
⇠, has been rotated and has axes parallel to

a new set of vectors ⇠, ⇠(2), and ⇠(3).

for all (k1, k2, k3) 2 Z3 and (x1, x2, x3) 2 R3. Note that if L is a positive integer,
T3
⇠

L
-periodicity implies T3

⇠
-periodicity. See Figure 4.1.

We can now construct shifted intermittent pipe flows concentrated around
axes with a prescribed vector direction ⇠ while imposing that each flow be sup-
ported in a single member of a large collection of disjoint sets. For the sake of
clarity, we split the construction into two steps. First, in Proposition 4.3 we
construct the shifts and then periodize and rotate the scalar-valued flow profiles
and potentials associated to the pipe flows W⇠,�,r. The support and placement
properties are ensured at the level of the flow profile and potential. Next, we
use the flow profiles to construct the pipe flows themselves in Proposition 4.4.

Proposition 4.3 (Rotating, shifting, and periodizing). Fix ⇠ 2 ⌅, where
⌅ is as in Proposition 4.1. Let r

�1
,� 2 N be given such that �r 2 N. Let

{ : R2 ! R be a smooth function with support contained inside a ball of radius
1
4 . Then for k 2 {0, ..., r�1 � 1}2, there exist functions {k

�,r,⇠
: R3 ! R defined

in terms of {, satisfying the following additional properties:

1. We have that {k

�,r,⇠
is simultaneously

⇣
T3

�r

⌘
-periodic and

⇣ T3
⇠

�rn⇤

⌘
-periodic.

2. Let F⇠ be one of the two faces of the cube
T3
⇠

�rn⇤
which is perpendicular to

⇠. Let G�,r ⇢ F⇠ \ 2⇡Q3 be the grid consisting of r�2-many points spaced
evenly at distance 2⇡(�n⇤)�1 on F⇠ and containing the origin. Then each
grid point gk for k 2 {0, ..., r�1 � 1}2 satisfies

�
supp{k

�,r,⇠
\ F⇠

�
⇢
n
x : |x� gk|  2⇡ (4�n⇤)

�1
o
. (4.3)

3. The support of {k

�,r,⇠
consists of a pipe (cylinder) centered around a

⇣
T3

�r

⌘
-
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periodic and
⇣ T3

⇠

�rn⇤

⌘
-periodic line parallel to ⇠, which passes through the

point gk. The radius of the cylinder’s cross-section is as given in (4.3).
4. For k 6= k

0, supp{k

�,r,⇠
\ supp{k

0

�,r,⇠
= ;. See Figure 4.2.

Figure 4.2: We have pictured above a grid on the front face of T3
, in which there

are 4
2
= (�r)2 many periodic cells, each with 4

2
= r�2

many subcells of diameter

16
�1

= ��1
. The periodized axes of the pipes are the line segments extending from

the front face of the torus.

Proof of Proposition 4.3. For r
�1 2 N, which quantifies the rescaling, and for

k = (k1, k2) 2 {0, ..., r�1 � 1}2, which quantifies the shifts, define {k

r
to be the

rescaled and shifted function

{k

r
(x1, x2) :=

1

2⇡r
{
⇣
x1

2⇡r
� k1,

x2

2⇡r
� k2

⌘
. (4.4)

Then (x1, x2) 2 supp{k

r
if and only if

���
x1

2⇡r
� k1

���
2
+
���
x2

2⇡r
� k2

���
2
 1

16
. (4.5)

This implies that

k1 �
1

4
 x1

2⇡r
 k1 +

1

4
, k2 �

1

4
 x2

2⇡r
 k2 +

1

4
. (4.6)

Since these inequalities cannot be satisfied by a single pair (x, y) for both k =
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(k1, k2) and k
0 = (k01, k

0
2) simultaneously when k 6= k

0, it follows that

supp{k

r
\ supp{k

0

r
= ; (4.7)

for all k 6= k
0. Also, notice that plugging k1 = 0 and k1 = r

�1 � 1 into (4.6)
shows that the set of x1 for which there exists (k1, k2) such that {k

r
(x) 6= 0 is

contained in ⇢
�r⇡

2
 x1  2⇡ � 3r⇡

2

�
,

which is a set with diameter strictly less than 2⇡. Therefore, periodizing in
x1 will not cause overlap in the supports of the periodized objects. Arguing
similarly for x2 and enumerating the pairs (k1, k2) with k 2 {0, ..., r�1 � 1}2,
we overload notation and denote by {k

r
the T2-periodized version of {k

r
. Thus

we have produced r
�2-many functions which are T2-periodic and which have

disjoint supports.
Now define Gr ⇢ T2 to be the grid containing r�2-many points evenly spaced

at distance 2⇡r and containing the origin. Then

Gr =
�
g
0
k
:= 2⇡rk : k 2 {0, ..., r�1 � 1}2

 
⇢ 2⇡Q2

.

Thus the support of each function {k

r
contains g

0
k
as its center, but no other

grid points.
Let ⇠ 2 ⌅ be fixed, with the associated orthonormal basis {⇠, ⇠(2), ⇠(3)}. For

x = (x1, x2, x3) 2 R3 and �r 2 N, define

{k

�,r,⇠
(x) := {k

r

⇣
n⇤�rx · ⇠(2), n⇤�rx · ⇠(3)

⌘
. (4.8)

Then for (k1, k2, k3) 2 Z3,

{k

�,r,⇠

✓
x+

2⇡

�r
(k1, k2, k3)

◆

= {k

r

✓
n⇤�r

⇣
x+

2⇡

�r
(k1, k2, k3)

⌘
· ⇠(2), n⇤�r

⇣
x+

2⇡

�r
(k1, k2, k3)

⌘
· ⇠(3)

◆

= {k

r

⇣
n⇤�rx · ⇠(2), n⇤�rx · ⇠(3)

⌘

= {k

�,r,⇠
(x)

since n⇤⇠
(2)

, n⇤⇠
(3) 2 Z3 and {k

r
is T2-periodic, and thus {k

�,r,⇠
is T3

�r
-periodic.

Similarly,

{k

�,r,⇠

✓
x+

2⇡

�rn⇤
(k1⇠ + k2⇠

(2) + k3⇠
(3))

◆

= {k

r

 
n⇤�r

⇣
x+

2⇡

�rn⇤
(k1⇠ + k2⇠

(2) + k3⇠
(3))
⌘
· ⇠(2),
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n⇤�r
⇣
x+

2⇡

�rn⇤
(k1⇠ + k2⇠

(2) + k3⇠
(3))
⌘
· ⇠(3)

!

= {k

r

⇣
n⇤�rx · ⇠(2), n⇤�rx · ⇠(3)

⌘

= {k

�,r,⇠
(x)

since

2⇡(k1⇠ + k2⇠
(2) + k3⇠

(3)) · ⇠(2) = 2⇡k2, 2⇡(k1⇠ + k2⇠
(2) + k3⇠

(3)) · ⇠(3) = 2⇡k3,

and {k

r
is T2-periodic. Thus {k

�,r,⇠
is

T3
⇠

�rn⇤
-periodic, and as a consequence

T3
⇠

�r
-

periodic as well. Therefore, we have proved point 1.
To prove point 2, define

G�,r=
n
gk := 2⇡

⇣
k1 (�n⇤)

�1
⇠
(2) + k2 (�n⇤)

�1
⇠
(3)
⌘
: k1, k2 2 {0, ..., 1/r � 1}

o
.

(4.9)
We claim that {k

�,r,⇠
|F⇠ is supported in a 2⇡(4�n⇤)�1-neighborhood of gk. To

prove the claim, let x 2 F⇠ be such that {k

�,r,⇠
(x) 6= 0. Then since

{k

�,r,⇠
(x) = {k

r

⇣
n⇤�rx · ⇠(2), n⇤�rx · ⇠(3)

⌘
,

we can use (4.5) to assert that x 2 supp{k

�,r,⇠
if and only if x = (x1, x2, x3)

satisfies

����
n⇤�rx · ⇠(2)

2⇡r
� k1

����
2

+

����
n⇤�rx · ⇠(3)

2⇡r
� k2

����
2

 1

16

()
����(x1, x2, x3)�

✓
2⇡

n⇤�
k1⇠

(2) +
2⇡

n⇤�
k2⇠

(3)

◆����
2


✓

2⇡

4n⇤�

◆2

,

which proves the claim.
Items 3 and 4 follow immediately after noting that {k

�,r,⇠
is constant on

every plane parallel to F⇠, and that the grid points gk 2 G�,r around which
the supports of {k

�,r,⇠
are centered are spaced at a distance which is twice the

diameters of the supports.

Proposition 4.4 (Construction and properties of shifted intermittent
pipe flows). Fix a vector ⇠ belonging to the set of rational vectors ⌅ ⇢ Q3

from Proposition 4.3, r�1
,� 2 N with �r 2 N, and large integers 2Nfin and d.

There exist vector fields Wk

⇠,�,r
: T3 ! R3 for k 2 {0, ..., r�1 � 1}2 and implicit

constants depending on Nfin and d but not on � or r such that:

1. There exists % : R2 ! R given by the iterated Laplacian �d
# =: % of a

potential # : R2 ! R with compact support in a ball of radius 1
4 such that

the following holds. Let %k
⇠,�,r

and #k
⇠,�,r

be defined as in Proposition 4.3.
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Then there exist Uk

⇠,�,r
: T3 ! R3 such that

curlUk

⇠,�,r
= ⇠�

�2d�d
�
#
k

⇠,�,r

�
= ⇠%

k

⇠,�,r
=: Wk

⇠,�,r
. (4.10)

2. Each of the sets of functions {Uk

⇠,�,r
}k, {%k⇠,�,r}k, {#k⇠,�,r}k, and {Wk

⇠,�,r
}k

satisfy items 1–4. In particular, when k 6= k
0, we have that the intersec-

tion of the supports of W⇠,�,r

k
and Wk

0

⇠,�,r
is empty, and similarly for the

other sets of functions.
3. Wk

⇠,�,r
is a stationary, pressureless solution to the Euler equations, i.e.,

divWk

⇠,�,r
= 0, div

�
Wk

⇠,�,r
⌦Wk

⇠,�,r

�
= 0.

4.
1

|T3|

ˆ
T3

Wk

⇠,�,r
⌦Wk

⇠,�,r
= ⇠ ⌦ ⇠

5. For all n  2Nfin,

��rn
#
k

⇠,�,r

��
Lp(T3)

. �
n
r
( 2

p�1)
,

��rn
%
k

⇠,�,r

��
Lp(T3)

. �
n
r
( 2

p�1) (4.11)

and

��rnUk

⇠,�,r

��
Lp(T3)

. �
n�1

r
( 2

p�1)
,

��rnWk

⇠,�,r

��
Lp(T3)

. �
n
r
( 2

p�1)
.

(4.12)
6. Let � : T3 ⇥ [0, T ] ! T3 be the periodic solution to the transport equation

@t�+ v ·r� = 0, (4.13a)

�t=t0 = x , (4.13b)

with a smooth, divergence-free, periodic velocity field v. Then

r��1 ·
�
Wk

⇠,�,r
� �
�
= curl

�
r�T ·

�
Uk

⇠,�,r
� �
��

. (4.14)

7. For P[�1,�2] a Littlewood-Paley projector, � as in (4.13), and A = (r�)�1,


r ·
✓
AP[�1,�2] (W⇠,�,r ⌦W⇠,�,r) (�)A

T

◆�

i

= A
j

k
P[�1,�2]

�
Wk

⇠,�,r
Wl

⇠,�,r

�
(�)@jA

i

l

= A
j

k
⇠
k
⇠
l
@jA

i

l
P[�1,�2]

⇣�
%
k

⇠,�,r

�2⌘
(4.15)

for i = 1, 2, 3.

Remark 4.5. The identity (4.15) is one of the main advantages of pipe flows over
Beltrami flows. The utility of this identity is that when checking whether a pipe
flow W⇠,�,r which has been deformed by � is still an approximately stationary
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solution of the pressureless Euler equations, one does not need to estimate any
derivatives of W⇠,�,r—only derivatives on the flow map �, which will cost much
less than �.

Remark 4.6. The formulation of (4.15) is useful for our inversion of the diver-
gence operator, which is presented in Proposition A.17 and the subsequent re-
mark. We refer to the statement of that proposition and the subsequent remark
for further properties related to (4.15).

Proof of Proposition 4.4. With the definition Wk

⇠,�,r
:= ⇠%

k

⇠,�,r
, the equality

�
�2d�d(#k

⇠,�,r
) = %

k

⇠,�,r
follows from the proof of Proposition 4.3, specifically

equations (4.4), (4.4), and (4.8). The equality curlUk

⇠,�,r
= W⇠,�,r follows as

well using the standard vector calculus identity curl � curl = r� div ��. Sec-
ondly, properties (1), (2), and (4) from Proposition 4.3 for #k

⇠,�,r
follow from

Proposition 4.3 applied to { = #. The same properties for %k
⇠,�,r

, Uk

⇠,�,r
, and

Wk

⇠,�,r
follow from di↵erentiating. Next, it is clear that Wk

⇠,�,r
solves the pres-

sureless Euler equations since ⇠ ·r%k
⇠,�,r

= 0. The normalization in (4) follows
from imposing that

1

(2⇡)2

ˆ
R2

(�d
#(x1, x2))

2
dx1 dx2 = 1,

recalling that orthogonal transformations, shifts, and scaling do not alter the
L
p norms of T3-periodic functions, and using (4.4). The estimates in (5) follow

similarly, using (4.4). The proof of (4.14) in (6) can be found in the paper of
Daneri and Székelyhidi Jr. [27].

The proof of (4.15) from (7) is simple and similar in spirit to (6) but perhaps
not standard, and so we will check it explicitly here. We first set P to be the
T3-periodic convolution kernel associated with the projector P[�1,�2] and write

r·
✓
(r�)�1P[�1,�2] (W⇠,�,r ⌦W⇠,�,r) (�)(r�)�T

◆
(x)

= rx ·
✓
(r�)�1(x)

✓ˆ
T3

P(y)(W⇠,�,r ⌦W⇠,�,r)(�(x� y)) dy

◆
(r�)�T (x)

◆

= rx ·
✓ˆ

T3

(r�)�1(x)P(y)(W⇠,�,r ⌦W⇠,�,r)(�(x� y))(r�)�T (x) dy

◆

= rx ·
 ˆ

T3

P(y)
�
(r�)�1(x)W⇠,�,r(�(x� y))

�

⌦
�
(r�)�1(x)W⇠,�,r(�(x� y))

�
dy

!
. (4.16)
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Then applying (4.14), we obtain that (4.16) is equal to

ˆ
T3

P(y)
�
(r�)�1(x)W⇠,�,r(�(x� y))

�
·rx

�
(r�)�1(x)W⇠,�,r(�(x� y))

�
dy.

Writing out the i
th component of this vector and using the notation A =

(r�)�1, we obtain

 ˆ
T3

P(y) (A(x)W⇠,�,r(�(x� y))) ·rx (A(x)W⇠,�,r(�(x� y))) dy

�

i

=

ˆ
T3

P(y)Aj

k
(x)Wk

⇠,�,r
(�(x� y))Ai

l
(x)@nWl

⇠,�,r
(�(x� y))@j�n(x) dy

+

ˆ
T3

P(y)Aj

k
(x)Wk

⇠,�,r
(�(x� y))@jA

i

l
(x)Wl

⇠,�,r
(�(x� y)) dy . (4.17)

Since the second term in (4.17) can be rewritten as

ˆ
T3

P(y)Aj

k
(x)Wk

⇠,�,r
(�(x� y))@jA

i

l
(x)Wl

⇠,�,r
(�(x� y)) dy

= A
j

k
(x)P[�1,�2]

�
Wk

⇠,�,r
Wl

⇠,�,r

�
(�(x))@jA

i

l
(x),

to conclude the proof, we must show that the first term in (4.17) is equal to 0.
Using that

A
j

k
@j�

n = �nk

and
Wk

⇠,�,r
@kWl

⇠,�,r
= 0

for all l, we can simplify the first term as
ˆ
T3

P(y)Aj

k
(x)Wk

⇠,�,r
(�(x� y))Ai

l
(x)@nWl

⇠,�,r
(�(x� y))@j�n(x) dy

=

ˆ
T3

P(y)�nkWk

⇠,�,r
(�(x� y))Ai

l
(x)@nWl

⇠,�,r
(�(x� y)) dy

=

ˆ
T3

P(y)Wk

⇠,�,r
(�(x� y))Ai

l
(x)@kWl

⇠,�,r
(�(x� y)) dy

= 0,

proving (4.15).

4.2 DEFORMED PIPE FLOWS AND CURVED AXES

Lemma 4.7 (Control on axes, support, and spacing). Consider a convex
neighborhood of space ⌦ ⇢ T3. Let v be an incompressible velocity field, and
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define the flow X(x, t)

@tX(x, t) = v (X(x, t), t) (4.18a)

Xt=t0 = x , (4.18b)

and inverse �(x, t) = X
�1(x, t)

@t�+ v ·r� = 0 (4.19a)

�t=t0 = x . (4.19b)

Define ⌦(t) := {x 2 T3 : �(x, t) 2 ⌦} = X(⌦, t). For an arbitrary C > 0, let
⌧ > 0 be a parameter such that

⌧ 
⇣
�
1/2
q
�q�

C+2
q+1

⌘�1
. (4.20)

Furthermore, suppose that the vector field v satisfies the Lipschitz bound1

sup
t2[t0�⌧,t0+⌧ ]

krv(·, t)k
L1(⌦(t)) . �

1/2
q
�q�

C

q+1 . (4.21)

Let Wk

�q+1,r,⇠
: T3 ! R3 be a set of straight pipe flows constructed as in Propo-

sition 4.3 and Proposition 4.4, which are T3

�q+1r
-periodic for �q

�q+1
 r  1 and

concentrated around axes {Ai}i2I oriented in the vector direction ⇠ for ⇠ 2 ⌅.
Then W := Wk

�q+1,r,⇠
(�(x, t)) : ⌦(t) ⇥ [t0 � ⌧, t0 + ⌧ ] satisfies the following

conditions:

1. We have the inequality

diam(⌦(t)) 
�
1 + ��1

q+1

�
diam(⌦). (4.22)

2. If x and y with x 6= y belong to a particular axis Ai ⇢ ⌦, then

X(x, t)�X(y, t)

|X(x, t)�X(y, t)| =
x� y

|x� y| + �i(x, y, t), (4.23)

where |�i(x, y, t)| < ��1
q+1.

3. Let x and y belong to a particular axis Ai ⇢ ⌦. Denote the length of the
axis Ai(t) := X(Ai \ ⌦, t) in between X(x, t) and X(y, t) by L(x, y, t).
Then

L(x, y, t) 
�
1 + ��1

q+1

�
|x� y| . (4.24)

1The implicit constant in this inequality is assumed to be independent of q; cf. (6.60).
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4. The support of W is contained in a
�
1 + ��1

q+1

� 2⇡

4n⇤�q+1
-neighborhood of

[

i

Ai(t). (4.25)

5. W is “approximately periodic” in the sense that for distinct axes Ai, Aj

with i 6= j and dist (Ai \ ⌦, Aj \ ⌦) = d,

�
1� ��1

q+1

�
d  dist (Ai(t), Aj(t)) 

�
1 + ��1

q+1

�
d. (4.26)

Proof of Lemma 4.7. First, we have that for x, y 2 ⌦,

|X(x, t)�X(y, t)| =
����x� y +

ˆ
t

t0

@sX(x, s)� @sX(y, s) ds

����

 |x� y|+
ˆ

t

t0

|v (X(x, s), s)� v (X(y, s), s)| ds.

Furthermore,

��v` (X(x, s), s)� v
` (X(y, s), s)

��

=

����
ˆ 1

0
@jv

` (X(x+ t(y � x), s), s) @kX
j(x+ t(y � x), s)(y � x)k dt

����

 krvk
L1(⌦(s)) krXk

L1(⌦(s)) |x� y|

 3

2
�

1
2
q �q�

C

q+1|x� y| .

Integrating this bound from t0 to t and using a factor of �q+1 to absorb the
constant, we deduce that

�
1� ��1

q+1

�
|x� y|  |X(x, t)�X(y, t)| 

�
1 + ��1

q+1

�
|x� y|. (4.27)

The inequality in (4.22) follows immediately.
To prove (4.23), we will show that for x, y 2 ⌦ \Ai for a chosen axis Ai,

����
x� y

|x� y| �
X(x, t)�X(y, t)

|X(x, t)�X(y, t)|

���� < �
�1
q+1.

At time t0, the above quantity vanishes. Di↵erentiating inside the absolute value
in time, we have that

d

dt


X(x, t)�X(y, t)

|X(x, t)�X(y, t)|

�

=
@tX(x, t)� @tX(y, t)

|X(x, t)�X(y, t)|
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� X(x, t)�X(y, t)

|X(x, t)�X(y, t)|2
(@tX(x, t)� @tX(y, t)) · (X(x, t)�X(y, t))

|X(x, t)�X(y, t)|

=
v(X(x, t), t)� v(X(y, t), t)

|X(x, t)�X(y, t)|

� X(x, t)�X(y, t)

|X(x, t)�X(y, t)|
(v(X(x, t), t)� v(X(y, t), t)) · (X(x, t)�X(y, t))

|X(x, t)�X(y, t)|2 .

Utilizing the mean value theorem and the Lipschitz bound on v and (4.27), we
deduce

���
v(X(x, t), t)� v(X(y, t), t)

|X(x, t)�X(y, t)|

� X(x, t)�X(y, t)

|X(x, t)�X(y, t)|
(v(X(x, t), t)� v(X(y, t), t)) · (X(x, t)�X(y, t))

|X(x, t)�X(y, t)|2
���

 2 krvk
L1

 2�
1
2
q �q�

C

q+1.

Integrating in time from t0 to t for |t� t0| 
⇣
�

1
2
q �q�

C+2
q+1

⌘�1
and using the extra

factors of �q+1 to again kill the constants, we obtain (4.23).
To prove (4.24), we parametrize the curve using X to obtain

L(x, y, t) =

ˆ 1

0
|rX(x+ r(y � x), t) · (x� y)| dr 

�
1 + ��1

q+1

�
|x� y|.

The claims in (4.25) and (4.26) follow immediately from (4.27) and (4.3).

4.3 PLACEMENTS VIA RELATIVE INTERMITTENCY

We now state and prove the main proposition regarding the placement of a
new set of intermittent pipe flows which do not intersect with previously placed
and possibly deformed pipes within a subset ⌦ of the full torus T3. We do
not claim that intersections do not occur outside of ⌦. In applications, ⌦ will
be the support of a cuto↵ function.2 We state the proposition for new pipes
periodized to spatial scale (�q+1r2)

�1 with axes parallel to a direction vector
⇠ 2 ⌅. By “relative intermittency,” we mean the inequality (4.31) satisfied by r1

and r2. The proof proceeds, first in the case ⇠ = e3, by an elementary but rather
tedious counting argument for the number of cells in a two-dimensional grid
which may intersect a set concentrated around a smooth curve. In applications,

2Technically, ⌦ will be a set slightly larger than the support of a cuto↵ function. See
(8.117), (8.120), and (8.131).
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this set corresponds to a piece of a periodic pipe flow concentrated around its
deformed axis and then projected onto a plane. Then using (1) and (2) from
Proposition 4.3, we describe the minor adjustments needed to obtain the same
result for new pipes with axes parallel to arbitrary direction vectors ⇠ 2 ⌅.

Proposition 4.8 (Placing straight pipes which avoid bent pipes). Con-
sider a neighborhood of space ⌦ ⇢ T3 such that

diam(⌦)  16(�q+1r1)
�1

, (4.28)

where �q/�q+1  r1  1. Assume that there exist smooth T3-periodic curves
{An}N⌦

n=1 ⇢ ⌦3 and T3-periodic sets {Sn}N⌦
n=1 ⇢ ⌦ satisfying the following prop-

erties:

1. There exists a positive constant CA and a parameter r2, with r1 < r2 < 1,
such that

N⌦  CAr22r�2
1 . (4.29)

2. For any x, x
0 2 An, let the length of the curve An which lies between x

and x
0, be denoted by Ln,x,x0 . Then, for every 1  n  N⌦ we have

Ln,x,x0  2 |x� x
0| . (4.30)

3. For every 1  n  N⌦, Sn is contained in a 2⇡(1 + ��1
q+1) (4n⇤�q+1)

�1-
neighborhood of An.

Then, there exists a geometric constant C⇤ � 1 such that if

C⇤CAr42  r
3
1, (4.31)

then, for any ⇠ 2 ⌅ (recall the set ⌅ from Proposition 4.1), we can find a set of

pipe flows Wk0
�q+1,r2,⇠

: T3 ! R3 which are T3

�q+1r2
-periodic, concentrated to width

2⇡
4�q+1n⇤

around axes with vector direction ⇠, that satisfy the properties listed in

Proposition 4.4, and for all n 2 {1, ..., N⌦},

suppWk0
�q+1,r2,⇠

\ Sn = ;. (4.32)

Remark 4.9. As mentioned previously, the sets Sn will be supports of previously
placed pipes oriented around deformed axes An. The properties of Sn and An

will follow from Lemma 4.7.

Proof of Proposition 4.8. For simplicity, we first give the proof for ⇠ = e3, and
explain how to treat the case of general ⇠ 2 ⌅ at the end of the proof.

3That is, the range of each curve is contained in ⌦; otherwise replace the curves with
An \ ⌦.
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The proof will proceed by measuring the size of the shadows of the {Sn}N⌦
n=1

when projected onto the face of the cube T3 which is perpendicular to e3, so it
will be helpful to set some notation related to this projection. Let Fe3 be the
face of the torus T3 which is perpendicular to e3. For the sake of concreteness,
we will occasionally identify Fe3 with the set of points x = (x1, x2, x3) 2 T3

such that x3 = 0, or use that Fe3 is isomorphic to T2. Let Ap

n
be the projection

of An onto Fe3 defined by

A
p

n
:= {(x1, x2) 2 Fe3 : (x1, x2, x3) 2 An} , (4.33)

and let S
p

n
be defined similarly as the projection of Sn onto Fe3 . For x =

(x1, x2, x3) 2 T3 and x
0 = (x0

1, x
0
2, x

0
3) 2 T3 we let P (x) = (x1, x2) 2 Fe3

and P (x0) = (x0
1, x

0
2) 2 Fe3 be the projection of these points onto Fe3 . Since

projections do not increase distances, we have that

|P (x)� P (x0)|  |x� x
0| . (4.34)

Since both An and A
p

n
are smooth curves4 and can be approximated by piecewise

linear polygonal paths, (4.34), (4.28), and (4.30) imply that if L
p

n,x,x0 is the
length of the projected curve A

p

n
in between the points P (x) and P (x0), then

L
p

n,x,x0  2|x� x
0|  32 (�q+1r1)

�1
. (4.35)

In particular, taking x and x
0 to be the endpoints of the curve An, we obtain a

bound for the total length of Ap

n
. Additionally, (4.34) and the third assumption

of the lemma imply that S
p

n
is contained inside a 2⇡(1 + ��1

q+1)(4n⇤�q+1)�1-

neighborhood of A
p

n
. Finally, since Wk

�q+1,r2,e3
is independent of x3 for all

k 2 {0, ..., r�1
2 � 1}2, it is clear that the conclusion (4.32) will be achieved if

we can show that there exists a shift k0 such that

S
p

n
\
⇣
suppWk0

�q+1,r2,e3
\ {x3 = 0}

⌘
= ; , (4.36)

for all 1  n  N⌦. To prove (4.36), we will apply a covering argument to each
S
p

n
.
Let S�q+1 be the grid of (�q+1n⇤)2-many open squares contained in Fe3 ,

evenly centered around a grid of (�q+1n⇤)2-many points G�q+1 which contains
the origin. By Proposition 4.3, for each choice of k = (k1, k2) 2 {0, . . . , r�1

2 �
1}2, the support of the shifted pipe Wk

�q+1,r2,e3
intersects Fe3 in a 2⇡

4�q+1n⇤
-

neighborhood of a finite subcollection of grid points from G�q+1 , which we call

Gk

�q+1
, and which by construction is T3

�q+1r2n⇤
-periodic. Furthermore, two sub-

collections for k 6= k
0 contain no grid points in common. Let Sk

�q+1
be the set of

4Technically, the proof still applies if A
p

n is self-intersecting, but the conclusions of
Lemma 4.7 eliminate this possibility, so we shall ignore this issue and use the word “smooth.”
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open squares centered around grid points in Gk

�q+1
, so that Sk

�q+1
and Sk0

�q+1
are

disjoint if k 6= k
0. To prove (4.36), we will identify a shift k0 such that the set of

squares Sk0
�q+1

has empty intersection with S
p

n
for all n. Then by Proposition 4.3,

we have that the pipe flow Wk0
�q+1,r2,e3

intersects Fe3 inside of Sk0
�q+1

, and so we

will have verified (4.36).

The diameter of the projection of � onto Fe3 is Æ 16(⁄q+1r1)≠1

2fi

⁄q+1nú

2fi

⁄q+1r2nú

Sample point in G⁄q+1

Sample grid cell in S⁄q+1

xi sxi
Sxi,9Sp

n

Ap
n

6
Figure 4.3: The boundary of the projection of ⌦ onto the face Fe3 is represented

by the large dark oval. The small grid cells of sidelength 2⇡(�q+1n⇤)
�1

represent the

elements of S�q+1 , while the center points are the elements of G�q+1 . A projected pipe

Sp

n with axis Ap

n is represented in gray shading. A point xi 2 Ap

n, its associated grid

cell sxi , and its 3 ⇥ 3 cluster Sxi,9 are represented in the center of the image. The

union of the 3⇥ 3 clusters, [iSxi,9, generously covers the gray shaded projected pipe

Sp

n.

In order to identify a suitable shift k0 such that Sk0
�q+1

has empty intersection
with S

p

n
, we first present a generous cover for Sp

n
; see Figure 4.3. Let x1 2 A

p

n
be

arbitrary. Set sx1 2 S�q+1 to be the grid square of sidelength 2⇡
�q+1n⇤

containing

x1,5 and let Sx1,9 be the 3 ⇥ 3 cluster of squares surrounding sx1 . Then either
x1 is within distance 2⇡

�q+1n⇤
of an endpoint of Ap

n
, or the length of Ap

n
\Sx1,9 is

at least 2⇡
n⇤�q+1

. If possible, choose x2 2 A
p

n
so that Sx2,9 is disjoint from Sx1,9,

and iteratively continue choosing xi 2 A
p

n
with Sxi,9 disjoint from Sxj ,9 with

5If x1 is on the boundary of more than one square, any choice of sx1 will work.
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1  j  i � 1. Due to aforementioned observation about the lower bound on
the length of Ap

n
in each Sxi,9, after a finite number of steps, which we denote

by in, one cannot choose xin+1 2 A
p

n
so that Sxin+1 ,9

is disjoint from previous
clusters; see Figure 4.3. By the length constraint on A

p

n
and the observations

on the length of Ap

n
\ Sxi,9 for each i, we obtain the bound

32(�q+1r1)
�1 � |Ap

n
| � (in � 2)2⇡ (n⇤�q+1)

�1
,

which implies that in may be bounded from above as

in  32r�1
1 n⇤
2⇡

+ 2  6n⇤r
�1
1 + 2  8n⇤r

�1
1 (4.37)

since r
�1
1 � 1. By the definition of in, any point x 2 A

p

n
which does not

belong to any of the clusters {Sxi,9}
in
i=1 must be such that Sx,9 has non-empty

intersection with Sxj ,9 for some j  in. Thus, if we denote by Sxj ,81 the cluster
of 9 ⇥ 9 grid squares centered at xj , it follows that x belongs to Sxj ,81, and
thus A

p

n
⇢ [iinSxi,81. Furthermore, since it was observed earlier that S

p

n
is

contained inside a 2⇡(1 + ��1
q+1) (4n⇤�q+1)

�1-neighborhood of Ap

n
, we have in

addition that

S
p

n
⇢

in[

i=1

Sxi,81.

Thus, we have covered S
p

n
using no more than

81in  81 · 8n⇤r
�1
1 = 648n⇤r

�1
1

grid squares. Set C⇤ = 1300n⇤. Repeating this argument for every 1  n  N⌦

and taking the union over n, we have thus covered [nN⌦S
p

n
using no more than

1

2
C⇤CA · r22r�2

1 · r�1
1 < r

�2
2 (4.38)

grid squares of sidelength 2⇡
�q+1n⇤

; the strict inequality in (4.38) follows from the

assumption (4.31).
In order to conclude the proof, we appeal to a pigeonhole argument, made

possible by the bound (4.38). Indeed, the left side of (4.38) represents as an
upper bound on the number of grid cells in S�q+1 which are deemed “occupied”
by [nN⌦S

p

n
, while the right side of (4.38) represents the number of possible

choices for the shifts k0 2 {0, ..., r�1
2 � 1}2 belonging to the 2⇡

�q+1r2n⇤
-periodic

subcollection Sk0
�q+1

. See Figure 4.4 for details. We conclude by (4.38) and the

pigeonhole principle that there exists a “free” shift k0 2 {0, ..., r�1
2 � 1}2 such

that none of the squares in Sk0
�q+1

intersect the covering [iinSxi,81 of [nN⌦S
p

n
.

Choosing the pipe flow Wk0
�q+1,r2,e3

, we have proven (4.36), concluding the proof
of the lemma when ⇠ = e3.



64

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

CHAPTER 4

Sp
n Sxi,9 2fi

⁄q+1r2nú

2fi

⁄q+1nú

In this periodic cell, we check which grid cells are available.

7

Figure 4.4: We revisit Figure 4.3. Each cluster Sxi,9 of nine cells covers a portion

of Sp

n; their union covers the entirety. We would like to determine which set Sk0
�q+1

of
2⇡

�q+1r2n⇤
-periodic grid cells is free (we index these cells by the shift parameter k0),

so that we can place a
2⇡

�q+1r2n⇤
-periodic pipe flow Wk0

�q+1,r2,e3
at the centers of the

cells. This pipe flow then will not intersect the cells taken up by the union of the

clusters [iSxi,9. Towards this purpose, consider one of the periodic cells of sidelength
2⇡

�q+1r2n⇤
, e.g., bottom row, second from left. This cell contains r�2

2 -many sub-cells

of sidelength
2⇡

�q+1n⇤
, which in the figure we index by an integer k 2 {1, . . . , 36}. In

order to determine which of these sub-cells are “free,” we verify for every k whether a

periodic copy of the k-cell lies in the union of the clusters [iSxi,9; if yes, we may not

place a pipe in any periodic copies of this sub-cell. For instance, the cell with label 9

appears three times within the union of the clusters; the cell with label 3 appears twice;

while the cell with label 36 appears just once. In the above figure we discover that

there are only three “free” sub-cells, corresponding to the indices 7, 12, and 20. Any

of these indices indicates a location where we may place a new pipe flow Wk0
�q+1,r2,e3

;

in the figure, we have chosen k0 to correspond to the label 7, and have represented by

a
2⇡

�q+1r2n⇤
-periodic array of circles the intersections of the pipes in Wk0

�q+1,r2,e3
with

Fe3 .

To prove the proposition when ⇠ 6= e3, first consider the portion6 of ⌦ ⇢ R3

6Recall that ⌦ is a T3-periodic set but can be considered as a subset of R3; cf. Definition 4.2.
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restricted to the cube [�⇡,⇡]3, denoted by ⌦|[�⇡,⇡]3 , and consider similarly
Sn|[�⇡,⇡]3 and An|[�⇡,⇡]3 . Let 3T3

⇠
be the 3 ⇥ 3 ⇥ 3 cluster of periodic cells

for T3
⇠
centered at the origin. Then [�⇡,⇡]3 is contained in this cluster, and in

particular [�⇡,⇡]3 has empty intersection with the boundary of 3T3
⇠
(understood

as the boundary of the 3T3
⇠
-periodic cell centered at the origin when simply

viewed as a subset of R3). Thus ⌦|[0,2⇡]3 , Sn|[�⇡,⇡]3 , and An|[�⇡,⇡]3 also have
empty intersection with the boundary of 3T3

⇠
and may be viewed as 3T3

⇠
-periodic

sets. Up to a dilation which replaces 3T3
⇠
with T3

⇠
, we have exactly satisfied

the assumptions of the proposition, but with T3-periodicity replaced by T3
⇠
-

periodicity. This dilation will shrink everything by a factor of 3, which we
may compensate for by choosing a pipe flow W3�q+1,r2,⇠, and then undoing the
dilation at the end. Any constants related to this dilation are q-independent
and may be absorbed into the geometric constant C⇤ at the end of the proof.
At this point we may then redo the proof of the proposition with minimal
adjustments. In particular, we replace the projection of Sn and An onto the
face Fe3 of the box T3 with the projection of the restricted and dilated versions
of Sn and An onto the face F⇠ of the box T3

⇠
. We similarly replace the grids

and squares on Fe3 with grids and squares on F⇠, analogously to (4.3). The
covering argument then proceeds exactly as before. The proof produces pipes
belonging to the intermittent pipe flow Wk0

3�q+1,r2,⇠
which are T3

3�q+1n⇤r2
-periodic

and disjoint from the dilated and restricted versions of the Sn’s. Undoing the
dilation, we find that Wk0

�q+1,r2,⇠
is T3

�q+1r2
-periodic and disjoint from each Sn.

Then all the conclusions of Proposition 4.8 have been achieved, finishing the
proof.
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Chapter Five

Mollification

Because the principal inductive assumptions for the velocity increments (3.13)
and the Reynolds stress (3.15) are assumed to hold only for a limited number
of space and material derivatives ( 7Nind,v and  3Nind,v respectively), and
because in our proof we need to appeal to derivative bounds of much higher
orders, it is customary to employ a mollification step prior to adding the convex
integration perturbation. This mollification step is discussed in Lemma 5.1.
Note that the mollification step is only employed once (for every inductive step
q 7! q+1), and is not repeated for the higher order stresses Rq,n,p. In particular,
Lemma 5.1 already shows that the inductive assumption (3.12) holds for q0 = q.

Lemma 5.1 (Mollifying the Euler-Reynolds system). Let (vq, R̊q) solve
the Euler-Reynolds system (3.1), and assume that  i,q0 , uq0 for q

0
< q, wq, and

R̊q satisfy (3.12)–(3.25b). Then, we mollify (vq, R̊q) at spatial scale e��1
q

and
temporal scale e⌧q�1 (cf. the notation in (9.64)), and accordingly define

v`q := Pq,x,tvq and R̊`q := Pq,x,tR̊q . (5.1)

The mollified pair (v`q , R̊`q ) satisfies

@tv`q + div (v`q ⌦ v`q ) +rp`q = div R̊`q + div R̊comm
q

, (5.2a)

div v`q = 0 . (5.2b)

The commutator stress R̊
comm
q

satisfies the estimate (consistent with (3.15) at
level q + 1)

���Dn
D

m

t,q
R̊

comm
q

���
L1

 ��1
q+1�

�CR
q+1 �q+2�

n

q+1M
�
m,Nind,t, ⌧

�1
q

,��1
q
e⌧�1
q

�
(5.3)

for all n,m  3Nind,v, and then we have that

��Dn
D

m

t,q�1(v`q � vq)
��
L1  �

�2
q
�
1/2
q

M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t, ⌧

�1
q�1�

i�1
q

, e⌧�1
q�1�

�1
q

�
(5.4)

for all n,m  3Nind,v. Furthermore,

uq = v`q � v`q�1
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satisfies the bound (3.12) with q
0 replaced by q, namely

�� i,q�1D
n
D

m

t,q�1uq

��
L2  �

1/2
q

M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t,�

i

q
⌧
�1
q�1, e⌧

�1
q�1

�
. (5.5)

for all n+m  2Nfin. In fact, when either n � 3Nind,v or m � 3Nind,v are such
that n+m  2Nfin, then the above estimate holds uniformly:

��Dn
D

m

t,q�1uq

��
L1  ��1

q
�
1/2
q

M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t, ⌧

�1
q�1, e⌧

�1
q�1

�
(5.6)

Finally, R̊`q satisfies bounds which extend (3.15) to

��� i,q�1D
n
D

m

t,q�1R̊`q

���
L1

 ��CR
q

�q+1M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t,�

i+2
q

⌧
�1
q�1, e⌧

�1
q�1

�
(5.7)

for all n+m  2Nfin. In fact, the above estimate holds uniformly,
���Dn

D
m

t,q�1R̊`q

���
L1

 ��1
q
��CR
q

�q+1M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t, ⌧

�1
q�1, e⌧

�1
q�1

�
, (5.8)

whenever either n � 3Nind,v or m � 3Nind,v are such that n+m  2Nfin.

Remark 5.2. The bounds (5.6) and (5.8) provide L
1 estimates for D

n
D

m

t,q�1

applied to uq and R̊`q , respectively, but only when either n or m is su�ciently
large. In the remaining cases, we note that (5.5), combined with the partition
of unity property (3.16), and the inductive assumption (3.19) (with M = 0 and
K = 4), implies the bound

��Dn
D

m

t,q�1uq

��
L1(supp i,q�1)

. �
1/2
q
e�3/2
q

M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t, ⌧

�1
q�1�

i+1
q

, e⌧�1
q�1

�
(5.9)

for all n,m  3Nind,v. Indeed, we may apply Lemma A.3 (estimate (A.18b))

with  i =  i,q�1, f = uq, Cf = �
1/2
q , ⇢ = �q�1�q�1  �q (cf. (9.38)), � = �q,

e� = e�q, µi = ⌧
�1
q
�i
q
, eµi = e⌧�1

q�1, Nx = 2Nind,v, Nt = Nind,t, and N� = 2Nfin,
to conclude that (5.9) holds for all n + m  2Nfin � 2, and in particular for
n,m  3Nind,v.

A similar argument, shows that estimate (5.7) and Lemma A.3 imply

���Dn
D

m

t,q�1R̊`q

���
L1(supp i,q�1)

. ��CR
q

�q+1
e�3
q
M
⇣
n, 2Nind,v,�q,

e�q
⌘

⇥M
�
m,Nind,t,�

i+3
q

⌧
�1
q�1, e⌧

�1
q�1

�
(5.10)
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for n+m  2Nfin � 4, and in particular for n,m  3Nind,v.

Proof of Lemma 5.1. The bound (5.3) requires a di↵erent proof than (5.5) and
(5.7), so that we start with the former.

Proof of (5.3). Recall that

R̊
comm
q

= Pq,x,tvq⌦̊Pq,x,tvq � Pq,x,t(vq⌦̊vq) . (5.11)

We note—cf. (9.64)—that Pq,x,t mollifies in space at length scale e�q, and in
time at timescale e⌧�1

q�1. Let us denote by Kq the space-time mollification kernel

for Pq,x,t, which thus equals the product of the bump functions �(x)e�q
�
(t)

e⌧�1
q�1

. For

brevity of notation (locally in this proof) it is convenient to denote space-time
points as (x, t), (y, s), (z, r) 2 T3 ⇥ R

(x, t) = ✓, (y, s) = , (z, r) = ⇣. (5.12)

Using this notation we may write out the commutator stress R̊
comm
q

explicitly,
and symmetrizing the resulting expression leads to the formula

R̊
comm
q

(✓) =
�1

2

ˆˆ
(T3⇥R)2

(vq(✓ � )� vq(✓ � ⇣))̊

⌦ (vq(✓ � )� vq(✓ � ⇣))Kq()Kq(⇣) d d⇣ . (5.13)

Expanding vq in a Taylor series in space and time around ✓ yields the formula

vq(✓ � ) = vq(✓) +
Nc�1X

|↵|+m=1

1

↵!m!
D
↵
@
m

t
vq(✓)(�)(↵,m) +RNc(✓,), (5.14)

where the remainder term with Nc derivatives is given by

RNc(✓,) =
X

|↵|+m=Nc

Nc

↵!m!
(�)(↵,m)

ˆ 1

0
(1� ⌘)Nc�1

D
↵
@
m

t
vq(✓ � ⌘) d⌘.

(5.15)

The value of Nc will be chosen later so that Nind,t ⌧ Nc = Nind,v � 2, more
precisely, such that conditions (5.24) and (9.50a) hold.

Using the fact that by (9.62) all moments of Kq vanish up to order Nc, we
rewrite (5.13) as

R̊
comm
q

(✓) =

ˆ
T3⇥R

Nc�1X

|↵|+m=1

(�)(↵,m)

↵!m!
D
↵
@
m

t
vq(✓) ⌦̊s RNc(✓,)Kq() d

�
ˆ
T3⇥R

RNc(✓,)⌦̊RNc(✓,)Kq() d
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�
ˆˆ

(T3⇥R)2
RNc(✓,)⌦̊symRNc(✓, ⇣)Kq()Kq(⇣) d d⇣

=: R̊comm
q,1 (✓) + R̊

comm
q,2 (✓) + R̊

comm
q,3 (✓) , (5.16)

where we have used the notation (9.66).
In order to prove (5.3), we first show that every term in D

n
D

m

t,q
R̊

comm
q

can be
decomposed into products of pure space and time di↵erential operators applied
to products of v`q and vq. More generally, for any su�ciently smooth function
F = F (x, t) and for any n,m � 0, the Leibniz rule implies that

D
n
D

m

t,q
F = D

n(@t + v`q ·rx)
m
F =

X

m
0m

n
0+m

0n+m

dn,m,n0,m0(x, t)Dn
0
@
m

0

t
F

(5.17a)

dn,m,n0,m0(x, t) =
m�m

0X

k=0

X

{�2Nk : |�|=n�n
0+k,

�2Nk : |�|=m�m
0�k}

c(m,n, k, �,�)
kY

`=1

⇣
D
�`@

�`
t
v`q (x, t)

⌘
,

(5.17b)

where c(m,n, k, �,�) denotes explicitly computable combinatorial coe�cients
which depend only on the factors inside the parentheses, which are in particular
independent of q (which is why we do not carefully track these coe�cients).
Identity (5.17a)–(5.17b) holds because D and @t commute; the proof is based
on induction on n and m. Clearly, if Dt,q in (5.17a) is replaced by Dt,q�1, then
the same formula holds, with the v`q factors in (5.17b) being replaced by v`q�1 .

In order to prove (5.3) we consider (5.17a)–(5.17b) for n,m  3Nind,v, with

F = R̊
comm
q

. In order to estimate the factors dn,m,n0,m0 in (5.17b), we need to
bound D

n
@
m

t
vq for n  6Nind,v + Nc and m  3Nind,v + Nc, with n + m 

6Nind,v +Nc. Recall that vq = wq + v`q�1 , and thus we will obtain the needed
estimate from bounds on D

n
@
m

t
wq and D

n
@
m

t
v`q�1 . We start with the latter.

We recall that v`q�1 = wq�1 + v`q�2 . Using (3.16) with q
0 = q � 2 and

the inductive assumption (3.13) with q replaced with q � 1, we obtain from

Sobolev interpolation that kwq�1kL1 . kwq�1k
1/4

L2

��D2
wq�1

��3/4

L2 . �
1/2

q�1�
3/2

q�1.
Additionally, combining (3.24) with q

0 = q � 2 and (3.18) with q
0 = q � 2, we

obtain
��v`q�2

��
L1 . �

2
q�2�

imax+1
q�1 �

1/2

q�1 . �
4
q�2�

1/2

q�1. Jointly, these two estimates
imply

kvq�1kL1 . kwq�1kL1 +
��v`q�2

��
L1 . �

1/2

q�1�
4
q�1 .

Now, using that v`q�1 = Pq�1,x,tvq�1, and that the mollifier operator Pq�1,x,t

localizes at scale e�q�1 in space and e⌧�1
q�2 in time, we deduce the global estimate

��Dn
@
m

t
v`q�1

��
L1 . (�4

q�1�
1/2

q�1)e�nq�1e⌧�m

q�2 (5.18)
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for n + m  2Nfin. Note that from the definitions (9.19) and (9.20), it is
immediate that e⌧�1

q�2 ⌧ ��1
q
e⌧�1
q�1.

As mentioned earlier, the bound for the space-time derivatives of v`q�1 needs
to be combined with similar estimates for wq in order to yield a control of vq.
For this purpose, we appeal to the Sobolev embedding H

2 ⇢ L
1 and the bound

(3.13) (in which we take a supremum over 0  i  imax and use (9.43)) to
deduce

��Dn
D

m

t,q�1wq

��
L1 .

��Dn
D

m

t,q�1wq

��
H2 . (�

1/2
q
�
2
q
)�n

q
(e⌧�1

q�1�
�1
q

)m (5.19)

for all n  7Nind,v � 2 and m  7Nind,v. Using the above estimate we may
apply Lemma A.10 with the decomposition @t = �v`q�1 ·r+Dt,q�1 = A+ B,
v = �v`q�1 and f = wq. The conditions (A.40) in Lemma A.10 holds in view
of the inductive estimate (3.24) at level q � 1, with the following choice of

parameters: p = 1, ⌦ = T3, Cv = �
4
q�1�

1/2

q�1, Nx = Nind,v � 2, �v = �q�1�q�1,
e�v = e�q�1, Nt = Nind,t, µv = �

2
q�1⌧

�1
q�1, eµv = ��1

q
e⌧�1
q�1, and N⇤ = 3Nfin/2.

On the other hand, using (5.19) we have that condition (A.41) holds with the

parameters: p = 1, ⌦ = T3, Cf = �
1/2
q �

2
q
, �f = e�f = �q, µf = eµf = ��1

q
e⌧�1
q�1,

and N⇤ = 7Nind,v � 2. We deduce from (A.44) and the inequalities e�q�1  �q

and �4
q�1�

1/2

q�1�q  ��1
q
e⌧�1
q�1 (cf. (9.39), (9.43), and (9.20)) that

kDn
@
m

t
wqkL1 . (�

1/2
q
�
2
q
)�n

q
(e⌧�1

q�1�
�1
q

)m (5.20)

holds for n+m  7Nind,v � 2.
By combining (5.18) and (5.20) with the definition (3.3) we thus deduce

kDn
@
m

t
vqkL1 . (�4

q�1�
1/2

q�1)�
n

q
(e⌧�1

q�1�
�1
q

)m (5.21)

for all n+m  7Nind,v�2, where we have used that �4
q�1�

1/2

q�1 � �
1/2
q �

2
q
and that

e⌧�1
q�2  ��1

q
e⌧�1
q�1. By the definition of v`q in (5.1) we thus also deduce that

��Dn
@
m

t
v`q

��
L1 . (�4

q�1�
1/2

q�1)�
n

q
(e⌧�1

q�1�
�1
q

)m (5.22)

for all n+m  7Nind,v � 2. Note that by the definition of the mollifier operator

Pq,x,t, any further space derivative on v`q costs a factor of e�q, while additional
temporal derivatives cost e⌧q�1, up to a 2Nfin total number of derivatives.

With (5.22) in hand, we may return to (5.17b) and deduce that for n,m 
3Nind,v, we have

kdn,m,n0,m0k
L1 .

m�m
0X

k=0

�
n�n

0+k

q
(e⌧�1

q�1�
�1
q

)m�m
0�k(�4

q�1�q�
1/2

q�1)
k

. �
n�n

0

q
(e⌧�1

q�1�
�1
q

)m�m
0
. (5.23)
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In the last inequality above we have used that �q�4q�1�q�
1/2

q�1  e⌧�1
q�1�

�1
q

, which
is a consequence of (9.39), (9.43), and (9.20).

Returning to (5.17a) with F = R̊
comm
q

, we use the expansion in (5.16),

the definition (5.15), and the bound (5.21) to estimate D
n
0
@
m

0

t
R̊

comm
q

when
n
0
,m

0  3Nind,v. Using (5.21) and the choice

Nc = Nind,v � 2 , (5.24)

which is required in order to ensure that n
0 + m

0 + Nc  7Nind,v � 2, we first
obtain the pointwise estimate
���Dn

00
@
m

00

t
RNc(✓,)

��� . (�4
q�1�

1/2

q�1)
X

|↵|+m1=Nc

���(↵,m1)
����n

00+|↵|
q

(e⌧�1
q�1�

�1
q

)m
00+m1 ,

(5.25)

where we recall the notation in (5.12). Using (5.25), the Leibniz rule, and the

fact that �q�q  e�q, we may estimate

���Dn
0
@
m

0

t
R̊

comm
q,2

���
L1

. (�4
q�1�

1/2

q�1)
2

X

|↵|+m1=Nc

X

|↵0|+m2=Nc

�
n
0+|↵|+|↵0|

q
(e⌧�1

q�1�
�1
q

)m
0+m1+m2

⇥
ˆ
T3⇥R

|(↵+↵
0
,m1+m2)||Kq()|d

. (�4
q�1�

1/2

q�1)
2

X

|↵|+m1=Nc

X

|↵0|+m2=Nc

�
n
0+|↵|+|↵0|

q
(e⌧�1

q�1�
�1
q

)m
0+m1+m2

⇥ e��|↵|�|↵0|
q

e⌧m1+m2
q�1

. (�4
q�1�

1/2

q�1)
2
�
n
0

q
(e⌧�1

q�1�
�1
q

)m
0
��2Nc
q

whenever n
0
,m

0  3Nind,v. It is clear that a very similar argument also gives
the bound

���Dn
0
@
m

0

t
R̊

comm
q,3

���
L1

. (�4
q�1�

1/2

q�1)
2
�
n
0

q
(e⌧�1

q�1�
�1
q

)m
0
��2Nc
q

for the same range of n0 and m
0. Lastly, by combining (5.25), (5.21), and the

Leibniz rule, we similarly deduce
���Dn

0
@
m

0

t
R̊

comm
q,1

���
L1

. (�4
q�1�

1/2

q�1)
2

Nc�1X

|↵|+m1=1

X

|↵0|+m2=Nc

�
n
0+|↵|+|↵0|

q
(e⌧�1

q�1�
�1
q

)m
0+m1+m2

⇥
ˆ
T3⇥R

���(↵+↵
0
,m1+m2)

��� |Kq()|d
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. (�4
q�1�

1/2

q�1)
2

Nc�1X

|↵|+m1=1

X

|↵0|+m2=Nc

�
n
0+|↵|+|↵0|

q
(e⌧�1

q�1�
�1
q

)m
0+m1+m2

⇥ e��|↵|�|↵0|
q

e⌧m1+m2
q�1

. (�4
q�1�

1/2

q�1)
2
�
n
0

q
(e⌧�1

q�1�
�1
q

)m
0
��Nc�1
q

.

Combining the above three bounds, identity (5.16) yields

���Dn
0
@
m

0

t
R̊

comm
q

���
L1

. (�4
q�1�

1/2

q�1)
2
�
n
0

q
(e⌧�1

q�1�
�1
q

)m
0
��Nc�1
q

(5.26)

whenever n0
,m

0  3Nind,v.
Lastly, by combining (5.17a) with (5.23) and (5.26) we obtain
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for all n,m  3Nind,v. Therefore, in order to verify (5.3), we need to verify that
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for 0  n,m  3Nind,v. Since �q  �q+1, e⌧�1
q�1  e⌧�1

q
, and e⌧�1
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�
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q�1, the above condition is ensured by the more restrictive condition
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= �
Nind,v�2
q , (5.27)

which holds as soon as Nind,v is chosen su�ciently large with respect to Nind,t;
see (9.50a) below. This completes the proof of (5.3).

Proof of (5.5) and (5.6). Using Hölder’s inequality and the extra factor
of ��1

q
present in (5.6), it is clear that for all n,m such that (5.6) holds, the

estimate (5.5) is also true. The proof is thus split in three parts: first we
consider n,m  3Nind,v, then we consider m > 3Nind,v, and lastly we consider
n > 3Nind,v.

We start with the proof of (5.5). In view of (3.4), we first bound the main
term, Pq,x,twq, which we claim may be estimated as

�� i,q�1D
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m
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q
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�
. (5.28)
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for all n,m  3Nind,v, and as
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D

m

t,q�1Pq,x,twq
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q
�
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⇣
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�
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�1
q�1

�
. (5.29)

when n +m  2Nfin, and either n > 3Nind,v or m > 3Nind,v. By the definition
of Pq,x,t in (9.64), in view of the moment condition (9.62) for the associated
mollifier kernel, we have that

Pq,x,twq(✓)� wq(✓) =
X

|↵|+m00=Nc
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↵!m00!
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ˆ 1
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↵
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t
wq(✓ � ⌘) d⌘d, (5.30)

where we have appealed to the notation in (5.12), and Nc = Nind,v � 2. For
n,m  3Nind,v, we appeal to the identity (5.17a) with F = Pq,x,twq � wq, and
with Dt,q replaced by Dt,q�1, to obtain
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where

dn,m,n0,m0 =
m�m

0X
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From (5.18), and the parameter inequality �4
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q�1
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q
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. (5.32)

Combining this estimate with the bound (5.20), we deduce that
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Next, we claim that the above estimate is consistent with (5.28): for n,m 
3Nind,v we have
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(5.34)

Recalling the definition of Nc in (5.24), the above bound is in turn implied by
the estimate

�3
q
�
2
q

 
e⌧�1
q�1

⌧
�1
q�1

!Nind,t

 �Nind,v
q ,

which holds since Nind,v � Nind,t; in fact, it is easy to see that the above condi-
tion is less stringent than (5.27). Summarizing (5.33)–(5.34), and appealing to
the inductive assumption (3.13), we deduce that
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(5.35)

for all 0  n,m  3Nind,v. The above estimate verifies (5.28).
We next turn to the proof of (5.29). The key observation is that when estab-

lishing (5.35), the two main properties of the mollification kernelKq() which we

have used are: the vanishing of the moments
´́

T3⇥R Kq()(�)(↵,m
00)
d = 0 for

1  |↵| +m
00  Nind,v and the fact that kKq()(�)(↵,m

00)kL1(d) . e��|↵|
q e⌧m00

q�1

for all |↵|+m
00  Nind,v. We claim that, for any en+ em  2Nfin, the kernel

K
(en,em)
q

(y, s) := D
en
y
@

em
s
Kq(y, s)e��en

q
e⌧ em
q�1

satisfies exactly the same two properties. The second property, about the L
1

norm, is immediate by scaling and the above definition, from the properties of
the Friedrichs mollifier densities � and e� from (9.62). Concerning the vanishing

moment condition, we note that K
(n,m)
q has in fact more vanishing moments

than Kq, as is easily seen from integration by parts in . The upshot of this
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observation is that in precisely the same way that (5.35) was proven, we may
show that
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for all 0  n,m  3Nind,v, and for all 0  en + em  2Nfin. Here we have used
(3.16) and (3.18) with q

0 = q � 1, and the parameter inequality ⌧�1
q�1�

imax�1
q


⌧
�1
q�1�

2
q�1  e⌧�1

q�1�
�1
q

.
Next, consider n+m  2Nfin such that n  3Nind,v and m > 3Nind,v. Define

m̄ = m � 3Nind,v > 0, which is the number of excess material derivatives not
covered by the bound (5.35). We rewrite the term which we need to estimate
in (5.29) as
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. (5.37)

Using (5.17a)–(5.17b) we expand D
m̄

t,q�1 into space and time derivatives and
apply the Leibniz rule to deduce
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(5.38b)

Using the Leibniz rule, the previously established bound (5.36), and the Sobolev
embedding H

2 ⇢ L
1, we deduce that
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Thus, in order to obtain the desired bound on (5.37), we need to estimate
space and material derivatives D

a
D

b

t,q�1 of the term defined in (5.38b), and

in particular D
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t
v`q�1 . We may, however, appeal to (5.31)–(5.32) with

(Pq,x,twq � wq) replaced by D
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In the last estimate we have used the parameter inequality �
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e�q�1 
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q�1. Using the above bound and the definition (5.38b) we deduce that
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The above display may be combined with (5.39) and yields
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where we have recalled that 3Nind,v + m̄ = m. The above estimate has to be
compared with the right side of (5.29), and for this purpose we note that for
m̄

0  m̄ = m� 3Nind,v we have
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where we have used the fact that m� m̄
0 � m� m̄ = 3Nind,v. Taking Nind,v �

Nind,t such that

e�2
q
(e⌧�1

q�1⌧q�1)
Nind,t  �3Nind,v�2

q , (5.42)

a condition which is satisfied due to (9.50c), it follows from (5.41) that (5.29)
holds whenever m > 3Nind,v, n  3Nind,v, and m+ n  2Nfin.

It remains to consider the case n > 3Nind,v, n +m  2Nfin. In this case we
still use (5.38a)–(5.38b), but with m̄ replaced by m, and similarly to (5.39), but
by appealing to the bounds (5.18) and (5.32) instead of (5.40), we obtain
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To conclude the proof of (5.29) in this case, we note that for n � 3Nind,v the
definition (9.19) implies
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and this factor is su�ciently small to absorb losses due to bad material derivative
estimates. Indeed, we have that
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by appealing to the condition Nind,v � Nind,t given in (9.50b). This concludes
the proof of (5.29) for all n+m  2Nfin if either n or m is larger than 3Nind,v.

The bounds (5.28)–(5.29) estimate the leading order contribution to uq. Ac-
cording to the decomposition (3.4), the proofs of (5.5) and (5.6) are completed
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if we are able to verify that
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holds for all n+m  2Nfin.
In order to establish this bound, we appeal to (5.31)–(5.32) and obtain
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for n,m � 0 such that n +m  2Nfin. Here we distinguish two cases. If either
n > 3Nind,v or m > 3Nind,v, then we simply appeal to (5.18), use that Pq,x,t

commutes with D and @t, and obtain from the above display that
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�1
q�1

�
.

Using that Nind,v � Nind,t, as described in (9.50c), the above estimate then
readily implies (5.43).

We are thus left to consider (5.44) for n,m  3Nind,v. In this case, the

bound for the term kDn
0
@
m

0

t
(Pq,x,t � Id)v`q�1kL1 present in (5.44) is di↵erent.

Similarly to (5.30) we use the fact that the kernel Kq has vanishing moments of
orders between 1 and Nind,v, and thus we have

Pq,x,tv`q�1(✓)� v`q�1(✓)

=
X

|↵|+m00=Nind,v

Nind,v

↵!m00!

ˆˆ
T3⇥R

Kq()(�)(↵,m
00)

⇥
ˆ 1

0
(1� ⌘)Nind,v�1

D
↵
@
m

00

t
v`q�1(✓ � ⌘) d⌘d . (5.45)
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Using (5.18) and (5.45), we may then estimate

���Dn
0
@
m

0

t
(Pq,x,t � Id)v`q�1

���
L1

. (�4
q�1�

1/2

q�1)
X

|↵|+m00=Nind,v

e��|↵|
q

e⌧m
00

q�1
e�n

0+|↵|
q�1 (��1

q
e⌧�1
q

)m
0+m

00

. (�4
q�1�

1/2

q�1)�
�Nind,v
q �

n
0

q
(��1

q
e⌧�1
q

)m
0
.

Combining the above display with (5.44) we arrive at

��Dn
D

m

t,q�1(Pq,x,t � Id)v`q�1

��
L1

. (�4
q�1�

1/2

q�1)�
�Nind,v
q �

n

q
(��1

q
e⌧�1
q�1)

m

. (�4
q�1�

1/2

q�1)(e⌧
�1
q�1⌧q�1)

Nind,t�
�Nind,v
q

⇥M
⇣
n, 2Nind,v,�q,

e�q
⌘
M
�
m,Nind,t, ⌧

�1
q�1, e⌧

�1
q�1

�
. (5.46)

Using the fact that Nind,v � Nind,t—see condition (9.50c)—the above estimate
concludes the proof of (5.43).

Combining the bounds (5.28), (5.29), and (5.43) concludes the proofs of (5.5)
and (5.6).

Proof of (5.4). By (3.3) we have that

v`q � vq = (Pq,x,t � Id)vq = (Pq,x,t � Id)wq + (Pq,x,t � Id)v`q�1 .

From (5.33) and (5.34) we deduce that the first term on the right side of the
above display is bounded as

��Dn
D

m

t,q�1(Pq,x,t � Id)wq

��
L1

.
⇣
�
1/2
q
�2
q
�
2
q
(e⌧�1

q�1⌧q�1)
Nind,t�

�Nind,v
q

⌘
�
n

q
M
�
m,Nind,t, ⌧

�1
q�1�

i�1
q

, e⌧�1
q�1�

�1
q

�
,

while the second term is estimated from (5.46) as

��Dn
D

m

t,q�1(Pq,x,t � Id)v`q�1

��
L1

.
⇣
�
1/2

q�1�
4
q�1(e⌧�1

q�1⌧q�1)
Nind,t�

�Nind,v
q

⌘

⇥M
⇣
n, 2Nind,v,�q,

e�q
⌘
M
�
m,Nind,t, ⌧

�1
q�1, e⌧

�1
q�1

�
,

for n,m  3Nind,v. Since Nind,v � Nind,t—see, e.g., the parameter inequality
(9.50a)—the above two displays directly imply (5.4).

Proof of (5.7) and (5.8). The argument is nearly identical to how the
inductive bounds on wq in (3.13) were shown earlier to imply bounds for Pq,x,twq

as in (5.28). The crucial ingredients in this proof were that for each material
derivative the bound on the mollified function Pq,x,twq is relaxed by a factor of
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�q, the cost of space derivatives is relaxed from �q to e�q when n � Nind,v, and
the available number of estimates on the unmollified function wq is much larger
than Nind,v (more precisely, 7Nind,v). But the same ingredients are available for

the transfer of estimates from R̊q to R̊`q = Pq,x,tR̊q. Indeed, the derivatives
available in (3.15) extend significantly past Nind,v (this time up to 3Nind,v).

When comparing the desired bound on R̊`q in (5.7) with the available inductive
bound in (3.15) we note that the cost of each material derivative is relaxed by
a factor of �q, and that the cost of each additional space derivative is relaxed

from �q to e�q when n is su�ciently large. To avoid redundancy, we omit these
details.
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Chapter Six

Cuto↵s

This section is dedicated to the construction of the cuto↵ functions described in
Section 2.5, which play the role of a joint Eulerian-and-Lagrangian Littlewood-
Paley frequency decompositon, which in addition keeps track of the size of ob-
jects in physical space. During a first pass at the book, the reader may skip
this technical section—if the Lemmas 6.8, 6.14, 6.18, 6.21, 6.35, 6.36, 6.38, 6.40,
and 6.41, and Corollaries 6.27 and 6.33 are taken for granted.

This section is organized as follows. In Section 6.1 we define the velocity
cuto↵ functions  i,q, recursively in terms of the previous level (meaning q � 1)
velocity cuto↵ functions  i0,q�1, which are assumed to satisfy the inductive
bounds and properties mentioned in Section 3.2.3. In Section 6.2 we then verify
that the velocity cuto↵ functions at level q, and the velocity fields uq and v`q ,
satisfy all the inductive estimates claimed in Sections 3.2.3 and 3.2.4, for q0 = q.
This section is the bulk of Chapter 6; and it is here that the various commutators
between Eulerian (space and time) derivatives and Lagrangian derivatives cause
a plethora of di�culties.

Remark 6.1. We note that by the conclusion of Section 6.2 we have verified
all the inductive assumptions from Section 3.2, except for (3.13)–(3.14) for the
new velocity increment wq+1, and (3.15) for the new stress R̊q+1. These three
inductive assumptions will be revisited, broken down, and restated in Chapter 7
and proven in Chapter 8.

Next, in Section 6.3 we introduce the temporal cuto↵s �i,k,q, indexed by k,
which are meant to subdivide the support of the velocity cuto↵  i,q into time
slices of width inversely to the local Lipschitz norm of v`q . This allows us in
Section 6.4 to properly define and estimate the Lagrangian flow maps induced
by the incompressible vector field v`q , on the support of  i,q�i,k,q. We next
turn to defining the stress cuto↵ functions !i,j,q,n,p, indexed by j, for the stress

R̊q,n,p, on the support of  i,q. Coupling the stress and velocity cuto↵s in this
way allows us in Section 6.7 to sharply estimate spatial and material derivatives
of these higher order stresses, but also to estimate the derivatives of the stress
cuto↵s themselves. At last, we define in Section 6.8 the checkerboard cuto↵s
⇣
q,i,k,n,~l

, indexed by an address ~l = (l, w, h) which identifies a specific cube of

sidelength 2⇡/�q,n,0 within T3. This specific size of the support of ⇣
q,i,k,n,~l

is

important for ensuring that Oscillation Type 2 errors vanish (see Lemmas 8.11
and 8.12). These cuto↵ functions are flowed by the backward Lagrangian flows
�i,k,q defined earlier, explaining their dependence on the indices q, i, k. Lastly,
the cumulative cuto↵ function ⌘

i,j,k,q,n,p,~l
is defined in Section 6.9, along with
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some of its principal properties. We emphasize that this cumulative cuto↵ has
embedded into it information about the local size and cost of space/Lagrangian
derivatives of the velocity, the stress, and the Lagrangian maps.

6.1 DEFINITION OF THE VELOCITY CUTOFF FUNCTIONS

For all q � 1 and 0  m  Ncut,t, we construct the following cuto↵ functions.
The proof is contained in Appendix A.2.

Lemma 6.2. For all q � 1 and 0  m  Ncut,t, there exist smooth cuto↵

functions e m,q, m,q : [0,1) ! [0, 1] which satisfy the following.

1. The support of e m,q is precisely the set
h
0,�2(m+1)

q

i
, and furthermore

a) on the interval
h
0, 1

4�
2(m+1)
q

i
, e m,q ⌘ 1;

b) on the interval
h
1
4�

2(m+1)
q ,�2(m+1)

q

i
, e m,q decreases from 1 to 0.

2. The support of  m,q is precisely the set
h
1
4 ,�

2(m+1)
q

i
, and furthermore

a) on the interval
⇥
1
4 , 1
⇤
,  m,q increases from 0 to 1;

b) on the interval
h
1, 1

4�
2(m+1)
q

i
,  m,q ⌘ 1;

c) on the interval
h
1
4�

2(m+1)
q ,�2(m+1)

q

i
,  m,q decreases from 1 to 0.

3. For all y � 0, a partition of unity is formed as

e 2
m,q

(y) +
X

i�1

 
2
m,q

⇣
��2i(m+1)
q

y

⌘
= 1. (6.1)

4. e m,q and  m,q

⇣
��2i(m+1)
q ·

⌘
satisfy

supp e m,q(·) \ supp m,q

⇣
��2i(m+1)
q

·
⌘
= ; if i � 2,

supp m,q

⇣
��2i(m+1)
q

·
⌘
\ supp m,q

⇣
��2i0(m+1)
q

·
⌘
= ; if |i� i

0| � 2.

(6.2)

5. For 0  N  Nfin, when 0  y < �2(m+1)
q we have

|DN e m,q(y)|
( e m,q(y))1�N/Nfin

. ��2N(m+1)
q

. (6.3)
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For 1
4 < y < 1 we have

|DN
 m,q(y)|

( m,q(y))1�N/Nfin
. 1, (6.4)

while for 1
4�

2(m+1)
q < y < �2(m+1)

q we have

|DN
 m,q(y)|

( m,q(y))1�N/Nfin
. ��2N(m+1)

q
. (6.5)

In each of the above inequalities, the implicit constants depend on N but
not m or q.

Definition 6.3. Given i, j, q � 0, we define

i⇤ = i⇤(j, q) = i⇤(j) = min{i � 0: �i
q+1 � �j

q
}.

In view of the definition (3.10), we see that

i⇤(j) =

⇠
j
log(�q)� log(�q�1)

log(�q+1)� log(�q)

⇡
=

2

666
j

log
�⌃
a
b
q⌥�� log

⇣l
a
b
q�1
m⌘

log
�⌃
ab

q+1
⌥�

� log (dabqe)

3

777
.

One may check that as q ! 1 or a ! 1, i⇤(j) converges to
⌃
j

b

⌥
for any j, and

so if a is su�ciently large, i⇤(j) is bounded from above and below independently
of q for each j. Note that in particular, for j = 0 we have that i⇤(j) = 0.

At stage q � 1 of the iteration (by convention w0 = u0 = 0) and for m 
Ncut,t and jm � 0, we can now define

h
2
m,jm,q

(x, t) :=

Ncut,xX

n=0

��2i⇤(jm)
q+1 �

�1
q

(�q�q)
�2n

⇣
⌧
�1
q�1�

i⇤(jm)+2
q+1

⌘�2m

⇥ |Dn
D

m

t,q�1uq(x, t)|2. (6.6)

Definition 6.4 (Intermediate cuto↵ functions). Given q � 1, m  Ncut,t,
and jm � 0 we define  m,im,jm,q by

 m,im,jm,q(x, t) =  m,q+1

⇣
��2(im�i⇤(jm))(m+1)
q+1 h

2
m,jm,q

(x, t)
⌘

(6.7)

for im > i⇤(jm), while for im = i⇤(jm),

 m,i⇤(jm),jm,q(x, t) = e m,q+1

�
h
2
m,jm,q

(x, t)
�
. (6.8)

The intermediate cuto↵ functions  m,im,jm,q are equal to zero for im < i⇤(jm).

The indices im and jm will be shown to run up to some maximal values imax
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and eimax to be determined in the proof (see Lemma 6.14 and (6.27)). With this
notation and in view of (6.1) and (6.2), it immediately follows that

X

im�0

 
2
m,im,jm,q

=
X

im�i⇤(jm)

 
2
m,im,jm,q

=
X

{im : �im
q+1��jm

q }

 
2
m,im,jm,q

⌘ 1 (6.9)

for any m, and for |im � i
0
m
| � 2

 m,im,jm,q m,i0m,jm,q = 0. (6.10)

Definition 6.5 (mth velocity cuto↵ function). For q � 1 and im � 0,1 we
inductively define the m

th velocity cuto↵ function

 
2
m,im,q

=
X

{jm : im�i⇤(jm)}

 
2
jm,q�1 

2
m,im,jm,q

. (6.11)

In order to define the full velocity cuto↵ function, we use the notation

~i = {im}Ncut,t

m=0 =
�
i0, ..., iNcut,t

�
2 NNcut,t+1

0 (6.12)

to denote a tuple of non-negative integers of length Ncut,t + 1.

Definition 6.6 (Velocity cuto↵ function). For 0  i  imax(q) and q � 0,
we inductively define the velocity cuto↵ function  i,q as follows. When q = 0,
we let

 i,0 =

(
1 if i = 0

0 otherwise.
(6.13)

Then, we inductively on q define

 
2
i,q

=
X

(
~i : max

0mNcut,t
im=i

)

Ncut,tY

m=0

 
2
m,im,q

(6.14)

for all q � 1.

The sum used to define  i,q for q � 1 is over all tuples with a maximum entry
of i. The number of such tuples is clearly q-independent once it is demonstrated
in Lemma 6.14 that im  imax(q) (which implies i  imax(q)), and imax(q) is
bounded above independently of q.

1Later we will show that  m,im,q ⌘ 0 if i � imax.
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For notational convenience, given an~i as in the sum of (6.14), we shall denote

supp

0

@
Ncut,tY

m=0

 m,im,q

1

A =

Ncut,t\

m=0

supp ( m,im,q) =: supp ( ~i,q) . (6.15)

In particular, we will frequently use that (x, t) 2 supp ( i,q) if and only if there

exists ~i 2 NNcut,t+1
0 such that max0mNcut,t im = i, and (x, t) 2 supp ( ~i,q).

6.2 PROPERTIES OF THE VELOCITY CUTOFF FUNCTIONS

6.2.1 Partitions of unity

Lemma 6.7 ( m,im,q—Partition of unity). For all m, we have that

X

im�0

 
2
m,im,q

⌘ 1 ,  m,im,q m,i0m,q = 0 for |im � i
0
m
| � 2. (6.16)

Proof of Lemma 6.7. The proof proceeds inductively. When q = 0 there is
nothing to prove as  m,im,q is not defined. Thus we assume q � 1. From (6.13)
for q = 0 and (3.16) for q � 1, we assume that the functions { 2

j,q�1}j�0 form a
partition of unity. To show the first part of (6.16), we may use (6.9) and (6.11)
and reorder the summation to obtain
X

im�0

 
2
m,im,q

=
X

im�0

X

{jm : i⇤(jm)im}

 
2
jm,q�1 

2
m,im,jm,q

(x, t)

=
X

jm�0

 
2
jm,q�1

X

{im : im�i⇤(jm)}

 
2
m,im,jm,q

| {z }
⌘1 by (6.9)

=
X

jm�0

 
2
jm,q�1 ⌘ 1.

The last equality follows from the inductive assumption (3.16).
The proof of the second claim is more involved and will be split into cases.

Using the definition in (6.11), we have that

 m,im,q m,i0m,q

=
X

{jm:im�i⇤(jm)}

X

{j0m:i0m�i⇤(j0m)}

 
2
jm,q�1 

2
j0m,q�1 

2
m,im,jm,q

 
2
m,i0m,j0m,q

.

Recalling the inductive assumption (3.16), we have that the above sum only
includes pairs of indices jm and j

0
m

such that |jm � j
0
m
|  1. So we may assume

that
(x, t) 2 supp m,im,jm,q \ supp m,i0m,j0m,q, (6.17)
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where |jm � j
0
m
|  1. The first and simplest case is the case jm = j

0
m
. We then

appeal to (6.10) to deduce that it must be the case that |im � i
0
m
|  1 in order

for (6.17) to be true.
Before moving to the second and third cases, we first show that by symmetry

it will su�ce to prove that  m,im,q m,i0m,q = 0 when i
0
m

 im � 2. Assuming
this has been proven, let im1 , im2 be given with |im1 � im2 | � 2. Without
loss of generality we may assume that im1 � im2 , which implies that im1 �
im2 + 2. Using the assumption and setting im2 = i

0
m

and im1 = im, we deduce
that  m,im1 ,q

 m,im2 ,q
= 0. Thus, we have reduced the proof to showing that

 m,im,q m,i0m,q = 0 when i
0
m

 im�2, which we will show next by contradiction.
Let us consider the second case, j0

m
= jm+1. When im = i⇤(jm), using that

i⇤(jm)  i⇤(jm + 1), we obtain

i
0
m

 im � 2 = i⇤(jm)� 2 < i⇤(jm + 1) = i⇤(j
0
m
),

and so by Definition 6.4, we have that  m,i0m,j0m,q = 0. Thus, in this case there
is nothing to prove, and we need to only consider the case im > i⇤(jm). From
(6.17), points 1 and 2 from Lemma 6.2, and Definition 6.4, we have that

hm,jm,q(x, t) 2

1

2
�(m+1)(im�i⇤(jm))
q+1 ,�(m+1)(im+1�i⇤(jm))

q+1

�
, (6.18a)

hm,jm+1,q(x, t)  �
(m+1)(i0m+1�i⇤(jm+1))
q+1 . (6.18b)

Note that from the definition of hm,jm,q in (6.6), we have that

�(m+1)(i⇤(jm+1)�i⇤(jm))
q+1 hm,jm+1,q = hm,jm,q.

Then, since i
0
m

 im � 2, from (6.18b) we have that

��(m+1)(im�i⇤(jm))
q+1 hm,jm,q

= ��(m+1)(im�i⇤(jm))
q+1 hm,jm+1,q�

(m+1)(i⇤(jm+1)�i⇤(jm))
q+1

 ��(m+1)(im�i⇤(jm))
q+1 �

(m+1)(i0m+1�i⇤(jm+1))
q+1 �(m+1)(i⇤(jm+1)�i⇤(jm))

q+1

= �
(m+1)(i0m+1�im)
q+1

 ��(m+1)
q+1 .

Since m � 0, the above estimate contradicts the lower bound on hm,jm,q in
(6.18a) because ��1

q+1 ⌧ 1/2 for a su�ciently large.
We move to the third and final case, j0

m
= jm� 1. As before, if im = i⇤(jm),

then since i⇤(jm)  i⇤(jm � 1) + 1, we have that

i
0
m

 im � 2 = i⇤(jm)� 2  i⇤(jm � 1)� 1 < i⇤(jm � 1) = i⇤(j
0
m
) ,

which by Definition 6.4 implies that  m,i0m,j0m,q = 0, and there is nothing to
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prove. Thus, we only must consider the case im > i⇤(jm). Using the definition
(6.6) we have that

hm,jm,q = �(m+1)(i⇤(jm�1)�i⇤(jm))
q+1 hm,jm�1,q .

On the other hand, for i0
m

 im � 2 we have from (6.18b) that

hm,jm�1,q  �(m+1)(i0m+1�i⇤(jm�1))
q+1  �(m+1)(im�1�i⇤(jm�1))

q+1 .

Therefore, combining the above two displays and the inequality �i⇤(jm) �
�i⇤(jm � 1)� 1, we obtain the bound

��(m+1)(im�i⇤(jm))
q+1 hm,jm,q

 ��(m+1)(im�i⇤(jm))
q+1 �(m+1)(i⇤(jm�1)�i⇤(jm))

q+1 �(m+1)(im�1�i⇤(jm�1))
q+1

= ��(m+1)
q+1 .

As before, since m � 0 this produces a contradiction with the lower bound on
hm,jm,q given in (6.18a), since ��1

q+1 ⌧ 1/2.

With Lemma 6.7 in hand, we can now verify the inductive assumption (3.16)
at level q.

Lemma 6.8 ( i,q is a partition of unity). We have that for q � 0,

X

i�0

 
2
i,q

⌘ 1 ,  i,q i0,q = 0 for |i� i
0| � 2. (6.19)

Proof of Lemma 6.8. When q = 0, both statements are immediate from (6.13).
To prove the first claim for q � 1, let us introduce the notation

⇤i =

⇢
~i = (i0, ..., iNcut,t) : max

0mNcut,t

im = i

�
. (6.20)

Then

 
2
i,q

=
X

~i2⇤i

Ncut,tY

m=0

 
2
m,im,q

,

and thus

X

i�0

 
2
i,q

=
X

i�0

X

~i2⇤i

Ncut,tY

m=0

 
2
m,im,q

=
X

~i2NNcut,t+1

0

0

@
Ncut,tY

m=0

 
2
m,im,q

1

A

=

Ncut,tY

m=0

0

@
X

im�0

 
2
m,im,q

1

A =

Ncut,tY

m=0

1 = 1
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after using (6.16).
To prove the second claim, assume towards a contradiction that there exists

|i� i
0| � 2 such that  i,q i0,q � 0. Then

0 6=  
2
i,q
 
2
i0,q =

X

~i2⇤i

X

~i02⇤i0

Ncut,tY

m=0

 
2
m,im,q

 
2
m,i0m,q

. (6.21)

In order for (6.21) to be non-vanishing, by (6.16), there must exist indexes
~i = (i0, ..., iNcut,t) 2 ⇤i and ~i0 = (i00, ..., i

0
Ncut,t

) 2 ⇤i0 such that |im � i
0
m
|  1 for

all 0  m  Ncut,t. By the definition of i and i
0, there exist m⇤ and m

0
⇤ such

that
im⇤ = max

m

im = i, i
0
m0

⇤
= max

m

i
0
m

= i
0
.

But then

i = im⇤  i
0
m⇤ + 1  i

0
m0

⇤
+ 1 = i

0 + 1

i
0 = i

0
m0

⇤
 im0

⇤ + 1  im⇤ + 1 = i+ 1,

implying that |i� i
0|  1, a contradiction.

In view of the preceding two lemmas and (6.10), and for convenience of
notation, we define

 i±,q(x, t) =
�
 
2
i�1,q(x, t) +  

2
i,q
(x, t) +  

2
i+1,q(x, t)

�1/2
, (6.22)

which are cuto↵s with the property that

 i±,q ⌘ 1 on supp ( i,q). (6.23)

Remark 6.9. The definition (6.14) is not convenient to use directly for estimat-
ing material derivatives of the  i,q cuto↵s, because di↵erentiating the terms
 m,im,q individually ignores certain cancellations which arise due to the fact
that { m,im,q}im�0 is a partition of unity (as was shown above in Lemma 6.7).
For this purpose, we re-sum the terms in the definition (6.14) as follows. For
any given 0  m  Ncut,t, we introduce the summed cuto↵ function

 2
m,i,q

=
iX

im=0

 
2
m,im,q

(6.24)

and note via Lemma 6.7 its chief property:

D( 2
m,i,q

) = D( 2
m,i,q

)1supp ( m,i+1,q) = D( 2
m,i,q

)1supp ( m,i+1,q) . (6.25)

The above inclusion holds because on the support of  m,im,q with im < i, we
have that  m,i,q ⌘ 1. With the notation (6.24) we return to the definition (6.14)
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and note that

 
2
i,q

=

Ncut,tX

m=0

 
2
m,i,q

m�1Y

m0=0

 2
m0,i,q

Ncut,tY

m00=m+1

( 2
m00,i,q �  

2
m00,i,q)

=

Ncut,tX

m=0

 
2
m,i,q

m�1Y

m0=0

 2
m0,i,q

Ncut,tY

m00=m+1

 2
m00,i�1,q . (6.26)

Remark 6.10. Define j⇤(i, q) = max{j : i⇤(j)  i} to be the largest index of jm
appearing in the sum in (6.11). We note here that

�i�1
q+1 < �j⇤(i,q)

q
 �i

q+1 (6.27)

holds. This fact will be used later on in the proof in conjunction with Lemma 6.14
to bound the maximal values of jm.

The following lemma is a direct consequence of the definitions of the cuto↵s.

Lemma 6.11. If (x, t) 2 supp ( m,im,jm,q) then

hm,jm,q  �(m+1)(im+1�i⇤(jm))
q+1 . (6.28)

Moreover, if im > i⇤(jm) we have

hm,jm,q � (1/2)�(m+1)(im�i⇤(jm))
q+1 (6.29)

on the support of  m,im,jm,q. As a consequence, we have

��DN
D

m

t,q�1uq

��
L1(supp m,im,q)

 �
1/2
q
�im+1
q+1 (�q�q)

N (⌧�1
q�1�

im+3
q+1 )m (6.30)

��DN
D

M

t,q�1uq

��
L1(supp i,q)

 �
1/2
q
�i+1
q+1(�q�q)

N (⌧�1
q�1�

i+3
q+1)

M (6.31)

for all 0  m,M  Ncut,t, and 0  N  Ncut,x.

Proof of Lemma 6.11. Estimates (6.28) and (6.29) follow directly from the def-

initions of e m,q+1 and  m,q+1. In order to prove (6.30), we note that for
(x, t) 2 supp ( m,im,q), by (6.11) there must exist a jm with i⇤(jm)  im such
that (x, t) 2 supp ( m,im,jm,q). Using (6.28), we conclude that

��DN
D

m

t,q�1uq

��
L1(supp m,im,jm,q)

 �(m+1)(im+1�i⇤(jm))
q+1 �i⇤(jm)

q+1 (�q�q)
N (�i⇤(jm)+2

q+1 ⌧
�1
q�1)

m
�
1/2
q

= �
1/2
q
�im+1
q+1 (�q�q)

N
�
⌧
�1
q�1�

im+3
q+1

�m
, (6.32)

which completes the proof of (6.30). The proof of (6.31) follows from the fact
that we have employed the maximum over m of im to define  i,q in (6.6).
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An immediate corollary of the bound (5.9) and of the previous lemma is
that estimates for the derivatives of uq are also available on the support of  i,q,
instead of  i,q�1.

Corollary 6.12. For N,M  3Nind,v, and i � 0, we have the bound

��DN
D

M

t,q�1uq

��
L1(supp i,q)

. �i+1
q+1�

1/2
q

M
⇣
N, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧

�1
q�1

�
. (6.33)

Recall that if either N > 3Nind,v or M > 3Nind,v are such that N +M  2Nfin,
suitable estimates for D

N
D

M

t,q�1uq are already provided by (5.6).

Proof of Corollary 6.12. When 0  N  Ncut,x and 0  M  Ncut,t  Nind,t,
the desired bound was already established in (6.31).

For the remaining cases, note that if 0  m  Ncut,t and (x, t) 2 supp m,im,q,
there exists jm � 0 with i⇤(jm)  im, such that (x, t) 2 supp jm,q�1. Thus, we
may appeal to (5.9) and deduce that

��DN
D

M

t,q�1uq

�� . �
1/2
q
e�3/2
q

M
⇣
N, 2Nind,v,�q,

e�q
⌘
M
�
M,Nind,t,�

jm+1
q

⌧
�1
q�1, e⌧

�1
q�1

�
.

Since i⇤(jm)  im implies �jm
q

 �im
q+1, we deduce that

��DN
D

M

t,q�1uq

��
L1(supp m,im,q)

. �
1/2
q
e�3/2
q

M
⇣
N, 2Nind,v,�q,

e�q
⌘
M
�
M,Nind,t,�

im+1
q+1 ⌧

�1
q�1, e⌧

�1
q�1

�
.

Note that the above estimate does not have a factor of �im+1
q+1 next to the �

1/2
q

at the amplitude.
We now consider two cases. If Ncut,x < N  3Nind,v, then

M
⇣
N, 2Nind,v,�q,

e�q
⌘
. ��Ncut,x

q
M
⇣
N, 2Nind,v,�q�q, e�q

⌘
.

On the other hand, if Ncut,t < M  3Nind,v, then

M
�
M,Nind,t,�

im+1
q+1 ⌧

�1
q�1, e⌧

�1
q�1

�
. ��2Ncut,t

q+1 M
�
M,Nind,t,�

im+3
q+1 ⌧

�1
q�1, e⌧

�1
q�1

�
.

Combining the above three displays, and recalling the definition of  i,q in (6.14),
we deduce that if either N > Ncut,x or M > Ncut,t, we have

��DN
D

M

t,q�1uq

��
L1(supp i,q)

. �
1/2
q
e�3/2
q

max{��Ncut,x
q

,�
�2Ncut,t

q+1 }

⇥M
⇣
N, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i+1
q+1�

2
q
⌧
�1
q�1, e⌧

�1
q�1

�
,
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and the proof of (6.33) is completed by taking Ncut,x and Ncut,t su�ciently large
to ensure that

e�3/2
q

max{��Ncut,x
q

,�
�2Ncut,t

q+1 }  1 . (6.34)

This condition holds by (9.51).

6.2.2 Pure spatial derivatives

In this section we prove that the cuto↵ functions  i,q satisfy sharp spatial deriva-
tive estimates, which are consistent with (3.19) for q0 = q.

Lemma 6.13 (Spatial derivatives for the cuto↵s). Fix q � 1, 0  m 
Ncut,t, and im � 0. For all jm � 0 such that im � i⇤(jm) and all N  Nfin, we
have

1supp ( jm,q�1)
|DN

 m,im,jm,q|
 
1�N/Nfin

m,im,jm,q

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘
, (6.35)

which in turn implies

|DN
 i,q|

 
1�N/Nfin

i,q

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘
(6.36)

for all i � 0, all N  Nfin.

Proof of Lemma 6.13. We first show that (5.9) implies (6.35). We distinguish

between two cases. The first case is when  = e m,q+1 or  =  m,q+1 and we
have the lower bound

h
2
m,jm,q

��2(im�i⇤(jm))(m+1)
q+1 � 1

4
�2(m+1)
q+1 (6.37)

so that (6.5) applies. The goal is then to apply Lemma A.4 to the function

 = e m,q+1 or  =  m,q+1 as described above in conjunction with � = �m+1
q+1 ,

� = �(m+1)(im�i⇤(jm))
q+1 , and h(x, t) = (hm,jm,q(x, t))2. The assumption (A.21)

holds by (6.3) or (6.5) for all N  Nfin, and so we need to obtain bounds
on the derivatives of h2

m,jm,q
, which are consistent with assumption (A.22) of

Lemma A.4. For B  Nfin, the Leibniz rule gives

��DB
h
2
m,jm,q

�� . (�q�q)
B

BX

B0=0

Ncut,xX

n=0

��i⇤(jm)
q+1 (⌧�1

q�1�
i⇤(jm)+2
q+1 )�m(�q�q)

�n�B
0
�
�1/2
q

⇥ |Dn+B
0
D

m

t,q�1uq|

⇥ ��i⇤(jm)
q+1 (⌧�1

q�1�
i⇤(jm)+2
q+1 )�m(�q�q)

�n�B+B
0
�
�1/2
q
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⇥ |Dn+B�B
0
D

m

t,q�1uq| . (6.38)

For the terms with L 2 {n+B
0
, n+B�B

0}  Ncut,x we may appeal to estimate
(6.28), which gives

��i⇤(jm)
q+1 (⌧�1

q�1�
i⇤(jm)+2
q+1 )�m(�q�q)

�L
�
�1/2
q

��DL
D

m

t,q�1uq

��
L1(supp m,im,jm,q)

 �(m+1)(im+1�i⇤(jm))
q+1 . (6.39)

On the other hand, for Ncut,x < L 2 {n+B
0
, n+B�B

0}  Ncut,x+B  2Nfin�
Nind,t, we may appeal to estimates (5.6) and (5.9), and sincem  Ncut,t < Nind,t,
we deduce that

��i⇤(jm)
q+1 (⌧�1

q�1�
i⇤(jm)+2
q+1 )�m(�q�q)

�L
�
�1/2
q

��DL
D

m

t,q�1uq

��
L1(supp jm,q�1)

. (�jm+1
q

��i⇤(jm)�2
q+1 )m(��L

q
e�3/2
q

)��L

q
M
⇣
L, 2Nind,v,�q,

e�q
⌘

. M
⇣
L, 2Nind,v, 1,�

�1
q
e�q
⌘

 �(m+1)(im+1�i⇤(jm))
q+1 M

⇣
L, 2Nind,v, 1,�

�1
q
e�q
⌘
. (6.40)

In the last inequality we have used that im � i⇤(jm), while in the second to last

inequality we have used that if L � Ncut,x then �L
q
� e�3/2

q , which follows once
Ncut,x is chosen to be su�ciently large, as in (9.51). Summarizing the bounds
(6.38)–(6.40), since n  Ncut,x, we arrive at

1supp ( jm,q�1 m,im,jm,q)

��DB
h
2
m,jm,q

��

. (�q�q)
BM

⇣
2Ncut,x +B, 2Nind,v, 1,�

�1
q
e�q
⌘
�2(m+1)(im+1�i⇤(jm))
q+1

. M
⇣
B,Nind,v,�q�q, e�q�q

⌘
�2(m+1)(im+1�i⇤(jm))
q+1

whenever B  Nfin. Here we have used that 2Ncut,x  Nind,v. Thus, assumption

(A.22) holds with Ch = �2(m+1)(im+1�i⇤(jm))
q+1 , � = �q�q, ⇤ = e�q�q, N⇤ = Nind,v.

Note that with these choices of parameters, we have Ch�
�2
 
��2 = 1. We may

thus apply Lemma A.4 and conclude that

1supp ( jm,q�1)

��DN
 m,im,jm,q

��

 
1�N/Nfin

m,im,jm,q

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘

for all N  Nfin, proving (6.35) in the first case.
Recalling the inequality (6.37), the second case is when  =  m,q+1 and

h
2
m,jm,q

��2(im�i⇤(jm))(m+1)
q+1  1

4
�2(m+1)
q+1 . (6.41)
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However, since  m,q+1 is uniformly equal to 1 when the left hand side of the

above display takes values in
h
1, 1

4�
2(m+1)
q+1

i
, (6.35) is trivially satisfied. Thus we

may reduce to the case that

h
2
m,jm,q

��2(im�i⇤(jm))(m+1)
q+1  1. (6.42)

As in the first case, we aim to apply Lemma A.4 with h = h
2
m,jm,q

, but now with

� = 1 and � = �(m+1)(im�i⇤(jm))
q+1 . From (6.4), the assumption (A.21) holds.

Towards estimating derivatives of h, for the terms with L 2 {n+B
0
, n+B�B

0} 
Ncut,x, (6.42) gives immediately that

��i⇤(jm)
q+1 (⌧�1

q�1�
i⇤(jm)+2
q+1 )�m(�q�q)

�L
�
�1/2
q

��DL
D

m

t,q�1uq

��
L1(supp m,im,jm,q)

 �(m+1)(im�i⇤(jm))
q+1 . (6.43)

Conversely, when Ncut,x > L, we may argue as in the estimates which gave
(6.40), only this time using the fact that since im � i⇤(jm), we can achieve the
slightly improved bound2

�(m+1)(im�i⇤(jm))
q+1 M

⇣
L, 2Nind,v, 1,�

�1
q
e�q
⌘
. (6.44)

We then arrive at

1supp ( jm,q�1 m,im,jm,q)

��DB
h
2
m,jm,q

��

. (�q�q)
BM

⇣
2Ncut,x +B, 2Nind,v, 1,�

�1
q
e�q
⌘
�2(m+1)(im�i⇤(jm))
q+1

. M
⇣
B,Nind,v,�q�q, e�q�q

⌘
�2(m+1)(im�i⇤(jm))
q+1

whenever B  Nfin, again using that 2Ncut,x  Nind,v. Thus, assumption (A.22)

now holds with Ch = �2(m+1)(im�i⇤(jm))
q+1 , � = �q�q, ⇤ = e�q�q, N⇤ = Nind,v.

Note that with these new choices of parameters, we still have Ch��2
 
��2 = 1.

We may thus apply Lemma A.4 and conclude that

1supp ( jm,q�1)

��DN
 m,im,jm,q

��

 
1�N/Nfin

m,im,jm,q

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘

for all N  Nfin, proving (6.35) in the second case.
From the definition (6.11), and the bound (6.35), we next estimate deriva-

2This bound was also available in (6.40), but we wrote the worse bound there to match
the chosen value of Ch.
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tives of the m
th velocity cuto↵ function  m,im,q, and claim that

|DN
 m,im,q|

 
1�N/Nfin

m,im,q

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘
(6.45)

for all im � 0, all N  Nfin. We prove (6.45) by induction on N . When N = 0
the bound trivially holds, which gives the induction base. For the induction
step, assume that (6.45) holds for all N 0  N�1. By the Leibniz rule we obtain

D
N ( 2

m,im,q
) = 2 m,im,qD

N
 m,im,q +

N�1X

N 0=1

✓
N

N 0

◆
D

N
0
 m,im,q D

N�N
0
 m,im,q

(6.46)

and thus

D
N
 m,im,q

 
1�N/Nfin

m,im,q

=
D

N ( 2
m,im,q

)

2 2�N/Nfin

m,im,q

� 1

2

N�1X

N 0=1

✓
N

N 0

◆
D

N
0
 m,im,q

 
1�N 0/Nfin

m,im,q

D
N�N

0
 m,im,q

 
1�(N�N 0)/Nfin

m,im,q

.

Since N
0
, N �N

0  N � 1 by the induction assumption (6.45) we obtain

��DN
 m,im,q

��

 
1�N/Nfin

m,im,q

.
|DN ( 2

m,im,q
)|

 
2�N/Nfin

m,im,q

+M
⇣
N,Nind,v,�q�q, e�q�q

⌘
. (6.47)

Thus, establishing (6.45) for the Nth derivative reduces to bounding the first
term on the right side of the above. For this purpose we recall (6.11) and
compute
��DN ( 2

m,im,q
)
��

 
2�N/Nfin

m,im,q

=
1

 
2�N/Nfin

m,im,q

X

{jm : i⇤(jm)im}

NX

K=0

✓
N

K

◆
D

K( 2
jm,q�1)D

N�K( 2
m,im,jm,q

)

=
X

{jm : i⇤(jm)im}

NX

K=0

KX

L1=0

N�KX

L2=0

✓
N

K

◆✓
K

L1

◆✓
N �K

L2

◆
 
2�K/Nfin

jm,q�1  
2�(N�K)/Nfin

m,im,jm,q

 
2�N/Nfin

m,im,q

⇥ D
L1 jm,q�1

 
1�L1/Nfin

jm,q�1

D
K�L1 jm,q�1

 
1�(K�L1)/Nfin

jm,q�1

D
L2 m,im,jm,q

 
1�L2/Nfin

m,im,jm,q

D
N�K�L2 m,im,jm,q

 
1�(N�K�L2)/Nfin

m,im,jm,q

.

Since K,N �K  N , and  jm,q�1, m,im,j,q  1, we have by (6.14) that

 
2�K/Nfin

jm,q�1  
2�(N�K)/Nfin

m,im,jm,q

 
2�N/Nfin

m,im,q


 
2�N/Nfin

jm,q�1  
2�N/Nfin

m,im,jm,q

 
2�N/Nfin

m,im,q

 1.
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Furthermore, the estimate (6.35) and the inductive assumption (3.19), combined

with the parameter estimate �q�1
e�q�1  �q�q (see (9.38)) and the previous

three displays, conclude the proof of (6.45). In particular, note that this upper
bound is independent of the value of im.

In order to conclude the proof of the lemma, we argue that (6.45) implies
(6.36). Recalling (6.14), we have that  2

i,q
is given as a sum of products of

 
2
m,im,q

, for which suitable derivative bounds are available (due to (6.45)). Thus,
the proof of (6.36) is again done by induction on N , mutatis mutandi to the
proof of (6.45): indeed, we note that  2

m,im,q
was also given as a sum of squares

of cuto↵ functions, for which derivative bounds were available. The proof of the
induction step is thus again based on the application of the Leibniz rule for  2

i,q
;

in order to avoid redundancy we omit these details.

6.2.3 Maximal indices appearing in the cuto↵

A consequence of the inductive assumptions, Lemma 6.11, and of Lemma 6.13
above is that we may a priori estimate the maximal i appearing in  i,q, labeled
as imax(q).

Lemma 6.14 (Maximal i index in the definition of the cuto↵). There
exists imax = imax(q) � 0, determined by the formula (6.53) below, such that

 i,q ⌘ 0 for all i > imax (6.48)

and

�imax
q+1  �

5/3
q

(6.49)

holds for all q � 0, where the implicit constant is independent of q. Moreover
imax(q) is bounded uniformly in q as

imax(q) 
4

"�(b� 1)
, (6.50)

assuming �0 is su�ciently large.

Proof of Lemma 6.14. Assume i � 0 is such that supp ( i,q) 6= ;. Our goal is

to prove that �i
q+1  �

5/3
q .

From (6.14) it follows that for any (x, t) 2 supp ( i,q), there must ex-

ist at least one ~i = (i0, . . . , iNcut,t) such that max
0mNcut,t

im = i, and with

 m,im,q(x, t) 6= 0 for all 0  m  Ncut,t. Therefore, in light of (6.11), for
each such m there exists a maximal jm such that i⇤(jm)  im, with (x, t) 2
supp ( jm,q�1) \ supp ( m,im,jm,q). In particular, this holds for any of the in-
dices m such that im = i. For the remainder of the proof, we fix such an index
0  m  Ncut,t.
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If we have i = im = i⇤(jm) = i⇤(jm, q), since (x, t) 2 supp ( jm,q�1), by the
inductive assumption (3.18) we have that jm  imax(q�1). Then, due to (6.27),

we have �i�1
q+1 < �jm

q
 �imax(q�1)

q , and thus

�i
q+1  �q+1�

imax(q�1)
q

 �q+1�
5/3

q�1 < �
5/3
q

. (6.51)

The last inequality above uses the fact that �
(b + 1)/2
q  �q+1 since b > 1 and a

is taken su�ciently large.
On the other hand, if i = im � i⇤(jm)+1, from (6.29) we have |hm,jm,q(x, t)| �

(1/2)�(m+1)(im�i⇤(jm))
q+1 , and by the pigeonhole principle there exists 0  n 

Ncut,x with

|Dn
D

m

t,q�1uq(x, t)| �
�i⇤(jm)
q+1

2Ncut,x
�(m+1)(im�i⇤(jm))
q+1 �

1/2
q

(�q�q)
n(⌧�1

q�1�
i⇤(jm)+2
q+1 )m

� 1

2Ncut,x
�im
q+1�

1/2
q
�
n

q
(⌧�1

q�1�
im+2
q+1 )m,

and we also know that (x, t) 2 supp ( jm,q�1). By (5.9), the fact that Ncut,x 
2Nind,v � 2, and Ncut,t  Nind,t, we know that

|Dn
D

m

t,q�1uq(x, t)|  Mb�
1/2
q
�
n

q
e�3/2
q

(⌧�1
q�1�

jm+1
q

)m

 Mb�
1/2
q
�
n

q
e�3/2
q

(⌧�1
q�1�

i⇤(jm)+1
q+1 )m

 Mb�
1/2
q
�
n

q
e�3/2
q

(⌧�1
q�1�

im
q+1)

m

for some constant Mb which is the maximal constant appearing in the . symbol
of (5.9) with n + m  Nfin. In particular, Mb is independent of q. The proof
is now completed, since the previous two inequalities and the assumption that
im = i � imax(q) + 1 imply that

�i
q+1  2Ncut,xMb

e�3/2
q

 �
5/3
q

. (6.52)

In view of (6.51) and (6.52), the value of imax is chosen as

imax(q) = sup
n
i
0 : �i

0

q+1  �
5/3
q

o
. (6.53)

To show that imax(q) < 1, and in particular that it is bounded independently
of q, note that

log(�
5/3
q )

log(�q+1)
!

5/3

"�(b� 1)

as q ! 1. Thus, assuming �0 is su�ciently large, since (b � 1)"�  1/5, the
bound (6.50) holds.
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6.2.4 Mixed derivative estimates

Recall from (3.7) the notation Dq = uq ·r for the directional derivative in the
direction of uq. With this notation—cf. (3.6)—we have Dt,q = Dt,q�1 + Dq.
Thus, Dq derivatives are useful for transferring bounds on Dt,q�1 derivatives to
bounds on Dt,q derivatives.

From the Leibniz rule we have that

D
K

q
=

KX

j=1

fj,KD
j
, (6.54)

where

fj,K =
X

{�2NK : |�|=K�j}

cj,K,�

KY

`=1

D
�`uq, (6.55)

where cj,K,� are explicitly computable coe�cients that depend only on K, j, and
�. Similarly to the coe�cients in (A.49), the precise value of these constants is
not important, since all the indices appearing throughout the proof are taken
to be less than 2Nfin. The decomposition (6.54)–(6.55) will be used frequently
in this section.

Remark 6.15. Since throughout the book the maximal number of spatial or
material derivatives is bounded from above by 2Nfin, which is a number that is
independent of q, we have not explicitly stated the formula for the coe�cients
ca,k,� in (A.49), as all these constants will be absorbed in a . symbol. We note,
however, that the proof of Lemma A.13 does yield a recursion relation for the
ca,k,� , which may be used if desired to compute the ca,k,� explicitly.

With the notation in (6.55) we have the following bounds.

Lemma 6.16. For q � 1 and 1  K  2Nfin, the functions {fj,K}K
j=1 defined

in (6.55) obey the estimate

kDa
fj,Kk

L1(supp i,q)
. (�i+1

q+1�
1/2
q

)KM
⇣
a+K � j, 2Nind,v,�q�q, e�q

⌘
. (6.56)

for any a  2Nfin �K + j and any 0  i  imax(q).

Proof of Lemma 6.16. Note that no material derivative appears in (6.55), and
thus to establish (6.56) we appeal to Corollary 6.12 with M = 0, and to the
bound (5.6) with m = 0. From the product rule we obtain that

kDa
fjkL1(supp i,q)

.
X

{�2NK : |�|=K�j}

X

{↵2Nk : |↵|=a}

KY

`=1

��D↵`+�`uq

��
L1(supp i,q)
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.
X

{�2NK : |�|=K�j}

X

{↵2Nk : |↵|=a}

KY

`=1

�i+1
q+1�

1/2
q

M
⇣
↵` + �`, 2Nind,v,�q�q, e�q

⌘

. (�i+1
q+1�

1/2
q

)KM
⇣
a+K � j, 2Nind,v,�q�q, e�q

⌘

since |�| = K � j.

Next, we supplement the space and material derivative estimates for uq ob-
tained in (5.6) and (6.33), with derivatives bounds that combine space, direc-
tional, and material derivatives.

Lemma 6.17. For q � 1 and 0  i  imax, we have that

��DN
D

K

q
D

M

t,q�1uq

��
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)K+1M(N +K, 2Nind,v,�q�q, e�q)M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧q�1

�

. (�i+1
q+1�

1/2
q

)M(N, 2Nind,v,�q�q, e�q)(�i�c0
q+1 ⌧

�1
q

)KM
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧

�1
q�1

�

holds for 0  K +N +M  2Nfin.

Proof of Lemma 6.17. The second estimate in the lemma follows from the pa-

rameter inequality �1+c0
q+1

e�q�1/2q  ⌧
�1
q

, which is a consequence of (9.39). In
order to prove the first statement, we let 0  a  N and 1  j  K. From
estimate (6.33) and (5.6) we obtain

��DN�a+j
D

M

t,q�1uq

��
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)M
⇣
N � a+ j, 2Nind,v,�q�q, e�q

⌘

⇥M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧

�1
q�1

�
,

which may be combined with (6.54)–(6.55), and the bound (6.56), to obtain
that

��DN
D

K

q
D

M

t,q�1uq

��
L1(supp i,q)

.
NX

a=0

KX

j=1

kDa
fj,Kk

L1(supp i,q)

��DN�a+j
D

M

t,q�1wq

��
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)K+1M
⇣
N +K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧

�1
q�1

�

holds, concluding the proof of the lemma.

The next lemma shows that the inductive assumptions (3.22)–(3.25b) hold
also for q0 = q.
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Lemma 6.18. For q � 1, k � 1, ↵,� 2 Nk with |↵| = K and |�| = M , we have

�����

⇣ kY

i=1

D
↵iD

�i
t,q�1

⌘
uq

�����
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)M
⇣
K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�

(6.57)

for all K +M  3Nfin/2 + 1. Additionally, for N � 0, the bound

�����D
N

⇣ kY

i=1

D
↵i
q
D
�i
t,q�1

⌘
uq

�����
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)K+1M
⇣
N +K, 2Nind,v,�q�q, e�q

⌘

⇥M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�
(6.58)

. (�i+1
q+1�

1/2
q

)M
⇣
N, 2Nind,v,�q�q, e�q

⌘
(�i�c0

q+1 ⌧
�1
q

)K

⇥M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�
(6.59)

holds for all 0  K +M +N  3Nfin/2 + 1. Lastly, we have the estimate

�����

⇣ kY

i=1

D
↵iD

�i
t,q

⌘
Dv`q

�����
L1(supp i,q)

. (�i+1
q+1�

1/2
q
e�q)M

⇣
K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.60)

for all K +M  3Nfin/2, and

�����

⇣ kY

i=1

D
↵iD

�i
t,q

⌘
v`q

�����
L1(supp i,q)

. (�i+1
q+1�

1/2
q
�
2
q
)M

⇣
K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.61)

for all K +M  3Nfin/2 + 1.

Remark 6.19. As shown in Remark 3.4, the bound (6.59) and identity (A.39)
imply that estimate (3.26) also holds with q

0 = q.

Proof of Lemma 6.18. We note that (6.59) follows directly from (6.58), by ap-

pealing to the parameter inequality �1+c0
q+1 �

1/2
q
e�q  ⌧

�1
q

, which is a consequence
of (9.39). We first show that (6.57) holds, then establish (6.58), and lastly prove
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the bounds (6.60)–(6.61).
Proof of (6.57). The statement is proven by induction on k. For k = 1

the estimate is given by Corollary 6.12 and the bound (5.6); in fact, for k = 1
we have derivatives estimates up to level 2Nfin, and not just 3Nfin/2+ 1. For the
induction step, assume that (6.57) holds for any k

0  k � 1. We denote

Pk0 =
⇣ k

0Y

i=1

D
↵iD

�i
t,q�1

⌘
uq (6.62)

and write

⇣ kY

i=1

D
↵iD

�i
t,q�1

⌘
uq

= (D↵kD
�k
t,q�1)(D

↵k�1D
�k�1

t,q�1)Pk�2

= (D↵k+↵k�1D
�k+�k�1

t,q�1 )Pk�2 +D
↵k

h
D
�k
t,q�1, D

↵k�1

i
D
�k�1

t,q�1Pk�2. (6.63)

The first term in (6.63) already obeys the correct bound, since we know that
(6.57) holds for k0 = k � 1. In order to treat the second term on the right side
of (6.63), we use Lemma A.12 to write the commutator as

D
↵k

h
D
�k
t,q�1, D

↵k�1

i
D
�k�1

t,q�1Pk�2

= D
↵k

X

1|�|�k

�k!

�!(�k � |�|)!

 
↵k�1Y

`=1

(adDt,q�1)
�`(D)

!
D
�k+�k�1�|�|
t,q�1 Pk�2.

(6.64)

From Lemma A.13 and the Leibniz rule we claim that one may expand

↵k�1Y

`=1

(adDt,q�1)
�`(D) =

↵k�1X

j=1

gjD
j (6.65)

for some explicit functions gj which obey the estimate

kDa
gjkL1(supp i,q)

. e�a+↵k�1�j

q�1 M
�
|�|,Nind,t,�

i

q+1�
�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�
(6.66)

for all a such that a+↵k�1� j+ |�|  3Nfin/2. The claim (6.66) requires a proof,
which we sketch next. Using the definition (6.11), the inductive estimate (3.23)
at level q0 = q� 1, k = 1, and the parameter inequality (9.39) at level q� 1, for
any 0  m  Ncut,t we have that

��Da
D

b

t,q�1Dv`q�1

��
L1(supp m,im,q)
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.
X

{jm : �jm
q �im

q+1}

��Da
D

b

t,q�1Dv`q�1

��
L1(supp jm,q�1)

.
X

{jm : �jm
q �im

q+1}

(�jm+1
q

�
1/2

q�1)e�
a+1
q�1M

�
b,Nind,t,�

jm�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�

. (�im
q+1�q�

1/2

q�1)e�
a+1
q�1M

�
b,Nind,t,�

im
q+1�

�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�

. e�a
q�1M

�
b+ 1,Nind,t,�

im
q+1�

�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�

for all a+ b  3Nfin/2. Thus, from the definition (6.14) we deduce that

��Da
D

b

t,q�1Dv`q�1

��
L1(supp i,q)

. e�a
q�1M

�
b+ 1,Nind,t,�

i

q+1�
�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�
(6.67)

for all a+ b  3Nfin/2. When combined with the formula (A.49), which allows us
to write

(adDt,q�1)
�(D) = f�,q�1 ·r (6.68)

for an explicit function f�,q�1 which is defined in terms of v`q�1 , estimate (6.67)
and the Leibniz rule gives the estimate

kDa
f�,q�1kL1(supp i,q)

. e�a
q�1M

�
�,Nind,t,�

i

q+1�
�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�
(6.69)

for all a + �  3Nfin/2. In order to conclude the proof of (6.65)–(6.66), we use
(6.68) to write

↵k�1Y

`=1

(adDt,q�1)
�`(D) =

↵k�1Y

`=1

(f�`,q�1 ·r) =

↵k�1X

j=1

gjD
j
,

and now the claimed estimate for gj follows from the previously established
bound (6.69) for the f�`,q�1’s and their derivatives, and the Leibniz rule.

With (6.65)–(6.66) in hand, and using estimate (6.57) with k
0 = k � 1, we

return to (6.64) and obtain

���D↵k

h
D
�k
t,q�1, D

↵k�1

i
D
�k�1

t,q�1Pk�2

���
L1(supp i,q)

.
↵k�1X

j=1

X

1|�|�k

���D↵k

⇣
gj D

j
D
�k+�k�1�|�|
t,q�1 Pk�2

⌘���
L1(supp i,q)

.
↵k�1X

j=1

X

1|�|�k

↵kX

a0=0

���D↵k�a
0
gj

���
L1(supp i,q)

⇥
���Da

0+j
D
�k+�k�1�|�|
t,q�1 Pk�2

���
L1(supp i,q)
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.
↵k�1X

j=1

�kX

|�|=1

↵kX

a0=0

�
↵k+↵k�1�j�a

0

q
M
�
|�|,Nind,t,�

i

q+1�
�c0
q

⌧
�1
q�1,�

�1
q
e⌧�1
q�1

�

⇥ (�i+1
q+1�

1/2
q

)M
⇣
K � ↵k � ↵k�1 + j + a

0
, 2Nind,v,�q�q, e�q

⌘

⇥M
�
M � |�|,Nind,t,�

i+1
q+3⌧

�1
q�1,�

�1
q+1e⌧�1

q

�

. (�i+1
q+1�

1/2
q

)M
⇣
K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�

(6.70)

for M  Nind,t and K + M  3Nfin/2 + 1. The +1 in the range of derivatives
is simply a consequence of the fact that the summand in the third line of the
above display starts with j � 1 and with |�| � 1. This concludes the proof of
the inductive step for (6.57).

Proof of (6.58). This estimate follows from Lemma A.10. Indeed, letting
v = f = uq, B = Dt,q�1, ⌦ = supp i,q, and p = 1, the previously established
bound (6.57) allows us to verify conditions (A.40)–(A.41) of Lemma A.10 with

N⇤ = 3Nfin/2 + 1, Cv = Cf = �i+1
q+1�

1/2
q , �v = �f = �q�q, e�v = e�f = e�q, Nx =

2Nind,v, µv = µf = �i+3
q+1⌧

�1
q�1, eµv = eµf = ��1

q+1e⌧�1
q

, and Nt = Nind,t. As |↵| = K

and |�| = M , the bound (6.58) now is a direct consequence of (A.42).
Proof of (6.60) and (6.61). First we consider the bound (6.60), inductively

on k. For the case k = 1 the main idea is to appeal to estimate (A.44) in
Lemma A.10 with the operators A = Dq and B = Dt,q�1 and the functions
v = uq and f = Dv`q , so that D

n(A + B)mf = D
n
D

m

t,q
Dv`q . As before, the

assumption (A.40) holds due to (6.57) with ⌦ = supp i,q, N⇤ = 3Nfin/2+1, Cv =

�i+1
q+1�

1/2
q , �v = �q�q, e�v = e�q, Nx = 2Nind,v, µv = �i+3

q+1⌧
�1
q�1, eµv = ��1

q+1e⌧�1
q

, and
Nt = Nind,t. Verifying condition (A.41) is this time more involved, and follows
by rewriting f = Dv`q = Duq + Dv`q�1 . By using (6.57), and the parameter
inequality �3

q+1⌧
�1
q�1  ��c0

q+1⌧
�1
q

(cf. (9.40)), we conveniently obtain

�����

⇣ kY

i=1

D
↵iD

�i
t,q�1

⌘
Duq

�����
L1(supp i,q)

. (�i+1
q+1�

1/2
q
e�q)M

⇣
K, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.71)

for all |↵|+ |�| = K+M  3Nfin/2 (note that the maximal number of derivatives
is not 3Nfin/2 + 1 anymore, but instead is just 3Nfin/2; the reason is that we are
estimating Duq and not uq). On the other hand, from the inductive assumption
(3.23) with q

0 = q � 1 we obtain that

�����

⇣ kY

i=1

D
↵iD

�i
t,q�1

⌘
Dv`q�1

�����
L1(supp j,q�1)
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. (�j+1
q

�
1/2

q�1)(e�q�1)
K+1M

�
M,Nind,t,�

j�c0
q

⌧
�1
q�1, e⌧

�1
q�1

�

for K + M  3Nfin/2. Recalling the definitions (6.11)–(6.14) and the notation
(6.15), we have that (x, t) 2 supp ( i,q) if and only if (x, t) 2 supp ( ~i,q), and

thus for every m 2 {0, . . . ,Ncut,t}, there exists jm with �jm
q

 �im
q+1  �i

q+1

and (x, t) 2 supp ( jm,q�1). Thus, the above stated estimate and our usual
parameter inequalities imply that

�����

⇣ kY

i=1

D
↵iD

�i
t,q�1

⌘
Dv`q�1

�����
L1(supp i,q)

. (�i+1
q+1�

1/2

q�1
e�q�1)(e�q�1)

KM
�
M,Nind,t,�

i

q+1�
�c0
q

⌧
�1
q�1, e⌧

�1
q�1

�

. (�i+1
q+1�

1/2
q
e�q)(�q�q)KM

�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.72)

whenever K +M  3Nfin/2. Here we have used that �
1/2

q�1
e�q�1  �

1/2
q
e�q and that

�i
q+1�

�c0
q

⌧
�1
q�1  �i�c0

q+1 ⌧
�1
q

 ��1
q+1e⌧�1

q
, for all i  imax. In the last inequality, we

have used (9.20) and (6.49). Combining (6.71) and (6.72) we may now verify

condition (A.41) for f = Dv`q , with p = 1, ⌦ = supp ( i,q), Cf = �i+1
q+1�

1/2
q
e�q,

�f = �q�q, e�f = e�q, Nx = 2Nind,v, µf = �i�c0
q+1 ⌧

�1
q

, eµf = ��1
q+1e⌧�1

q
, Nt = Nind,t,

and N⇤ = 3Nfin/2. We may thus appeal to (A.44) and obtain that

��DK
D

M

t,q
Dv`q

��
L1(supp i,q)

. (�i+1
q+1�

1/2
q
e�q)M

⇣
K, 2Nind,v,�q�q, e�q

⌘

⇥M
⇣
M,Nind,t,max{�i�c0

q+1 ⌧
�1
q

,�i+1
q+1�

1/2
q
e�q},max{��1

q+1e⌧�1
q

,�i+1
q+1�

1/2
q
e�q}
⌘

whenever K +M  3Nfin/2. The parameter inequalities �c0+1
q+1 �

1/2
q
e�q  ⌧

�1
q

from

(9.39) and �i+2
q+1�

1/2
q
e�q  e⌧�1

q
, which follow from (9.43) and (6.49), conclude the

proof of (6.60) for k = 1.
In order to prove (6.60) for a general k, we proceed by induction. Assume

the estimate holds for every k
0  k � 1. Proving (6.60) at level k is done in the

same way as we have established the induction step (in k) for (6.57). We let

ePk0 =

0

@
k
0Y

i=1

D
↵iD

�i
t,q

1

ADv`q

and decompose

 
kY

i=1

D
↵iD

�i
t,q

!
Dv`q = (D↵k+↵k�1D

�k+�k�1

t,q
) ePk�2
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+D
↵k

h
D
�k
t,q
, D

↵k�1

i
D
�k�1

t,q
ePk�2

and note that the first term is directly bounded using the induction assumption
(at level k � 1). To bound the commutator term, similarly to (6.64)–(6.66), we
obtain from Lemmas A.12 and A.13 that

D
↵k

h
D
�k
t,q
, D

↵k�1

i
D
�k�1

t,q
ePk�2

= D
↵k

X

1|�|�k

�k!

�!(�k � |�|)!

0

@
↵k�1X

j=1

egjDj

1

AD
�k+�k�1�|�|
t,q

ePk�2 ,

where one may use the previously established bound (6.60) with k = 1 (instead
of (6.67)) to estimate

kDaegjkL1(supp i,q)

. M
⇣
a+ ↵k�1 � j, 2Nind,v,�q�q, e�q

⌘
M
�
|�|,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
.

(6.73)

Note that the above estimate is not merely (6.66) with q increased by 1. Rather,
the above estimate is proven in the same way that (6.66) was proven, by first
showing that the analogous version of (6.69) is

kDa
f�,qkL1(supp i,q)

. M
⇣
a, 2Nind,v,�q�q, e�q

⌘
M
�
�,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
,

from which the claimed estimate (6.73) on D
aegj follows. The estimate

���D↵k

h
D
�k
t,q
, D

↵k�1

i
D
�k�1

t,q
ePk�2

���
L1(supp i,q)

. (�i+1
q+1�

1/2
q

)M
⇣
K + 1, 2Nind,v,�q�q, e�q

⌘
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.74)

follows similarly to (6.70), from the estimate (6.73) for egj , and the bound (6.60)
with k � 1 terms in the product. This concludes the proof of estimate (6.60).

To conclude the proof of the lemma, we also need to establish the estimates
for v`q claimed in (6.61). The proof of this bound is nearly identical to that of
(6.60), as is readily seen for k = 1: we just need to replace Duq estimates with
uq estimates, and Dv`q�1 bounds with v`q�1 bounds. For instance, instead of
(6.71), we appeal to (6.59) and obtain a bound forDK

D
M

t,q
uq which is better than

(6.71) by a factor of e�q, and which holds for K+M  3Nfin/2+1. This estimate
is sharper than required by (6.61). The estimate for D

K
D

M

t,q
v`q�1 is obtained

similarly to (6.72), except that instead of appealing to the induction assumption
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(3.23) at level q0 = q � 1, we use (3.24) with q
0 = q � 1. The Sobolev loss �2

q�1

is then apparent from (3.24), and the estimates hold for K + M  3Nfin/2 + 1.
These arguments establish (6.61) with k = 1. The case of general k � 2 is
treated inductively exactly as before, because the commutator term is bounded
in the same way as in (6.74), except that K + 1 is replaced by K. To avoid
redundancy, we omit these details.

6.2.5 Material derivatives

The estimates in the previous sections, which have led up to Lemma 6.18, allow
us to estimate mixed space, directional, and material derivatives of the velocity
cuto↵ functions  i,q, which in turn allow us to establish the inductive bounds
(3.19) and (3.20) with q

0 = q.
In order to achieve this we crucially recall Remark 6.9. Note that if we

were to directly di↵erentiate (6.14), then we would need to consider all vectors
~i 2 NNcut,t+1

0 such that max0mNcut,t im = i, and then for each one of these ~i
consider the term 1supp ( ~i,q)

Dt,q�1( 2
m,im,q

) for each 0  m  Ncut,t; however,
in this situation we encounter for instance a term with i0 = 0 and im0 = i for all
1  m

0  Ncut,t; the bounds available on this term would be catastrophic due
to the mismatch i0 < im0 for all m0

> 0. Identity (6.26) precisely permits us to

avoid this situation, because it has essentially ordered the indices {im}Ncut,t

m=0 to
be non-increasing in m. Indeed, inspecting (6.26) and using identity (6.25) and
the definitions (6.15), (6.24), we see that

(x, t) 2 supp (Dt,q�1 
2
i,q
)

, 9~i 2 NNcut,t+1
0 and 90  m  Ncut,t

with im 2 {i� 1, i} and max
0m0Ncut,t

im0 = i

such that (x, t) 2 supp ( ~i,q) \ supp (Dt,q�1 m,im,q)

and im0  im whenever m < m
0  Ncut,t . (6.75)

The generalization of characterization (6.75) to higher order material derivatives

D
M

t,q�1 is direct: (x, t) 2 supp (DM

t,q�1 
2
i,q
) if and only if there exists~i 2 NNcut,t+1

0

with maximal index equal to i, such that for every 0  m  Ncut,t for which
(x, t) 2 supp ( ~i,q) \ supp (Dt,q�1 m,im,q) (there is potentially more than one
such m if M � 2 due to the Leibniz rule), we have im0  im 2 {i�1, i} whenever
m < m

0. In light of this characterization, we have the following bounds:

Lemma 6.20. Let q � 1 and 0  i  imax(q), and fix ~i 2 NNcut,t+1
0 such that

max0mNcut,t im = i, as in the right side of (6.75). Fix 0  m  Ncut,t such
that im 2 {i� 1, i} and such that im0  im for all m  m

0  Ncut,t. Lastly, fix
jm such that i⇤(jm)  im. For N,K,M, k � 0, ↵,� 2 Nk such that |↵| = K
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and |�| = M , we have

1supp ( ~i,q)
1supp ( jm,q�1)

 
1�(K+M)/Nfin

m,im,jm,q

�����

 
kY

l=1

D
↵lD

�l
t,q�1

!
 m,im,jm,q

�����

. M
⇣
K,Nind,v,�q�q, e�q�q

⌘
M
�
M,Nind,t � Ncut,x,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�

(6.76)

for all K such that 0  K +M  Nfin. Moreover,

1supp ( ~i,q)
1supp ( jm,q�1)

 
1�(N+K+M)/Nfin

m,im,jm,q

�����D
N

 
kY

l=1

D
↵l
q
D
�l
t,q�1

!
 m,im,jm,q

�����

. M
⇣
N,Nind,v,�q�q, e�q�q

⌘
(�i�c0

q+1 ⌧
�1
q

)K

⇥M
�
M,Nind,t � Ncut,x,�

3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�
(6.77)

holds whenever 0  N +K +M  Nfin.

Proof of Lemma 6.20. Note that for M = 0 estimate (6.76) was already es-
tablished in (6.35). The bound (6.77) with M = 0, i.e., an estimate for the
D

N
D

K

q
 m,im,jm,q, holds by appealing to the expansion (6.54)–(6.55) to the

bound (6.56) (which is applicable since in the context of estimate (6.77) we
work on the support of  i,q), to the bound (6.76) with M = 0, and to the

parameter inequality �2+c0
q+1 �

1/2
q
e�q  ⌧

�1
q

(which follows from (9.39)). The rest
of the proof is dedicated to the case M � 1. The proofs are very similar to
the proof of Lemma 6.13, but we additionally need to appeal to bounds and
arguments from the proof of Lemma 6.18.

Proof of (6.76). As in the proof of Lemma 6.13, we start with the case
k = 1, and estimate D

K
D

M

t,q�1 m,im,jm,q for K + M  Nfin, with M � 1.
We note that just like D, the operator Dt,q�1 is a scalar di↵erential operator,
and thus the Faà di Bruno argument which was used to bound (6.35) may be
repeated. As was done there, we recall the definitions (6.7)–(6.8) and split the
analysis in two cases, according to whether (6.37) or (6.42) holds.

Let us first consider the case (6.37). Our goal is to apply Lemma A.5 to the

function  =  m,q+1 or  = e m,q+1, with � = �m+1
q+1 , � = �(m+1)(im�i⇤(jm))

q+1 ,
h(x, t) = h

2
m,jm,q

(x, t), and Dt = Dt,q�1. Estimate (A.24) holds by (6.3)
and (6.5), so that it remains to obtain a bound on the material derivatives
of (hm,jm,q(x, t))2 and establish a bound which corresponds to (A.25) on the set
supp ( ~i,q) \ supp ( jm,q�1 m,im,jm,q). Similarly to (6.38), for K

0 +M
0  Nfin

the Leibniz rule and definition (6.6) gives

���DK
0
D

M
0

t,q�1h
2
m,jm,q

���

. (�q�q)
K

0
(⌧�1

q�1�
2
q+1)

M
0
��2(m+1)i⇤(jm)
q+1
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⇥
K

0X

K00=0

M
0X

M 00=0

Ncut,xX

n=0

(⌧�1
q�1�

2
q+1)

�m�M
00
(�q�q)

�n�K
00
�
�1/2
q

|Dn+K
00
D

m+M
00

t,q�1 uq|

⇥ (⌧�1
q�1�

2
q+1)

�m�M
0+M

00
(�q�q)

�n�K
0+K

00
�
�1/2
q

|Dn+K
0�K

00
D

m+M
0�M

00

t,q�1 uq| .
(6.78)

By the characterization (6.75), for every (x, t) in the support described on the left
side of (6.76) we have that for every m  R  Ncut,t there exists iR  im and jR

with i⇤(jR)  iR, such that (x, t) 2 supp jR,q�1 R,iR,jR,q. As a consequence,
for the terms in the sum (6.78) with L 2 {n+K

00
, n+K

0 �K
00}  Ncut,x and

R 2 {m+M
00
,m+M

0�M
00}  Ncut,t, we may appeal to estimate (6.28) which

gives a bound on hR,jR,q, and thus obtain

(⌧�1
q�1�

2
q+1)

�R(�q�q)
�L
�
�1/2
q

��DL
D

R

t,q�1uq

��
L1(supp R,iR,jR,q)

 �(R+1)i⇤(jR)
q+1 �(R+1)(iR+1�i⇤(jR))

q+1

 �(R+1)(im+1)
q+1 .

On the other hand, if L > Ncut,x, or if R > Ncut,t, then by (5.6) and (5.9) we
have that

(⌧�1
q�1�

2
q+1)

�R(�q�q)
�L
�
�1/2
q

��DL
D

R

t,q�1uq

��
L1(supp jm,q�1)

 e�3/2
q
��L

q
��2R
q+1 M

⇣
L, 2Nind,v, 1,�

�1
q
e�q
⌘
M
�
R,Nind,t,�

jm+1
q

, ⌧q�1e⌧�1
q�1

�

 M
⇣
L, 2Nind,v, 1,�

�1
q
e�q
⌘
M
�
R,Nind,t,�

im+1
q+1 , ⌧q�1e⌧�1

q�1

�
(6.79)

since Ncut,x and Ncut,t were taken su�ciently large to obey (9.51). Combining
(6.78)–(6.79), we may derive that

1supp ( ~i,q)
1supp ( jm,q�1)

���DK
0
D

M
0

t,q�1h
2
m,jm,q

���

. �2(m+1)(im�i⇤(jm)+1)
q+1 (�q�q)

K
0
(⌧�1

q�1�
2
q+1)

M
0

⇥M
⇣
2Ncut,x +K

0
, 2Nind,v, 1,�

�1
q
e�q
⌘
��2m(im+1)
q+1

⇥
M

0X

M 00=0

M
�
m+M

00
,Nind,t,�

im+1
q+1 , ⌧q�1e⌧�1

q�1

�

⇥M
�
m+M

0 �M
00
,Nind,t,�

im+1
q+1 , ⌧q�1e⌧�1

q�1

�

. �2(m+1)(im�i⇤(jm)+1)
q+1 (�q�q)

K
0
(⌧�1

q�1�
im+3
q+1 )M

0
M
⇣
K

0
,Nind,v, 1,�

�1
q
e�q
⌘

⇥M
⇣
M

0
,Nind,t � Ncut,t, 1, ⌧q�1�

�(im+1)
q+1 e⌧�1

q�1

⌘

. �2(m+1)(im�i⇤(jm)+1)
q+1 M

⇣
K

0
,Nind,v,�q�q,�qe�q

⌘



110

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

CHAPTER 6

⇥M
�
M

0
,Nind,t � Ncut,t, ⌧

�1
q�1�

i+3
q+1,�

2
q+1e⌧�1

q�1

�

. �2(m+1)(im�i⇤(jm)+1)
q+1 M

⇣
K

0
,Nind,v,�q�q,�qe�q

⌘

⇥M
�
M

0
,Nind,t � Ncut,t, ⌧

�1
q�1�

i+3
q+1,�

�1
q+1e⌧�1

q

�
(6.80)

for all K 0+M
0  Nfin. Here we have used that Nind,v � 2Nind,t, that m  Ncut,t,

and that im  i. The upshot of (6.80) is that condition (A.25) in Lemma A.5

is now verified, with Ch = �2(m+1)(im�i⇤(jm)+1)
q+1 , and � = �q�q, e� = �qe�q,

µ = ⌧
�1
q�1�

im+3
q+1 , eµ = �2

q+1e⌧�1
q�1, Nx = Nind,v, and Nt = Nind,t � Ncut,t. We

obtain from (A.26) and the fact that (� �)�2Ch = 1 that (6.76) holds when
k = 1 for those (x, t) such that hm,jm,q(x, t) satisfies (6.37). The case when
hm,jm,q(x, t) satisfies the bound (6.42) is nearly identical, as was the case in
the proof of Lemma 6.13. The only changes are that now � = 1 (according
to (6.4)), and that the constant Ch which we read from the right side of (6.80)

is now improved to �2(m+1)(im�i⇤(jm))
q+1 . These two changes o↵set each other,

resulting in the same exact bound. Thus, we have shown that (6.76) holds when
k = 1.

The general case k � 1 in (6.76) is obtained via induction on k, in precisely
the same fashion as the proof of estimate (6.57) in Lemma 6.18. At the heart
of the matter lies a commutator bound similar to (6.70), which is proven in
precisely the same way by appealing to the fact that we work on supp ( ~i,q) ⇢
supp ( i,q), and thus bound (6.66) is available; in turn, this bound provides
sharper space and material estimates than required in (6.76), completing the
proof. In order to avoid redundancy we omit further details.

Proof of (6.77). This estimate follows from Lemma A.10 with v = uq,
B = Dt,q�1, f =  m,im,jm,q, ⌦ = supp ( ~i,q)\supp ( jm,q�1)\supp ( m,im,jm,q),

and p = 1. Technically, the presence of the  �1+(N+K+M)/Nfin

m,im,jm,q
factor on the

left side of (6.77) means that the bound doesn’t follow from the statement of
Lemma A.10, but instead, it follows from its proof; the changes to the argu-
ment are minor and we ignore this distinction. First, we note that since ⌦ ⇢
supp ( i,q), estimate (6.57) allows us to verify condition (A.40) of Lemma A.10

with N⇤ = 3Nfin/2 + 1, Cv = �i+1
q+1�

1/2
q , �v = �q�q, e�v = e�q, Nx = 2Nind,v �

Nind,v, µv = �i+3
q+1⌧

�1
q�1, eµv = ��1

q+1e⌧�1
q

, and Nt = Nind,t � Nind,t � Ncut,t. On
the other hand, condition (A.41) of Lemma A.10 holds in view of (6.76) with

Cf = 1, �f = �q�q, e�f = �qe�q, Nx = Nind,v, µf = �i+3
q+1⌧

�1
q�1, eµf = ��1

q+1e⌧�1
q

,
and Nt = Nind,t � Ncut,t. As |↵| = K and |�| = M , the bound (6.77) is now

a direct consequence of (A.42) and the parameter inequality �i+1
q+1�

1/2
q �qe�q 

�i�c0
q+1 ⌧

�1
q

( �c0+2
q+1 �

1/2
q
e�q  ⌧

�1
q

; cf. (9.39).

A direct consequence of Lemma 6.20 and identity (6.75) is that the inductive
bounds (3.19) and (3.20) hold for q0 = q, as is shown by the following Lemma.

Lemma 6.21 (Mixed spatial and material derivatives for velocity cuto↵s). Let
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q � 1, 0  i  imax(q), N,K,M, k � 0, and ↵,� 2 Nk be such that |↵| = K and
|�| = M . Then we have

1

 
1�(K+M)/Nfin

i,q

�����

 
kY

l=1

D
↵lD

�l
t,q�1

!
 i,q

�����

. M
⇣
K,Nind,v,�q�q,�qe�q

⌘
M
�
M,Nind,t � Ncut,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�

(6.81)

for K +M  Nfin, and

1

 
1�(N+K+M)/Nfin

i,q

�����D
N

 
kY

l=1

D
↵l
q
D
�l
t,q�1

!
 i,q

�����

. M
⇣
N,Nind,v,�q�q,�qe�q

⌘
(�i�c0

q+1 ⌧
�1
q

)K

⇥M
�
M,Nind,t � Ncut,t,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�
(6.82)

holds for N +K +M  Nfin.

Remark 6.22. As shown in Remark 3.4, the bound (6.82) and identity (A.39)
imply that estimate (3.27) also holds with q

0 = q, namely that

1

 
1�(N+M)/Nfin

i,q

��DN
D

M

t,q
 i,q

��

. M
⇣
N,Nind,v,�q�q,�qe�q

⌘
M
�
M,Nind,t � Ncut,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.83)

for N +M  Nfin. Note that for all M � 0 we have

M
�
M,Nind,t � Ncut,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

 ��(Nind,t�Ncut,t)
q+1

�
⌧q�

�1
q+1e⌧�1

q

�Ncut M
�
M,Nind,t,�

i�c0+1
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

 M
�
M,Nind,t,�

i�c0+1
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

once Nind,t is taken to be su�ciently large when compared to Ncut,t to ensure
that

�
⌧qe⌧�1

q

�Ncut  �Nind,t

q+1

for all q � 1. This condition holds in view of (9.52). In summary, we have thus
obtained

1

 
1�(N+M)/Nfin

i,q

��DN
D

M

t,q
 i,q

��
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. M
⇣
N,Nind,v,�q�q,�qe�q

⌘
M
�
M,Nind,t,�

i�c0+1
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.84)

for N +M  Nfin.

Proof of Lemma 6.21. Note that for M = 0 estimate (6.81) holds by (6.36).
The bound (6.82) holds for M = 0, due to the expansion (6.54)–(6.55), to the
bound (6.56) on the support of  i,q, to the bound (6.82) with M = 0, and to

the parameter inequality �2+c0
q+1 �

1/2
q
e�q  ⌧

�1
q

(cf. (9.39)). The rest of the proof is
dedicated to the case M � 1.

The argument is very similar to the proof of Lemma 6.13 and so we only
emphasize the main di↵erences. We start with the proof of (6.81). We claim
that in the same way that (6.35) was shown to imply (6.45), one may show that
estimate (6.76) implies that for any ~i and 0  m  Ncut,t as on the right side of
(6.75) (in particular, as in Lemma 6.18), we have that

1supp ( ~i,q)

 
1�(K+M)/Nfin

m,im,q

�����

 
kY

l=1

D
↵lD

�l
t,q�1

!
 m,im,q

�����

. M
⇣
K,Nind,v,�q�q, e�q�q

⌘
M
�
M,Nind,t � Ncut,x,�

i+3
q+1⌧

�1
q�1,�

�1
q+1e⌧�1

q

�
.

(6.85)

The proof of the above estimate is done by induction on k. For k = 1, the
first step in establishing (6.85) is to use the Leibniz rule and induction on
the number of material derivatives to reduce the problem to an estimate for

 
�2+(K+M)/Nfin

m,im,q
D

K
D

M

t,q�1( 
2
m,im,q

); this is achieved in precisely the same way

that (6.47) was proven. The derivatives of  2
m,im,q

are now bounded via the Leib-

niz rule and the definition (6.11). Indeed, when D
K

0
D

M
0

t,q�1 derivatives fall on
 
2
m,im,jm,q

the required bound is obtained from (6.76), which gives the same up-

per bound as the one required by (6.85). On the other hand, if DK�K
0
D

M�M
0

t,q�1

derivatives fall on  
2
jm,q�1, the required estimate is provided by (3.27) with

q
0 = q � 1 and i replaced by jm; the resulting estimates are strictly better than
what is required by (6.85). This shows that estimate (6.85) holds for k = 1. We
then proceed inductively in k � 1, in the same fashion as the proof of estimate
(6.57) in Lemma 6.18; the corresponding commutator bound is applicable be-
cause we work on supp ( m,im,q)\ supp ( i,q). In order to avoid redundancy we
omit these details, and conclude the proof of (6.85).

As in the proof of Lemma 6.13, we are now able to show that (6.81) is
a consequence of (6.85). As before, by induction on the number of material
derivatives and the Leibniz rule we reduce the problem to an estimate for

 
�2+(K+M)/Nfin

i,q

Q
k

l=1 D
↵lD

�l
t,q�1( 

2
i,q
); see the proof of (6.47) for details. In

order to estimate derivatives of  2
i,q
, we use identities (6.25) and (6.26), which
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imply upon applying a di↵erential operator, say Dt,q�1, that

Dt,q�1( 
2
i,q
)

= Dt,q�1

0

@
Ncut,tX

m=0

m�1Y

m0=0

 2
m0,i,q ·  2

m,i,q
·

Ncut,tY

m00=m+1

 2
m00,i�1,q

1

A

=

Ncut,tX

m=0

m�1X

m̄0=0

Dt,q�1( 
2
m̄0,i,q)

Y

0m
0m�1

m
0 6=m̄

0

 2
m0,i,q ·  2

m,i,q
·

Ncut,tY

m00=m+1

 2
m00,i�1,q

+

Ncut,tX

m=0

Ncut,tX

m̄00=m+1

m�1Y

m0=0

 2
m0,i,q ·  2

m,i,q
·Dt,q�1( 

2
m̄00,i�1,q)

Y

m+1m
00Ncut,t

m
00 6=m̄

00

 2
m00,i�1,q

+

Ncut,tX

m=0

m�1Y

m0=0

 2
m0,i,q ·Dt,q�1( 

2
m,i,q

) ·
Ncut,tY

m00=m+1

 2
m00,i�1,q . (6.86)

Higher order material derivatives of  2
i,q
, and mixtures of space and mate-

rial derivatives, are obtained similarly, by an application of the Leibniz rule.
Equality (6.86) in particular justifies why we have only proven (6.85) for ~i and
0  m  Ncut,t, as on the right side of (6.75)! With (6.85) and (6.86) in hand,
we now repeat the argument from the proof of Lemma 6.13 (see the two displays
below (6.47)) and conclude that (6.81) holds.

In order to conclude the proof of the lemma, it remains to establish (6.82).
This bound follows now directly from (6.81) and an application of Lemma A.10
(to be more precise, we need to use the proof of this lemma), in precisely the
same way that (6.76) was shown earlier to imply (6.77). As there are no changes
to be made to this argument, we omit these details.

6.2.6 L
1 size of the velocity cuto↵s

The purpose of this section is to show that the inductive estimate (3.21) holds
with q

0 = q.

Lemma 6.23 (Support estimate). For all 0  i  imax(q) we have that

k i,qkL1 . ��2i+Cb
q+1 , (6.87)

where Cb is defined in (3.21) and thus depends only on b.

Proof of Lemma 6.23. If i  (Cb � 1)/2 then (6.87) trivially holds because 0 
 i,q  1, and |T3|  �q+1 for all q � 1, once a is chosen to be su�ciently large.
Thus, we only need to be concerned with i such that (Cb + 1)/2  i  imax(q).

First, we note that Lemma 6.7 implies that the functions  m,i0,q defined in
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(6.24) satisfy 0   2
m,i0,q  1, and thus (6.26) implies that

k i,qkL1 
Ncut,tX

m=0

k m,i,qkL1 . (6.88)

Next, we let j⇤(i) = j⇤(i, q) be the maximal index of jm appearing in (6.11). In
particular, recalling also (6.27), we have that

�i�1
q+1 < �j⇤(i)

q
 �i

q+1 < �j⇤(i)+1
q

. (6.89)

Using (6.11), in which we simply write j instead of jm, the fact that 0 
 
2
j,q�1, 

2
m,i,j,q

 1, and the inductive assumption (3.21) at level q � 1, we
may deduce that

k m,i,qkL1 
�� j⇤(i),q�1

��
L1 +

�� j⇤(i)�1,q�1

��
L1 +

j⇤(i)�2X

j=0

k j,q�1 m,i,j,qkL1

 ��2j⇤(i)+Cb
q

+ ��2j⇤(i)+2+Cb
q

+

j⇤(i)�2X

j=0

|supp ( j,q�1 m,i,j,q)| .

(6.90)

The second term on the right side of (6.90) is estimated using the last inequality
in (6.89) as

��2j⇤(i)+2+Cb
q

 ��2i
q+1�

4+Cb
q

 ��2i+Cb�1
q+1 �4+Cb�b(Cb�1)

q
= ��2i+Cb�1

q+1 , (6.91)

where in the last equality we have used the definition of Cb in (3.21). Clearly,
the first term on the right side of (6.90) is also bounded by the right side of
(6.91). We are left to estimate the terms appearing in the sum on the right side
of (6.90). The key fact is that for any j  j⇤(i)� 2 we have that i � i⇤(j) + 1;
this can be seen to hold because b < 2. Recalling the definition (6.7) and item 2
of Lemma 6.2, we obtain that for j  j⇤(i)� 2 we have

supp ( j,q�1 m,i,j,q) ✓
⇢
(x, t) 2 supp ( j,q�1) : h

2
m,j,q

� 1

4
�2(m+1)(i�i⇤(j))
q+1

�

✓
⇢
(x, t) :  2

j±,q�1h
2
m,j,q

� 1

4
�2(m+1)(i�i⇤(j))
q+1

�
. (6.92)

In the second inclusion of (6.92) we have appealed to (6.23) at level q � 1. By
Chebyshev’s inequality and the definition of hm,j,q in (6.6) we deduce that

|supp ( j,q�1 m,i,j,q)|
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 4��2(m+1)(i�i⇤(j))
q+1

Ncut,xX

n=0

��2i⇤(j)
q+1 �

�1
q

(�q�q)
�2n

⇣
⌧
�1
q�1�

i⇤(j)+2
q+1

⌘�2m

⇥
�� j±,q�1D

n
D

m

t,q�1uq

��2
L2 .

Since in the above display we have that n  Ncut,x  2Nind,v and m  Ncut,t 
Nind,t, we may combine the above estimate with (5.5) and deduce that

|supp ( j,q�1 m,i,j,q)|

 4��2(m+1)(i�i⇤(j))
q+1 ��2i⇤(j)

q+1

⇣
�j+1
q
��i⇤(j)�2
q+1

⌘2m Ncut,xX

n=0

��2n
q

 8��2i
q+1

�
�j+1
q
��i�2
q+1

�2m

 ��2i+Cb�1
q+1 . (6.93)

In the last inequality we have used that �j
q
 �i

q+1, that m � 0, and that Cb � 2
(since b  6).

Combining (6.88), (6.90), (6.91), and (6.93) we deduce that

k i,qkL1  Ncut,t j⇤(i)�
�2i+Cb�1
q+1 .

In order to conclude the proof of the lemma, we use the fact that Ncut,t is a
constant independent of q, and that by (6.90) and (3.17) we have

j⇤(i)  i
log�q+1

log�q
 imax(q)b 

4b

"�(b� 1)
.

Thus j⇤(i) is also bounded from above by a constant independent of q and upon
taking a su�ciently large we have

Ncut,t j⇤(i)�
�1
q+1  4Ncut,tb

"�(b� 1)
��1
q+1  1,

which concludes the proof.

6.3 DEFINITION OF THE TEMPORAL CUTOFF FUNCTIONS

Let � : (�1, 1) ! [0, 1] be a C
1 function which induces a partition of unity

according to

X

k2Z
�
2(·� k) ⌘ 1. (6.94)
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Consider the translated and rescaled function

�
�
t⌧

�1
q
�i�c0+2
q+1 � k

�
,

which is supported in the set of times t satisfying

��t� ⌧q�
�i+c0�2
q+1 k

��  ⌧q�
�i+c0�2
q+1

() t 2
⇥
(k � 1)⌧q�

�i+c0�2
q+1 , (k + 1)⌧q�

�i+c0�2
q+1

⇤
. (6.95)

We then define temporal cuto↵ functions

�i,k,q(t) = �(i)(t) = �
�
t⌧

�1
q
�i�c0+2
q+1 � k

�
. (6.96)

It is then clear that

|@m
t
�i,k,q| . (�i�c0+2

q+1 ⌧
�1
q

)m (6.97)

for m � 0 and
�i,k1,q(t)�i,k2,q(t) = 0 (6.98)

for all t 2 R unless |k1 � k2|  1. In analogy with  i±,q, we define

�(i,k±,q)(t) :=
⇣
�
2
(i,k�1,q)(t) + �

2
(i,k,q)(t) + �

2
(i,k+1,q)(t)

⌘ 1
2
, (6.99)

which are cuto↵s with the property that

�(i,k±,q) ⌘ 1 on supp (�(i,k,q)). (6.100)

Next, we define the cuto↵s e�i,k,q by

e�i,k,q(t) = e�(i)(t) = �
�
t⌧

�1
q
�i�c0
q+1 � ��c0

q+1k
�
. (6.101)

For comparison with (6.95), we have that e�i,k,q is supported in the set of times
t satisfying ��t� ⌧q�

�i+c0
q+1 k

��  ⌧q�
�i+c0
q+1 . (6.102)

As a consequence of these definitions and a su�ciently large choice of �0, let (i, k)
and (i⇤, k⇤) be such that supp�i,k,q \ supp�i⇤,k⇤,q 6= ; and i

⇤ 2 {i� 1, i, i+ 1};
then

supp�i,k,q ⇢ supp e�i⇤,k⇤,q. (6.103)

Finally, we shall require cuto↵s �
q,n,p

which satisfy the following three prop-
erties:

1. �
q,n,p

(t) ⌘ 1 on supp
t
R̊q,n,p.

2. �
q,n,p

(t) = 0 if
���R̊q,n,p(·, t0)

���
L1(T3)

= 0 for all |t� t
0| 

⇣
�
1/2
q �q�2q+1

⌘�1
.
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3. @m
t
�
q,n,p

.
⇣
�
1/2
q �q�2q+1

⌘m
.

For the sake of specificity, recalling (9.63), we may set

�
q,n,p

= �
(t)⇣
�
1/2
q �q�2

q+1

⌘ ⇤ 18
<

:t:kR̊q,n,pk
L1

✓
t�(�1/2q �q�2

q+1)
�1

,t+(�1/2q �q�2
q+1)

�1
�
⇥T3

◆>0

9
=

;

.

(6.104)
It is then clear that �

q,n,p
slightly expands and then mollifies the characteristic

function of the time support of R̊q,n,p so that the inductive assumptions (7.12),
(7.19), and (7.26) regarding the time support of wq+1,n,p may be verified.

6.4 ESTIMATES ON FLOW MAPS

We can now make estimates regarding the flows of the vector field v`q on the
support of a cuto↵ function.

Lemma 6.24 (Lagrangian paths don’t jump many supports). Let q � 0
and (x0, t0) be given. Assume that the index i is such that  2

i,q
(x0, t0) � 

2,

where  2
⇥

1
16 , 1

⇤
. Then the forward flow (X(t), t) := (X(x0, t0; t), t) of the

velocity field v`q originating at (x0, t0) has the property that  2
i,q
(X(t), t) � 

2
/2

for all t be such that |t � t0| 
⇣
�
1/2
q �q�

i+3
q+1

⌘�1
, which by (9.39) and (9.19) is

satisfied for |t� t0|  ⌧q�
�i+5+c0
q+1 .

Proof of Lemma 6.24. By the mean value theorem in time along the Lagrangian
flow (X(t), t) and (6.83), we have that

| i,q(X(t), t)�  i,q(x0, t0)|  |t� t0| kDt,q i,qkL1

 |t� t0| kDt,q�1 i,qkL1 + |t� t0| kuq ·r i,qkL1 .

From Lemma 6.21, Lemma 6.13, Lemma 6.11, and (9.41), we have that

kDt,q�1 i,qkL1 + kuq ·r i,qkL1 . �i+3
q+1⌧

�1
q�1 + �

1/2
q
�i+1
q+1�q�q

. �
1/2
q
�q�

i+2
q+1,

and hence, under the working assumption on |t� t0| we obtain

| i,q(X(x0, t0; t), t)�  i,q(x0, t0)| . ��1
q+1, (6.105)

for some implicit constant C > 0 which is independent of q � 0. From the
assumption of the lemma and (6.105) it follows that

 i,q(X(t), t) � � C��1
q+1 � /

p
2
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for all q � 0, since we have that  � 1/16 and C��1
q+1  1/100, which holds

independently of q once �0 is chosen su�ciently large.

Corollary 6.25. Suppose (x, t) is such that  2
i,q
(x, t) � 

2, where  2 [1/16, 1].

For t0 such that |t� t0| 
⇣
�
1/2
q �q�

i+4
q+1

⌘�1
, which is in particular satisfied for

|t� t0|  ⌧q�
�i+4+c0
q+1 , define x0 to satisfy

x = X(x0, t0; t).

That is, the forward flow X of the velocity field v`q , originating at x0 at time
t0, reaches the point x at time t. Then we have

 i,q(x0, t0) 6= 0 .

Proof of Corollary 6.25. By contradiction, suppose that  i,q(x0, t0) = 0. With-
out loss of generality we can assume t < t0. By continuity, there exists a minimal
time t

0 2 (t, t0] such that for x0 = x
0(t0) defined by

x = X(x0
, t

0; t),

we have
 i,q(x

0
, t

0) = 0 .

By minimality and (6.19), there exists an i
0 2 {i� 1, i+ 1} such that

 i0,q(x
0
, t

0) = 1 .

Applying Lemma 6.24, estimate (6.105), we obtain

| i0,q (X(x0
, t

0; t), t)�  i0,q(x
0
, t

0)| = | i0,q(x, t)�  i0,q(x
0
, t

0)| . ��1
q+1 . (6.106)

Here we have used that |t0 � t|  |t0 � t| 
⇣
�
1/2
q �q�

i+4
q+1

⌘�1

⇣
�
1/2
q �q�

i
0+3
q+1

⌘�1
,

so that Lemma 6.24 is applicable. Since  i0,q(x0
, t

0) = 1, from (6.106) we see
that  i0,q(x, t) > 0, and so  2

i,q
(x, t) = 1�  

2
i0,q(x, t). Then we obtain

 
2
i,q
(x, t) = 1�  

2
i0,q(x, t)

= (1 +  i0,q(x, t)) (1�  i0,q(x, t))

= (1 +  i0,q(x, t)) ( i0,q(x
0
, t

0)�  i0,q(x, t))

. ��1
q+1,

which is a contradiction once �0 is chosen su�ciently large, since we assumed
that  2

i,q
(x, t) � 

2 and  � 1/16.
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Definition 6.26. We define �i,k,q(x, t) := �(i,k)(x, t) to be the flows induced

by v`q with initial datum at time k⌧q�
�i

q+1 given by the identity, i.e.,

⇢
(@t + v`q ·r)�i,k,q = 0
�i,k,q(x, k⌧q�

�i

q+1) = x .
(6.107)

We will use D�(i,k) to denote the gradient of �(i,k) (which is thus a matrix-

valued function). The inverse of the matrix D�(i,k) is denoted by
�
D�(i,k)

��1
,

in contrast to D��1
(i,k), which is the gradient of the inverse map ��1

(i,k).

Corollary 6.27 (Deformation bounds). For k 2 Z, 0  i  imax, q �
0, and 2  N  3Nfin/2 + 1, we have the following bounds on the support of
 i,q(x, t)e�i,k,q(t).

��D�(i,k) � Id
��
L1(supp ( i,qe�i,k,q))

. ��1
q+1 (6.108)

��DN�(i,k)

��
L1(supp ( i,qe�i,k,q))

. ��1
q+1M

⇣
N � 1, 2Nind,v,�q�q, e�q

⌘
(6.109)

��(D�(i,k))
�1 � Id

��
L1(supp ( i,qe�i,k,q))

. ��1
q+1 (6.110)

��DN�1
�
(D�(i,k))

�1
���

L1(supp ( i,qe�i,k,q))
. ��1

q+1M
⇣
N � 1, 2Nind,v,�q�q, e�q

⌘

(6.111)
���DN��1

(i,k)

���
L1(supp ( i,qe�i,k,q))

. ��1
q+1M

⇣
N � 1, 2Nind,v,�q�q, e�q

⌘
(6.112)

Furthermore, we have the following bounds for 1  N +M  3Nfin/2:

���DN�N
0
D

M

t,q
D

N
0+1�(i,k)

���
L1(supp ( i,qe�i,k,q))

 e�N
q
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

, e⌧�1
q
��1
q+1

�
(6.113)

���DN�N
0
D

M

t,q
D

N
0
(D�(i,k))

�1
���
L1(supp ( i,qe�i,k,q))

 e�N
q
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

, e⌧�1
q
��1
q+1

�
(6.114)

for all 0  N
0  N .

Proof of Corollary 6.27. Let tk := ⌧q�
�i

q+1k. For t is on the support of e�i,k,q,

we may assume from (6.102) that |t� tk|  ⌧q�
�i+c0
q+1 . Moreover, since the

{ i0,q}i0�0 form a partition of unity, we know that there exists i
0 such that

 
2
i0,q(x, t) � 1/2 and i

0 2 {i � 1, i, i + 1}. Thus, we have that |t� tk| 
⌧q�

�i
0+1+c0

q+1 , and Corollary 6.25 is applicable. For this purpose, let x0 be de-
fined by X(x0, tk; t) = x, where X is the forward flow of the velocity field v`q ,
which equals the identity at time tk. Corollary 6.25 guarantees that (x0, tk) 2
supp ( i0,q).

The above argument shows that the flow (X(x0, tk; t), t) remains in the sup-
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port of  i0,q for all t such that |t� tk|  ⌧q�
�i+c0
q+1 , where i

0 2 {i� 1, i, i+1}. In
turn, using estimate (6.60), this shows that

sup
|t�tk|⌧q�

�i+c0
q+1

|Dv`q (X(x0, tk; t), t)| .
��Dv`q

��
L1(supp ( i±,q))

. �i+2
q+1�

1/2
q
e�q.

To conclude, using (4) from Lemma A.1 and (9.39), we obtain

��D�(i,k) � Id
��
L1(supp ( i,q e�i,k,q))

. ⌧q�
�i+c0
q+1 �i+2

q+1�
1/2
q
e�q . ��1

q+1,

which implies the desired estimate in (6.108).
Similarly, since the flow (X(x0, tk; t), t) remains in the support of  i0,q for all

t such that |t� tk|  ⌧q�
�i+c0
q+1 , for N � 2 the estimates in (3) from Lemma A.1

give that

��DN�(i,k)

��
L1(supp ( i,q e�i,k,q))

. ⌧q�
�i+c0
q+1

��DN
v`q

��
L1(supp ( i±,q))

. ⌧q�
�i+c0
q+1 (�i+2

q+1�
1/2
q

)e�qM
⇣
N � 1, 2Nind,v,�q�q, e�q

⌘

. ��1
q+1M

⇣
N � 1, 2Nind,v,�q�q, e�q

⌘
.

Here we have used the bound (6.60) with M = 0 and K = N � 1 up to N =
3Nfin/2 + 1.

The first bound on the inverse matrix follows from the fact that matrix
inversion is a smooth function in a neighborhood of the identity and fixes the
identity. The second bound on the inverse matrix follows from the fact that
detD�(i,k) = 1, so that we have the formula

cof D�T

(i,k) = (D�(i,k))
�1

.

Then since the cofactor matrix is a C
1 function of the entries of D�, we can

apply Lemma A.4 and the bound on D
N�(i,k). Note that in the application of

Lemma A.4, we set h = D�(i,k) � Id, � = � = 1, Ch = ��1
q+1, and the cost

of the spatial derivatives to be that given in (6.109). The final bound on the
inverse flow ��1

(i,k) follows from the identity

D
N

⇣
��1

(i,k)

⌘
(x) = D

N�1
⇣�

D�(i,k)

��1 �
��1(x)

�⌘
, (6.115)

the Faà di Bruno formula in Lemma A.4, induction on N , and the previously
demonstrated bounds.

The bound in (6.113) will be achieved by bounding

D
N�N

0
h
D

M

t,q
, D

N
0+1
i
�(i,k) ,
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which after using that Dt,q�(i,k) = 0 will conclude the proof. Towards this end,
we apply Lemma A.14, specifically Remark A.16 and Remark A.15, with v = v`q

and f = �(i,k). The assumption (A.50) (adjusted to fit Remark A.15) follows

from (6.60) with N0 = 3Nfin/2, Cv = �i+1
q+1�

1/2
q , �v = f�v = e�q, µv = �i�c0

q+1 ⌧
�1
q

,

eµv = ��1
q+1e⌧�1

q
, and Nt = Nind,t. The assumption (A.51) follows with Cf = ��1

q+1

from (6.109) and the fact that Dt,q�(i,k) = 0. The desired bound then follows

from the conclusion (A.56) from Remark A.16 after using ��1
q+1 to absorb implicit

constants. The bound in (6.114) will follow again from Lemma A.5 after using

the fact that
�
D�(i,k)

��1
is a smooth function of D�(i,k) in a neighborhood of

the identity, which is guaranteed from (6.108). As before, we set � = � = 1 and
Ch = ��1

q+1 in the application of Lemma A.5. The derivative costs are precisely
those in (6.113).

6.5 STRESS ESTIMATES ON THE SUPPORT OF THE NEW

VELOCITY CUTOFF FUNCTIONS

Before giving the definition of the stress cuto↵s, we first note that we can up-
grade the L1 bounds for  i,q�1D

n
D

m

t,q�1R̊`q available in (5.7), to L
1 bounds for

 i,qD
n
D

m

t,q
R̊`q . We claim that:

Lemma 6.28 (L1 estimates for zeroth order stress). Let R̊`q be as defined
in (5.1). For q � 1 and 0  i  imax(q) we have the estimate

���Dk
D

m

t,q
R̊`q

���
L1(supp ( i,q))

 ��CR
q

�q+1M
⇣
k, 2Nind,v,�q�q, e�q

⌘

⇥M
�
m,Nind,t,�

i�c0
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.116)

for all k +m  3Nfin/2.

Proof of Lemma 6.28. The first step is to apply Remark A.15, to the functions
v = v`q�1 , f = R̊`q , with p = 1, and on the domain ⌦ = supp ( i,q�1). The
bound (A.50) holds in view of the inductive assumption (3.23) with q

0 = q�1, for

the parameters Cv = �i+1
q

�
1/2

q�1, �v = e�v = e�q�1, µv = �i�c0
q

⌧
�1
q�1, eµv = ��1

q
e⌧�1
q�1,

Nx = 2Nind,v, Nt = Nind,t, and N� = 3Nfin/2. On the other hand, the assumption
(A.51) holds due to (5.7) and the fact that  i±,q�1 ⌘ 1 on supp ( i,q�1), with

the parameters Cf = ��CR
q

�q+1, �f = �q, e�f = e�q, Nx = 2Nind,v, µf = �i+3
q

⌧
�1
q�1,

eµf = e⌧�1
q�1, Nt = Nind,t, and N� = 2Nfin. We thus conclude from (A.54) that

�����

 
kY

i=1

D
↵iD

�i
t,q�1

!
R̊`q

�����
L1(supp ( i,q�1))
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. ��CR
q

�q+1M
⇣
|↵|, 2Nind,v,�q,

e�q
⌘
M
�
|�|,Nind,t,�

i+3
q

⌧
�1
q�1, e⌧

�1
q�1

�

whenever |↵| + |�|  3Nfin/2. Here we have used that e�q�1  �q and that

�i+1
q

�
1/2

q�1
e�q�1  �i+3

q
⌧
�1
q�1  e⌧�1

q�1 (in view of (9.39), (9.43), and (3.18)). In
particular, the definitions of  i,q in (6.14) and of  m,im,q in (6.11) imply that

�����

 
kY

i=1

D
↵iD

�i
t,q�1

!
R̊`q

�����
L1(supp ( i,q))

. ��CR
q

�q+1M
⇣
|↵|, 2Nind,v,�q,

e�q
⌘
M
�
|�|,Nind,t,�

i+3
q+1⌧

�1
q�1, e⌧

�1
q�1

�
(6.117)

for all |↵|+ |�|  3Nfin/2.
The second step is to apply Lemma A.10 with B = Dt,q�1, A = uq · r,

v = uq, f = R̊`q , p = 1, and ⌦ = supp ( i,q). In this case D
k(A + B)mf =

D
k
D

m

t,q
R̊`q , which is exactly the object that we need to estimate in (6.116).

The assumption (A.40) holds due to (6.57) with Cv = �i+1
q+1�

1/2
q , �v = �q�q,

e�v = e�q, Nx = 2Nind,v, µv = �i+3
q+1⌧

�1
q�1, eµv = ��1

q+1e⌧�1
q

, Nt = Nind,t, and
N⇤ = 3Nfin/2+1. The assumption (A.41) holds due to (6.117) with the parameters

Cf = ��CR
q

�q+1, �f = �q, e�f = e�q, Nx = 2Nind,v, µf = �i+3
q+1⌧

�1
q�1, eµf = e⌧�1

q�1,
Nt = Nind,t, and N⇤ = 3Nfin/2. The bound (A.44) and the parameter inequalities

�i+1
q+1�

1/2
q
e�q  �i�c0�2

q+1 ⌧
�1
q

 ��1
q+1e⌧�1

q
and �i+3

q+1⌧
�1
q�1  �i�c0

q+1 ⌧
�1
q

(which hold due
to (9.40), (9.39), (9.43), and (3.18)) then directly imply (6.116), concluding the
proof.

Remark 6.29. As discussed in Sections 2.4 and 2.7, in order to verify at level
q + 1 the inductive assumptions in (3.13) for the new stress R̊q+1, it will be
necessary to consider a sequence of intermediate (in terms of the cost of a spatial
derivative) objects R̊q,n,p indexed by n for 1  n  nmax and 1  p  pmax.

For notational convenience, when n = 0 and p = 1, we define R̊q,0,1 := R̊`q , and

estimates on R̊q,0 are already provided by Lemma 6.28. When n = 0 and p � 2,

R̊q,0,p = 0. For 1  n  nmax and 1  p  pmax, the higher order stresses R̊q,n,p

are defined in Section 8.1, specifically in (8.7). Note that the definition of R̊q,n,p

is given as a finite sum of sub-objects H̊
n
0

q,n,p
for n

0  n � 1 and thus requires

induction on n. The definition of H̊n
0

q,n,p
is contained in Section 8.3, specifically

in (8.36) and (8.53). Estimates on H̊
n
0

q,n,p
on the support of  i,q are stated in

(7.15), (7.22), and (7.29) and proven in Section 8.6. For the time being, we
assume that R̊q,n,p is well-defined and satisfies L

1 estimates similar to those
alluded to in (2.19); more precisely, we assume that

���Dk
D

m

t,q
R̊q,n,p

���
L1(supp i,q)

. �q+1,n,p�
k

q,n,p
M
�
m,Nind,t,�

i�cn
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.118)
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for all 0  k+m  Nfin,n. For the purpose of defining the stress cuto↵ functions,
the precise definitions of the n- and p-dependent parameters �q+1,n,p,�q,n,p,
Nfin,n, and cn present in (6.118) are not relevant. Note, however, that definitions
for �q,n,p for n = 0 are given in (9.26), while for 1  n  nmax and 1 
p  pmax, the definitions are given in (9.29). Similarly, when n = 0, we let
�q+1,0,p = ��CR

q
�q+1 as is consistent with (9.32), and when 1  n  nmax and

1  p  pmax, �q+1,n,p is defined in (9.34). Finally, note that there are losses in
the sharpness and order of the available derivative estimates in (6.118) relative
to (6.116). Specifically, the higher order estimates will only be proven up to
Nfin,n, which is a parameter that is decreasing with respect to n and defined in
(9.37). For the moment it is only important to note that Nfin,n � 14Nind,v for
all 0  n  nmax, which is necessary in order to establish (3.13) and (3.15) at
level q + 1. Similarly, there is a loss in the cost of sharp material derivatives
in (6.118), as cn will be a parameter which is decreasing with respect to n.
When n = 0, we set cn = c0 so that (6.116) is consistent with (6.118). For
1  n  nmax, cn is defined in (9.35).

6.6 DEFINITION OF THE STRESS CUTOFF FUNCTIONS

For q � 1, 0  i  imax, 0  n  nmax, and 1  p  pmax, in analogy with the
functions hm,jm,q in (6.6), and keeping in mind the bound (6.118), we define

g
2
i,q,n,p

(x, t) = 1 +

Ncut,xX

k=0

Ncut,tX

m=0

�
�2
q+1,n,p(�q+1�q,n,p)

�2k(�i�cn+2
q+1 ⌧

�1
q

)�2m

⇥ |Dk
D

m

t,q
R̊q,n,p(x, t)|2. (6.119)

With this notation, for j � 1 the stress cuto↵ functions are defined by

!i,j,q,n,p(x, t) =  0,q+1

⇣
��2j
q+1 gi,q,n,p(x, t)

⌘
, (6.120)

while for j = 0 we let

!i,0,q,n,p(x, t) = e 0,q+1

⇣
gi,q,n,p(x, t)

⌘
, (6.121)

where  0,q+1 and e 0,q+1 are as in Lemma 6.2. The above defined cuto↵ functions
!i,j,q,n,p will be shown to obey good estimates on the support of the velocity
cuto↵s  i,q defined earlier.
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6.7 PROPERTIES OF THE STRESS CUTOFF FUNCTIONS

6.7.1 Partition of unity

An immediate consequence of (6.1) with m = 0 is that for every fixed i, n, we
have

X

j�0

!
2
i,j,q,n,p

= 1 (6.122)

on T3 ⇥ R. Thus, {!2
i,j,q,n,p

}j�0 is a partition of unity.

6.7.2 L
1 estimates for the higher order stresses

We recall from (6.4) and (6.5) that the cuto↵ function  0,q+1 appearing in the
definition (6.120) satisfies di↵erent derivative bounds according to the size of its
argument. Accordingly, we introduce the following notation.

Definition 6.30 (Left side of the cuto↵ function !i,j,q,n,p). For j � 1 we
say that

(x, t) 2 supp (!L
i,j,q,n,p

) if 1/4  ��2j
q+1gi,q,n,p(x, t)  1 . (6.123)

When j = 0 we do not define the left side of the cuto↵ function !i,0,q,n,p.

Directly from the definition (6.119)–(6.121) and the support properties of

the functions  0,q+1 and e 0,q+1 stated in Lemma 6.2, and using Definition 6.30,
it follows that:

Lemma 6.31. For all 0  m  Ncut,t, 0  k  Ncut,x, and j � 0, we have that

1supp (!i,j,q,n,p)|Dk
D

m

t,q
R̊q,n,p(x, t)|

 �2(j+1)
q+1 �q+1,n,p(�q+1�q,n,p)

k(�i�cn+2
q+1 ⌧

�1
q

)m .

In the above estimate, if we replace 1supp (!i,j,q,n,p) with 1supp (!L
i,j,q,n,p)

(cf. Def-

inition 6.30), then the factor �2(j+1)
q+1 may be sharpened to �2j

q+1. Moreover, if

j � 1, then gi,q,n,p(x, t) � (1/4)�2j
q+1.

Lemma 6.31 provides sharp L
1 bounds for the space and material derivatives

of R̊q,n,p, at least when the number of space derivatives is less than Ncut,x, and
the number of material derivatives is less than Ncut,t. If we are willing to pay a
Sobolev-embedding loss, then (6.118) implies lossy L

1 bounds for large numbers
of space and material derivatives.

Lemma 6.32 (Derivative bounds with Sobolev loss). For q � 1, n � 0,
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and 0  i  imax, we have that:
���Dk

D
m

t,q
R̊q,n,p

���
L1(supp i,q)

. �q+1,n,p�
k+3
q,n,p

M
�
m,Nind,t,�

i�cn+1
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.124)

for all k +m  Nfin,n � 4.

Proof of Lemma 6.32. We apply Lemma A.3 to f = R̊q,n,p, with  i =  i,q, and
with p = 1. Assumption (A.16) holds in view of (6.36), with the parameter

choice ⇢ = �qe�q < �q+1
e�q = �q,0,1  �q,n,p, where the inequalities follow

immediately from (9.26)–(9.29). The assumption (A.17) holds due to (6.118),

with the parameter choices Cf = �q+1,n,p, � = e� = �q,n,p, µi = �i�cn
q+1 ⌧

�1
q

,

eµi = ��1
q+1e⌧�1

q
, Nt = Nind,t, and N� = Nfin,n. The lemma now directly follows

from (A.18b) with p = 1.

We note that Lemmas 6.31 and 6.32 imply the following estimate:

Corollary 6.33 (L1 bounds for the stress). For q � 0, 0  i  imax,
0  n  nmax, and 1  p  pmax we have

���Dk
D

m

t,q
R̊q,n,p

���
L1(supp i,q\supp!i,j,q,n,p)

. �2(j+1)
q+1 �q+1,n,p(�q+1�q,n,p)

kM
�
m,Nind,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

(6.125)

for all k+m  Nfin,n�4. In the above estimate, if we replace supp (!i,j,q,n,p) with

supp (!L
i,j,q,n,p

) (cf. Definition 6.30), then the factor �2(j+1)
q+1 may be sharpened

to �2j
q+1.

Proof of Corollary 6.33. For m  Ncut,t and k  Ncut,x, the bound (6.125) is
already contained in Lemma 6.31 (for both supp (!i,j,q,n,p) and the improved
bound for supp (!L

i,j,q,n,p
)). When either k > Ncut,x or m > Ncut,t, we appeal to

estimate (6.124) and the parameter bound

�q+1,n,p�
k+3
q,n,p

M
�
m,Nind,t,�

i�cn+1
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�


⇣
�
�k�min{m,Nind,t}
q+1 �

3
q,n,p

⌘
�q+1,n,p(�q+1�q,n,p)

k

⇥M
�
m,Nind,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

 �q+1,n,p(�q+1�q,n,p)
kM

�
m,Nind,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
.

The second estimate in the above display is a consequence of the fact that when
either k > Ncut,x or m > Ncut,t, since Ncut,x � Ncut,t, we have

�
�k�min{m,Nind,t}
q+1 �

3
q,n,p

 ��Ncut,t

q+1 �
3
q+1  1 (6.126)
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once Ncut,t (and hence Ncut,x) are chosen large enough, as in (9.51).

In the proof of Lemma 6.36 below, we shall require one more L
1 bound for

R̊q,n,p, which is for iterates of space and material derivatives. It is convenient
to record this bound now, as it follows directly from Corollary 6.33.

Corollary 6.34. For q � 0, 0  i  imax, 0  n  nmax, 1  p  pmax, and
↵,� 2 Nk

0 we have

�����

 
kY

`=1

D
↵`D

�`
t,q

!
R̊q,n,p

�����
L1(supp i,q\supp!i,j,q,n,p)

. �2(j+1)
q+1 �q+1,n,p(�q+1�q,n,p)

|↵|M
�
|�|,Nind,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.127)

for all |↵|+ |�|  Nfin,n� 4. In the above estimate, if we replace supp (!i,j,q,n,p)

with supp (!L
i,j,q,n,p

) (cf. Definition 6.30), then the factor �2(j+1)
q+1 may be sharp-

ened to �2j
q+1.

Proof of Corollary 6.34. The proof follows from Corollary 6.33 and Lemma A.14.
The bounds corresponding to supp!i,j,q,n,p and supp!L

i,j,q,n,p
are identical (ex-

cept for the improvement �2(j+1)
q+1 7! �2j

q+1 in the later case), so we only give
details for the former. Since Dt,q = @t + v`q · r, Lemma A.14 is applied with

v = v`q , f = R̊q,n,p, ⌦ = supp i,q \ supp!i,j,q,n,p, and p = 1. In view of
estimate (6.60) and the fact that 3Nfin/2 � Nfin,n, the assumption (A.50) holds

with Cv = �i+1
q+1�

1/2
q , �v = �q�q, e�v = e�q, Nx = 2Nind,v, µv = �i�cn

q+1 ⌧
�1
q

,

eµv = ��1
q+1e⌧�1

q
, and Nt = Nind,t. On the other hand, the bound (6.127) im-

plies assumption (A.51) with Cf = �2(j+1)
q+1 �q+1,n,p, �f = e�f = �q+1�q,n,p,

µf = �i�cn+2
q+1 ⌧

�1
q

, eµf = ��1
q+1e⌧�1

q
, and Nt = Nind,t. Since �v  �f , e�v  e�f ,

µv  µf , and eµv = eµf , we deduce from the bound (A.54) (in fact, its version
mentioned in Remark A.15) that (6.127) holds, thereby concluding the proof.

Here we are also implicitly using the parameter estimate Cve�v  µf , which holds
due to (9.39).

6.7.3 Maximal j index in the stress cuto↵s

Lemma 6.35 (Maximal j index in the stress cuto↵s). Fix q � 0, 0  n 
nmax, and 1  p  pmax. There exists a jmax = jmax(q, n, p) � 1, determined by
(6.128) below, which is bounded independently of q, n, and p as in (6.129), such
that for any 0  i  imax(q), we have

 i,q !i,j,q,n,p ⌘ 0 for all j > jmax.
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Moreover, the bound

�2(jmax�1)
q+1 . �

3
q,n,p

holds, with an implicit constant that is independent of q and n.

Proof of Lemma 6.35. We define jmax by

jmax = jmax(q, n, p) =
1

2

&
log(Mb

p
8Ncut,xNcut,t�

3
q,n,p

)

log(�q+1)

'
, (6.128)

where Mb is the implicit q-, n-, p-, and i-independent constant in (6.124); that
is, we take the largest such constant among all values of k and m with k+m 
Nfin,n � 4. To see that jmax may be bounded independently of q, n, and p, we
note that �q,n,p  �q+1, and thus

2jmax  1 +
log(Mb

p
8Ncut,xNcut,t) + 3 log(�q+1)

log(�q+1)
! 1 +

3b

"�(b� 1)

as q ! 1. Thus, assuming that a = �0 is su�ciently large, we obtain that

2jmax(q, n, p) 
4b

"�(b� 1)
(6.129)

for all q � 0, 0  n  nmax, and 1  p  pmax.
To conclude the proof of the lemma, let j > jmax, as defined in (6.128), and

assume by contradiction that there exists a point (x, t) 2 supp ( i,q!i,j,q,n,p) 6=
;. In particular, j � 1. Then, by (6.119)–(6.120) and the pigeonhole principle,
we see that there exist 0  k  Ncut,x and 0  m  Ncut,t such that

|Dk
D

m

t,q
R̊q,n,p(x, t)| �

�2j
q+1p

8Ncut,xNcut,t
�q+1,n,p(�q+1�q,n,p)

k(�i�cn+2
q+1 ⌧

�1
q

)m.

On the other hand, from (6.124), we have that

|Dk
D

m

t,q
R̊q,n,p(x, t)|  Mb�

3
q,n,p

�q+1,n,p�
k

q,n,p
(�i�cn+1

q+1 ⌧
�1
q

)m.

The above two estimates imply that

�2(jmax+1)
q+1  �2j

q+1  Mb

p
8Ncut,xNcut,t�

�k�m

q+1 �
3
q,n,p

, Mb

p
8Ncut,xNcut,t�

3
q,n,p

,

which contradicts the fact that j > jmax, as defined in (6.128).
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6.7.4 Bounds for space and material derivatives of the stress cuto↵s

Lemma 6.36 (Derivative bounds for the stress cuto↵s). For q � 0,
0  n  nmax, 1  p  pmax, 0  i  imax, and 0  j  jmax, we have that

1supp i,q |DN
D

M

t,q
!i,j,q,n,p|

!
1�(N+M)/Nfin

i,j,q,n,p

. (�q+1�q,n,p)
NM

�
M,Nind,t � Ncut,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.130)

for all N +M  Nfin,n � Ncut,x � Ncut,t � 4.

Remark 6.37. Notice that the sharp derivative bounds in (6.130) are only up to
Nind,t �Ncut,t. In order to obtain bounds up to Nind,t, we may argue exactly as
in the string of inequalities which converted (6.83) into (6.84), resulting in the
bound

1supp i,q |DN
D

M

t,q
!i,j,q,n,p|

!
1�(N+M)/Nfin

i,j,q,n,p

. (�q+1�q,n,p)
NM

�
M,Nind,t,�

i�cn+3
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
. (6.131)

Proof of Lemma 6.36. For simplicity, we only treat here the case j � 1. Indeed,
for j = 0 we simply replace  0,q+1 with e 0,q+1, which by Lemma 6.2 has similar
properties to  0,q+1.

The goal is to apply the Faà di Bruno Lemma A.5 with  =  0,q+1, � = ��j

q+1,
Dt = Dt,q, and h(x, t) = gi,q,n,p(x, t), so that g = !i,j,q,n,p.

Because the cuto↵ function  =  0,q+1 satisfies slightly di↵erent estimates
depending on whether we are in the case (6.4) or (6.5), assumption (A.24)
holds with � = 1, and respectively � = ��1

q+1, depending on whether we

work on the set supp (!L
i,j,q,n,p

) or on the set supp (!i,j,q,n,p) \ supp (!L
i,j,q,n,p

)
(cf. Definition 6.30). We have in fact encountered this same issue in the proof of
Lemmas 6.13 and 6.20. The slightly worse value of � for (x, t) 2 supp (!L

i,j,q,n,p
)

is, however, precisely balanced out by the fact that in Corollary 6.34 the bound
(6.127) is improved by a factor for �2

q+1 on supp (!L
i,j,q,n,p

). Since these two
factors of �2

q+1 cancel out, as they did in Lemmas 6.13 and 6.20, we only give

the proof of the bound (6.130) for (x, t) 2 supp (!i,j,q,n,p)\supp (!L
i,j,q,n,p

), which

is equivalent to the condition that 1 < ��2j
q+1gi,q,n,p(x, t)  �2q+1. Note moreover

that we do not perform any estimates for (x, t) such that 1 < ��2j
q+1gi,q,n,p(x, t) <

(1/4)�2
q+1 since in this region  0,q+1 ⌘ 1 (see item 2(b) in Lemma 6.2) and so

its derivative is equal to 0. Therefore, for the remainder of the proof we work
with the subset of supp!i,j,q,n,p, on which we have

(1/4)�2
q+1  ��2j

q+1gi,q,n,p(x, t)  �2q+1 . (6.132)

This ensures that assumption (A.24) of Lemma A.5 holds with � = ��1
q+1.
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In order to verify condition (A.25), the main requirement is a supremum
bound for DN

D
M

t,q
gi,q,n,p in L

1 on the support of  i,q!i,j,q,n,p. In this direction,
we claim that for all (x, t) as in (6.132), we have

1supp i,q

��DN
D

M

t,q
gi,q,n,p(x, t)

��

. �2j+2
q+1 (�q+1�q,n,p)

NM
�
M,Nind,t � Ncut,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
(6.133)

for all N + M  Nfin,n � Ncut,x � Ncut,t � 4. Thus, assumption (A.25) of

Lemma A.5 holds with Ch = �2j+2
q+1 , � = e� = �q+1�q,n,p, µ = �i�cn+2

q+1 ⌧
�1
q

, eµ =

��1
q+1e⌧�1

q
, and Nt = Nind,t � Ncut,t. In particular, we note that (� �)�2Ch = 1,

and estimate (A.26) of Lemma A.5 directly implies (6.130).
Thus, in order to complete the proof of the lemma it remains to establish

estimate (6.133). As in the proof of Lemma 6.13, it is more convenient to
first estimate DN

D
M

t,q
(gi,q,n,p(x, t)2), as its definition (cf. (6.119)) makes it more

amenable to the use of the Leibniz rule. Indeed, for all N+M  Nfin,n�Ncut,x�
Ncut,t � 4 we have that

D
N
D

M

t,q
g
2
i,q,n,p

=
NX

N 0=0

MX

M 0=0

✓
N

N 0

◆✓
M

M 0

◆ Ncut,xX

k=0

Ncut,tX

m=0

⇥
D

N
0
D

M
0

t,q
D

k
D

m

t,q
R̊q,n,p D

N�N
0
D

M�M
0
D

k
D

m

t,q
R̊q,n,p

�
2
q+1,n,p(�q+1�q,n,p)2k(�

i�cn+2
q+1 ⌧

�1
q )2m

.

Combining the above display with estimate (6.127) and the fact that k +m +
N +M  Nfin,n � 4, we deduce

1supp i,q\supp!i,j,q,n,p

��DN
D

M

t,q
g
2
i,q,n,p

��

.
NX

N 0=0

MX

M 0=0

Ncut,xX

k=0

Ncut,tX

m=0

1

�
2
q+1,n,p(�q+1�q,n,p)2k(�

i�cn+2
q+1 ⌧

�1
q )2m

⇥ �2(j+1)
q+1 �q+1,n,p(�q+1�q,n,p)

N
0+k

⇥M
�
M

0 +m,Nind,t,�
i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

⇥ �2(j+1)
q+1 �q+1,n,p(�q+1�q,n,p)

N�N
0+k

⇥M
�
M �M

0 +m,Nind,t,�
i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

. �4(j+1)
q+1 (�q+1�q,n,p)

NM
�
M,Nind,t � Ncut,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�
. (6.134)

Lastly, we show that the bound (6.134), and the fact that we work with (x, t)
such that (6.132) holds, implies (6.133). This argument is the same as the one
found earlier in (6.45)–(6.47). We establish (6.133) inductively inK forN+M 
K. We know from (6.132) that (6.133) holds for K = 0, i.e., for N = M = 0.
So let us assume by induction that (6.133) was previously established for any
pair N 0+M

0  K�1, and fix a new pair with N +M = K. Similarly to (6.46),
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the Leibniz rule gives

D
N
D

M

t,q
(g2

i,q,n,p
)� 2gi,q,n,pD

N
D

M

t,q
gi,q,n,p

=
X

0N
0N

0M
0M

0<N
0+M

0
<N+M

✓
N

N 0

◆✓
M

M 0

◆
D

N
0
D

M
0

t,q
gi,q,n,p D

N�N
0
D

M�M
0

t,q
gi,q,n,p .

Since every term in the sum on the right side of the above display satisfies
1  N

0 +M
0  K � 1, these terms are bounded by our inductive assumption,

and we deduce that

1supp i,q

��DN
D

M

t,q
gi,q,n,p

��

.
��DN

D
M

t,q
(g2

i,q,n,p
)
��

gi,q,n,p

+
�2(2j+2)
q+1 (�q+1�q,n,p)NM

�
M,Nind,t � Ncut,t,�

i�cn+2
q+1 ⌧

�1
q

,��1
q+1e⌧�1

q

�

gi,q,n,p
.

Thus, (6.133) also holds for N +M = K by combining the above display with
(6.132) (which implies gi,q,n,p � �2j+2

q+1 ), and with estimate (6.134) (which gives
the bounds for the derivatives of g2

i,q,n,p
). This concludes the proof of (6.133)

and thus of the lemma.

6.7.5 L
r norm of the stress cuto↵s

Lemma 6.38. Let q � 0. For r � 1 we have that

k!i,j,q,n,pkLr(supp i±,q)
. ��2j/r

q+1 (6.135)

holds for all 0  i  imax, 0  j  jmax, 0  n  nmax, and 1  p  pmax. The
implicit constant is independent of i, j, q, n, and p.

Proof of Lemma 6.38. The argument is similar to the proof of (6.87). We begin
with the case r = 1. The other cases r 2 (1,1] follow from the fact that
!i,j,q,n,p  1 and Lebesgue interpolation.

For j = 0 we are done, since, by definition, 0  !i,j,q,n,p  1; thus we
consider only j � 1. Since  i±2,q ⌘ 1 on supp ( i±,q), and using Lemma 6.31,
we see that for any (x, t) 2 supp ( i±,q!i,j,q,n,p) we have

 
2
i±2,qg

2
i,q,n,p

=  
2
i±2,q +

Ncut,xX

k=0

Ncut,tX

m=0

| i±2,qD
k
D

m

t,q
R̊q,n,p(x, t)|2

�
2
q+1,n,p(�q+1�q,n,p)2k(�

i�cn+2
q+1 ⌧

�1
q )2m

� 1

16
�4j
q+1.
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Using that a + b �
p
a2 + b2 for a, b � 0, and using �4j

q+1 � 64 for j � 1, we
conclude that

Ncut,xX

k=0

Ncut,tX

m=0

| i±2,qD
k
D

m

t,q
R̊q,n,p(x, t)|

�q+1,n,p(�q+1�q,n,p)k(�
i�cn+2
q+1 ⌧

�1
q )m

� 1

16
�2j
q+1.

Therefore, using Chebyshev’s inequality and the inductive assumption (6.118),
we obtain

|supp ( i±,q!i,j,q,n,p)|


���
n
(x, t) :  i±2,qgi,q,n,p � (1/16)�2j

q+1

o���



������

8
<

:(x, t) :

Ncut,xX

k=0

Ncut,tX

m=0

| i±2,qD
k
D

m

t,q
R̊q,n,p(x, t)|

�q+1,n,p(�q+1�q,n,p)k(�
i�cn+2
q+1 ⌧

�1
q )m

� (1/16)�2j
q+1

9
=

;

������

 16��2j
q+1

Ncut,xX

k=0

Ncut,tX

m=0

�
�1
q+1,n,p(�q+1�q,n,p)

�k(�i�cn+2
q+1 ⌧

�1
q

)�m

⇥
��� i±2,qD

k
D

m

t,q
R̊q,n,p

���
L1

. 16��2j
q+1

Ncut,xX

k=0

Ncut,tX

m=0

��k

q+1

. ��2j
q+1,

where the implicit constant depends only on Ncut,t. The proof is concluded since
the L

1 norm of a function with range in [0, 1] is bounded by the measure of its
support.

6.8 DEFINITION AND PROPERTIES OF THE

CHECKERBOARD CUTOFF FUNCTIONS

For 0  n  nmax, consider all the T3

�q,n,0
-periodic cells contained in T3, of

which there are �3
q,n,0. Index these cells by integer triples ~l = (l, w, h) for

l, w, h 2 {0, ...,�q,n,0 � 1}. Let X
q,n,~l

be a partition of unity adapted to this
checkerboard of periodic cells which satisfies, for any q and n,

X

~l=(l,w,h)

⇣
X

q,n,~l

⌘2
= 1 . (6.136)
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Furthermore, for ~l = (l, w, h),~l⇤ = (l⇤, w⇤
, h

⇤) 2 {0, ...,�q,n,0 � 1}3 such that

|l � l
⇤| � 2, |w � w

⇤| � 2, |h� h
⇤| � 2,

we impose that
X

q,n,~l
X

q,n,~l⇤ = 0. (6.137)

Definition 6.39 (Checkerboard cuto↵ function). Given q, 0  n  nmax,
i  imax, and k 2 Z, we define

⇣
q,i,k,n,~l

(x, t) = X
q,n,~l

(�i,k,q(x, t)) . (6.138)

Lemma 6.40. The cuto↵ functions
n
⇣
q,i,k,n,~l

o
~l

satisfy the following properties:

1. The material derivative Dt,q

⇣
⇣
q,i,k,n,~l

⌘
vanishes.

2. For each t 2 R and all x 2 T3,

X

~l=(l,w,h)

⇣
⇣
q,i,k,n,~l

(x, t)
⌘2

= 1. (6.139)

3. We have the spatial derivative estimate for all m  3Nfin/2 + 1,

���Dm
⇣
q,i,k,n,~l

���
L1(supp i,qe�i,k,q)

. �
m

q,n,0. (6.140)

4. There exists an implicit dimensional constant independent of q, n, k, i,
and ~l such that for all (x, t) 2 supp i,qe�i,k,q,

diam
⇣
supp

⇣
⇣
q,i,k,n,~l

(·, t)
⌘⌘

. (�q,n,0)
�1

. (6.141)

Proof of Lemma 6.40. The proof of (1) is immediate given that ⇣
q,i,k,n,~l

is pre-

composed with the flow map �i,k,q. (6.139) follows from (1), (6.136), and the
fact that for each t 2 R, �i,k,q(t, ·) is a di↵eomorphism of T3. The spatial deriva-
tive estimate in (6.140) follows from Lemma A.4, (6.109), and the parameter
definitions in (9.19), (9.26), and (9.29). The property in (6.141) follows from the
construction of the X

q,n,~l
functions (which can be taken simply as a dilation by

a factor of �q,n,1 of a q-independent partition of unity on R3) and (6.108).
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6.9 DEFINITION OF THE CUMULATIVE CUTOFF

FUNCTION

Finally, combining the cuto↵ functions defined in Definition 6.6, (6.120)–(6.121),
and (6.96), we define the cumulative cuto↵ function by

⌘
i,j,k,q,n,p,~l

(x, t) =  i,q(x, t)!i,j,q,n,p(x, t)�i,k,q(t)�q,n,p
(t)⇣

q,i,k,n,~l
(x, t).

Since the values of q and n are clear from the context, the values in ~l are irrele-
vant in many arguments, and the time cuto↵s �

q,n,p
are only used in Section 8.9,

we may abbreviate the above using any of

⌘
i,j,k,q,n,p,~l

(x, t) = ⌘i,j,k,q,n,p(x, t) = ⌘(i,j,k)(x, t)

=  (i)(x, t)!(i,j)(x, t)�(i,k)(t)⇣(i,k)(x, t).

It follows from Lemma 6.8, (6.122), (6.94), and (6.139) that for every (q, n, p)
fixed, we have a partition of unity

X

i,j�0

X

k2Z

X

~l

⌘
2
i,j,k,q,n,p,~l

(x, t) = 1. (6.142)

The sum in i goes up to imax (defined in (6.53)), while the sum in j goes up to
jmax (defined in (6.128)). In analogy with  i±,q, we define

!(i,j±)(x, t) :=
⇣
!
2
(i,j�1)(x, t) + !

2
(i,j)(x, t) + !

2
(i,j+1)(x, t)

⌘ 1
2
, (6.143)

which are cuto↵s with the property that

!(i,j±) ⌘ 1 on supp (!(i,j)). (6.144)

We then define

⌘(i±,j±,k,±)(x, t) :=  i±,q(x, t)!(i,j±)(x, t)e�i,k,q(t)⇣q,i,k,n,~l(x, t), (6.145)

which are cuto↵s with the property that

⌘(i,±,j±,k±) ⌘ ⇣
q,i,k,n,~l

on supp
�
 (i)!(i,j)�(i,k)

�
. (6.146)

We conclude this section with estimates on the supports of the cumulative cuto↵
function ⌘(i,j,k).

Lemma 6.41. For r1, r2 2 [1,1] with 1
r1

+ 1
r2

= 1 we have

X

~l

���supp (⌘
i,j,k,q,n,p,~l

)
��� . �

�2
⇣

i
r1

+ j
r2

⌘
+

Cb
r1

+2

q+1 . (6.147)
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Proof of Lemma 6.41. Applying Lemma 6.23, Lemma 6.38, Hölder’s inequality,
and interpolating, we obtain

|supp ( i,q) \ supp (!i,j,q,n,p)| 
�� i±,q!(i,j±)

��
L1

 k i±,qkLr1

��!(i,j±)

��
Lr2

. ��
2(i�1)�Cb

r1
� 2(j�1)

r2
q+1 .

Using 1
r1

+ 1
r2

= 1 and (6.139), which give that the ⇣
q,i,k,n,~l

form a partition of

unity, yields (6.147).
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Chapter Seven

From q to q + 1: breaking down the main inductive

estimates

The overarching goal of this section is to state several propositions which de-
compose the verification of the main inductive assumptions (3.13) and (3.14)
for the perturbation wq+1 and assumption (3.15) for the stress R̊q+1 into di-
gestible components. We remind the reader—cf. Remark 6.1—that the rest of
the inductive estimates stated in Section 3.2.3 are proven in Chapter 6. We
begin in Section 7.1 with Proposition 7.1, which simply translates the main
inductive assumptions into statements phrased at level q + 1. At this point,
we then introduce in Section 7.2 a handful of notations which will be neces-
sary in order to state the propositions which form the constituent parts of the
proof of Proposition 7.1. The next three propositions (7.3, 7.4, and 7.5) are de-
scribed and presented in Section 7.3. They are significantly more detailed than
Proposition 7.1, as they contain the precise estimates that will be propagated
throughout the construction and cancellation of the higher order stresses R̊q,en.
These three propositions will be verified in Chapter 8.

7.1 INDUCTION ON Q

The main claim of this section is an induction on q.

Proposition 7.1 (Inductive Step on q). Given v`q , R̊`q , and R̊
comm
q

satisfy-
ing the Euler-Reynolds system

@tv`q + div (v`q ⌦ v`q ) +rp`q = div R̊`q + div R̊comm
q

(7.1a)

div v`q = 0, (7.1b)

with v`q , R̊`q , and R̊
comm
q

satisfying the conclusions of Lemma 5.1, in addition

to (3.12)–(3.25b), there exist vq+1 = v`q + wq+1 and R̊q+1 which satisfy the
following:

1. vq+1 and R̊q+1 solve the Euler-Reynolds system

@tvq+1 + div (vq+1 ⌦ vq+1) +rpq+1 = R̊q+1 (7.2a)

div vq+1 = 0. (7.2b)
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2. For all k,m  7Nind,v,

�� i,qD
k
D

m

t,q
wq+1

��
L2  ��1

q+1�
1
2
q+1�

k

q+1M
�
m,Nind,t, ⌧

�1
q
�i�1
q+1, e⌧�1

q
��1
q+1

�
.

(7.3)
Furthermore, we have that

supp
t
(R̊q) ⇢ [T1, T2]

) supp
t
(wq+1) ⇢

h
T1 � (�q�

1/2
q

)�1
, T2 + (�q�

1/2
q

)�1
i
. (7.4)

3. For all k,m  3Nind,v,

��� i,qD
k
D

m

t,q
R̊q+1

���
L1

 ��CR
q+1 �q+2�

k

q+1M
�
m,Nind,t,�

i+1
q+1⌧

�1
q

,��1
q+1e⌧�1

q

�
.

(7.5)

Remark 7.2. In achieving the conclusions (7.2), (7.3), and (7.5), we have verified
the inductive assumptions (3.13)–(3.15) at level q+1. The inductive assumption
(3.12) at levels q0 < q+1 follows from Lemma (5.1). The proof of Proposition 7.1
will entail many estimates which are much more detailed than (7.3) and (7.5),
but for the time being we record only the basic estimates, which are direct
translations of (3.13)–(3.15) at level q + 1.

7.2 NOTATIONS

The proof of Proposition 7.1 will be achieved through an induction with respect
to en, where 0  en  nmax corresponds to the addition of the perturbation

wq+1,en =
pmaxX

ep=1

wq+1,en,ep. The addition of each perturbation wq+1,en will move

the minimum e↵ective frequency present in the stress terms to �q,en+1,0. This
induction on en requires three subpropositions; the base case en = 0, the inductive
step from en� 1 to en for en  nmax� 1, and the final step from nmax� 1 to nmax.
Throughout these propositions, we shall employ the following notations.

1. en : An integer taking values 0  en  nmax over which induction is
performed. At every step in the induction, we add another component
wq+1,en of the final perturbation

wq+1 =
nmaxX

en=0

pmaxX

ep=1

wq+1,en,ep.

We emphasize that the use of en at various points in statements and esti-
mates means that we are currently working on the inductive step at level
en.
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2. n : An integer taking values 1  n  nmax which correspond to the higher
order stresses R̊q,n. Occasionally, we shall use the notation R̊q,0 = R̊`q

to streamline an argument. We emphasize that n will be used at various
points in statements and estimates to reference higher order objects in
addition to those at level en, and so will satisfy the inequality en  n.

3. H̊
n0

q,n,p : The component of R̊q,n,p originating from an error term pro-
duced by the addition of wq+1,n0 . The parameter n

0 will always be a
subsidiary parameter used to reference objects created at or below the
level en that we are currently working on, and so will satisfy n

0  en.
4. P[q,n,p] : We use the spatial Littlewood-Paley projectors P[q,n,p] defined

by

P[q,n,p] =

(
P��q,nmax,pmax

if n = nmax, p = pmax + 1

P[�q,n,p�1,�q,n,p) if 1  n  nmax, 1  p  pmax
, (7.6)

where P[�1,�2) is defined in Section 9.4 as P��1P<�2 . Note that for n =
nmax and p = pmax + 1, P[q,nmax,pmax+1] projects onto all frequencies
larger than �q,nmax,pmax = �q,nmax+1,0. Errors which include the frequency

projector P[q,nmax,pmax+1] will be small enough to be absorbed into R̊q+1.
We shall frequently utilize sums of Littlewood-Paley projectors P[q,n,p] to

decompose products of intermittent pipe flows periodized to scale ��1
q,en.

These sums will be written in terms of three parameters—n, p, and en. As
a consequence of (7.6), (9.29), (9.23), and (9.22), we have that �q,en+1,0 
�q,en for 0  en  nmax, so that

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!
P��q,en = P��q,en+1,0

P��q,en

= P��q,en . (7.7)

A consequence of (7.7) is that for T3

�q,en
-periodic functions1 where 0  en 

nmax,

f = �
ˆ
T3

f + P��q,enf

= �
ˆ
T3

f + P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!
f. (7.8)

These equalities will be useful in the calculations in Section 8.3, and
we will recall their significance when we estimate the Type 1 errors in
Section 8.6.

1We note that in the second equality in (7.8), such functions do not have active frequencies
between �q,en+1,0 and �q,en.
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5. R̊
en
q+1 : Any stress term which satisfies the estimates required of R̊q+1

and which has already been estimated at the enth stage of the induction;
that is, error terms arising from the addition of wq+1,n0 for n

0  en. We

exclude R̊
comm
q

from R̊
en
q+1, absorbing it only at the very end when we

define R̊q+1. Thus

R̊
en+1
q+1 = R̊

en
q+1 +

⇣
errors coming from wq+1,en+1 that also go into R̊q+1

⌘
.

(7.9)

7.3 INDUCTION ON eN

The first proposition asserts that there exists a perturbation wq+1,0 which we
add to v`q so that vq,0 := v`q + wq+1,0 satisfies the following. First, vq,0 solves

the Euler-Reynolds system with a right-hand side consisting of stresses R̊
0
q+1

and H̊
0
q,n,p

which belong respectively to R̊q+1 and R̊q,n,p for 1  n  nmax

and 1  p  pmax. Secondly, wq+1,0 satisfies estimates which in particular
imply the inductive assumptions required of the velocity perturbation wq+1 in

(7.3).2 Thirdly, R̊0
q+1 satisfies the estimates required of R̊q+1 in the inductive

assumption (6.118) (with an extra factor of smallness). Finally, each H̊
0
q,n,p

satisfies the inductive assumptions required of R̊q,n,p in (6.118).

Proposition 7.3 (Induction on en: The base case en = 0). Under the
assumptions of Proposition 7.1 (equivalently the conclusions of Lemma 5.1),

there exist wq+1,0 =
pmaxX

ep=1

wq+1,0,p = wq+1,0,1, R̊0
q+1, and H̊

0
q,n,p

for 1  n  nmax

and 1  p  pmax such that the following hold.

1. vq,0 := v`q + wq+1,0 solves

@tvq,0 + div (vq,0 ⌦ vq,0) +rpq,0

= div
⇣
R̊

0
q+1

⌘
+ div

 
nmaxX

n=1

pmaxX

p=1

H̊
0
q,n,p

!
+ div R̊comm

q
(7.10a)

div vq,0 = 0. (7.10b)

2. For all k + m  Nfin,0 � Ncut,t � Ncut,x � 2Ndec � 9 and 1  ep  pmax

(although only wq+1,0,1 is non-zero)

��Dk
D

m

t,q
wq+1,0,ep

��
L2(supp i,q)

2This is checked in Remark 8.3.
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. �

1
2

q+1,0,ep�
3+

Cb
2

q+1 �
k

q+1M
�
m,Nind,t, ⌧

�1
q
�i�c0+4
q+1 , e⌧�1

q
��1
q+1

�
. (7.11)

Furthermore, we have that

supp
t
(R̊q) ⇢ [T1, T2]

) supp
t
(wq+1,0,ep) ⇢

h
T1 � (�q�

1/2
q
�q+1)

�1
, T2 + (�q�

1/2
q
�q+1)

�1
i
.

(7.12)

3. For all k,m  3Nind,v,

��� i,qD
k
D

m

t,q
R̊

0
q+1

���
L1

. ��CR
q+1�

�1
q+1�q+2�

k

q+1M
�
m,Nind,t, ⌧

�1
q
�i+1
q+1, e⌧�1

q
��1
q+1

�
. (7.13)

Furthermore, we have that

supp
t
R̊

0
q+1 ✓ supp

t
wq+1,0 . (7.14)

4. For all k +m  Nfin,n and 1  n  nmax, 1  p  pmax,

���Dk
D

m

t,q
H̊

0
q,n,p

���
L1(supp i,q)

. �q+1,n,p�
k

q,n,p
M
�
m,Nind,t, ⌧

�1
q
�i�cn
q+1 , e⌧�1

q
��1
q+1

�
. (7.15)

Furthermore, we have that

supp
t
H̊

0
q,n,p

✓ supp
t
wq+1,0 . (7.16)

The second proposition assumes that perturbations wq+1,n0 have been added
for n0  en�1 while satisfying four criteria. Firstly, vq,en�1 = v`q +

P
n0en�1

wq+1,n0

solves an Euler-Reynolds system with stresses R̊
en�1
q+1 and H̊

n
0

q,n,p
. Secondly, the

perturbations wq+1,n0 satisfy the inductive assumptions required of wq+1 in (7.3)

for n
0  en � 1. Thirdly, R̊en�1

q+1 satisfies the inductive assumption (7.5) at level

q + 1. Finally, H̊n
0

q,n,p
satisfies the assumption (6.118) in the parameter regime

en  n  nmax, n0  en � 1, 1  p  pmax. The conclusion of the proposition
replaces each en� 1 in the assumptions with en.

Proposition 7.4 (Induction on en: From en� 1 to en for 1  en  nmax � 1).
Let 1  en  nmax � 1 be given, and let

vq,en�1 := v`q +
en�1X

n0=0

wq+1,n0 = v`q +
en�1X

n0=0

pmaxX

p0=1

wq+1,n0,p0 ,

R̊
en�1
q+1 , and H̊

n
0

q,n,p
be given for n

0  en � 1, en  n  nmax and 1  p, p
0  pmax
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such that the following are satisfied.

1. vq,en�1 solves:

@tvq,en�1 + div (vq,en�1 ⌦ vq,en�1) +rpq,en�1

= div
⇣
R̊

en�1
q+1

⌘
+ div

 
nmaxX

n=en

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
+ div R̊comm

q

(7.17a)

div vq,en�1 = 0 . (7.17b)

2. For all k + m  Nfin,n0 � Ncut,t � Ncut,x � 2Ndec � 9, n
0  en � 1, and

1  p
0  pmax,

��Dk
D

m

t,q
wq+1,n0,p0

��
L2(supp i,q)

. �

1
2
q+1,n0,p0�

3+
Cb
2

q+1 �
k

q+1M
⇣
m,Nind,t, ⌧

�1
q
�i�cn0+4
q+1 , e⌧�1

q
��1
q+1

⌘
. (7.18)

Furthermore, we have that

supp
t
(R̊q,n0,p0) ⇢ [T1,n0,p0 , T2,n0,p0 ]

) supp
t
(wq+1,n0,p0)

⇢
⇥
T1,n0,p0 � (�q�

1/2
q
�q+1)

�1
, T2,n0,p0 + (�q�

1/2
q
�q+1)

�1
⇤
. (7.19)

3. For all k,m  3Nind,v,

��� i,qD
k
D

m

t,q
R̊

en�1
q+1

���
L1

. ��CR
q+1�

�1
q+1�q+2�

k

q+1M
�
m,Nind,t,�

i+1
q+1⌧

�1
q

,��1
q+1e⌧�1

q

�
. (7.20)

Furthermore, we have that

supp
t
R̊

en�1
q+1 ✓

[

n0en�1

supp
t
wq+1,n0 . (7.21)

4. For all k +m  Nfin,n, en  n  nmax, n0  en� 1, and 1  p  pmax,

���Dk
D

m

t,q
H̊

n
0

q,n,p

���
L1(supp i,q)

. �q+1,n,p�
k

q,n,p
M
�
m,Nind,t, ⌧

�1
q
�i�cn
q+1 , e⌧�1

q
��1
q+1

�
. (7.22)

Furthermore, we have that

supp
t
H̊

n
0

q,n,p
✓ supp

t
wq+1,n0 . (7.23)

Then there exists wq+1,en such that (1)–(4) are satisfied with en � 1 replaced by



FROM Q TO Q+ 1: BREAKING DOWN THE MAIN INDUCTIVE ESTIMATES

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

141

en.

The final proposition considers the case en = nmax and shows that, under
assumptions analogous to those in Proposition 7.4, there exists wq+1,nmax such
that all remaining errors after the addition of wq+1,nmax can be absorbed into

R̊q+1, thus verifying the conclusions of Proposition 7.1.

Proposition 7.5 (Induction on en: The final case en = nmax). Let

vq,nmax�1 := v`q +
nmax�1X

n0=0

wq+1,n0 = v`q +
nmax�1X

n0=0

pmaxX

p0=1

wq+1,n0,p0 ,

R̊
nmax�1
q+1 , and H̊

n
0

q,nmax,p
be given for n

0  nmax � 1 and 1  p, p
0  pmax such

that the following are satisfied.

1. vq,nmax�1 solves:

@tvq,nmax�1 + div (vq,nmax�1 ⌦ vq,nmax�1) +rpq,nmax�1

= div
⇣
R̊

nmax�1
q+1

⌘
+ div

 
nmax�1X

n0=0

pmaxX

p=1

H̊
n
0

q,nmax,p

!
+ div R̊comm

q

(7.24a)

div vq,nmax�1 = 0 . (7.24b)

2. For all k +m  Nfin,n0 � Ncut,t � Ncut,x � 2Ndec � 9, n0  nmax � 1, and
1  p

0  pmax,

��Dk
D

m

t,q
wq+1,n0,p0

��
L2(supp i,q)

. �

1
2
q+1,n0,p0�

3+
Cb
2

q+1 �
k

q+1M
⇣
m,Nind,t, ⌧

�1
q
�i�cn0+4
q+1 , e⌧�1

q
��1
q+1

⌘
. (7.25)

Furthermore, we have that

supp
t
(R̊q,n0,p0) ⇢ [T1,n0,p0 , T2,n0,p0 ]

) supp
t
(wq+1,n0,p0)

⇢
h
T1,n0,p0 � (�q�

1/2
q
�q+1)

�1
, T2,n0,p0 + (�q�

1/2
q
�q+1)

�1
i
. (7.26)

3. For all k,m  3Nind,v,

��� i,qD
k
D

m

t,q
R̊

nmax�1
q+1

���
L1

. ��CR
q+1�

�1
q+1�q+2�

k

q+1M
�
m,Nind,t,�

i+1
q+1⌧

�1
q

,��1
q+1e⌧�1

q

�
. (7.27)
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Furthermore, we have that

supp
t
R̊

nmax�1
q+1 ✓

[

n0nmax�1

supp
t
wq+1,n0 . (7.28)

4. For all k +m  Nfin,nmax , n
0  nmax � 1, and 1  p  pmax

���Dk
D

m

t,q
H̊

n
0

q,nmax,p

���
L1(supp i,q)

. �q+1,nmax,p�q,nmax,pM
⇣
m,Nind,t, ⌧

�1
q
�
i�cnmax
q+1 , e⌧�1

q
��1
q+1

⌘
. (7.29)

Furthermore, we have that

supp
t
H̊

n
0

q,n,p
✓ supp

t
wq+1,n0 . (7.30)

Then there exist wq+1,nmax and R̊q+1 such that vq+1 := vq,nmax�1 + wq+1,nmax

and R̊q+1 satisfy conclusions (7.2), (7.3), (7.4), and (7.5) from Proposition 7.1.
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Proving the main inductive estimates

Because the proofs of Propositions 7.3, 7.4, and 7.5 will be comprised of multiple
arguments with many similarities, we divide up the proofs of the propositions
into sections corresponding to these arguments.1 First, we define R̊q,en,ep and
wq+1,en,ep in Section 8.1 for each 0  en  nmax and 1  ep  pmax. Then,
Section 8.2 collects estimates on wq+1,en,ep, thus verifying (7.11) and (7.12), (7.18)
and (7.19), and (7.25) and (7.26) at levels en = 0, 1  en  nmax � 1, and
en = nmax, respectively. Next, in Section 8.3 we separate out the di↵erent types
of error terms and write down the Euler-Reynolds system satisfied by vq,en, which
verifies (7.10), (7.17), and (7.24), again at the respective values of en.

The error estimates are then divided into five sections. We first estimate
the transport and Nash errors in Sections 8.4 and 8.5. The next section esti-
mates the Type 1 oscillation errors (notated with H̊

en
q,n,p

), which are obtained
via Littlewood-Paley projectors P[q,n,p]. In the parameter regime 1  n  nmax

and 1  p  pmax, Type 1 oscillation errors will satisfy the estimates (7.15),
(7.22), and (7.29) at respective parameter values en = 0, 1  en  nmax � 1,
and en = nmax. Type 1 oscillation errors obtained from P[q,nmax,pmax+1] have a
su�ciently high minimum frequency (from (7.6), specifically �q,nmax+1,0, which

by a large choice of nmax is very close to �q+1) to be absorbed into R̊q+1. Then
in Section 8.7, we use Proposition 4.8 to show that on the support of a checker-
board cuto↵ function, Type 2 oscillation errors vanish. The divergence corrector
errors are estimated in Sections 8.8. The divergence corrector, Nash, and trans-
port errors will always be absorbed into R̊q+1 and thus must again satisfy one of
(7.13), (7.20), and (7.27). Finally, the conclusions (7.12), (7.14), (7.16), (7.19),
(7.21), (7.23), (7.26), (7.28), and (7.30) concerning the time support will be
verified in Section 8.9.

8.1 DEFINITION OF R̊q,en,ep AND Wq+1,en,ep

In this section we construct the perturbations wq+1,en. Before doing so, we recall
the significance of each parameter used to define the perturbations.

1This organization of proof avoids having to alternate between the definitions of wq+1,en,ep
and R̊q,en,ep for all 1  en  nmax and 1  ep  pmax. We judge that it is wiser to define
all the perturbations simultaneously under the assumptions of Propositions 7.3, 7.4, and 7.5.
Namely, we assume that each R̊q,en,ep exists and satisfies the enumerated properties, some of
which may not be verified until later.
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1. ⇠ is the vector direction of the axis of the pipe.
2. i quantifies the amplitude of the velocity field v`q along which the pipe

will flow.
3. j quantifies the amplitude of the Reynolds stress.
4. k describes which time cuto↵ �i,k,q is active.
5. q + 1 is the stage of the overall convex integration scheme.
6. en and ep signify which higher order stress R̊q,en,ep is being corrected, and en

also denotes the intermittency parameter rq+1,en.

7. ~l = (l, w, h) is used to index the checkerboard cuto↵ functions. Recall
that the admissible values of l, w, and h range from 0 to �q,en,0 � 1 and
thus depend on en.

8.1.1 The case en = 0

To define wq+1,0 =
pmaxX

ep=1

wq+1,0,p = wq+1,0,1, we recall the notation R̊`q = R̊q,0

and set
Rq,0,1,j,i,k = r�(i,k)

⇣
�q+1,0,1�

2j+4
q+1 Id� R̊q,0

⌘
r�T

(i,k). (8.1)

For ep � 2, we set Rq,0,ep,j,i,k = 0. Fix values of i, j, and k. Let ⇠ 2 ⌅ be a
vector from Proposition 4.1. For all ⇠ 2 ⌅, we define the coe�cient function
a
⇠,i,j,k,q,0,ep,~l by

a
⇠,i,j,k,q,0,ep,~l := a⇠,i,j,k,q,0,ep

:= a(⇠)

= �
1/2

q+1,0,ep�
j+2
q+1⌘i,j,k,q,0,ep,~l�⇠

 
Rq,0,ep,j,i,k

�q+1,0,ep�
2j+4
q+1

!
. (8.2)

From Lemma 6.31, we see that on the support of ⌘(i,j,k) we have |R̊q,0,ep| 
�2j+2
q+1 �q+1,0,ep, and thus by estimate (6.108) from Corollary 6.27, for ep = 1 we

have that �����
Rq,0,ep,j,i,k

�q+1,0,ep�
2j+4
q+1

� Id

�����  �
�1
q+1 <

1

2

once �0 is su�ciently large. Thus we may apply Proposition 4.1.
The coe�cient function a(⇠) is then multiplied by an intermittent pipe flow

r��1
(i,k)W⇠,q+1,0 � �(i,k),

where we have used the objects defined in Proposition 4.4 and the shorthand
notation

W⇠,q+1,0 = W(i,j,k,0,~l)
⇠,q+1,0 = Ws

⇠,q+1,0 = Ws

⇠,�q+1,rq+1,0
. (8.3)
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The superscript s = (i, j, k, 0,~l) indicates the placement of the intermittent pipe

flow Wi,j,k,0,p,~l
⇠,q+1,0 (cf. (2) from Proposition 4.4), which depends on i, j, k, en = 0,

and ~l and is only relevant in Section 8.7.2 To ease notation, we will suppress
the superscript except in Section 8.7. Furthermore, item 1 from Proposition 4.4
gives that

r��1
(i,k)W⇠,q+1,0 � �(i,k) = curl

⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘
.

We can now write the principal part of the first term of the perturbation as

w
(p)
q+1,0 =

X

i,j,k,ep

X

~l

X

⇠

a(⇠)curl
⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘
:=

X

i,j,k,ep

X

~l

X

⇠

w(⇠).

(8.4)
The notation w(⇠) implicitly encodes all indices and thus will be a useful short-
hand for the principal part of the perturbation. To make the perturbation
divergence-free, we add

w
(c)
q+1,0 =

X

i,j,k,ep

X

~l

X

⇠

ra(⇠) ⇥
⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘
=
X

i,j,k,ep

X

~l

X

⇠

w
(c)
(⇠)

(8.5)
so that

wq+1,0 = w
(p)
q+1,0 + w

(c)
q+1,0 =

X

i,j,k,ep

X

~l

X

⇠

curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘

(8.6)
is divergence-free and mean-zero.

8.1.2 The case 1  en  nmax

With wq+1,0 constructed, we construct wq+1,en =
pmaxX

ep=1

wq+1,en,ep for 1  en  nmax.

For 1  ep  pmax, we define

R̊q,en,ep =
X

n0en�1

H̊
n
0

q,en,ep. (8.7)

With this definition in hand, we set

Rq,en,ep,j,i,k = r�(i,k)

⇣
�q+1,en,ep�

2j+4
q+1 Id� R̊q,en,ep

⌘
r�T

(i,k), (8.8)

2Note that for ep � 2, �q+1,0,ep = 0, so there is no need for the placement to depend on ep
in this case, as wq+1,0,ep will uniformly vanish.
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and define the coe�cient function a
⇠,i,j,k,q,en,ep,~l by

a
⇠,i,j,k,q,en,ep,~l = a⇠,i,j,k,q,en,ep

= a(⇠) = �
1/2

q+1,en,ep�
j+2
q+1⌘i,j,k,q,en,ep,~l�⇠

 
Rq,en,ep,j,i,k

�q+1,en,ep�
2j+4
q+1

!
. (8.9)

By Lemma 6.31 and Corollary 6.27 as before, Rq,en,ep,j,i,k/(�q+1,en,ep�
2j+4
q+1 ) lies in

the domain of �⇠, as soon as �0 is su�ciently large (similarly to the display
below (8.2)). The coe�cient function is multiplied by an intermittent pipe flow

r��1
(i,k)W⇠,q+1,en � �(i,k) = curl

⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘
,

where we have used the shorthand notation

W⇠,q+1,en = Wi,j,k,en,ep,~l
⇠,q+1,en = Ws

⇠,q+1,en = Ws

⇠,�q+1,rq+1,en
. (8.10)

As before, the superscript s = (i, j, k, en, ep,~l) refers to the placement of the pipe,

depends on i, j, k, en, ep, and ~l, and will be chosen in Section 8.7. Thus the
principal part of the perturbation is defined by

w
(p)
q+1,en,ep =

X

i,j,k

X

~l

X

⇠

a(⇠)curl
⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘

=
X

i,j,k

X

~l

X

⇠

w(⇠). (8.11)

As before, we add a corrector

w
(c)
q+1,en,ep =

X

i,j,k

X

~l

X

⇠

ra(⇠) ⇥
⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘

=
X

i,j,k

X

~l

X

⇠

w
(c)
(⇠), (8.12)

producing the divergence-free perturbation

wq+1,en =
pmaxX

ep=1

wq+1,en,ep =
pmaxX

ep=1

⇣
w

(p)
q+1,en,ep + w

(c)
q+1,en,ep

⌘

=
X

i,j,k,ep

X

~l

X

⇠

curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘
. (8.13)
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8.2 ESTIMATES FOR Wq+1,en,ep

In this section, we verify (7.11), (7.18), and (7.25). We first estimate the L
r

norms of the coe�cient functions a(⇠). We have consolidated the proofs for each
value of en into the following lemma.

Lemma 8.1. For N+M  Nfin,en�Ncut,t�Ncut,x�4, r � 1, and r1, r2 2 [1,1]
with 1

r1
+ 1

r2
= 1, we have

���DN
D

M

t,q
a
⇠,i,j,k,q,en,ep,~l

���
Lr

.
��supp (⌘

i,j,k,q,en,ep,~l)
�� 1r �1/2

q+1,en,ep�
j+2
q+1

⇥ (�q+1�q,en,ep)
N M

⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
. (8.14)

Proof of Lemma 8.1. We begin by considering the case r = 1. The general case
r � 1 will then follow from the size of the support of a(⇠). Recalling estimate
(6.125), we have that for all N +M  Nfin,en � 4,

���DN
D

M

t,q
R̊q,en,ep

���
L1(supp ⌘(i,j,k))

. �q+1,en,ep�
2j+2
q+1 (�q+1�q,en,ep)

N M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+2
q+1 , e⌧�1

q
��1
q+1

⌘
.

From Corollary 6.27, we have that for all N +M  3Nfin/2,

��DN
D

M

t,q
D�(i,k)

��
L1(supp ( i,q�i,k,q))

 e�N
q
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

, e⌧�1
q
��1
q+1

�
.

Thus from the Leibniz rule and the definitions (8.8), (8.1), forN+M  Nfin,en�4,

��DN
D

M

t,q
Rq,en,ep,j,i,k

��
L1(supp ⌘(i,j,k))

. �q+1,en,ep�
2j+4
q+1 (�q+1�q,en,ep)

N M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+2
q+1 , e⌧�1

q
��1
q+1

⌘
. (8.15)

The above estimates allow us to apply Lemma A.5 with N = N
0, M = M

0 so
that N+M  Nfin,en�4,  = �⇠, (which is allowable since by Proposition 4.1 we
have that D

B
�⇠ is bounded uniformly with respect to q, and we have checked

in Section 8.1 that the argument of �⇠ remains strictly within a ball of radius
" of the identity), � = 1, v = v`q , Dt = Dt,q, h(x, t) = Rq,en,ep,j,i,k(x, t),

Ch = �q+1,en,ep�
2j+4
q+1 = �2, � = e� = �q,en,ep�q+1, µ = ⌧

�1
q
�i�cen+2
q+1 , eµ = e⌧�1

q
��1
q+1,

and Nt = Nind,t. We obtain that for all N +M  Nfin,en � 4,

�����D
N
D

M

t,q
�⇠

 
Rq,en,ep,j,i,k

�q+1,en,ep�
2j+4
q+1

!�����
L1(supp ⌘(i,j,k))
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. (�q+1�q,en,ep)
N M

⇣
M,Nind,t, ⌧

�1
q
�i�cen+2
q+1 , e⌧�1

q
��1
q+1

⌘
.

From the above bound, definitions (8.2) and (8.9), the Leibniz rule, estimates
(6.84), (6.97), and (6.131), and Lemma 6.40, we obtain that for N + M 
Nfin,en � Ncut,t � Ncut,x � 4,3

��DN
D

M

t,q
a(⇠)

��
L1(supp ⌘(i,j,k))

. �
1/2

q+1,en,ep�
j+2
q+1

X

N
0+N

00=N,

M
0+M

00=M

���DN
0
D

M
0

t,q
⌘(i,j,k)

���
L1

⇥

�����D
N

00
D

M
00

t,q
�⇠

 
Rq,en,ep,j,i,k

�q+1,en,ep�
2j+4
q+1

!�����
L1(supp ⌘(i,j,k))

. �
1/2

q+1,en,ep�
j+2
q+1

X

N
0+N

00=N,

M
0+M

00=M

(�q+1�q,en,ep)
N

0
M
⇣
M

0
,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘

⇥ (�q+1�q,en,ep)
N

00
M
⇣
M

00
,Nind,t, ⌧

�1
q
�i�cen+2
q+1 , e⌧�1

q
��1
q+1

⌘

. �
1/2

q+1,en,ep�
j+2
q+1 (�q+1�q,en,ep)

N M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
.

This concludes the proof of (8.14) when r = 1. Recall from Lemma 6.41 that

��supp
�
⌘(i,j,k)

��� . �
�2

⇣
i
r1

+ j
r2

⌘
+Cb+2

q+1 . (8.16)

The general result then follows.

An immediate consequence of Lemma 8.1 is that we have estimates for the
velocity increments themselves. These are summarized in the following corollary.

Corollary 8.2. For N +M  Nfin,en � Ncut,t � Ncut,x � 2Ndec � 8 we have the
following estimate:

��DN
D

M

t,q
w(⇠)

��
Lr .

��supp (⌘
i,j,k,q,en,ep,~l)

�� 1r �1/2

q+1,en,ep�
j+2
q+1(rq+1,en)

2/r�1

⇥ �
N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
.

(8.17)

For N+M  Nfin,en�Ncut,t�Ncut,x�2Ndec�9 and (r, r1, r2)2{(1, 2, 2), (2,1, 1)},

3The limit on the number of derivatives comes from (6.131) and (8.15). The sharp cost of
a material derivative comes from (6.131).
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we have the following estimates:

���DN
D

M

t,q
w

(c)
(⇠)

���
Lr

. �q+1�q,en,ep

�q+1

��supp (⌘
i,j,k,q,en,ep,~l)

�� 1r �1/2

q+1,en,ep�
j+2
q+1(rq+1,en)

2/r�1

⇥ �
N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
, (8.18)

��DN
D

M

t,q
wq+1,en,ep

��
Lr(supp i,q)

. �
1/2

q+1,en,ep�
�2i+Cb

r1r +2+ 2
r

q+1 (rq+1,en)
2/r�1

�
N

q+1

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘
.

(8.19)

Finally, we have that

supp
t
(R̊q) ⇢ [T1, T2]

) supp
t
(wq+1,en,ep) ⇢

h
T1 � (�q�

1/2
q

)�1
, T2 + (�q�

1/2
q

)�1
i
. (8.20)

Remark 8.3. By choosing r = 2, r2 = 1, and r1 = 1 in (8.19) and recalling that
(9.56) and (9.60b) give

�
1/2

q+1,en,ep  ��2
q+1�

1/2

q+1, Nfin,en � Ncut,t � Ncut,x � 2Ndec � 9 � 14Nind,v,

we may sum over en and ep in (8.19) and use the extra negative factor of �q+1

to absorb any implicit constants. Finally, from (9.42), we have that the cost of
a sharp material derivative in (8.19) is su�cient to meet the bounds in (7.3).
Then we have verified (7.11), (7.18), and (7.25) at levels en = 0, 1  en < nmax,
and en = nmax, respectively, and (7.3).

Proof of Corollary 8.2. Recalling the definition of w(⇠) from (8.4) and (8.13), we

aim to prove the first estimate by applying Remark A.9, with f = a(⇠)r��1
(i,k),

Cf =
��supp (⌘

i,j,k,q,en,ep,~l)
�� 1r �1/2

q+1,en,ep�
j+2
q+1, � = �(i,k), v = v`q , � = �q+1�q,en,ep, ⇣ =

e⇣ = �q+1, C' = r
2/r�1
q+1,en, µ = �q,en = �q+1rq+1,en, ⌫ = ⌧

�1
q
�i�cen+3
q+1 , e⌫ = e⌧�1

q
��1
q+1,

g = W⇠,q+1,en, Nt = Nind,t, and N� = Nfin,en � Ncut,t � Ncut,x � 4. From (8.14)
and Corollary 6.27, we have that for N +M  Nfin,en � Ncut,t � Ncut,x � 4,

��DN
D

M

t,q
a(⇠)

��
Lr .

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1 (�q+1�q,en,ep)

N

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
, (8.21)

��DN
D

M

t,q
(D�(i,k))

�1
��
L1(supp ( i,qe�i,k,q))

 e�N
q
M
�
M,Nind,t,�

i�c0
q+1 ⌧

�1
q

, e⌧�1
q
��1
q+1

�
, (8.22)

��DN�(i,k)

��
L1(supp ( i,qe�i,k,q))

. ��1
q+1
e�N�1
q

, (8.23)
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���DN��1
(i,k)

���
L1(supp ( i,qe�i,k,q))

. ��1
q+1
e�N�1
q

, (8.24)

showing that (A.30), (A.31), and (A.32) are satisfied. Recall that W⇠,q+1,en is
periodic to scale:

�
�1
q,en = (�q+1rq+1,en)

�1 =

✓
�
( 4

5 )
en+1

q �
1�( 4

5 )
en+1

q+1

◆�1

.

By (9.48) and (9.60a), we have that for all q, en, and ep,

�
4
q+1 

 
�q,en

2⇡
p
3�q+1�q,en,ep

!Ndec

, 2Ndec + 4  Nfin,en � Ncut,t � Ncut,x � 5,

(8.25)

and so the assumptions (A.34) and (A.35) from Lemma A.5 are satisfied. From

the estimates in Proposition 4.4, we have that (A.33) is satisfied with ⇣ = e⇣ =
�q+1. We may thus apply Lemma A.7, Remark A.9 to obtain that for both
choices of (r, r1, r2) and N +M  Nfin,en � Ncut,t � Ncut,x � 2Ndec � 8,

���DN

⇣
D

M

t,q

⇣
a(⇠)r��1

(i,k)

⌘
W⇠,q+1,en � �(i,k)

⌘���
Lr

.
NX

m=0

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1 (�q+1�q,en,ep)

N�m

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
kDmW⇠,q+1,enkLr

.
NX

m=0

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1 (�q+1�q,en,ep)

N�m

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
�
m

q+1 (rq+1,n)
2/r�1

.
��supp (⌘(i,j,k))

�� 1r �1/2

q+1,en,ep�
j+2
q+1

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
�
N

q+1 (rq+1,n)
2/r�1

.

Here we have used that �q+1 � �q+1�q,en,ep for all 0  n  nmax and 1  ep 
pmax, and thus we have proven (8.17).

The argument for the corrector is similar, save for the fact that Dt,q will land
on ra(⇠), and so we require an extra commutator estimate from Lemma A.14,
specifically Remark A.15. Note that Dt,q�(i,k) = 0 gives

D
M

t,q
w

(c)
(⇠) = D

M

t,q

⇣
ra(⇠) ⇥

�
r�T

(i,k)U⇠,q+1,en � �(i,k)

�⌘

=
X

M 0+M 00=M

c(M 0
,M)

�
D

M
0

t,q
ra(⇠)

�
⇥
⇣�

D
M

00

t,q
r�T

(i,k)

�
U⇠,q+1,en � �(i,k)

⌘
.
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Using (6.60) and (8.21) shows that (A.50) and (A.51) are satisfied with f =
ra(⇠),

Cf =
��supp (⌘

i,j,k,q,en,ep,~l)
�� 1r �1/2

q+1,en,ep�
j+2
q+1�q+1�q,en,ep,

Cv = �

1
2
q �

i+1
q+1, �v = e�v = e�q, µv = �i�c0

q+1 ⌧
�1
q

, Nt = Nind,t, eµv = e⌧�1
q
��1
q+1, �f =

e�f = �q+1�q,en,ep, µf = ⌧
�1
q
�i�cen+3
q+1 , and eµf = e⌧�1

q
��1
q+1. Applying Lemma A.14

(estimate (A.54)) as before, we obtain that forN+M  Nfin,en�Ncut,t�Ncut,x�5,

��DN
D

M

t,q
ra(⇠)

��
Lr .

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1

⇥ (�q+1�q,en,ep)
N+1M

⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
. (8.26)

In view of (8.22) and (8.25), we may apply Lemma A.7, Remark A.9, and the
estimates from Proposition 4.4 to obtain that for N + M  Nfin,en � Ncut,t �
Ncut,x � 2Ndec � 9

���DN
D

M

t,q

⇣
ra(⇠) ⇥

⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘⌘���
Lr

.
NX

m=0

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1�q+1�q,en,ep�

N�m

q,en,ep

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
kDmU⇠,q+1,enkLr

. �
m�1
q+1

NX

m=0

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1�q+1�q,en,ep�

N�m

q,en,ep

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
(rq+1,n)

2
r�1

. �q+1�q,en,ep

�q+1
�
N

q+1

��supp (⌘(i,j,k))
�� 1r �1/2

q+1,en,ep�
j+2
q+1

⇥M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
(rq+1,n)

2/r�1
, (8.27)

proving (8.18).
The final estimate (8.19) follows from the first two after recalling that  i,q

may overlap with  i+1,q, so that on the support of  i,q, we will have to appeal

to (8.14) at level i + 1. Then, we sum over ~l and appeal to the bound (6.147).
Next, we may sum on j, the index which we recall from Lemma 6.35 is bounded
independently of q, and ep, k. The powers of �j

q+1 cancel out since rr2 = 1.
Next, we sum over ep, which is bounded independently of q, and recall that
the parameter k, although not bounded independently of q, corresponds to a
partition of unity, so that the number of cuto↵ functions which may overlap at
any fixed point is finite and bounded independently of q.
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8.3 IDENTIFICATION OF ERROR TERMS

In this section, we identify the error terms arising from the addition of wq+1,en =
pmaxX

ep=1

wq+1,en,ep. After doing so, we can write down the Euler-Reynolds system

satisfied by vq,en, in turn verifying at level en the conclusions (7.10), (7.17), and
(7.24) of Propositions 7.3, 7.4, and 7.5, respectively.

8.3.1 The case en = 0

By the inductive assumption of Proposition 7.3, we have that div v`q = 0, and

@tv`q + div (v`q ⌦ v`q ) +rp`q = div R̊`q + div R̊comm
q

.

Adding wq+1,0 as defined in (8.6), we obtain that vq,0 := v`q + wq+1,0 solves

@tvq,0 + div (vq,0 ⌦ vq,0) +rp`q

= (@t + v`q ·r)wq+1,0 + wq+1,0 ·rv`q

+ div (wq+1,0 ⌦ wq+1,0) + div R̊`q + div R̊comm
q

:= T0 +N0 +O0 + div R̊`q + div R̊comm
q

. (8.28)

For a fixed en, throughout this section we will consider sums over indices

(⇠, i, j, k, ep,~l) ,

where the direction vector ⇠ takes on one of the finitely many values in Propo-
sition 4.4, 0  i  imax(q) indexes the velocity cuto↵s (there are finitely many
such values; cf. (6.50)), 0  j  jmax(q, en, ep) indexes the stress cuto↵s (there are
finitely many such values; cf. (6.129)), the parameter k indexes the time cuto↵s
defined in (6.96) (the number of values of k is q-dependent, but this is irrelevant
because they form a partition of unity; cf. (6.94)), the parameter 1  ep  pmax

indexes which component of R̊q+1,en,ep we are working with (there are finitely

many such values; cf. (9.3)), and, lastly, ~l indexes the checkerboard cuto↵s from
Definition 6.39 (again, the number of such indexes is q-dependent, but this is
acceptable because they form a partition of unity; cf. (6.139)). For brevity of
notation, we denote sums over such indexes as

X

⇠,i,j,k,ep,~l

.

Moreover, we shall denote as X

6={⇠,i,j,k,ep,~l}

(8.29)
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the double-summation over indexes (⇠, i, j, k, ep,~l) and (⇠⇤, i⇤, j⇤, k⇤, p⇤,~l⇤) which
belong to the set

n
(⇠, i, j, k, ep,~l, ⇠⇤), (i⇤, j⇤, k⇤, p⇤,~l⇤)

: ⇠ 6= ⇠
⇤ _ i 6= i

⇤ _ j 6= j
⇤ _ k 6= k

⇤ _ ep 6= p
⇤ _~l 6= ~l

⇤
o
, (8.30)

although we remind the reader that at the current stage, en = 0, the sum over
ep is superfluous since wq+1,0 = wq+1,0,1. For the sake of consistency between
wq+1,0 and wq+1,en for 1  en  nmax, we shall include the index ep throughout
this section. Expanding out the oscillation error O0, we have that

O0 =
X

⇠,i,j,k,ep,~l

div
⇣
curl

⇣
a(⇠)r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘

⌦ curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘�

+
X

6={⇠,i,j,k,ep,~l}

div
⇣
curl

⇣
a(⇠)r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘

⌦ curl
⇣
a(⇠⇤)r�T

(i⇤,k⇤)U⇠⇤,q+1,0 � �(i⇤,k⇤)

⌘⌘

:= divO0,1 + divO0,2. (8.31)

In Section 8.7, we will show that O0,2 is a Type 2 oscillation error so that

O0,2 = 0.

Recalling identity (4.14) and the notation (9.65), we further split O0,1 as

divO0,1 =
X

⇠,i,j,k,ep,~l

div
⇣⇣

a(⇠)r��1
(i,k)W⇠,q+1,0 � �(i,k)

⌘

⌦
⇣
a(⇠)r��1

(i,k)W⇠,q+1,0 � �(i,k)

⌘⌘

+ 2
X

⇠,i,j,k,ep,~l

div
⇣⇣

a(⇠)r��1
(i,k)W⇠,q+1,0 � �(i,k)

⌘

⌦s

⇣
ra(⇠) ⇥

⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘⌘⌘

+
X

⇠,i,j,k,ep,~l

div
⇣⇣

ra(⇠) ⇥
⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘⌘

⌦
⇣
ra(⇠) ⇥

⇣
r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘⌘⌘

:= div (O0,1,1 +O0,1,2 +O0,1,3) . (8.32)
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Aside from O0,1,1, each of these terms is a divergence corrector error and will
therefore be estimated in Section 8.8.

Recall by Propositions 4.3, 4.4 and by (8.3) that W⇠,q+1,0 is periodized to

scale (�q+1rq+1,0)
�1 = �

�1
q,0. Using the definition of P[q,n,p] and (7.8), we have

that4

W⇠,q+1,0 ⌦W⇠,q+1,0

= �
ˆ
T3

W⇠,q+1,0 ⌦W⇠,q+1,0

+ P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!
(W⇠,q+1,0 ⌦W⇠,q+1,0) .

Combining this observation with identity (4.15) from Proposition 4.4, and with
the definition of the a(⇠) in (8.2), we further split O0,1,1 as

div (O0,1,1)

=
X

⇠,i,j,k,ep,~l

div

✓
a
2
(⇠)r�

�1
(i,k)

✓
�
ˆ
T3

W⇠,q+1,0 ⌦W⇠,q+1,0(�(i,k))

◆
r��T

(i,k)

◆

+
X

⇠,i,j,k,ep,~l

div

✓
a
2
(⇠)r�

�1
(i,k)P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⌦W)⇠,q+1,0(�(i,k))r��T

(i,k)

◆

= div
⇣ X

i,j,k,ep,~l

X

⇠

�q+1,0,ep�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

� Rq,0,ep,j,i,k

�q+1,0,ep�
2j+4
q+1

�
r��1

(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

⌘

+
X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⌦W)⇠,q+1,0(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓W�)⇠,q+1,0(�(i,k))@↵(r��1
(i,k))⇣� . (8.33)

By Proposition 4.1, equation (4.1), and the definition (8.1), we may rewrite the

4The case en = 0 is exceptional in the sense that the minimum frequency of P��q,0 and the

minimum frequency of P[q,1,0] are in fact both equal to �q,0 = �q,1,0 = �

4
5
q �

1
5
q+1 from (9.27)

and (9.22). For the sake of consistency with the en � 1 cases, we will include the superfluous
P��q,0 in the calculations in this section.
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first term on the right side of the above display as

div
X

i,j,k,ep,~l

X

⇠

�q+1,0,ep�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

 
Rq,0,ep,j,i,k

�q+1,0,ep�
2j+4
q+1

!
r��1

(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

= div
X

i,j,k,~l

⌘
2
(i,j,k)

⇣
�q+1,0,1�

2j+4
q+1 Id� R̊`q

⌘

= �div
X

i,j,k,~l

⌘
2
(i,j,k)R̊`q +r

0

@
X

i,j,k,~l

⌘
2
(i,j,k)�q+1,0,1�

2j+4
q+1

1

A

:= �div
⇣
R̊`q

⌘
+r⇡. (8.34)

In the last equality of the above display we have used the fact that by (6.142)
we have

R̊`q =
X

i,j,k,~l

⌘
2
(i,j,k)R̊`q . (8.35)

We apply Proposition A.18 to the remaining two terms from (8.33) to define for
1  n  nmax and 1  p  pmax

5

H̊
0
q,n,p

:= H
✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,0P[q,n,p]

⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,0P[q,n,p]

⇥ (W✓

⇠,q+1,0W
�

⇠,q+1,0)(�(i,k))@↵(r��1
(i,k))⇣�

◆
. (8.36)

The last terms from (8.33) with P[q,nmax,pmax+1] will be absorbed into R̊q+1,
whereas the terms in (8.36) correspond to the error terms in (7.15).

Before amalgamating the preceding calculations, we pause to calculate the
means of various terms to which the inverse divergence operator from Proposi-
tion A.18 will be applied. Examining the equality

@tvq,0 + div (vq,0 ⌦ vq,0) +rp`q = T0 +N0 +O0 + div R̊`q + div R̊comm
q

(8.37)

and recalling the definitions of T0, N0, and O0, we see immediately that every

5Recall that H is the local portion of the inverse divergence operator. The pressure and the
nonlocal portion will be accounted for shortly. We will check in Section 8.6 that these errors
are of the form required by the inverse divergence operator as well as check the associated
estimates.
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term can be written as the divergence of a tensor except for @tvq,0 and T0.
Note, however, that vq,0 = v`q + wq+1,0, that

´
T3 @tv`q = 0 (by integrating in

space (5.2)), and that wq+1,0 is the curl of a vector field; cf. (8.13). This shows
that

´
T3 @tvq,0 = 0, and thus

´
T3 T0 = 0 as well. Therefore, we may use (A.72)

and (A.78) to write
T0 = div ((H+R⇤) T0) +rP.

We can now combine the calculations of (8.28), (8.31), (8.32), (8.33), (8.34)
(8.35), and (8.36) and let the notationr⇡ change from line to line to incorporate
all the pressure terms to write that

@tvq,0 + div (vq,0 ⌦ vq,0) +rp`q

= T0 +N0 +O0 + div R̊`q + div R̊comm
q

= T0 +N0 + div (O0,1) + div (O0,2) + div R̊`q + div R̊comm
q

= T0 +N0 + div
⇣
R̊`q +O0,1,1

⌘
+ div (O0,1,2 +O0,1,3 +O0,2) + div R̊comm

q

= T0 +N0 �r⇡

+ div (H+R⇤)

 X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)

⇥ P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓

⇥ P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓W�)⇠,q+1,0(�(i,k))@↵(r��1
(i,k))⇣�

�
(8.38)

+ div (O0,1,2 +O0,1,3 +O0,2) + div R̊comm
q

.

After separating out the local H from the nonlocal R⇤ parts of the inverse
divergence operator in the last two terms of the above, we may rewrite

@tvq,0 + div (vq,0 ⌦ vq,0) +rp`q +r⇡

= div


(H+R⇤) (T0)| {z }

transport

+(H+R⇤) (N0)| {z }
Nash

+R̊
comm
q

(8.39)

+ (H+R⇤)

✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P[q,nmax,pmax+1]
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⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k) (8.40)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P[q,nmax,pmax+1]

⇥ (W✓

⇠,q+1,0W
�

⇠,q+1,0)(�(i,k))@↵(r��1
(i,k))⇣�

◆
(8.41)

+R⇤
✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p]

!

⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k) (8.42)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p]

!

⇥ (W✓

⇠,q+1,0W
�

⇠,q+1,0)(�(i,k))@↵(r��1
(i,k))⇣�

◆
(8.43)

+ O0,1,2 +O0,1,3| {z }
divergence corrector

+ O0,2|{z}
Type 2

�
(8.44)

+ divH
✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p]

!

⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k) (8.45)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p]

!

⇥ (W✓

⇠,q+1,0W
�

⇠,q+1,0)(�(i,k))@↵(r��1
(i,k))⇣�

◆
(8.46)

:= div (R̊0
q+1) + div

 
nmaxX

n=1

pmaxX

p=1

H̊
0
q,n,p

!
+ div R̊comm

q
,

thus verifying (7.10) from Proposition 7.3, after condensing the terms from
(8.40), (8.41), (8.42), and (8.43) into R̊

0
q+1, and using (8.36) to place the terms

from (8.45) and (8.46) into H̊
0
q,n,p

.

8.3.2 The case 1  en  nmax � 1

From (7.17), we assume that vq,en�1 is divergence-free and is a solution to

@tvq,en�1+div (vq,en�1 ⌦ vq,en�1) +rpq,en�1
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= div
⇣
R̊

en�1
q+1

⌘
+ div

 
nmaxX

n=en

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
+ div R̊comm

q
.

Now using the definition of R̊q,en,ep from (8.7) and adding wq+1,en as defined in
(8.13), we have that vq,en := vq,en�1+wq+1,en = v`q +

P
0n0en�1 wq+1,n0 +wq+1,en

solves

@tvq,en+div (vq,en ⌦ vq,en) +rpq,en�1

= div
⇣
R̊

en�1
q+1

⌘
+ div

 
nmaxX

n=en+1

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
+ div R̊comm

q

+ (@t + v`q ·r)wq+1,en + wq+1,en ·rv`q

+
X

n0en�1

div (wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en)

+ div

 
wq+1,en ⌦ wq+1,en +

pmaxX

ep=1

R̊q,en,ep

!
. (8.47)

The first term on the right-hand side is R̊en�1
q+1 , which satisfies the same estimates

as R̊en
q+1 by (7.20) and will thus be absorbed into R̊

en
q+1 (these estimates do not

change in en save for implicit constants). The second term, save for the fact that
the sum is over n0  en�1 rather than n

0  en and is therefore missing the terms
H̊

en
q,n,p

, matches (7.17) at level en (i.e., replacing every instance of en� 1 with en).
As before, we apply the inverse divergence operators from Proposition A.18 to
the transport and Nash errors to obtain

(@t + v`q ·r)wq+1,en + wq+1,en ·rv`q +r⇡
= div

�
(H+R⇤)

�
(@t + v`q ·r)wq+1,en + wq+1,en ·rv`q

��
,

and these errors are absorbed into R̊
en
q+1 or the new pressure. We will show in

Section 8.7 that the interaction of wq+1,en with previous terms wq+1,n0 is a Type
2 oscillation error so that

X

n0en�1

(wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en) = 0. (8.48)

So to verify (7.17) at level en, only the analysis of

div

0

@wq+1,en ⌦ wq+1,en +
pmaxX

ep=1

R̊q,en,ep

1

A
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remains. Reusing the notations from (8.29)6 and writing out the self-interaction
of wq+1,en yields

div (wq+1,en ⌦ wq+1,en)

=
X

⇠,i,j,k,ep,~l

div
⇣
curl (a(⇠)r�T

(i,k)U⇠,q+1,en)⌦ curl (a(⇠)r�T

i,k
U⇠,q+1,en)

⌘

+
X

6={⇠,i,j,k,ep,~l}

div
⇣
curl (a(⇠)r�T

(i,k)U⇠,q+1,en)⌦ curl (a(⇠0)r�T

(i0,k0)U⇠0,q+1,en)
⌘

:= divOen,1 + divOen,2. (8.49)

As before, we will show that Oen,2 is a Type 2 oscillation error so that

Oen,2 = 0.

Splitting Oen,1 gives

divOen,1 =
X

⇠,i,j,k,ep,~l

div
⇣⇣

a(⇠)r��1
(i,k)W⇠,q+1,en � �(i,k)

⌘

⌦
⇣
a(⇠)r��1

(i,k)W⇠,q+1,en � �(i,k)

⌘⌘

+ 2
X

⇠,i,j,k,ep,~l

div
�⇣

a(⇠)r��1
(i,k)W⇠,q+1,en � �(i,k)

⌘

⌦s

⇣
ra(⇠) ⇥

⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘⌘⌘

+
X

⇠,i,j,k,ep,~l

div
⇣⇣

ra(⇠) ⇥
⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘⌘

⌦
⇣
ra(⇠) ⇥

⇣
r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘⌘⌘

:= div (Oen,1,1 +Oen,1,2 +Oen,1,3) . (8.50)

The last two of these terms are again divergence corrector errors and will there-
fore be absorbed into R̊

en
q+1 and estimated in Section 8.8. So the only terms

remaining from (8.47) are Oen,1,1 and
P

pmax

ep=1 R̊q,en,ep, which are analyzed in a
fashion similar to the en = 0 case, save for the fact that summation over ep is now
crucial.

Recall—cf. (8.10)—that W⇠,q+1,en is periodized to scale (�q+1rq+1,en)
�1 =

6In a slight abuse of notation, notice that the admissible values of ~l have changed, since
these parameters describe the checkerboard cuto↵ functions at scale ��1

q,en,1 and thus depend

on en.
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�
�1
q,en. Using (7.8), we have that

W⇠,q+1,en ⌦W⇠,q+1,en

= �
ˆ
T3

W⇠,q+1,en ⌦W⇠,q+1,en

+ P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!
(W⇠,q+1,en ⌦W⇠,q+1,en) .

Combining this division with identity (4.15) from Proposition 4.4, we further
split Oen,1,1 as

div (Oen,1,1)

=
X

⇠,i,j,k,ep,~l

div


a
2
(⇠)r�

�1
(i,k)

✓
�
ˆ
T3

W⇠,q+1,en ⌦W⇠,q+1,en(�(i,k))

◆
r��T

(i,k)

�

+
X

⇠,i,j,k,ep,~l

div


a
2
(⇠)r�

�1
(i,k)P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⌦W)⇠,q+1,en(�(i,k))r��T

(i,k)

�

= div

"
X

⇠,i,j,k,ep,~l

�q+1,en,ep�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

� Rq,en,ep,j,i,k

�q+1,en,ep�
2j+4
q+1

�
r��1

(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

#

+
X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⌦W)⇠,q+1,en(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓W�)⇠,q+1,en(�(i,k))@↵(r��1
(i,k))⇣� . (8.51)

By Proposition 4.1, equation (4.1), and identity (8.8), we obtain that

div
X

i,j,k,ep,~l

X

⇠

�q+1,en,ep�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

 
Rq,en,ep,j,i,k

�q+1,en,ep�
2j+4
q+1

!
r��1

(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

= div
X

i,j,k,ep,~l

⌘
2
(i,j,k)

0

@�q+1,en,ep�
2j+4
q+1 Id�

pmaxX

ep=1

R̊q,en,ep

1

A
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= �div
X

i,j,k,~l

pmaxX

ep=1

⌘
2
(i,j,k)R̊q,en,ep +r

0

@
X

i,j,k,~l

⌘
2
(i,j,k)�q+1,en,ep�

2j+4
q+1

1

A

:= �div
pmaxX

ep=1

R̊q,en,ep +r⇡ , (8.52)

where in the last equality we have appealed to (6.142). We can finally apply
Proposition A.18 to the remaining terms in (8.51) for en + 1  n  nmax and
1  p  pmax, to define

H̊
en
q,n,p

:= H
 X

⇠,i,j,k,ep

ra
2
(⇠)r�

�1
(i,k)P��q,enP[q,n,p]

⇥ (W⇠,q+1,en ⌦W⇠,q+1,en)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,enP[q,n,p]

⇥ (W✓

⇠,q+1,enW
�

⇠,q+1,en)(�(i,k))@↵(r��1
(i,k))⇣�

�
. (8.53)

As before, the terms from (8.51) with P[q,nmax,pmax+1] will be absorbed into

R̊
en
q+1. We will show shortly that the terms H̊

en
q,n,p

in (8.53) are precisely the
terms needed to make (8.47) match (7.17) at level en. As before, any nonlocal
inverse divergence terms will be absorbed into R̊

en
q+1.

Recall from (7.9) that R̊
en
q+1 will include R̊

en�1
q+1 in addition to error terms

arising from the addition of wq+1,en which are small enough to be absorbed in

R̊q+1. Then to check (7.17), we return to (8.47) and use (8.49), (8.50), (8.51),
(8.52), and (8.53) to write

@tvq,en + div (vq,en ⌦ vq,en) +rpq,en�1

= div

 
nmaxX

n=en+1

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
+ div

⇣
R̊

en�1
q+1

⌘
+ div R̊comm

q

+ (@t + v`q ·r)wq+1,en + wq+1,en ·rv`q

+
X

n0en�1

div (wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en)

+ div

 
wq+1,en ⌦ wq+1,en +

pmaxX

ep=1

R̊q,en,ep

!

= div R̊comm
q

+ div

 
nmaxX

n=en+1

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
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+ div

✓
R̊

en�1
q+1 + (H+R⇤)

�
@twq+1,en + v`q ·rwq+1,en

�

+ (H+R⇤)
�
wq+1,en ·rv`q

�

+
X

n0en�1

(wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en)

◆

+ div (Oen,1,2 +Oen,1,3 +Oen,2) +r⇡ + div

 
Oen,1,1 +

pmaxX

ep=1

R̊q,en,ep

!

= div R̊comm
q

+ div

 
nmaxX

n=en+1

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!

+ div

✓
R̊

en�1
q+1 + (H+R⇤)

�
@twq+1,en + v`q ·rwq+1,en

�

+ (H+R⇤)
�
wq+1,en ·rv`q

�

+
X

n0en�1

(wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en)

◆

+ div (Oen,1,2 +Oen,1,3 +Oen,2) +r⇡

+ div (H+R⇤)

 
X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)

⇥ P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⌦W)⇠,q+1,en(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓

⇥ P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓W�)⇠,q+1,en(�(i,k))@↵(r��1
(i,k))⇣�

!
. (8.54)

In order to check which contributions go into R̊
en
q+1 and which go into H̊

en
q,n,p

,
we further decompose the above as

@tvq,en + div (vq,en ⌦ vq,en) +r⇡

= div R̊comm
q

+ div

 
nmaxX

n=en+1

pmaxX

p=1

en�1X

n0=0

H̊
n
0

q,n,p

!
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+ div

✓
R̊

en�1
q+1 + (H+R⇤)

�
@twq+1,en + v`q ·rwq+1,en

�
| {z }

transport

(8.55)

+ (H+R⇤)
�
wq+1,en ·rv`q

�
| {z }

Nash

(8.56)

+
X

n0en�1

(wq+1,en ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,en)

| {z }
Type 2

◆
(8.57)

+ div

✓
Oen,1,2 +Oen,1,3| {z }
divergence corrector

+ Oen,2|{z}
Type 2

◆
(8.58)

+ div


(H+R⇤)

✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P[q,nmax,pmax+1]

⇥ (W⇠,q+1,en ⌦W⇠,q+1,en)(�(i,k))r��T

(i,k) (8.59)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P[q,nmax,pmax+1]

⇥ (W✓

⇠,q+1,enW
�

⇠,q+1,en)(�(i,k))@↵(r��1
(i,k))⇣�

◆
(8.60)

+R⇤
✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,en

⇣ nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

⌘

⇥ (W⌦W)⇠,q+1,en(�(i,k))r��T

(i,k) (8.61)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,en

⇣ nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

⌘

⇥ (W✓W�)⇠,q+1,en(�(i,k))@↵(r��1
(i,k))⇣�

◆�
(8.62)

+ div


H
✓ X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,en

⇣ nmaxX

n=en+1

pmaxX

p=1

P[q,n,p]

⌘

⇥ (W⌦W)⇠,q+1,en(�(i,k))r��T

(i,k) (8.63)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,en

⇣ nmaxX

n=en+1

pmaxX

p=1

P[q,n,p]

⌘

⇥ (W✓W�)⇠,q+1,en(�(i,k))@↵(r��1
(i,k))⇣�

◆�
(8.64)

= div R̊comm
q

+ div R̊en
q+1 + div

nmaxX

n=en+1

pmaxX

p=1

enX

n0=0

H̊
n
0

q,n,p
,
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so that the terms in (8.55), (8.56), (8.57), (8.58), (8.59), (8.60), (8.61), and
(8.62) are placed into R̊

en
q+1, while the terms in (8.63) and (8.64), and the triple

sum of H̊n
0

q,n,p
terms in the first line, are incorporated into the new triple sum

of H̊n
0

q,n,p
terms. Note that we have implicitly used in the above equalities that�

@t + v`q ·r
�
wq+1,en has zero mean, which can be deduced in the same fashion

as for the case en = 0.

8.3.3 The case en = nmax

From (7.24), we assume that vq,nmax�1 is divergence-free and is a solution to

@tvq,nmax�1+div (vq,nmax�1 ⌦ vq,nmax�1) +rpq,nmax�1

= div
⇣
R̊

nmax�1
q+1

⌘
+ div

 
nmax�1X

n0=0

pmaxX

p=1

H̊
n
0

q,nmax,p

!
+ div R̊comm

q
.

Now using the definition of R̊q,nmax,p from (8.7) and adding wq+1,nmax as defined
in (8.13), we have that vq+1 := vq,nmax�1 + wq+1,nmax solves

@tvq+1 + div (vq+1 ⌦ vq+1) +rpq,nmax�1

= div R̊comm
q

+ div
⇣
R̊

nmax�1
q+1

⌘
+ (@t + v`q ·r)wq+1,nmax + wq+1,nmax ·rv`q

+
X

n0nmax�1

div (wq+1,nmax ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,nmax)

+ div

 
wq+1,nmax ⌦ wq+1,nmax +

pmaxX

p=1

R̊q,nmax,p

!
. (8.65)

We absorb the term div
⇣
R̊

nmax�1
q+1

⌘
into R̊q+1 immediately. We will then show

that, up to a pressure term,

(H+R⇤)
⇣�
@t + v`q ·r

�
wq+1,nmax

⌘
, (H+R⇤)

⇣
wq+1,nmax ·rv`q

⌘

can be absorbed into R̊q+1 in Sections 8.4 and 8.5, respectively. We will show
in 8.7 that the interaction of wq+1,nmax with previous perturbations wq+1,n0 will
satisfy

X

n0nmax�1

(wq+1,nmax ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,nmax) = 0. (8.66)

Thus it remains to analyze

div

 
wq+1,nmax ⌦ wq+1,nmax +

pmaxX

p=1

R̊q,nmax

!
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from (8.65). Reusing the notations from (8.29)–(8.30), we can write out the
self-interaction of wq+1,nmax as

div (wq+1,nmax ⌦ wq+1,nmax)

=
X

⇠,i,j,k,p,~l

div
⇣
curl (a(⇠)r�T

(i,k)U⇠,q+1,nmax)⌦ curl
�
a(⇠)r�T

i,k
U⇠,q+1,nmax

�⌘

+
X

6={⇠,i,j,k,p,~l}

div
⇣
curl (a(⇠)r�T

(i,k)U⇠,q+1,nmax)⌦ curl (a(⇠0)r�T

(i0,k0)U⇠0,q+1,nmax)
⌘

:= divOnmax,1 + divOnmax,2. (8.67)

As before, we will show in Section 8.7 that Onmax,2 is a Type 2 oscillation error
and so

Onmax,2 = 0.

Splitting Onmax,1 gives

divOnmax,1 =
X

⇠,i,j,k,p,~l

div
⇣�

a(⇠)r��1
(i,k)W⇠,q+1,nmax � �(i,k)

�

⌦
�
a(⇠)r��1

(i,k)W⇠,q+1,nmax � �(i,k)

�⌘

+ 2
X

⇠,i,j,k,p,~l

div
⇣�

a(⇠)r��1
(i,k)W⇠,q+1,nmax � �(i,k)

�

⌦s

�
ra(⇠) ⇥ (r�T

(i,k)U⇠,q+1,nmax � �(i,k))
�⌘

+
X

⇠,i,j,k,p,~l

div
⇣�

ra(⇠) ⇥ (r�T

(i,k)U⇠,q+1,nmax � �(i,k))
�

⌦
�
ra(⇠) ⇥ (r�T

(i,k)U⇠,q+1,nmax � �(i,k))
�⌘

:= div (Onmax,1,1 +Onmax,1,2 +Onmax,1,3) . (8.68)

The last two of these three terms are again divergence corrector errors and will
therefore be absorbed into R̊q+1 and estimated in Section 8.8.

Recall—cf. (8.3)—thatW⇠,q+1,nmax is periodized to scale (�q+1rq+1,nmax)
�1 =

�
�1
q,nmax

. Combining this observation with (4.15) from Proposition 4.4 and (7.8),
we further split Onmax,1,1 as7

div (Onmax,1,1)

7In this case, the projection P��q,nmax
has a greater minimum frequency than the pro-

jection P[q,nmax,pmax+1]; cf. (9.28), (9.22), and (7.6). For the sake of consistency, we write
P��q,nmax

P[q,nmax,pmax+1] throughout this section.
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=
X

⇠,i,j,k,p,~l

div


a
2
(⇠)r�

�1
(i,k)

✓
�
ˆ
T3

W⇠,q+1,nmax ⌦W⇠,q+1,nmax(�(i,k))

◆
r��T

(i,k)

�

+
X

⇠,i,j,k,p,~l

div
h
a
2
(⇠)r�

�1
(i,k)P��q,nmax

P[q,nmax,pmax+1]

⇥ (W⇠,q+1,nmax ⌦W⇠,q+1,nmax)(�(i,k))r��T

(i,k)

i

= div
X

⇠,i,j,k,p,~l

�q+1,nmax,p�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

 
Rq,nmax,p,j,i,k

�q+1,nmax,p�
2j+4
q+1

!

⇥r��1
(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

+
X

⇠,i,j,k,p,~l

ra
2
(⇠)r�

�1
(i,k)P��q,nmax

P[q,nmax,pmax+1]

⇥ (W⇠,q+1,nmax ⌦W⇠,q+1,nmax)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,p,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,nmax

P[q,nmax,pmax+1]

⇥ (W✓

⇠,q+1,nmax
W�

⇠,q+1,nmax
)(�(i,k))@↵(r��1

(i,k))⇣� . (8.69)

By (4.1) from Proposition 4.1 and (8.8), we obtain that

div
X

⇠,i,j,k,p,~l

�q+1,nmax,p�
2j+4
q+1 ⌘

2
(i,j,k)�

2
⇠

 
Rq,nmax,p,j,i,k

�q+1,nmax,p�
2j+4
q+1

!

⇥r��1
(i,k) (⇠ ⌦ ⇠)r��T

(i,k)

= div
X

i,j,k,p,~l

⌘
2
(i,j,k)

⇣
�q+1,nmax,p�

2j+4
q+1 Id� R̊q,nmax,p

⌘

= �div
X

i,j,k,~l

pmaxX

p=1

⌘
2
(i,j,k)R̊q,nmax,p +r

0

@
X

i,j,k,p,~l

⌘
2
(i,j,k)�q+1,nmax,p�

2j+4
q+1

1

A

:= �div
pmaxX

p=1

R̊q,nmax,p +r⇡ , (8.70)

where in the last line we have used (6.142). We can apply Proposition A.18 to
the remaining two terms in (8.69) to produce the terms

(H+R⇤)

 X

⇠,i,j,k,p,~l

ra
2
(⇠)r�

�1
(i,k)P��q,nmax

P[q,nmax,pmax+1]

⇥ (W⌦W)⇠,q+1,nmax(�(i,k))r��T

(i,k)
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+
X

⇠,i,j,k,p,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,nmax

P[q,nmax,pmax+1]

⇥ (W✓W�)⇠,q+1,nmax(�(i,k))@↵(r��1
(i,k))⇣�

�
, (8.71)

which will be absorbed into R̊q+1 and estimated in Section 8.6.
Before combining the previous steps, we remind the reader that at this point,

R̊q+1 will be fully defined, and will include R̊
nmax�1
q+1 , all the error terms arising

from the addition of wq+1,nmax , and R̊
comm
q

. Then from (8.65), (8.66), (8.67),
(8.68), (8.69), (8.70), and (8.71), we can finally write that

@tvq+1 + div (vq+1 ⌦ vq+1) +rpq,nmax�1

= div R̊comm
q

+ div
⇣
R̊

nmax�1
q+1

⌘
+ (@t + v`q ·r)wq+1,nmax + wq+1,nmax ·rv`q

+
X

n0nmax�1

div (wq+1,nmax ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,nmax)

+ div

 
wq+1,nmax ⌦ wq+1,nmax +

pmaxX

p=1

R̊q,nmax,p

!

= div R̊comm
q

+ div


R̊

nmax�1
q+1 + (H+R⇤)

�
@twq+1,nmax + v`q ·rwq+1,nmax

�

+ (H+R⇤)
�
wq+1,nmax ·rv`q

�

+
X

n0nmax�1

(wq+1,nmax ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,nmax)

�

+ div

"
Onmax,1,1 +Onmax,1,2 +Onmax,1,3 +Onmax,2 +

pmaxX

p=1

R̊q,nmax,p

#
+r⇡

= div R̊comm
q

+ div


R̊

nmax�1
q+1 + (H+R⇤)

�
@twq+1,nmax + v`q ·rwq+1,nmax

�
| {z }

transport

(8.72)

+ (H+R⇤)
�
wq+1,nmax ·rv`q

�
| {z }

Nash

+
X

n0nmax�1

(wq+1,nmax ⌦ wq+1,n0 + wq+1,n0 ⌦ wq+1,nmax)

| {z }
Type 2

�

(8.73)

+ div


Onmax,1,2 +Onmax,1,3s| {z }

divergence corrector

+Onmax,2| {z }
Type 2

�
+r⇡ (8.74)
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+ div

"
(H+R⇤)

✓ X

⇠,i,j,k,p,~l

ra
2
(⇠)r�

�1
(i,k)P��q,nmax

P[q,nmax,pmax+1]

⇥ (W⌦W)⇠,q+1,nmax(�(i,k))r��T

(i,k) (8.75)

+
X

⇠,i,j,k,p

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,nmax

P[q,nmax,pmax+1]

⇥ (W✓W�)⇠,q+1,nmax(�(i,k))@↵(r��1
(i,k))⇣�

◆#
(8.76)

= div (R̊q+1) +r⇡ ,

where the terms in (8.75) and (8.76) are Type 1 errors. This concludes the proof
after again noting that

�
@t + v`q ·r

�
wq+1,en has zero mean.

8.4 TRANSPORT ERRORS

Lemma 8.4. For all 0  en  nmax, the transport errors satisfy

Dt,qwq+1,en = @twq+1,en + v`q ·rwq+1,en

= div � (H+R⇤)
�
@twq+1,en + v`q ·rwq+1,en

�
+rpen

with the estimates

�� i,qD
N
D

M

t,q

�
(H+R⇤)

�
@twq+1,en + v`q ·rwq+1,en

����
L1

. �q+2�
�CR�1
q+1 �

N

q+1M
�
M,Nind,t, ⌧

�1
q
�i+1
q+1,�

�1
q+1e⌧�1

q

�

for all N,M  3Nind,v.

Proof of Lemma 8.4. The transport errors are given in (8.39), (8.55), and (8.72).
Writing out the transport error, we have that

�
@t + v`q ·r

�
wq+1,en

=
�
@t + v`q ·r

�
0

@
X

i,j,k,ep,~l,⇠

curl
⇣
a
⇠,i,j,k,q,en,ep,~lr�

T

(i,k)U⇠,q+1,en � �(i,k)

⌘
1

A

=
X

i,j,k,ep,~l,⇠

�
@t + v`q ·r

� ⇣
a(⇠)r��1

(i,k)

⌘
W⇠,q+1,en � �(i,k)

+
X

i,j,k,ep,~l,⇠

��
@t + v`q ·r

�
ra(⇠)

�
⇥
�
r�(i,k)U⇠,q+1,en � �(i,k)

�
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+
X

i,j,k,ep,~l,⇠

ra(⇠) ⇥
���

@t + v`q ·r
�
r�(i,k)

�
U⇠,q+1,en � �(i,k)

�
. (8.77)

Due to the fact that the second two terms arise from the addition of the corrector
defined in (8.5) and (8.12), and the fact that the bounds for the corrector in
(8.18) are stronger than that of the principal part of the perturbation, we shall
completely estimate only the first term and simply indicate the setup for the
second and third. Before applying Proposition A.18, recall that the inverse
divergence of (8.77) needs to be estimated on the support of a cuto↵  i,q in
order to verify (7.13), and (7.20), and (7.27). Recall from the identification
of the error terms (cf. (8.37) and the subsequent argument) that for all en,�
@t + v`q ·r

�
wq+1,en has zero mean. Thus, although each individual term in the

final equality in (8.77) may not have zero mean, we can safely apply H and R⇤

to each term and estimate the outputs while ignoring the last term in (A.78).
We will apply Proposition A.18, specifically Remark A.19, to each summand

in the first term on the right side of (8.77), with the following choices. We
set v = v`q , and Dt = Dt,q = @t + v`q · r as usual. We set N⇤ = M⇤ =
b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c, with Ndec and d satisfying (9.60a). We define

G = (@t + v`q ·r)(a(⇠)r��1
(i,k))⇠,

with � = �q+1�q,en,ep, ⌫ = ⌧
�1
q
�i�cen+3
q+1 , Mt = Nind,t, e⌫ = e⌧�1

q
��1
q+1, and

CG =
��supp (⌘

i,j,k,q,en,ep,~l)
���1/2

q+1,en,1�
i�cen+j+5
q+1 ⌧

�1
q

,

which is the correct amplitude in view of (8.14) with r = 1, r1 = r2 = 2, and
(6.114). Thus, we have that

��DN
D

M

t,q
G
��
L1 . CG (�q,en,ep�q+1)

N M
⇣
M,Nind,t � 1, ⌧�1

q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
,

(8.78)

for all N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c after using (9.42) and (9.52),

and so (A.66) is satisfied. We set � = �i,k and �0 = e�q. Appealing as usual to
Corollary 6.27 and (6.60), we have that (A.67) and (A.68) are satisfied.

Referring to (1) from Proposition 4.4, we set % = %⇠,�q+1,rq+1,en and # =
#⇠,�q+1,rq+1,en . Setting ⇣ = �q+1, we have that (1) is satisfied. Setting µ =
�q+1rq+1,en = �q,en and referring to (2) from Proposition 4.4, we have that (2)
is satisfied. Setting ⇤ = ⇣ = �q+1 and C⇤ = rq+1,en and referring to (4.11)
and (4.12) from Proposition 4.4, we have that (A.69) is satisfied. (A.70) is
immediate from the definitions. Referring to (9.48), we have that (A.71) is
satisfied. Thus, we conclude from (A.73) with ↵R as in (9.53), that for N,M 
b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c � d,

���DN
D

M

t,q

⇣
H
⇣
(@t + v`q ·r)(a(⇠)r��1

(i,k))⇠
⌘⌘���

L1
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=
��DN

D
M

t,q
(H (G% � �))

��
L1

.
��supp (⌘

i,j,k,q,en,ep,~l)
���1/2

q+1,en,1�
i�cen+j+6
q+1 ⌧

�1
q

rq+1,en

⇥ �
�1
q+1�

N

q+1M
�
M,Nind,t, ⌧

�1
q
�i
q+1, e⌧�1

q
��1
q+1

�
,

after appealing to (9.42). From (9.60c), these bounds are valid for all N,M 
3Nind,v. The bound obtained above is next summed over (i, j, k, ep, en,~l). First,

we treat the sum over ~l. By noting that (6.147) with r1 = 2 and r2 = 2 and
(9.42) imply

X

~l

��supp (⌘
i,j,k,q,en,ep,~l)

���i�cen+j+6
q+1  ��2( i

2+
j
2 )+

Cb
2 +2

q+1 �i�cen+j+6
q+1 = �

Cb
2 +3
q+1 ,

we conclude that

��DN
D

M

t,q

�
H
�
@twq+1,en + v`q ·rwq+1,en

����
L1(supp i,q)

.
i+1X

i0=i�1

X

j,k,ep,⇠

�
Cb
2 +3
q+1 �

1/2

q+1,en,1⌧
�1
q

rq+1,en

⇥ �
�1
q+1�

N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i

0

q+1, e⌧�1
q
��1
q+1

⌘

. �4+
Cb
2

q+1 �

1
2

q+1,en,1⌧
�1
q

rq+1,en�
�1
q+1�

N

q+1M
�
M,Nind,t, ⌧

�1
q
�i+1
q+1, e⌧�1

q
��1
q+1

�

. ��CR�1
q+1 �q+2�

N

q+1M
�
M,Nind,t, ⌧

�1
q
�i+1
q+1, e⌧�1

q
��1
q+1

�
(8.79)

after also using (9.57).
To finish the proof for the first term in (8.77), we must provide a matching

estimate for the R⇤ portion. Following again the parameter choices in Re-
mark A.19, we set N� = M� = 3Nind,v. As in the argument from Lemma 8.6,
we have that (A.75), (A.76), and (A.77) are satisfied, this time with ⇣ = �q+1.

Thus we achieve the estimate in (A.79). Summing over ~l loses a factor less than
�
3
q+1, while summing over the other indices costs a constant independent of q.

This completes the estimate for the first term from (8.77).
For the second and third terms, we explain how to identify G and % in order

to give an idea of how to obtain similar estimates. Using 1 from Proposition 4.4
and the vector calculus identity curl � curl = r � div ��, we obtain that

U⇠,q+1,en = curl
�
⇠�

�2d
q+1�

d�1
�
#⇠,�q+1,rq+1,en

��

= �
�2d
q+1⇠ ⇥r

�
�d�1

�
#⇠,�q+1,rq+1,en

��
. (8.80)

With a little massaging, one can now rewrite the second and third terms in (8.77)
in the form G% � �(i,k). Since both terms have traded a spatial derivative on
U⇠,q+1,en for a spatial derivative on a(⇠), inducing a gain, one can easily show that
the estimates for these terms will be even stronger than those for the first term.
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Notice that we have set N⇤ = M⇤ = b1/2 (Nfin,en � Ncut,t � Ncut,x � 7)c since we
have lost a spatial derivative on a(⇠). We omit the rest of the details.

8.5 NASH ERRORS

Lemma 8.5. For all 0  en  nmax, the Nash errors satisfy

wq+1,en ·rv`q = div
�
(H+R⇤)wq+1,en ·rv`q

�
+rpen

with

�� i,qD
k
D

m

t,q

�
(H+R⇤)wq+1,en ·rv`q

���
L1

. �q+2�
�CR�1
q+1 �

N

q+1M
�
M,Nind,t, ⌧

�1
q
�i+1
q+1,�

�1
q+1e⌧�1

q

�

for all N,M  3Nind,v.

Proof of Lemma 8.5. The estimates are similar to those in Lemma 8.4. Writing
out the Nash error, we have that

wq+1,en ·rv`q =
X

i�1i0i+1

X

j,k,ep,~l,⇠

curl
⇣
a⇠,i,j,k,q,enr�T

(i,k)U⇠,q+1,en � �(i,k)

⌘

=

0

@
X

i,j,k,ep,~l,⇠

ra(⇠) ⇥
⇣
�T

(i,k)U⇠,q+1,en � �(i,k)

⌘
1

A ·rv`q

+

0

@
X

i,j,k,ep,~l,⇠

a(⇠)r��1
(i,k)W⇠,q+1,en � �(i,k)

1

A ·rv`q . (8.81)

Due to the fact that the first term arises from the addition of the corrector
defined in (8.5) and (8.12), and the fact that the bounds for the corrector in
(8.18) are stronger than that of the principal part of the perturbation, we shall
completely estimate only the second term and simply indicate the setup for
the first. Before applying Proposition A.18, recall that the inverse divergence
of (8.77) needs to be estimated on the support of a cuto↵  i,q in order to
verify (7.5), (7.13), and (7.20). Note that the Nash error can be written as
div

�
wq+1,en · v`q

�
and so has zero mean. Thus, although each individual term

in the final equality in (8.81) may not have zero mean, we can safely apply H
and R⇤ to each term and estimate the outputs while ignoring the last term in
(A.78).

We will apply Proposition A.18 to the second term with the following choices.
We set v = v`q , and Dt = Dt,q = @t + v`q · r as usual. We set N⇤ = M⇤ =
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b1/2 (Nfin,en � Ncut,x � Ncut,t � 4)c, with Ndec and d satisfying (9.60a). We define

G = a(⇠)r��1
(i,k)⇠ ·rv`q

and set
CG =

��supp (⌘
i,j,k,q,en,ep,~l)

���1/2

q+1,en,1�
i�cen+j+5
q+1 ⌧

�1
q

,

� = �q+1�q,en,ep, ⌫ = ⌧
�1
q
�i�cen+3
q+1 , Mt = Nind,t, and e⌫ = e⌧�1

q
��1
q+1. From (8.14)

with r = 1 and r1 = r2 = 2, (6.114), and (6.60), we have that for N,M 
b1/2 (Nfin,en � Ncut,x � Ncut,t � 4)c
��DN

D
M

t,q
G
��
L1 . CG (�q+1�q,en,ep)

N M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
,

(8.82)

and so (A.66) is satisfied. Note that we have used (9.39) when converting the

�
1/2
q
e�q to a ⌧�1

q
. Setting � = �(i,k) and �

0 = e�q, we have that (A.67) and (A.68)
are satisfied as usual. The choices of %, #, ⇣, µ, ⇤, and C⇤ are identical to those
of the transport error (both terms contain W⇠,q+1,en��(i,k)), and so we have that
(1)–(2), (A.69), (A.70), and (A.71) are satisfied as well. Since the bound (8.82)
is identical to that of (8.78), we obtain an estimate identical to (8.79). The
argument for the R⇤ portion follows analogously to that for the first term from
the transport error. Finally, after using (8.80) again, one may obtain similar
estimates for the first term in (8.81), concluding the proof.

8.6 TYPE 1 OSCILLATION ERRORS

The Type 1 oscillation errors are defined in the three parameter regimes en = 0,
1  en  nmax � 1, and en = nmax. In the case en = 0, Type 1 oscillation errors
stem from the term identified in (8.38), which we recall is

(H+R⇤)

 X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⇠,q+1,0 ⌦W⇠,q+1,0)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,0

 
nmaxX

n=1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓

⇠,q+1,0W
�

⇠,q+1,0)(�(i,k))@↵(r��1
(i,k))⇣�

�
. (8.83)

This sum is divided into the terms identified in (8.40), (8.41), (8.42), (8.43),
(8.45), and (8.46). The errors defined in (8.45) and (8.46) are H̊

0
q,n,p

errors
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and will be corrected by later perturbations wq+1,n,p, while the others will be

immediately absorbed into R̊
0
q+1.

In the case 1  en  nmax � 1, Type 1 oscillation errors stem from the term
identified in (8.54):

(H+R⇤)

 X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W⇠,q+1,en ⌦W⇠,q+1,en)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,en

 
nmaxX

n=en+1

pmaxX

p=1

P[q,n,p] + P[q,nmax,pmax+1]

!

⇥ (W✓

⇠,q+1,enW
�

⇠,q+1,en)(�(i,k))@↵(r��1
(i,k))⇣�

�
. (8.84)

This sum is divided into the terms identified in (8.59), (8.60), (8.61), (8.62),
(8.63), and (8.64). As before, the last two terms are H̊

en
q,n,p

errors and will be

corrected by later perturbations, while the others are absorbed into R̊
en
q+1.

In the case en = nmax, Type 1 oscillation errors are identified in (8.75) and
(8.76) as

(H+R⇤)

 X

⇠,i,j,k,p,~l

ra
2
(⇠)r�

�1
(i,k)P��q,nmax

P[q,nmax,pmax+1]

⇥ (W⇠,q+1,nmax ⌦W⇠,q+1,nmax)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,p,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,nmax

P[q,nmax,pmax+1]

⇥ (W✓

⇠,q+1,nmax
W�

⇠,q+1,nmax
)(�(i,k))@↵(r��1

(i,k))⇣�

�
. (8.85)

These errors are completely absorbed into R̊q+1.
To prove the desired estimates on these error terms, we will first analyze a

single term of the form

(H+R⇤)

 X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,enP[q,n,p]

⇥ (W⇠,q+1,en ⌦W⇠,q+1,en)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))↵✓P��q,enP[q,n,p]

⇥ (W✓

⇠,q+1,enW
�

⇠,q+1,en)(�(i,k))@↵(r��1
(i,k))⇣�

�



174

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

CHAPTER 8

=: (H+R⇤)Oen,ep,n,p . (8.86)

The estimates in Lemma 8.6 for this term on the support of a cuto↵ function
 i,q will depend on en and ep, which range from 0  en  nmax and 1  ep  pmax,
respectively, and n and p, which range from en+1  n  nmax and 1  p  pmax,
with the additional endpoint case n = nmax, p = pmax + 1. We then use this
general estimate to specify in Remark 8.7 how the terms corresponding to various
values of n, en, p, and ep are absorbed into either higher order stresses H̊en

q,n,p
or

R̊
en
q+1, and eventually R̊q+1.

Lemma 8.6. The terms Oen,ep,n,p defined in (8.86) satisfy the following.

1. For the special case n = nmax, p = pmax + 1 and for all 0  en  nmax,
1  ep  pmax, as well as for all cases 0  en < n  nmax, 1  p, ep  pmax,
the nonlocal portion of the inverse divergence satisfies

��DN
D

M

t,q
(R⇤Oen,ep,n,p)

��
L1(T3)

 �q+2

�q+1
�
N

q+1⌧
�M

q
(8.87)

for all N,M  3Nind,v.
2. For n = nmax, p = pmax + 1, all 0  en  nmax, and 1  ep  pmax, the

high frequency, local portion of the inverse divergence satisfies

��DN
D

M

t,q
(HOen,ep,nmax,pmax+1)

��
L1(supp i,q)

. ��CR
q+1�

�1
q+1�q+2�

N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 ,��1

q+1e⌧�1
q

⌘
(8.88)

for all N,M  3Nind,v.
3. For 0  en < n  nmax and 1  p, ep  pmax, the medium frequency, local

portion of the inverse divergence satisfies

��DN
D

M

t,q
(HOen,ep,n,p)

��
L1supp ( i,q)

. �q+1,n,p�
N

q,n,p
M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 ,��1

q+1e⌧�1
q

⌘
(8.89)

for all N +M  Nfin,n.

Remark 8.7. Note that after appealing to en  n � 1, (9.35), and (9.42), (8.89)
matches (7.15), (7.22), and (7.29), or equivalently (6.118). In addition, after
appealing again to en  n� 1, (9.35), and (9.42), (8.87) and (8.88) are su�cient
to meet (7.13), (7.20), and (7.27).

Proof of Lemma 8.6. The first step is to use item (1) and (4.15) from Proposi-
tion 4.4 to rewrite (8.86) as

(H+R⇤)

 X

⇠,i,j,k,ep,~l

ra
2
(⇠)r�

�1
(i,k)P��q,enP[q,n,p]



PROVING THE MAIN INDUCTIVE ESTIMATES

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

175

⇥ (W⇠,q+1,en ⌦W⇠,q+1,en)(�(i,k))r��T

(i,k)

+
X

⇠,i,j,k,ep,~l

a
2
(⇠)(r�

�1
(i,k))✓↵P��q,enP[q,n,p]

⇥ (W✓

⇠,q+1,enW
�

⇠,q+1,en)(�(i,k))@↵(r��1
(i,k))�

�

= (H+R⇤)

 X

⇠,i,j,k,ep,~l

P��q,enP[q,n,p]

⇣�
%⇠,�q+1,rq+1,en

�2⌘
(�(i,k))

⇥
✓
@↵a

2
(⇠)(r�

�1
(i,k))�⇠

✓
⇠
�(r��T

(i,k))✓↵

+ a
2
(⇠)(r�(i,k))

�1)✓↵⇠
✓
⇠
�
@↵(r��1

(i,k))�

◆�
. (8.90)

Next, we must identify the functions and the values of the parameters which will
be used in the application of Proposition A.18, specifically Remark A.19. We
first address the bounds required in (A.66), (A.67), and (A.68), which we can
treat simultaneously for items (1), (2), and (3). Afterwards, we split the proof
into two parts. First, we set n = nmax, p = pmax + 1 and prove (8.87) for only
these specific values of n and p, as we simultaneously prove (8.88). Next, we
consider n < nmax and prove (8.87) in the remaining cases, as we simultaneously
prove (8.89).

Returning to (A.66), we will verify that this inequality holds with v = v`q ,
Dt = Dt,q = @t + v`q ·r, and N⇤ = M⇤ = bN]

/2c, where N
] = Nfin,en � Ncut,t �

Ncut,x � 5. In order to verify the assumption N⇤ � d � 2Ndec + 4, we use that
Ndec and d satisfy (9.60a), which gives that

2Ndec + 4  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)� dc . (8.91)

Denoting the th component of the below vector field G by G, we fix a value
of (⇠, i, j, k, ep,~l) and set

G = @↵a
2
(⇠)

⇣
r��1

(i,k)

⌘

�

⇠
✓
⇠
�

⇣
r��T

(i,k)

⌘

↵✓

+ a
2
(⇠)

�
r�(i,k)

��1
)↵✓⇠

✓
⇠
�
@↵

⇣
r��1

(i,k)

⌘

�

. (8.92)

We now establish (A.66)–(A.68) with the parameter choices

CG = |supp (⌘
i,j,k,q,en,ep,~l)

���2j�3�Cb
q+1 ��CR

q
�q+1

e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
, (8.93)

� = �q,en,ep�q+1, Mt = Nind,t, ⌫ = ⌧
�1
q
�i�cen+4
q+1 , e⌫ = e⌧�1

q
��1
q+1, and �

0 = e�q.
Applying Lemma 8.1 and estimate (8.26) with r = 2, r2 = 1, r1 = 1, and the
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bounds (6.113) and (6.114), we see that

����D
N
D

M

t,q

⇣
@↵a

2
(⇠)

⇣
r��1

(i,k)

⌘

�

⇠
✓
⇠
�

⇣
r��T

(i,k)

⌘

↵✓

⌘����
L1

. |supp (⌘
i,j,k,q,en,ep,~l)

���2j+5
q+1 �q,en,ep�q+1,en,ep

⇥ (�q+1�q,en,ep)
NM

⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘

. |supp (⌘
i,j,k,q,en,ep,~l)

���2j�2�Cb
q+1

⇥ ��1
q+1�

�CR
q

�q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘

⇥ (�q+1�q,en,ep)
N M

⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘
(8.94)

holds for all N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c. To achieve the last
inequality, we have used the definition of �q+1,en,ep in (9.34) and the definition of
fq,en in (9.31) to rewrite

�q+1,en,ep�q,en,ep�
7+Cb
q+1 = ��1

q+1�
�CR
q

�q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
.

For the second half of G, we can appeal to (6.113) and (6.114), and use that
e�q  �q,en,ep for all en and ep to deduce that

����D
N
D

M

t,q
@↵

⇣
r��1

i,k

⌘

�

����
L1(supp i,qe�i,k,q)

 (�q+1�q,en,ep)
N+1 M

�
M,Nind,t, ⌧

�1
q
�i�c0
q+1 , e⌧�1

q
��1
q+1

�

forN,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c. Combining these estimates shows
that

��DN
D

M

t,q
G

��
L1 . CG (�q+1�q,en,ep)

N M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+3
q+1 , e⌧�1

q
��1
q+1

⌘

(8.95)

for N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c, showing that (A.66) has been
satisfied.

We set the flow in Proposition A.18 as � = �i0,k, which by definition satisfies
Dt,q�i0,k = 0. Appealing to (6.109) and (6.112), we have that (A.67) is satisfied.
From (6.60), the choice of ⌫ from earlier, and (9.39), we have that Dv = Dv`q

satisfies the bound (A.68).
Proof of item (2) and of item (1) when n = nmax, p = pmax + 1.

We first assume that en < nmax. In this case, we have that the minimum fre-
quency �q,nmax+1,0 of P[q,nmax,pmax+1] is larger than the minimum frequency �q,en
of P��q,en from (9.28) and (9.22). We therefore can discard P��q,en from (8.90)
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and with the goal of satisfying verifying (1)–(3) of Proposition A.18, we set

⇣ = �q,nmax+1,0, µ = �q,en, ⇤ = �q+1, (8.96)

and

% = P[q,nmax,pmax+1]

⇣�
%⇠,�q+1,rq+1,en

�2⌘
, (8.97a)

# = �
2d
q,nmax+1,0�

�dP[q,nmax,pmax+1]

⇣
%
2
⇠,�q+1,rq+1,en

⌘
, (8.97b)

where we recall that %⇠,�,r is defined via Propositions 4.3 and 4.4. We then have
immediately that

% = P[q,nmax,pmax+1]

⇣�
%⇠,�q+1,rq+1,en

�2⌘

= �
�2d
q,nmax+1,0�

d
�
2d
q,nmax+1,0�

�d
⇣
P[q,nmax,pmax+1]

⇣
%
2
⇠,�q+1,rq+1,en

⌘⌘

= �
�2d
q,nmax+1,0�

d
# , (8.98)

and so (1) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3,
we have that the functions % and # defined in (8.97) are both periodic to scale
(�q+1rq+1,en)

�1 = �
�1
q,en, and so (2) is satisfied. The estimates in (A.69) follow

with C⇤ = 1 from standard Littlewood-Paley arguments (see also the discussion
in part (b) of Remark A.21) and item (5) from Proposition 4.4. Note that in
the case N = 2d in (A.69), the inequality is weakened by a factor of �↵R

q+1, for
an arbitrary ↵R > 0; thus, (2) is satisfied. At this stage let us fix a value for
this parameter ↵R: we choose it to be su�ciently small (with respect to b and
"�) to ensure that the loss �↵R

q+1 may be absorbed by the spare negative factor
of �q+1 in the definition of CG, as is postulated in (9.53). From (9.19), (9.22),
(9.26), and (9.29), we have that

e�q  �q,en,ep ⌧ �q,en  �q,nmax+1,0  �q+1,

and so (A.70) is satisfied. From (9.48) we have that

�
4
q+1 

 
�q,en

2⇡
p
3�q+1�q,en,ep

!Ndec

if Ndec is chosen large enough, and so (A.71) is satisfied. Applying the estimate
(A.73) with ↵ as in (9.53), recalling the value for CG in (8.93), using (6.19) and
(6.147) with r1 = 1 and r2 = 1, we obtain that

��DN
D

M

t,q
(HOen,ep,nmax,pmax+1)

��
L1(supp i,q)
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.
i+1X

i0=i�1

X

⇠,j,k,~l

⇤↵R |supp (⌘
i,j,k,q,en,ep,~l)

���2j�3�Cb
q+1 ��CR

q

⇥ �q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
C⇤⇣�1M (N, 1, ⇣,⇤)M (M,Mt, ⌫, e⌫)

. �q+1

⇣
��1
q+1�

�CR
q

�q+1
e�q
Y

n0en

�
fq,n0�8+Cb

q+1

�⌘

⇥ �
�1
q,nmax+1,0�

N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘

. ��CR
q+1�

�1
q+1�q+2�

N

q+1M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘
, (8.99)

for N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c�d. In the last inequality, we have
used the parameter estimate (9.54), which directly implies

��CR
q

�q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
�
�1
q,nmax+1,0  ��CR

q+1�
�1
q+1�q+2 . (8.100)

Then, after using (9.60c), which gives that for all en we have

b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c � d � 3Nind,v, (8.101)

the range of derivatives allowed in (8.99) is exactly as needed in (8.88), thereby
proving this bound.

Continuing to follow the parameter choices in Remark A.19, we set N� =
M� = 3Nind,v, and as before N

] = Nfin,en � Ncut,t � Ncut,x � 5. From (9.60d),
we have that the condition N�  N

]
/4 is satisfied. The inequalities (A.75) and

(A.76) follow from the discussion in Remark A.19. The inequality in (A.77)
follows from (9.43), (9.55), the fact that � = �q+1�q,en,ep  �q+1�q,en,pmax , and
⇣ = �q,nmax+1,0 > �q,nmax�1 � �q,en, as in the discussion in Remark A.19. Having
satisfied these assumptions, we may now appeal to the estimate in (A.79), which
gives (8.87) for the case en < n = nmax, p = pmax + 1, and any value of ep.

Recall we began this case by assuming that en < nmax. In the case en = nmax

and 1  ep  pmax, we have from (9.22) and (9.29) that �q,nmax > �q,nmax+1,0,
and so

P[q,nmax,pmax+1]P��q,en = P��q,nmax
.

Then we can set ⇣ = µ = �q,nmax . The only change is that (8.100) becomes
stronger, since �q,nmax > �q,nmax+1,0, and so the desired estimates follow by
arguing as before. We omit further details.

Proof of item (3) and of item (1) when p 6= pmax + 1 and n  nmax.
Note that in both of these cases we have en < n. We first point that that we may
assume that n and p are such that �q,en < �q,n,p. If not, then P��q,enP[q,n,p] = 0,
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and so the estimate is trivially satisfied. We then set

⇣ = max {�q,en,�q,n,p�1} , µ = �q,en, ⇤ = �q,n,p, (8.102)

and

% = P��q,enP[q,n,p]

⇣�
%⇠,�q+1,rq+1,en

�2⌘
, (8.103a)

# = ⇣
2d��dP��q,enP[q,n,p]

⇣
%
2
⇠,�q+1,rq+1,en

⌘
. (8.103b)

We then have from the discussion part (b) of Remark A.21 that

% = P��q,enP[q,n,p]

⇣�
%⇠,�q+1,rq+1,en

�2⌘

= ⇣
�2d�d

⇣
2d��d

⇣
P��q,enP[q,n,p]

⇣
%
2
⇠,�q+1,rq+1,en

⌘⌘

= ⇣
�2d�d

# , (8.104)

and so (1) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3,
% and # are both periodic to scale (�q+1rq+1,en)

�1 = �
�1
q,en, and so (2) is satisfied.

The estimates in (A.69) follow with C⇤ = 1 from the discussion in part (b)
of Remark A.21. Note that in the case N = 2d in (A.69), the inequality is
weakened by a factor of �↵R

q+1, and so (2) is satisfied. Here we again use ↵R as in
(9.53), so this loss will be absorbed using a factor of �q+1. From (9.19), (9.26),
(9.29), and (9.22), and the assumption that �q,en < �q,n,p, we have that

e�q  �q,en,ep ⌧ �q,en  max {�q,en,�q,n,p�1}  �q,n,p,

and so, since ⇤  �q+1, (A.70) is satisfied. From (9.48) we have that

�
4
q+1 

 
�q,en

2⇡
p
3�q+1�q,en,ep

!Ndec

,

and so (A.71) is satisfied. Applying the estimate (A.73) for the parameter
range in Remark A.19, recalling that (8.92) includes the indicator function of
supp ( i,q), recalling the definition of CG in (8.93), using (6.19) and (6.147) with
r1 = 1 and r2 = 1, and using ⇣�1  �

�1
q,n,p�1, we have that
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.
i+1X

i0=i�1

X

⇠,j,k,~l

⇤↵R |supp (⌘
i,j,k,q,en,ep,~l)

���2j�3�Cb
q+1 ��CR

q

⇥ �q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
C⇤⇣�1M (N, 1, ⇣,⇤)M (M,Mt, ⌫, e⌫)
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. �q+1�
�1
q+1�

�CR
q

�q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘

⇥ �
�1
q,n,p�1�

N

q,n,p
M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘

. �q+1,n,p�
N

q,n,p
M
⇣
M,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘
. (8.105)

In the last inequality, we have used the fact that since n < en, by (9.34) we have

��CR
q

�q+1
e�q
Y

n0en

⇣
fq,n0�8+Cb

q+1

⌘
�
�1
q,n,p�1  �q+1,n,p (8.106)

for all N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c � d. Then after using (9.61),
which gives that for all en < n

b1/2 (Nfin,en � Ncut,t � Ncut,x � 5)c � d � Nfin,n, (8.107)

we have achieved (8.89).
Continuing to follow the parameter choices in Remark A.19, we set N� =

M� = 3Nind,v, and as before N
] = Nfin,en � Ncut,t � Ncut,x � 5. From (9.60d),

we have that the condition N�  N
]
/4 is satisfied. The inequalities (A.75) and

(A.76) follow from the discussion in Remark A.19. The inequality in (A.77)
follows from (9.55) and the fact that � = �q+1�q,en,ep  �q+1�q,en,pmax and ⇣ =
max{�q,en,�q,n,p�1} � �q,en. We then achieve the concluded estimate in (A.79),
which gives (8.87) for the case p 6= pmax + 1, n  nmax, and any values of en, ep
with en < n.

8.7 TYPE 2 OSCILLATION ERRORS

In order to show that the Type 2 errors (previously identified in (8.44), (8.57),
(8.58), (8.73), (8.74)) vanish, we will apply Proposition 4.8 on the support of a
specific cuto↵ function

⌘ = ⌘
i,j,k,q,n,p,~l

=  i,q�i,k,q�q,n,p
!i,j,q,n,p⇣i,q,k,n,~l

.

Before we apply the proposition, we first estimate in Lemma 8.8 the number
of cuto↵ functions ⌘⇤ which may overlap with ⌘, with an eye towards keeping
track of all the pipes that we will have to dodge in order to successfully place
pipes on ⌘. The next three Lemmas ((8.9)–(8.11)) are technical in nature and
are necessary in order to apply Lemma 4.7. Specifically, we show that given ⌘,
⌘
⇤ and a fixed time t⇤, one may find a convex set which contains the intersection

of the supports of ⌘ and ⌘
⇤ at t

⇤. The time t
⇤ will be the time at which the

pipes on ⌘⇤ are straight, and combined with the convexity, Lemma 4.7 may be
applied. The upshot of this is that the pipes belonging to ⌘⇤ only undergo mild
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deformations on the support of ⌘. This allows us to finally apply Proposition 4.8
to place pipes on ⌘ which dodge all pipes originating from overlapping cuto↵
functions ⌘⇤. We remark that since �

q,n,p
depends only on n and p, which are

indices already encoded in !i,j,q,n,p, throughout this section we will suppress the
dependence of the cumulative cuto↵ function ⌘ on �

q,n,p
(defined in (6.104)), as

it does not a↵ect any of the estimates.

8.7.1 Preliminary estimates

Lemma 8.8 (Keeping track of overlap). Given a cuto↵ function ⌘
i,j,k,q,n,p,~l

,

consider the set of all tuples
⇣
i
⇤
, j

⇤
, k

⇤
, n

⇤
, p

⇤
,~l

⇤
⌘
such that the cuto↵ function

⌘
i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤ satisfies:

1. n
⇤  n,

2. there exists (x, t) such that

⌘
i,j,k,q,n,p,~l

(x, t)⌘
i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤(x, t) 6= 0. (8.108)

Then the cardinality of the set of all such tuples is bounded above by C⌘�q+1,
where the constant C⌘ depends only on nmax, pmax, jmax, and dimensional con-
stants. In particular, due to (9.2), (9.3), and (6.129), C⌘ is independent of q
and the values of the other parameters indexing the cuto↵ functions.

Proof of Lemma 8.8. Recall that the cuto↵ functions are defined by

⌘
i,j,k,q,n,p,~l

(x, t) =  i,q(x, t)�i,k,q(t)�q,n,p
(t)!i,j,q,n,p(x, t)⇣i,q,k,n,~l(x, t). (8.109)

As noted in the outline of this section, we will suppress the dependence on
�
q,n,p

, since the n and p indices are already accounted for in !i,j,q,n,p. The
proof proceeds by first counting the number of combinations (i⇤, k⇤) for which
it is possible that there exists (x, t) such that

 i,q(x, t)�i,k,q(t) i⇤,q(x, t)�i⇤,k⇤,q(t) 6= 0. (8.110)

Next, for a given (i⇤, k⇤), we count the number of values of (j⇤, n⇤
, p

⇤) such that
there exists (x, t) such that

!i,j,q,n,p(x, t)!i⇤,j⇤,q,n⇤,p⇤(x, t) 6= 0. (8.111)

Finally, for a given (i⇤, k⇤, j⇤, n⇤
, p

⇤), we count the number of triples (l⇤, w⇤
, h

⇤)
such that n⇤  n and there exists (x, t) such that

⇣
i,q,k,n,p,~l

(x, t)⇣
i⇤,q,k⇤,n⇤,p⇤,~l⇤(x, t) 6= 0. (8.112)

Recalling the definition of �i,k,q from (6.96) and (6.98), we see that  i,q�i,k⇤,q

may have nonempty overlap with  i,q�i,k,q if and only if k⇤ 2 {k � 1, k, k + 1}.
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Next, from (6.19), we have that only  i�1,q and  i+1,q may overlap with  i,q.
Now, let (x, t) 2 supp i,q�i,k,q be given such that there exists ki�1 such that

 i,q(x, t)�i,k,q(t) i�1,q(x, t)�i�1,ki�1,q(t) 6= 0.

From the definition of �i�1,ki�1,q, it is immediate that the diameter of the sup-
port of �i�1,ki�1,q is larger than the diameter of the support of �i,k,q. It follows
that there can be at most three values of k⇤ (one of which is ki�1) such that
�i�1,k⇤,q has nonempty overlap with �i,k,q. Finally, let (x, t) 2 supp i,q�i,k,q

be given such that there exists ki+1 such that

 i,q(x, t)�i,k,q(t) i+1,q(x, t)�i+1,ki+1,q(t) 6= 0.

From the definition of �i+1,k⇤,q, there exists a constant C� depending on � but
not i, q, or k⇤ such that for all |k0| � C��q+1

�i+1,ki+1+k0,q(t)�i,k,q(t) = 0

for all t 2 R. Therefore, the number of k⇤ such that �i+1,k⇤,q may have non-
empty overlap with �i,k,q is no more than 2C��q+1+1. In summary, the number
of pairs (i⇤, k⇤) such that (8.110) holds for some (x, t) is bounded above by

3 + 3 + 2C��q+1 + 1  3C��q+1 (8.113)

if �0 is su�ciently large, where the implicit constant is independent of q or any
other parameters which index the cuto↵ functions.

Now let (i⇤, k⇤) be given such that  i⇤,q�i⇤,k⇤,q has nonempty overlap with
 i,q�i,k,q. Once values of n⇤, p⇤, and j

⇤ are chosen, these three parameters along
with the value of i⇤ uniquely determine a stress cuto↵ function !i⇤,j⇤,q,n⇤,p⇤ .
Since i

⇤ was fixed, we may let j
⇤, n⇤, and p

⇤ vary. Using that j
⇤  jmax 

4b/("�(b � 1)) from (6.129), n⇤  nmax, p⇤  pmax, where nmax and pmax are
independent of q, the number of tuples (i⇤, k⇤, j⇤, n⇤

, p
⇤) such that there exists

(x, t) with

 i,q(x, t)�i,k,q(x, t)!i,j,q,n,p(x, t) i⇤,q(x, t)�i⇤,k⇤,q(x, t)!i⇤,j⇤,q,n⇤,p⇤(x, t) 6= 0
(8.114)

is bounded by a dimensional constant multiplied by �q+1nmaxpmax4b/("�(b�1)).
Finally, fix a tuple (i⇤, k⇤, j⇤, n⇤

, p
⇤) such that (8.114) holds at (x, t). From

(6.139), there exists ~l⇤ = (l⇤, w⇤
, h

⇤) such that ⇣
i⇤,q,k⇤,n⇤,~l⇤(x, t) 6= 0. From

(6.141), (6.108), and the fact that n⇤  n, there exists a dimensional constant C⇣
such at most C⇣ of the checkerboard cuto↵s neighboring ⇣

i⇤,q,k⇤,n⇤,~l⇤ can intersect

the support of ⇣
i,q,k,n,~l

. Since all Lagrangian trajectories originating at (x, t)
follow the same velocity field v`q and the checkerboard cuto↵s are precomposed
with Lagrangian flows, this property is preserved in time. Thus we have shown
that for each tuple (i⇤, k⇤, j⇤, n⇤

, p
⇤), the number of associated tuples (l⇤, w⇤

, h
⇤)

such that ⇣
i⇤,q,k⇤,n⇤,~l⇤ can have nonempty intersection with ⇣

i,q,k,n,~l
is bounded
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by a dimensional constant independent of q.
Combining the preceding arguments, we obtain that the number of cuto↵

functions ⌘
i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤ which may overlap nontrivially with ⌘

i,j,k,q,n,p,~l
is

bounded by a dimensional constant multiplied by �q+1nmaxpmax4b/("�(b� 1)),
finishing the proof.

Lemma 8.9. Let (x, t), (y, t) 2 supp i,q be such that  2
i,q
(x, t) � 1/4 and

 
2
i,q
(y, t)  1/8. Then there exists a geometric constant C⇤ > 1 such that

|x� y| � C⇤ (�q�q)�1
. (8.115)

Proof Lemma 8.9. Let L(x, y) be the line segment connecting x and y. From
(6.36), we have that for z 2 L(x, y) (in fact for all z 2 T3),

|r i,q(z)| .  
1� 1

Nfin
i,q

(z)�q�q. (8.116)

Thus we can write

1

8

�� 2

i,q
(x, t)�  

2
i,q
(y, t)

��  2 | i,q(x)�  i,q(y)|

 2

����
ˆ 1

0
r i,q(x+ t(y � x)) · (y � x) dt

����

 2|x� y| kr i,qkL1

. �q�q|x� y|,

and (8.115) follows.

Lemma 8.10. Consider cuto↵ functions

⌘ := ⌘
i,j,k,q,n,p,~l

=  i,q�i,k,q!i,j,q,n,p⇣i,k,q,n,~l
,

⌘
⇤ := ⌘

i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤ =  i⇤,q�i⇤,k⇤,q!i⇤,j⇤,q,n⇤,p⇤⇣
i⇤,k⇤,q,n⇤,~l⇤ ,

where n
⇤  n and ⌘ and ⌘⇤ overlap as in Lemma 8.8. Let t⇤ 2 supp�i⇤,k⇤,q be

given. Then there exists a convex set ⌦ := ⌦(⌘, ⌘⇤, t⇤) with diameter ��1
q,n,0�q+1

such that ⇣
supp ⇣

i,k,q,n,~l
\ {t = t

⇤}
⌘
⇢ ⌦ ⇢ supp i±,q. (8.117)

Proof of Lemma 8.10. Let (x, t0) 2 supp (⌘⌘⇤). Then there exists i
0 2 {i �

1, i, i+ 1} such that  2
i0,q(x, t0) � 1

2 . Consider the flow X(x, t) originating from

(x, t0). Then for any t such that |t�t0|  ⌧q�
�i+5+c0
q+1 , we can apply Lemma 6.24

to deduce that  2
i0,q(t,X(x, t)) � 1

4 . By the definition of �i⇤,k⇤,q, the fact that
i
⇤ 2 {i � 1, i, i + 1}, the existence of (x, t0) 2 supp (�i,k,q�i⇤,k⇤,q), and the fact
that t

⇤ 2 supp�i⇤,k⇤,q, we in particular deduce that  2
i0,q(t

⇤
, X(x, t⇤)) � 1

4 .
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Now, let y be such that

|X(x, t⇤)� y|  �
�1
q,n,0�q+1  e��1

q
< C⇤e��1

q

for C⇤ given in (8.115), where we have used the definitions of �q,n,0 in (9.26)–
(9.28). Then, from Lemma 8.9, it cannot be the case that  2

i0,q(t
⇤
, y)  1

8 , and
thus

y 2 supp i0,q \ {t = t
⇤} ⇢ supp i±,q \ {t = t

⇤} . (8.118)

Since y is arbitrary, we conclude that the ball of radius �q+1�
�1
q,n,0 is contained

in supp i±,q \ {t = t
⇤}. We let ⌦(⌘, ⌘⇤, t⇤) be precisely this ball (hence a

convex set). Since Dt,q⇣i,k,q,n,~l
= 0 and (x, t0) 2 supp ⇣

i,k,q,n,~l
, we have that

X(x, t⇤) 2 supp ⇣
i,k,q,n,~l

\ {t = t
⇤}. Then, recalling that the support of ⇣

i,k,q,n,~l

must obey the diameter bound in (6.141) on the support of e�i,k,q, which contains
the support of �i⇤,k⇤,q by (6.103), we conclude that

supp ⇣
i,k,q,n,~l

\ {t = t
⇤} ⇢ ⌦ . (8.119)

Combining (8.118) and (8.119) concludes the proof of the lemma.

Lemma 8.11. As in Lemma 8.8, consider cuto↵ functions

⌘ := ⌘
i,j,k,q,n,p,~l

=  i,q�i,k,q!i,j,q,n,p⇣i,k,q,n,~l
,

⌘
⇤ := ⌘

i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤ =  i⇤,q�i⇤,k⇤,q!i⇤,j⇤,q,n⇤,p⇤⇣
i⇤,k⇤,q,n⇤,~l⇤ .

Let t⇤ 2 supp�i⇤,k⇤,q be such that �⇤ := �(i⇤,k⇤) is the identity at time t
⇤. Using

Lemma 8.10, define ⌦ := ⌦(⌘, ⌘⇤, t⇤). Define ⌦(t) := ⌦(⌘, ⌘⇤, t⇤, t) := X(⌦, t),
where X(·, t⇤) is the identity.

1. For t 2 supp�i,k,q,

supp ⌘(·, t) ⇢ ⌦(t) ⇢ supp i±,q. (8.120)

2. Let W⇤ � �⇤ := Wi
⇤
,j

⇤
,k

⇤
,n

⇤
,~l
⇤

⇠⇤,q+1,n⇤ � �(i⇤,k⇤) be an intermittent pipe flow sup-
ported on ⌘⇤. Then there exists a geometric constant Cpipe such that

(suppW⇤ � �⇤ \ {t = t
⇤} \ ⌦) ⇢

N[

n=1

Sn,

where the sets Sn are cylinders concentrated around line segments An for
n 2 {1, ..., N} with

N  Cpipe

 
�q,n

�q,n,0�
�1
q+1

!2

. (8.121)
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3. W⇤ � �⇤(·, t) and the associated axes An(t) and sets Sn(t) satisfy the
conclusions of Lemma 4.7 on the set ⌦(t) for t 2 supp�i,k,q.

Proof of Lemma 8.11. From the previous lemma, we have that for all y 2 ⌦,
 
2
i±,q

(y, t⇤) � 1/8. Applying Lemma 6.24, we have that for all t with |t � t
⇤| 

⌧q�
�i+5+c0
q+1 , the Lagrangian flow originating from (y, t⇤) has the property that

 
2
i±,q

(t,X(y, t)) � 1/16 . (8.122)

Recalling from (6.102) that the diameter of the support of e�i⇤,k⇤,q is ⌧q�
�i

⇤+c0
q+1

and that i � 1  i
⇤  i + 1, we have that in particular the Lagrangian flow

originating at (y, t⇤) satisfies (8.122) for all t 2 supp e�i⇤,k⇤,q. From (6.103),
(8.122) is then satisfied in particular for all t 2 supp�i,k,q, thus proving the
second inclusion from (8.120). To prove the first inclusion, we use (8.117), the
definition of ⌦(t), and the equality Dt,q⇣i,k,q,n,~l

= 0 to deduce that

supp ⇣
i,k,q,n,~l

(·, t) ⇢ ⌦(t),

finishing the proof of (8.120).
To prove the second claim, recall that W⇤ � �⇤ at t = t

⇤ is periodic to
scale ��1

q,n⇤ for n
⇤  n, and the diameter of ⌦ is 2��1

q,n,0�q+1 (in fact ⌦ is a
ball). Considering the quotient of the respective diameters squared, the claim
then follows after absorbing the geometric constant n⇤

⇠
from Proposition 4.3 into

Cpipe.
To see that we may apply Lemma 4.7, first note that ⌦ = ⌦(t⇤) is convex

by construction, and so the first assumption of Lemma 4.7 is met. We choose
v = v`q andX and � to be the associated backward and forward flows originating
from t0 = t

⇤. From (6.60), (8.120), and (9.19), we have that for t 2 supp�i,k,q

and x 2 ⌦(t), ��rv`q (x, t)
�� . �

1/2
q
e�q�i+2

q+1 = �
1/2
q
�q�

i+7
q+1, (8.123)

and so (4.21) is satisfied with C = i + 7. Recall again from (6.103) that
supp e�i⇤,k⇤,q contains the support of �i,k,q, and that from (6.102) the support

of e�i⇤,k⇤,q has diameter ⌧q�
�i

⇤+c0
q+1 . We then use (9.39) and (9.19) to write that

for any t 2 supp e�i⇤,k⇤,q we have

|t� t
⇤|  ⌧q�

�i
⇤+c0+1

q+1  ⌧q�
�i+c0+2
q+1


⇣
�
1/2
q
e�q�c0+6

q+1

⌘�1
��i+c0+2
q+1

=
⇣
�
1/2
q
�q�

c0+11
q+1

⌘�1
��i+c0+2
q+1


⇣
�
1/2
q
�q�

i+9
q+1

⌘�1
,

so that (4.20) is satisfied since C + 2 = i + 9. We can now apply Lemma 4.7,
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concluding the proof of the lemma.

8.7.2 Applying Proposition 4.8

Lemma 8.12. The Type 2 oscillation errors vanish. More specifically,

1. when en = 0, the Type 2 errors identified in (8.44) vanish;
2. when 1  en  nmax � 1, the Type 2 errors identified in (8.57) and (8.58)

vanish;
3. when en = nmax, the Type 2 errors identified in (8.73) and (8.74) vanish.

Proof of Lemma 8.12. We first recall what the Type 2 oscillation errors are.
When en = 0, the errors identified in (8.44) can be written using (8.31) as

O0,2 =
X

6={⇠,i,j,k,ep,~l}

curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,0 � �(i,k)

⌘

⌦ curl
⇣
a(⇠⇤)r�T

(i⇤,k⇤)U⇠⇤,q+1,0 � �(i⇤,k⇤)

⌘
, (8.124)

where the notation 6= {⇠, i, j, k, ep,~l} is defined in (8.30) and denotes summation
over all pairs of cuto↵ function indices for which at least one parameter di↵ers
between the two pairs. When 1  en  nmax, the Type 2 errors identified in
(8.57) and (8.73) can be written as

2
X

n0en�1

wq+1,en ⌦s wq+1,n0

= 2
X

n⇤en�1

X

⇠,i,j,k,ep,~l

X

⇠⇤,i⇤,j⇤,k⇤,p⇤,~l⇤

curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,en � �(i,k)

⌘

⌦s curl
⇣
a(⇠⇤)r�T

(i⇤,k⇤)U⇠⇤,q+1,n⇤ � �(i⇤,k⇤)

⌘
. (8.125)

When 1  en  nmax, the Type 2 errors identified in (8.58) and (8.74) can be
written as

X

6={⇠,i,j,k,ep,~l}

curl
⇣
a(⇠)r�T

(i,k)U⇠,q+1,en

⌘
⌦ curl

⇣
a(⇠⇤)r�T

(i⇤,k⇤)U⇠⇤,q+1,en

⌘
,

(8.126)

where the notation 6= {⇠, i, j, k, ep,~l} has been reused from (8.30). To show that
the errors defined in (8.124), (8.125), and (8.126) vanish, it su�ces to show
the following. For pairs of cuto↵ functions ⌘

i,j,k,q,en,ep,~l and ⌘
i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤

satisfying the two conditions in Lemma 8.8, and vectors ⇠, ⇠⇤ 2 ⌅,

supp
⇣
Wi,j,k,en,ep,~l
⇠,q+1,en � �(i,k)

⌘
\ supp ⌘

i,j,k,q,en,ep,~l

\ supp
⇣
Wi

⇤
,j

⇤
,k

⇤
,n

⇤
,p

⇤
,~l
⇤

⇠⇤,q+1,n⇤ � �(i⇤,k⇤)

⌘
\ supp ⌘

i⇤,j⇤,k⇤,q,n⇤,p⇤,~l⇤ = ;. (8.127)
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The proof of this claim will proceed by fixing en, using the preliminary estimates,
and applying Proposition 4.8.

Let en be fixed and assume that wq+1,n0 for n0
< en has been defined (when en =

0, this assumption is vacuous). In particular, placements have been chosen for
all intermittent pipe flows indexed by n

0. Now, consider all the cuto↵ functions
⌘
i,j,k,q,en,ep,~l utilized at stage en. Since the parameters indexing the cuto↵ functions

are countable, we may choose any ordering of the tuples (i, j, k, ep,~l) at level en.
Combined with an ordering of the direction vectors ⇠ 2 ⌅, we thus have an
ordering of the cuto↵ functions ⌘

i,j,k,q,en,ep,~l and the associated intermittent pipe

flows Wi,j,k,en,ep,~l
⇠,q+1,en � �(i,k).

To ease notation, we will abbreviate the cuto↵ functions as ⌘z and the as-
sociated intermittent pipe flows as (W � �)z, where z 2 N corresponds to the
ordering. We will apply Proposition 4.8 inductively on z such that the following
two conditions hold. Our goal is to place the pipe flow (W � �)z such that

supp (W � �)z0 \ supp (W � �)z \ supp ⌘z = ; , (8.128)

for all z0 < z, and such that

suppwq+1,n0 \ supp (W � �)z \ supp ⌘z = ; , (8.129)

for all n0
< en. The first condition shows that all Type 2 errors such as (8.124)

and (8.126) which arise from two sets of pipes both indexed by en vanish, while
the second condition shows that the Type 2 errors which arise from pipes indexed
by n

0
< en interacting with pipes indexed by en vanish, such as (8.125).

Throughout the rest of the proof, z0 will only ever denote an integer less
than z such that ⌘z and ⌘z0 overlap. Although we have suppressed the in-
dices, note that ⌘z0 and ⌘z both correspond to the index en. Conversely, let
⌘z00 denote a generic cuto↵ function indexed by n

0 which overlaps with ⌘z. By
Lemma 8.8, there exists a geometric constant C⌘ such that the number of cut-
o↵ functions ⌘z0 or ⌘z00 which overlap with ⌘z is bounded above by C⌘�q+1.
Let tz0 2 supp�iz0 ,kz0 ,q be the time for which �iz0 ,kz0 ,q is the identity, and let
⌦ (⌘z, ⌘z0 , tz0) be the convex set constructed in Lemma 8.10, where we have set
t
⇤ = tz0 . Let ⌦ (⌘z, ⌘z0 , tz0 , t) denote the image of ⌦ (⌘z, ⌘z0 , tz0) under this flow,
as defined in Lemma 8.11. We then have that the set

supp (W � �)z0 \ supp⌦ (⌘z, ⌘z0 , tz0) \ {t = tz0} (8.130)

is contained in the union of sets Sz
0

n
concentrated around axes Az

0

n
for

n  Cpipe�2q+1

�
2
q,en

�
2
q,en,0

,

and the flowed axes A
z
0

n
and pipes of (W � �)z0 satisfy the conclusions of

Lemma 4.7. Furthermore, substituting z
00 for z

0 in the preceding discussion,
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all the analogous definitions and conclusions can be made for cuto↵ functions
⌘z00 and pipe flows (W � �)z00 .

We will apply Proposition 4.8 with the following choices. Let tz be the time
at which the flow map �i,k,q corresponding to ⌘z is the identity. Set

⌦ =

 
[

z0<z

⌦ (⌘z, ⌘z0 , tz0 , tz)

!
[
 
[

n0<en

⌦ (⌘z, ⌘z00 , tz00 , tz)

!
(8.131)

and set

r1 = ��1
q+1

�q,en,0

�q+1
=

8
>>>><

>>>>:

⇣
�q

�q+1

⌘( 4
5 )

en�1· 56
��1
q+1 if en � 2

⇣
�q

�q+1

⌘ 4
5
��1
q+1 if en = 1

e�q

�q+1
if en = 0.

(8.132)

We have used here the definitions of �q,en,0 given in (9.27), (9.26), and (9.28).
Note that by (8.120), supp ⌘z(·, tz) ⇢ ⌦ (⌘z, ⌘z0 , tz0 , tz) for each z

0
< z, with the

analogous inclusion holding when z
0 is replaced by z

00. In particular, we have
that supp ⌘z(·, tz) ⇢ ⌦. Furthermore, we have additionally from Lemma 8.11
that Lemma 4.7 may be applied on ⌦(t) for all t 2 �i,k,q. Thus, the diameter
of ⌦(⌘z, ⌘z0 , tz0 , tz) satisfies

diam (⌦ (⌘z, ⌘z0 , tz0 , tz))  (1 + ��1
q+1)diam (⌦(⌘z, ⌘z0 , tz0))

= 2(1 + ��1
q+1)�

�1
q,en,0�q+1. (8.133)

Using the fact that the diameter of the support of ⌘z(·, tz) is bounded by a
dimensional constant time ��1

q,en,0 from (6.141) and recalling that supp ⌘z(·, tz) ⇢
⌦ (⌘z, ⌘z0 , tz0 , tz) with the analogous conclusion holding for z00, we have that

diam(⌦)  4(1 + ��1
q+1)�

�1
q,en,0�q+1 + �q+1�

�1
q,en,0

 6(1 + ��1
q+1)�q+1 (�q,en,0)

�1

 16(�q+1r1)
�1

for each value of en from (8.132), and so (4.28) is satisfied.
Now set

CA = CpipeC⌘�q+1, r2 = rq+1,n ⇡
✓

�q

�q+1

◆( 4
5 )

en+1

,

where above we have appealed to (9.23) and (9.25). By (8.121) and Lemma 8.8,
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the total number of pipes contained in ⌦ is no more than

CpipeC⌘�3q+1

�
2
q,en

�
2
q,en,1

.

Then we can write

CpipeC⌘�3q+1

�
2
q,en

�
2
q,en,0

= CA
r
2
2

r
2
1

,

and so (4.29) is satisfied. Furthermore, the assumptions on the axes and the
neighborhoods of the axes required by Proposition 4.8 follow from Lemma 8.11,
which allows us to appeal to the conclusions of Lemma 4.7. Finally, from (9.58a),
we have that for en � 2,

C⇤CAr42  16C⇤CpipeC⌘�q+1

✓
�q

�q+1

◆( 4
5 )

en+1·4


✓

�q

�q+1

◆( 4
5 )

en�1· 56 ·3
��3
q+1 = r

3
1, (8.134)

showing that (4.31) is satisfied for en � 2. In the cases en = 0 and en = 1,
the desired inequalities follow from (8.132) and (9.58b) and (9.58c), and so we
have checked that (4.31) is satisfied for all 0  en  nmax. Then from the
conclusion (4.32) of Proposition 4.8, we have that on the support of ⌦, which
in particular contains the support of ⌘z(·, tz) from (8.120), we can choose the
support of (W ��)z to be disjoint from the support of (W ��)z0 and (W ��)z00

for all overlapping z
00 and z

0. Then since Dt,q(W � �)z = Dt,q(W � �)z0 =
Dt,q(W � �)z00 = 0, (8.128) and (8.129) are satisfied, concluding the proof.

8.8 DIVERGENCE CORRECTOR ERRORS

Lemma 8.13. For all 0  en  nmax, 1  ep  pmax, and j 2 {2, 3}, the
divergence corrector errors Oen,1,j satisfy

�� i,qD
k
D

m

t,q
Oen,1,j

��
L1 . ��CR�1

q+1 �q+2�
k

q+1M
�
k,Nind,t,�

i+1
q+1⌧

�1
q

,��1
q+1e⌧�1

q

�

for all k,m  3Nind,v.

Proof of Lemma 8.13. The divergence corrector errors are given in (8.32), (8.50),
and (8.68). The estimates for j = {2, 3} are each similar, and so we shall only
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prove the case j = 2. Thus we estimate
����� i,qD

k
D

m

t,q

X

⇠,i0,j,k,ep,~l

⇣⇣
a(⇠)r��1

(i0,k)W⇠,q+1,en � �(i,k)

⌘

⌦
⇣
ra(⇠) ⇥

⇣
r�T

(i0,k)U⇠,q+1,en � �(i,k)

⌘⌘⌘�����
L1

. (8.135)

Recall that ⇠ takes only six distinct values and that j  jmax, ep  pmax are
bounded independently of q. Furthermore, on the support of  i,q, only  i�1,q,
 i,q, and  i+1,q are non-zero from (6.19). As a result, only time cuto↵s �i�1,k,q,
�i,k,q, and �i+1,k,q may be non-zero. Since for each i the �i,k,q’s form a partition
of unity in time for which only two cuto↵ functions are non-zero at any fixed
time, for every time, the sum in (8.135) is a finite sum for which the number of
non-zero terms in the summand is bounded independently of q. Similarly, the
sum over ~l forms a partition of unity which only finitely many cuto↵ functions
overlap at any fixed point in space and time. Therefore we may absorb the
e↵ects of ⇠, j, k, ep, and ~l in the implicit constant in the inequality.

Using Hölder’s inequality and estimates (8.17) and (8.18) from Corollary 8.2
with r = 2, r2 = 1, and r1 = 1, we have that

X

⇠,i0,j,k,ep,~l

��� i,qD
k
D

m

t,q

�⇣
a(⇠)r��1

(i0,k)W⇠,q+1,en � �(i0,k)

⌘

⌦
⇣
ra(⇠) ⇥

⇣
r�T

(i0,k)U⇠,q+1,en � �(i0,k)

⌘⌘����
L1

. �8+Cb
q+1 �q+1,en,ep�

k

q+1M
⇣
m,Nind,t, ⌧

�1
q
�i�cen+4
q+1 , e⌧�1

q
��1
q+1

⌘
�q,en,ep

�q+1

. ��CR�1
q+1 �q+2�

k

q+1M
�
m,Nind,t, ⌧

�1
q
�i+1
q+1, e⌧�1

q
��1
q+1

�
,

for N,M  b1/2 (Nfin,en � Ncut,t � Ncut,x � 2Ndec � 9)c, which proves the desired
estimate after recalling that for all en,

b1/2 (Nfin,en � Ncut,t � Ncut,x � 2Ndec � 9)c � 3Nind,v ,

�8+Cb
q+1

�q+1,en,ep�q,en,ep

�q+1
 �q+2�

�CR�1
q+1 ,

�cen + 4  1 ,

which follow from (9.60b), (9.34) and (9.54), and (9.42), respectively.
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8.9 TIME SUPPORT OF PERTURBATIONS AND STRESSES

First, we prove (7.12). Indeed, appealing to (5.1), which defines R̊`q in terms of

a mollifier applied to R̊q, (9.20), which defines the scale at which R̊q is mollified,
and (6.104), which ensures that the time support of wq+1,0 is only enlarged rela-

tive to the time support of R̊`q by 2
⇣
�
1/2
q �q�2q+1

⌘�1
, we achieve (7.12). To prove

(7.14) and (7.16), first note that application of the inverse divergence operators
H and R⇤ commutes with multiplication by �

q,n,p
.8 Then by the definition of

R̊
0
q+1 and H̊

0
q,n,p

in Section 8.3, we achieve (7.14) and (7.16). Proving the in-
clusions in (7.19), (7.21), (7.23), (7.26), (7.28), and (7.30) follows similarly from
(6.104), the properties of H and R⇤, and the definitions of R̊en

q+1 and H̊
en
q,n,p

in
Section 8.3. Finally, to see that (7.4) follows from the inclusions already demon-
strated, notice that the threshold in (7.4) is weaker than any of the previous
inclusions by a factor of �q+1, and so we may allow the time support of R̊en

q+1

to expand slightly as en increases from 0 to nmax while still meeting the desired
inclusion.

8This is simple to check from the formula given in Proposition A.17 and the formula for
the standard nonlocal inverse divergence operator given in (A.100), both of which involve op-
erations which are purely spatial, such as di↵erentiation and application of Fourier multipliers.
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Chapter Nine

Parameters

The purpose of this section is to provide an exhaustive delineation of the many
parameters, inequalities, and notations which arise throughout the bulk of the
book. In Section 9.1, we define the q-independent parameters in order, beginning
with the regularity index �, and ending with the number a⇤, which will be used
to absorb every implicit constant throughout the book. Then in Section 9.2,
we define the parameters which depend on q, as well as the parameters which
depend in addition on n and p. The definitions of both the q-independent
and q-dependent parameters will appear rather arbitrary, but are justified in
Section 9.3. This section contains, in no particular order, consequences of the
definitions made in the previous two sections which are necessary to close the
estimates in the proof. Finally, Sections 9.4 and 9.5 contain the definitions of a
few operators and some notations that are used throughout the book.

9.1 DEFINITIONS AND HIERARCHY OF THE PARAMETERS

The parameters in our construction are chosen as follows:

1. Choose an arbitrary regularity parameter � 2 [1/3, 1/2). In light of [11, 43],
there is no reason to consider the regime � < 1/3.

2. Choose b 2 (1, 3/2) su�ciently small such that

2�b < 1 . (9.1)

The heuristic reason for (9.1) is given by (2.8). Note that (9.1) and
the inequality � < 1/2 imply that �(2b + 1) < 3/2, which is a required
inequality for the heuristic estimate (2.22).

3. With � and b chosen, we may now designate a number of parameters:

a) The parameter nmax, which per Section 2.4.2 denotes the total
number of higher order stresses R̊q,n and thus primary frequency
divisions in between �q and �q+1, is defined as the smallest integer
for which

1� 2�b >
5

6

✓
4

5

◆nmax�1

. (9.2)

b) The parameter pmax, which per Section 2.4.2 denotes the total
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number of subdivided components R̊q,n,p of a higher order stress

R̊q,n and thus secondary frequency divisions in between �q and
�q+1, is defined as the smallest integer for which

1

pmax
<

1� 2�b

10
. (9.3)

c) The parameter Cb appearing in (3.21) is use to quantify the L
1

norm of the velocity cuto↵ functions  i,q. It is defined as

Cb =
b+ 4

b� 1
. (9.4)

d) The exponent CR is used in order to define a small parameter in the
estimate for the Reynolds stress; cf. (3.15). This parameter is then
used in the proof to absorb geometric constants in the construction.
It is defined as

CR = 4b+ 1 . (9.5)

4. The parameter c0, which is first introduced in (3.20) and utilized in Sec-
tions 7 and 8 to control small losses in the sharp material derivative
estimates, is defined in terms of nmax as

c0 = 4nmax + 5 . (9.6)

5. The parameter "� > 0, which is used in (9.18) to quantify the finest
frequency scale between �q and �q+1 utilized throughout the scheme, is
defined as the greatest real number for which the following inequalities
hold:

"�

⇣
7 + CR + nmax(8 + Cb))

⌘
<

1� 2�

10
(9.7a)

"� <
1

100

✓
4

5

◆nmax�1

(9.7b)

"� <
b

9(b� 1)
(9.7c)

2b"�(c0 + 7) < 1� � . (9.7d)

6. The parameter ↵R > 0 from the L1 loss of the inverse divergence operator
is now defined as

↵R =
"�(b� 1)

2b
. (9.8)

7. The parameters Ncut,t and Ncut,x are used in Chapter 6 in order to define
the velocity and stress cuto↵ functions. Ncut,x is the number of space
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derivatives which are embedded into the definitions of these cuto↵ func-
tions, while Ncut,t is the number of material derivatives. See (6.6), (6.14),
and (6.119). These large parameters are chosen solely in terms of b and
"� as

1

2
Ncut,x = Ncut,t =

⇠
3b

"�(b� 1)
+

15b

2

⇡
. (9.9)

8. The parameter Nind,t, which is the number of sharp material derivatives
propagated on stresses and velocities in Chapters 3 through 8, is chosen
as the smallest integer for which we have

Nind,t =

⇠
4

"�(b� 1)

⇡
Ncut,t . (9.10)

9. The parameter Nind,v, whose primary role is to quantify the number
of sharp space derivatives propagated on the velocity increments and
stresses—cf. (3.12) and (3.15)—is chosen as the smallest integer for which
we have the bounds

4bNind,t + 8 + b(CR + 3)"�(b� 1) + 2�(b3 � 1) < "�(b� 1)Nind,v .

(9.11)

10. The value of the decoupling parameter Ndec, which is used in the L
p

decorrelation Lemma A.2, is chosen as the smallest integer for which we
have

Ndec

✓
1

30

✓
4

5

◆nmax

� "�

◆
>

4b

b� 1
. (9.12)

11. The value of the parameter d, which in essence is used in the inverse
divergence operator of Proposition A.18 to count the order of a parametric
expansion, is chosen as the smallest integer for which we have

(d� 1)

✓
1

30

✓
4

5

◆nmax

� "�

◆
>

(12Nind,v + 7)b

b� 1
. (9.13)

12. The value of Nfin, which is introduced in Chapter 3 and used to quantify
the highest order derivative estimates utilized throughout the scheme, is
chosen as the smallest integer such that

3

2
Nfin > (2Ncut,t + Ncut,x + 14Nind,v + 2d+ 2Ndec + 12)2nmax+1

. (9.14)

13. Having chosen all the previous parameters in items (1)–(12), there exists
a su�ciently large parameter a⇤ � 1 which depends on all the parame-
ters listed above (which recursively means that a⇤ = a⇤(�, b)), and which
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allows us to choose a an arbitrary number in the interval [a⇤,1). While

we do not give a formula for a⇤ explicitly, it is chosen so that a
(b�1)"�
⇤

is at least twice larger than all the implicit constants in the . symbols
throughout the book; note that these constants depend only on the pa-
rameters in items (1)–(12) —never on q— which justifies the existence of
a⇤.

Having made the choices in items (1)–(13) above, we are now ready to define
the q-dependent parameters which appear in the proof.

9.2 DEFINITIONS OF THE Q-DEPENDENT PARAMETERS

9.2.1 Parameters which depend on q

For q � 0, we define the fundamental frequency parameter used in this book as

�q = 2
⌃
(bq) log2 a

⌥
. (9.15)

Definition (9.15) gives that �q is an integer power of 2, and that we have the
bounds

a
(bq)  �q  2a(b

q) and
1

3
�
b

q
 �q+1  2�b

q
(9.16)

for all q � 0. Throughout the book the above two inequalities are used by
putting the factors of 1/3 and 2 into the implicit constants of . symbols. In
terms of �q, the fundamental amplitude parameter used in the book is

�q = �
(b+1)�
1 �

�2�
q

. (9.17)

In terms of the parameter "� from (9.7), we introduce a parameter which is
used repeatedly throughout the book to mean “a tiny power of the frequency
parameter”:

�q+1 =

✓
�q+1

�q

◆"�
. (9.18)

In order to cap o↵ our derivative losses, we need to mollify in space and time
using the operators described in Section 9.4 below. This is done in terms of the
following space and time parameters:

e�q = �q�
5
q+1 (9.19)

e⌧�1
q

= ⌧
�1
q
e�3
q
e�q+1 . (9.20)
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While e⌧q is used for mollification and thus for rough material derivative bounds,
the fundamental time parameter used in the book for sharp material derivative
bounds is

⌧q =
⇣
�
1/2
q
e�q�c0+6

q+1

⌘�1
. (9.21)

Note that besides depending on the parameters introduced in (1)–(13), the pa-
rameters introduced above only depend on q, but are independent of n and
p.

9.2.2 Parameters which depend also on n and p

The rest of the parameters depend on n 2 {0, . . . , nmax} and p 2 {0, . . . , pmax}.
We start by defining the frequency parameter �q,n and the intermittency pa-
rameter rq+1,n by

�q,n = 2

l
( 4

5 )
n+1

log2 �q+
⇣
1�( 4

5 )
n+1

⌘
log2 �q+1

m

(9.22)

rq+1,n =
�q,n

�q+1
(9.23)

for 0  n  nmax. In particular, (9.22) shows that �q+1rq+1,n is an integer
power of 2, and we have the bound

�
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1  �q,n  2�
( 4

5 )
n+1

q �
1�( 4

5 )
n+1

q+1 , (9.24)

while (9.23) implies that r�1
q+1 is an integer power of 2, and we have the estimates

✓
�q

�q+1

◆( 4
5 )

n+1

 rq+1,n  2

✓
�q

�q+1

◆( 4
5 )

n+1

. (9.25)

As with (9.16) we absorb the factors of 2 in (9.24) and (9.25) into the implicit
constants in . symbols.

We also define the frequency parameters �q,n,p by

�q,0,p = �q+1
e�q n = 0, 0  p  pmax (9.26)

�q,1,0 = �

4
5
q �

1
5
q+1 n = 1, p = 0 (9.27)

�q,n,0 = �
( 4

5 )
n�1· 56

q �
1�( 4

5 )
n�1· 56

q+1 2  n  nmax + 1 (9.28)

�q,n,p = �
1�p/pmax

q,n,0 �
p/pmax

q,n+1,0 1  n  nmax, 0  p  pmax. (9.29)

For 0  n  nmax, we define

fq,0 = 1, n = 0, (9.30)



198

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

CHAPTER 9

fq,n =

✓
�q,n+1,0

�q,n,0

◆1/pmax

, 1  n  nmax. (9.31)

We define �q+1,0,p by

�q+1,0,1 = ��CR
q

�q+1, p = 1, (9.32)

�q+1,0,p = 0, 2  p  pmax. (9.33)

When 1  n  nmax and 1  p  pmax, we define �q+1,n,p by

�q+1,n,p = ��CR
q

�q+1 ·
 

e�q
�q,n,p�1

!
·
Y

n0<n

⇣
fq,n0�8+Cb

q+1

⌘
. (9.34)

We remark that by the definition of �q,1,0 given in (9.27), and more generally
�q,n,p in (9.29), the fact that n � 1, and a large choice of pmax which makes fq,n
(defined in (9.31)) small, �q+1,n,p is significantly smaller than ��CR

q
�q+1.

For 1  n  nmax, we define cn in terms of c0 by

cn = c0 � 4n . (9.35)

For n = 0, we set

Nfin,0 =
3

2
Nfin, (9.36)

while for 1  n  nmax, we define Nfin,n inductively on n by using (9.36) and
the formula

Nfin,n =

�
1

2
(Nfin,n�1 � Ncut,t � Ncut,x � 6)� d

⌫
. (9.37)

9.3 INEQUALITIES AND CONSEQUENCES OF THE

PARAMETER DEFINITIONS

The definitions made in the previous two sections have the following conse-
quences, which will be used frequently throughout the book.

Due to (9.15) we have that �q+1 � (1/2)b"��(b�1)"�
q � (1/2)b"��(b�1)"�

0 �
(1/2)a(b�1)"�

⇤ . As was already mentioned in item (13), we have chosen a⇤ to be

su�ciently large so that a
(b�1)"�
⇤ is at least twice larger than all the implicit

constants appearing in all . symbols throughout the book. Therefore, for any
q � 0, we may use a single power of �q+1 to absorb any implicit constant in the
book: an inequality of the type A . B may be rewritten as A  �q+1B.

From (9.18), (9.19), and (9.7c), we have that

�4
q+1
e�q  �q+1 . (9.38)
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From the definition (9.21) of ⌧q and from (9.35), which gives that cn is decreasing
with respect to n, we have that for all 0  n  nmax

�cn+6
q+1 �

1/2
q
e�q  ⌧

�1
q

. (9.39)

Using the definitions (9.17), (9.18), (9.19), and (9.21), writing out everything
in terms of �q�1, and appealing to (9.7d), we have that

⌧
�1
q�1�

3+c0
q+1  ⌧

�1
q

(9.40)

⌧
�1
q�1�q+1  �

1/2
q
�q . (9.41)

From the definitions (9.6) of c0 and (9.35) of cn, we have that for all 0  n 
nmax,

�cn + 4  �1. (9.42)

From the definition of e⌧q, it is immediate that

⌧
�1
q
e�4
q
 e⌧�1

q
 ⌧

�1
q
e�3
q
e�q+1 . (9.43)

From (9.7d), the assumption that � � 1/3, and the assumption that b  3/2, we
can write everything out in terms of �q to deduce that

⌧
�1
q
�9
q+1  ⌧

�1
q+1 . (9.44)

From the definitions (9.22) and (9.26)–(9.29), for all 0  n  nmax and
0  p  pmax we have

�q,n,p

�q,n
⌧ 1 .

More precisely, when n = 0 we have that

�q+1�q,n,p

�q,n
=
�2
q+1
e�q

�q,0
=
�7
q+1�q

�q,0
=

✓
�q+1

�q

◆� 1
5+7"�

(9.45)

while for n � 1 it holds that

�q+1�q,n,p

�q,n
 �q+1�q,n+1,0

�q,n
=

✓
�q+1

�q

◆( 4
5 )

n( 4
5�

5
6 )+"�


✓
�q+1

�q

◆� 1
30 (

4
5 )

nmax+"�

(9.46)

as it is clear that the quotient on the left-hand side is largest when n = nmax.
Note that due to (9.2) we have 1

30

�
4
5

�nmax � "� <
1�2�b

30 � "�  1
5 � 7"�; here

we also used that "�  1
36 , which handily follows from (9.7b). Combining (9.45)

and (9.46) we thus arrive at

�q+1�q,n,p

�q,n

✓
�q+1

�q

◆� 1
30 (

4
5 )

nmax+"�


�
2�b�1

q

�� 1
30 (

4
5 )

nmax+"�
(9.47)
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for all 0  n  nmax and 0  p  pmax. Combining the above estimate with our
choice of Ndec in (9.12), we thus arrive at

�
4
q+1 

 
�q,en

2⇡
p
3�q+1�q,en,ep

!Ndec

. (9.48)

for all 0  en  nmax and 1  ep  pmax.
Next, we a list a few consequences of the fact that Nind,v � Nind,t, as specified

in (9.11). First, we note from (9.43) that

e⌧�1
q�1⌧q�1  e�3

q�1
e�q  �

4
q

(9.49)

where in the second inequality we have used the fact that "�  3
20b . In turn,

the above inequality combined with (9.11) implies the following estimates, all of
which are used for the first time in Chapter 5:

�
8
q�1�

1+CR
q+1

�q�1

�q+2

�
e⌧�1
q�1⌧q�1

�Nind,t  �Nind,v�2
q (9.50a)

e�2
q

�
e⌧�1
q�1⌧q�1

�Nind,t  �5Nind,v

q+1 (9.50b)

�
4
q�1�

1/2

q�1�
2
q
�
�1/2
q

(e⌧�1
q�1⌧q�1)

Nind,t  �Nind,v
q . (9.50c)

Next, as a consequence of our choice of Ncut,t and Ncut,x in (9.9), we obtain
the following bounds, which are used in Chapter 6:

e�3/2
q
��Ncut,t
q

 �
3
q
��Ncut,t
q

 1 (9.51)

for all q � 0. The fact that Nind,t is taken to be much larger than Ncut,t, as
expressed in (9.10), implies when combined with (9.49) the following bound,
which is also used in Chapter 6:

�
⌧qe⌧�1

q

�Ncut  �
4Ncut
q+1  �Nind,t

q+1 (9.52)

for all q � 1.
The parameter ↵R is chosen in (9.8) in order to ensure the inequality

�
↵R
q+1  �q+1 (9.53)

for all q � 0. This fact is used in Chapter 8. Several other, much more hideous,
parameter inequalities are used in Chapter 8, and for the reader’s convenience
we list them next. First, we claim that

�q+1�
�CR
q

�q+1
e�q

Y

n0nmax

⇣
fq,n0�8+Cb

q+1

⌘
�
�1
q,nmax+1,0  ��CR

q+1�
�1
q+1�q+2 . (9.54)

In order to verify the above bound, we appeal to the choices made in (9.1), (9.2),
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and (9.3), to the definitions (9.19), (9.27), (9.28), and (9.31), and to the fact
that en  nmax to deduce that the left side of (9.54) is bounded from above by

�q+1�
6+nmax(8+Cb)
q+1

�q

�q,nmax+1,0

✓
�q,nmax+1,0

�q,1,0

◆ 1
pmax

= �q+1�
6+nmax(8+Cb)
q+1

✓
�q

�q+1

◆(1�( 4
5 )

nmax 5
6 )✓�q+1

�q

◆ 1
pmax

( 4
5�( 4

5 )
nmax 5

6 )

 �q�q+1

�q+1
�6+nmax(8+Cb)
q+1

✓
�q+1

�q

◆(1�2�b) 4
5
✓
�q+1

�q

◆ 1�2�b
10

4
5


⇣
��CR
q+1�

�1
q+1�q+2

⌘
�q�q+1

�q+1�q+2
�7+CR+nmax(8+Cb)
q+1

✓
�q+1

�q

◆(1�2�b) 22
25


⇣
��CR
q+1�

�1
q+1�q+2

⌘
�7+CR+nmax(8+Cb)
q+1

✓
�q+1

�q

◆�(1�2�b) 3
25

.

The proof of (9.54) is now completed by appealing to (9.7a), which ensures that
�q+1 represents a su�ciently small power of �q+1/�q.

Next, we claim that due to our choice of d, we have

��CR
q

�q+1
e�q

Y

n0nmax

⇣
fq,n0�8+Cb

q+1

⌘
�q+1

✓
�q+1�q,en,pmax

�q,en

◆d�1 �
�
4
q+1

�3Nind,v

 �q+2

�
5
q+1

. (9.55)

In order to verify the above bound we use the previously established estimate
(9.54) in conjunction with (9.47); after dropping the helpful factor of ��2�CR

q+1 ,
we deduce that the left side of (9.55) is bounded from above by

�q+2�q,nmax+1,0�q+1

✓
�q+1�q,en,pmax

�q,en

◆d�1 �
�
4
q+1

�3Nind,v

 �q+2

�
5
q+1

�
3
q+1

�
2�b�1

q

��(d�1)( 1
30 (

4
5 )

nmax�"�)
�
12Nind,v

q+1 .

The choice of d in (9.13) shows that the above estimate directly implies (9.55).
The amplitudes of the higher order corrections wq+1,n,p must meet the in-

ductive assumptions stated in (3.13). In order to meet the satisfactory bound
in Remark 8.3, from (9.32)–(9.34) we deduce the bound

�
1/2

q+1,en,ep  ��2
q+1�

1/2

q+1. (9.56)

Indeed, the case en = 0 follows from the definition of CR in (9.5), while the case
en � 1 is a consequence of the definition (9.34), which implies that �q,en,ep  �q,0,1,
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for any en � 1 and any ep � 1.
Another parameter inequality which is necessary to estimate the transport

and Nash errors in Sections 8.4 and 8.5 is

�
4+

Cb
2

q+1 �

1
2

q+1,en,1⌧
�1
q

rq+1,en�
�1
q+1  ��CR�1

q+1 �q+2 (9.57)

for all 0  en  nmax. When en = 0, this inequality may be deduced by writing
everything out in terms of �q, appealing to the appropriate definitions, and then
using the fact that � < 1/2 from item 1, (9.1), (9.4), (9.5), (9.6), and (9.7b),
after which one arrives at

"�

✓
4 +

b� 4

2
+

1

2
�CR + c0 + 12

◆
+ �(2b+ 1) <

1

100
+

3

2
<

9

5
.

It is clear there is quite a bit of room in the above inequality, and similarly,
(9.57) becomes most restrictive when en = nmax. In this case, one may again
write everything out in terms of �q, move everything to the left-hand side, and
appeal to most of the same referenced inequalities as before to see that

"� (22 + 4nmax) + �(2b+ 1)� 3

2
 "� (22 + 4nmax) + � � 1

2
< 0 ,

where in the last inequality we have instead appealed to (9.7a) rather than
(9.7b), proving (9.57) in the remaining cases 1  en  nmax.

Parameter inequalities which play a crucial role in showing that the Oscilla-
tion 2 type errors vanish, see—Section 8.7—are:

16C⇤CpipeC⌘�q+1

✓
�q

�q+1

◆( 4
5 )

en+1·4
<

✓
�q

�q+1

◆( 4
5 )

en�1· 56 ·3
��3
q+1 , for en � 2 ,

(9.58a)

16C⇤CpipeC⌘�q+1

✓
�q

�q+1

◆ 4
5 ·4

<

 
e�q
�q+1

!3

, (9.58b)

16C⇤CpipeC⌘�4q+1

✓
�q

�q+1

◆( 4
5 )

2·4
<

✓
�q

�q+1

◆ 4
5 ·3

, (9.58c)

where C⇤ is the geometric constant from Lemma 4.8, estimate (4.31), Cpipe is
a geometric constant which appears in Lemma 8.11, estimate (8.121), and C⌘
is the constant from Lemma 8.8. In order to verify (9.58), we first note that
C⇤CpipeC⌘  �q+1, since a⇤ was chosen to be su�ciently large. Inequality (9.58b)
is then an immediate consequence of the fact that 16/5 > 3. The bound (9.58a)
follows from

�5
q+1 <

✓
�q+1

�q

◆( 4
5 )

nmax�1( 64
25�

5
2 )


✓
�q+1

�q

◆( 4
5 )

en+1·4�( 4
5 )

en�1· 56 ·3
. (9.59)



PARAMETERS

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

203

The second inequality in the above display is a consequence of en  nmax, while
the first one follows from (9.7b). Finally, inequality (9.58c) is a consequence of
the fact that 64/25 � 12/5 > 64/25 � 5/2 and the first inequality in (9.59), which
bounds �5

q+1.
We conclude this section by verifying a few inequalities concerning the pa-

rameter Nfin,n, which counts the number of available space-plus-material deriva-

tives for the residual stress R̊q,n. For all 0  n  nmax we require that

Nind,t, 2Ndec + 4  b1/2 (Nfin,n � Ncut,t � Ncut,x � 5)c � d , (9.60a)

14Nind,v  Nfin,n � Ncut,t � Ncut,x � 2Ndec � 9 , (9.60b)

6Nind,v  b1/2 (Nfin,n � Ncut,t � Ncut,x � 6)c � d , (9.60c)

6Nind,v  b1/4 (Nfin,n � Ncut,t � Ncut,x � 7)c (9.60d)

for all 0  n  nmax. Additionally for 0  en < n  nmax, we require that

b1/2 (Nfin,en � Ncut,t � Ncut,x � 6)c � d � Nfin,n (9.61)

holds. The inequality (9.61) is a direct consequence of the formula (9.37) and
of the fact that the sequence Nfin,n is monotone decreasing with respect to n.
Using (9.36) and (9.37) one may show that

Nfin,n � 2�nNfin,0 � (2d+ Ncut,t + Ncut,x + 8) .

Noting that the bounds (9.60) are most restrictive for n = nmax, they now
readily follow from our choice (9.14).

9.4 MOLLIFIERS AND FOURIER PROJECTORS

Let �(⇣) : R ! R be a smooth, C1 function compactly supported in the set
{⇣ : |⇣|  1}, which in addition satisfies

ˆ
�(⇣) d⇣ = 1,

ˆ
�(⇣)⇣n = 0 8n = 1, 2, ...,Nind,v. (9.62)

Let e�(x) : R3 ! R be defined by e�(x) = �(|x|). For �, µ 2 R, define

�
(x)
�

(x) = �
3e� (�x) , �

(t)
µ
(t) = µ�(µt). (9.63)

For q 2 N, we will define the spatial and temporal convolution operators

Pq,x := �
(x)
e�q

⇤, Pq,t := �
(t)

e⌧�1
q�1

⇤, Pq,x,t := Pq,x � Pq,t. (9.64)

We will use the notation P� to denote the standard (Littlewood-Paley)
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Fourier projection operators onto spatial frequencies which are less than or equal
to �, P�� to denote the standard Littlewood-Paley projection operators onto
spatial frequencies which are greater than or equal to �, and the notation

P[�1,�2)

to denote the Fourier projection operator onto spatial frequencies ⇠ such that
�1  |⇠| < �2. If �1 = �2, we adopt the convention that P[�1,�2)f = 0 for any f .

9.5 NOTATIONS

M (n,N,�,⇤) = �
min{n,N}⇤max{n�N,0}

a⌦s b =
1

2
(a⌦ b+ b⌦ a) (9.65)

a ⌦̊s b =
1

2
(a ⌦̊ b+ b ⌦̊ a) (9.66)

supp
t
f = {t : f |T3⇥{t} 6⌘ 0} (9.67)

We will use repeatedly the notation (noted in the introduction in (2.3) and (2.4)
and in Remark 3.2)

kfk
Lp := kfk

L
1
t (Lp(T3)) . (9.68)

That is, all Lp norms stand for Lp norms in space, uniformly in time. Similarly,
when we wish to emphasize a set dependence on ⌦ ⇢ R⇥T3 of an L

p norm, we
write

kfk
Lp(⌦) := k1⌦ fk

L
1
t (Lp(T3)) . (9.69)
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Appendix A

Useful Lemmas

This appendix contains a collection of auxiliary lemmas which are used through-
out the book:

• Section A.1 recalls the classical CN estimates for solutions of the transport
equation. This is, for instance, used in Section 6.4.

• Section A.2 gives the detailed construction of the basic cuto↵ functions e m,q

and  m,q, which are used in Chapter 6 to construct the velocity and the stress
cuto↵ functions.

• Section A.3 recalls the fundamental fact that the Lp norm of the product of a
slowly oscillating function and a fast periodic function is essentially bounded
by the product of their Lp norms.

• Section A.4 contains a version of the Sobolev inequality which takes into
account the support of the velocity cuto↵ functions.

• Section A.5 contains a number of consequences of the multivariate Faà di
Bruno formula. Most of the results here are used for bounding the space and
material derivatives of the cuto↵ functions in Chapter 6. We also present here
—cf. Lemma A.7— a version of the Lp decorrelation lemma from Section A.3
in which the fast periodic function is composed with a volume-preserving
flow map. Lemma A.7 plays a crucial role in estimating the L

2 norms of the
velocity increments in Section 8.2.

• Sections A.6 and A.7 contain a number of lemmas which allow us to go
back and forth between information for (arbitrarily) high order derivative
bounds in Eulerian and Lagrangian variables. These lemmas concerning sums
of operators and commutators with material derivatives are frequently used
throughout the book to overcome the fact that material derivatives and spa-
tial/temporal derivatives do not commute.

• Section A.8 introduces in Proposition A.18 the inverse divergence operator
used in this book. We call this operator “intermittency friendly” because it is
composed of a principal part which precisely maintains the spatial support of
the vector field it is applied to, plus a secondary part which is nonlocal, but
whose amplitude is incredibly small. It is here that the definition (4.10) for
the density of our pipe flows plays an important role, as the high order d of
the Laplacian present in (4.10) allows us to perform a parametric expansion
which maintains (to leading order) the support of pipes, and also takes into
account deformations due to the flow map.
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APPENDIX A

A.1 TRANSPORT ESTIMATES

We shall require the following estimates for smooth solutions of transport equa-
tions. For proofs we refer the reader to [8, Appendix D].

Lemma A.1 (Transport estimates). Consider the transport equation

@tf + u ·rf = g, f |t0 = f0,

where f, g : Tn ! R and u : Tn ! Rn are smooth functions. Let X be the flow
of u, defined by

d

dt
X = u(X, t), X(x, t0) = x,

and let � be the inverse of the flow of X, which is the identity at time t0. Then
the following hold:

1. kf(t)kC0  kf0kC0 +

ˆ
t

t0

kg(s)kC0 ds.

2. kDf(t)kC0  kDf0kC0e
(t�t0)kDukC0 +

ˆ
t

t0

e
(t�s)kDukC0 kDg(s)kC0 ds.

3. For any N � 2, there exists a constant C = C(N) such that

kDN
f(t)kC0


�
kDN

f0kC0 + C(t� t0)kDn
ukC0kDfkC0

�
e
C(t�t0)kDukC0

+

ˆ
t

t0

e
C(t�s)kDukC0

�
kDN

g(s)kC0 + C(t� s)kDN
ukC0kDg(s)kC0

�
ds.

4. kD�(t)� IdkC0  e
(t�t0)kDukC0 � 1  (t� t0)kDukC0e

(t�t0)kDukC0 .
5. For N � 2 and a constant C = C(N),

kDN�(t)kC0  C(t� t0)kDN
ukC0e

C(t�t0)kDukC0 .

A.2 PROOF OF LEMMA 6.2

We first consider the function

f(x) =

(
0 if x  0

e
� 1

x2 if x > 0.
(A.1)

We claim that for all 0  N  Nfin and x > 0,

|DN
f(x)|

(f(x))1�
N

Nfin

. 1. (A.2)



APPENDIX A

main˙PUP˙single˙spaced March 29, 2023 6.125x9.25

207

The proof of this is achieved in two steps; first, one can show by induction that
for all 0  N  Nfin, there exist constants KN and ck for 0  k  KN such that

D
N

⇣
e
� 1

x2

⌘
=

KNX

k=0

ck

xk
e
� 1

x2 . (A.3)

Next, one may also check that for any powers p, q > 0,

lim
x!0+

e
� q

x2
1

xp
= 0. (A.4)

Then for 1  N  Nfin, we see that 0  1� N

Nfin
< 1, and so using (A.3), we have

that the left-hand side of (A.2) may be split into a finite linear combination of
terms of the form in (A.4), showing that (A.2) is valid.

We now glue together two versions of f as follows with the goal of forming

a prototypical cuto↵ function  . First, let x0 =
q

1
ln(2) so that f(x0) =

1
2 . Now

consider the function ef(x) = f(2x0 � x), and set

F (x) =

(
f(x) if x  x0

1� f(2x0 � x) if x > x0.
(A.5)

Then F (x) is continuous everywhere, and C
1 everywhere except x0, where it is

not necessarily di↵erentiable. Furthermore, one can check that by the definition
of F and (A.2), for all 0  N  Nfin,

|DN
F (x)|

(F (x))1�
N

Nfin

. 1 for all 0 < x < x0, (A.6a)

|DN
�
1� (F (x))2

� 1
2 |

(1� (F (x))2)
1
2

⇣
1� N

Nfin

⌘ . 1 for all x0 < x < 2x0. (A.6b)

The latter inequality follows from noticing that for x close to 2x0,

�
1� (F (x))2

� 1
2 = ((1 + F (x))(1� F (x)))

1
2 = (1 + F (x))

1
2 (f(2x0 � x))

1
2 .

Since multiplying by a smooth function strictly larger than 1, rescaling f by a
fixed parameter, and raising f to a positive power preserves the estimate (A.2)
up to implicit constants (in fact, raising f to a power is equivalent to rescaling),
(A.6) is verified.

Towards the goal of adjusting F to be di↵erentiable at x0, let E be the set�
x0
2 ,

3x0
2

�
, and let � be a compactly supported, C1 mollifier such that the sup-

port of the mollified characteristic function XE ⇤ �(x) is contained in
�
x0
4 ,

7x0
4

�
.

Setting
 (x) = (XE ⇤ �(x))� ⇤ F (x) + (1� XE ⇤ �(x))F (x), (A.7)
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one may check that  is C1 and has the following properties:

 (x) = 0 for x  0 (A.8)

0 <  (x) < 1 for 0 < x < 2x0 (A.9)

 (x) = 1 for x � 2x0 (A.10)

|DN
 (x)|

( (x))1�
N

Nfin

. 1 for all 0 < x (A.11)

|DN
�
1� ( (x))2

� 1
2 |

(1� ( (x))2)
1
2

⇣
1� N

Nfin

⌘ . 1 for all 0 < x < 2x0. (A.12)

We can now build e m,q. By rescaling and translating  and using (A.8)–
(A.10), one can check that

e m,q(x) =  

 
x� �2(m+1)

q

1
2x0

�
1
4 � 1

�
�2(m+1)
q

!
(A.13)

satisfies all components of (1). Notice that this rescaling involves a factor pro-

portional to ��2(m+1)
q . Then using (A.11) and the fact that every derivative

 m,q introduces another factor of ��2(m+1)
q , we have that (6.3) is satisfied.

We now outline how to construct  m,q(�
�2(m+1)
q y), which is the first term

in the series in (6.1), and will define  m,q(y). The basic idea is that the region

( 14�
2(m+1)
q+1 ,�2(m+1)

q+1 ) where e m,q decreases from 1 to 0 will be the region where

 m,q(�
�2(m+1)
q+1 y) increases from 0 to 1, and furthermore in order to satisfy (6.1),

we have a formula for  m,q(�
�2(m+1)
q+1 y) for these y-values. Specifically, in order

to ensure (6.1) for y 2 ( 14�
2(m+1)
q+1 ,�2(m+1)

q+1 ), we define

 
2
m,q

⇣
��2(m+1)
q+1 y

⌘
= 1� e 2

m,q
(y)

in this range of y-values. Then by adjusting (A.12) to reflect the rescalings

present in the definition of e m,q and  m,q(�
�2(m+1)
q y), we have that for y 2�

1
4 , 1
�
,  m,q is well-defined and (6.4) holds. To define  m,q(�

�2(m+1)
q y) for

y 2 [ 14�
4(m+1)
q ,�4(m+1)

q ] and thus  m,q (y) for y 2 [ 14�
2(m+1)
q ,�2(m+1)

q ], we can

use that for y 2 [ 14�
4(m+1)
q ,�4(m+1)

q ], the rescaled function  m,q(�
�4(m+1)
q+1 y)

(i.e., the term in (6.1) with i = 2) is now well-defined. Then we can set

 
2
m,q

⇣
��2(m+1)
q+1 y

⌘
= 1�  

2
m,q

⇣
��4(m+1)
q+1 y

⌘

so that  m,q is well-defined for y 2 [ 14�
2(m+1)
q ,�2(m+1)

q ] and (6.1) holds in this
range of y-values. Appealing again to (A.11) and (A.12), we have that (6.5)
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is satisfied in the claimed range of y-values. Finally, in the missing interval

[1, 1
4�

2(m+1)
q ], we set  m,q ⌘ 1. One can now check that (6.1) holds for all

y � 0, and that (6.2) follows from (1), (2), and (6.1), concluding the proof.

A.3 L
P DECORRELATION

The following lemma may be found in [13, Lemma 3.7].

Lemma A.2 (Lp de-correlation estimate). Fix integers Ndec � 1 and µ �
� � 1 and assume that they obey

�
Ndec+4 

✓
µ

2⇡
p
3

◆Ndec

. (A.14)

Let p 2 {1, 2}, and let f be a T3-periodic function such that

max
0NNdec+4

�
�NkDN

fkLp  Cf (A.15)

for a constant Cf > 0.1 Then, for any (T/µ)3-periodic function g, we have that

kfgkLp . CfkgkLp ,

where the implicit constant is universal (in particular, independent of µ and �).

A.4 SOBOLEV INEQUALITY WITH CUTOFFS

Lemma A.3. Let 0   i  1 be cuto↵ functions such that  i± = ( 2
i�1 + 

2
i
+

 
2
i+1)

1/2 = 1 on supp ( i), and such that for some ⇢ > 0 we have

|DK
 i(x)| .  

1�K/Nfin

i
(x)⇢K (A.16)

for all K  4. Fix parameters p 2 [1,1], 0 < �  e�, 0 < µi  eµi, and
Nx, Nt � 0, and assume that the sequences {µi}i�0 and {eµi}i�0 are nondecreas-
ing. Assume that there exist N⇤,M⇤ � 0 such that the function f : T3 ! R
obeys the estimate

�� iD
N
D

M

t
f
��
Lp . CfM

⇣
N,Nx,�,

e�
⌘
M (M,Nt, µi, eµi) (A.17)

1For instance, if f has frequency support in the ball of radius � around the origin, we have
that Cf ⇡ kfk

Lp .
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for all N  N⇤ and M  M⇤. Then, we have that

�� 2
i
D

N
D

M

t
f
��
L1 . Cf (max{1, ⇢, e�})3/p

⇥M
⇣
N,Nx,�,

e�
⌘
M (M,Nt, µi, eµi) (A.18a)

��DN
D

M

t
f
��
L1(supp i)

. Cf (max{1, ⇢, e�})3/p

⇥M
⇣
N,Nx,�,

e�
⌘
M (M,Nt, µi+1, eµi+1) (A.18b)

for all N  N⇤ � b3/pc � 1 and M  M⇤.
Lastly, if the inequality (A.17) holds for all N +M  N� for some N� � 0

(instead of N  N⇤ and M  M⇤), then the bounds (A.18a) and (A.18b) hold
for N +M  N� � b3/pc � 1.

Proof of Lemma A.3. The proof uses that b3/pc+ 1 > 3/p for all p 2 [1,1], and
that W s,p ⇢ L

1 for s > 3/p. Moreover, the proof of (A.18a) is nearly identical
to that of (A.18b), and thus we only give the proof of (A.18b); moreover, for
simplicity we only give the proof for p = 2, as all the other Lebesgue exponents
are treated in the same way. By Gagliardo-Nirenberg-Sobolev interpolation we
have

��DN
D

M

t
f
��
L1(supp i)


�� 2

i±D
N
D

M

t
f
��
L1(T3)

.
�� 2

i±D
N
D

M

t
f
��1/4

L2(T3)

�� 2
i±D

N
D

M

t
f
��3/4

Ḣ2(T3)

+
�� 2

i±D
N
D

M

t
f
��
L2(T3)

.

Using (A.16), (A.17), and the monotonicity of the µi and eµi, we obtain

�� 2
i±D

N
D

M

t
f
��
Ḣ2(T3)

.
�� i±D

N+2
D

M

t
f
��
L2 + kD i±kL1

�� i±D
N+1

D
M

t
f
��
L2

+

����
D

2( 2
i±)

 i±

����
L1

�� i±D
N
D

M

t
f
��
L2

.
�� i±D

N+2
D

M

t
f
��
L2 + ⇢

�� i±D
N+1

D
M

t
f
��
L2 + ⇢

2
�� i±D

N
D

M

t
f
��
L2

. (max{e�, ⇢})2CfM
⇣
N,Nx,�,

e�
⌘
M (M,Nt, µi+1, eµi+1) ,

for all N  N⇤ � 2 and M  M⇤. In the second inequality above we have used
that |D2( 2

i±)| . ⇢
2
 i±(x), which follows from (A.16). Combining the above

two displays proves (A.18b).
Note that for p = 1 we require that |D4( 2

i±)| . ⇢
4
 i±(x), which also follows

from (A.16) since Nfin � 4, and this is why we have assumed this inequality to
hold for all K  4.

Lastly, assume that (A.17) holds for all N+M  N�, and fix any N
0
,M

0 � 0
such that N 0+M

0  N��b3/pc�1. Let N⇤ = N
0+b3/pc+1 and M⇤ = M

0. Then
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(A.17) gives a bound for k iD
N

00
D

M
00

t
fkLp for all N 00  N⇤ and M

00  M⇤. The
bounds (A.18a) and (A.18b) thus give an estimate for k iD

N
0
D

M
0

t
fkLp , which

concludes the proof.

A.5 CONSEQUENCES OF THE FAÀ DI BRUNO FORMULA

We are using the following version of the multivariable Faà di Bruno formula
[25, Theorem 2.1]. Let g = g(x1, . . . , xd) = f(h(x1, . . . , xd)), where f : Rm ! R
and h : Rd ! Rm are C

n smooth functions of their respective variables. Let
↵ 2 Nd

0 be s.t. |↵| = n, and let � 2 Nm

0 be such that 1  |�|  n. We then
define

p(↵,�) =

(
(k1, . . . , kn; `1, . . . , `n) 2 (Nm

0 )n ⇥ (Nd

0)
n : 9s with 1  s  n s.t.

|kj |, |`j | > 0 , 1  j  s, 0 � `1 � . . . � `s,

sX

j=1

kj = �,

sX

j=1

|kj |`j = ↵

)
. (A.19)

Then the multivariable Faà di Bruno formula states that we have the equality

@
↵
g(x) = ↵!

nX

|�|=1

(@�f)(h(x))
X

p(↵,�)

nY

j=1

(@`jh(x))kj

kj !(`j !)kj
. (A.20)

Note that in (A.19) we have that kj = 0 2 Nm

0 and `j = 0 2 N
d

0 for j � s + 1.
Therefore, we could write the sums and products with j 2 {1, . . . , s} as sums
for j 2 {1, . . . , n}. Keeping in mind this convention, we importantly note that
in (A.20) we can have |`j | = 0 only if |kj | = 0, and in this case the entire term
in the product is equal to 1. That is, the product in (A.20) only goes from 1 to
s, and in this case |`j | � 1 for j 2 {1, . . . , s}. This fact will be used frequently.

For applications to cuto↵ functions we apply this formula for scalar functions
h, i.e., m = 1, while for applications to the perturbation or Reynolds stress
sections we apply this formula for vector fields h, i.e., m = 3.

Since throughout this manuscript the number of derivatives that we need to
estimate is uniformly bounded (say by Nfin), we may ignore the factorial terms
in (A.20) and include them in the implicit constant of .. Using this convention,
we summarize in the following lemma a useful consequence of the Faà di Bruno
formula above.

Lemma A.4 (Faà di Bruno). Fix N  Nfin. Let  : [0,1) ! [0, 1] be a
smooth function obeying

|DB
 | . ��2B

 
 
1�B/Nfin (A.21)
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for all B  N , and some � > 0. Let �,�,⇤ > 0 and N⇤  N . Furthermore,
let h : T3 ⇥ R ! R and denote

g(x) =  (��2
h(x)).

Assume the function h obeys

��DB
h
��
L1(supp g)

. ChM (B,N⇤,�,⇤) (A.22)

for all B  N , where the implicit constant is independent of �,⇤,�, Ch > 0.
Then, we have that for all points (x, t) 2 supph, the bound

|DN
g|

g1�N/Nfin
. M (N,N⇤,�,⇤)max{(� �)�2Ch, (� �)�2NCN

h
} (A.23)

holds. If the  1�B/Nfin factor on the right side of (A.21) is replaced by 1, then
the g

1�N/Nfin factor on the left side of (A.23) also has to be replaced by 1.

Proof of Lemma A.4. The goal is to apply (A.19)–(A.20) with f(x) =  (��2
x).

For (x, t) 2 supp (g) we obtain from (3.9), (A.21), and (A.23) that

|DN
g|

g1�N/Nfin
.

NX

B=1

|DB
 |

 1�B/Nfin
 
(N�B)/Nfin��2B

X

p(↵,B)

nY

j=1

��@`jh
��kj

L1(supp g)

.
NX

B=1

(� �)
�2B

X

p(↵,B)

nY

j=1

(ChM (`j , N⇤,�,⇤))
kj

.
NX

B=1

(� �)
�2BCB

h
M (N,N⇤,�,⇤)

for any 1  B  N . The conclusion of the lemma follows upon bounding the
geometric sum.

Frequently in the book, we need a version of Lemma A.4 which also deals
with mixed spatial and material derivatives. A convenient statement is:

Lemma A.5 (Mixed derivative Faà di Bruno). Fix N,M 2 N such that
N +M  Nfin. Let  : [0,1) ! [0, 1] be a smooth function obeying

|DB
 | . ��2B

 
 
1�B/Nfin (A.24)

for all B  N and a constant � > 0. Let v be a fixed vector field, and denote

Dt = @t + v ·r, which is a scalar di↵erential operator. Let �,�, e�, µ, eµ � 1 and
Nx, Nt  N . Furthermore, let h : T3 ⇥ R ! R and denote

g(x, t) =  (��2
h(x, t)).
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Assume the function h obeys
���DN

0
D

M
0

t
h

���
L1(supp g)

. ChM
⇣
N

0
, Nx,�,

e�
⌘
M (M 0

, Nt, µ, eµ) (A.25)

for all N 0  N and M
0  M , where the implicit constant is independent of

�, e�, µ, eµ,�, and Ch. Then, we have that for all points (x, t) 2 supph, the bound

|DN
D

M

t
g|

g1�(N+M)/Nfin
. M

⇣
N,Nx,�,

e�
⌘
M (M,Nt, µ, eµ)

⇥max
�
(� �)

�2Ch, ((� �)�2Ch)N+M
 

(A.26)

holds. If the  1�B/Nfin factor on the right side of (A.24) is replaced by 1, then
the g

1�(N+M)/Nfin factor on the left side of (A.26) also has to be replaced by 1.

Proof of Lemma A.5. Let X(a, t) be the flow induced by the vector field v, with
initial condition X(a, t) = x. Denote by a = X

�1(x, t) the inverse of the map
X. We then note that

D
M

t
g(x, t) =

�
@
M

t
((g �X)(a, t))

�
|a=X�1(x,t).

We wish to apply the above with the function g(x, t) =  (��2
h(x, t)). We

apply the Faà di Bruno formula (A.19)–(A.20) with the one-dimensional dif-
ferential operator @M

t
to the composition g � X, note that @�i

t
(h(X(a, t), t)) =

(D�i
t
h)(X(a, t), t), and then evaluate the resulting expression at a = X

�1(x, t),
to obtain

D
M

t
g(x, t) = M !

MX

B=1

��2B
 
(B)(��2

h(x, t))
X

{,�2NM :
||=B,·�=M}

MY

i=1

⇣
(D�i

t
h)(x, t)

⌘i

i!(�i!)i
.

We now apply D
N to the above expression, use the Leibniz rule, and then

appeal again to the Faà di Bruno formula (A.19)–(A.20), this time for spatial
derivatives. We obtain

D
N
D

M

t
g(x, t) = M !N !

MX

B=1

NX

K=0

KX

B0=0

��2(B+B
0)
 
(B+B

0)(��2
h(x, t))

⇥
X

p(K,B0)

KY

j=1

(D`jh(x, t))kj

kj !(`j !)kj

⇥
X

{↵2NM :
|↵|=N�K}

X

{,�2NM :
||=B,·�=M}

MY

i=1

D
↵i(((D�i

t
h)(x, t))i)

↵i!i!(�i!)i
. (A.27)
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Upon dividing by g
1�(N+M)/Nfin and noting that B+B

0  M+N , from (A.24),
identity (A.27), the Leibniz rule, and assumption (A.25), we obtain

|DN
D

M

t
g|

g1�(N+M)/Nfin

.
MX

B=1

NX

K=0

KX

B0=0

(� �)
�2(B+B

0)

⇥ CB
0

h
M
⇣
K,Nx,�,

e�
⌘
CB

h
M
⇣
N �K,Nx,�,

e�
⌘
M (M,Nt, µ, eµ)

. M
⇣
N,Nx,�,

e�
⌘
M (M,Nt, µ, eµ)

MX

B=1

NX

B0=0

(� �)
�2(B+B

0)CB
0+B

h
,

from which (A.26) follows by summing the geometric series.

Lemma A.6. Given a smooth function f : R3 ⇥R ! R, suppose that for � � 1
the vector field � : R3 ⇥ R ! R3 satisfies the estimate

��DN+1�
��
L1(supp f)

. �
N (A.28)

for 0  N  N⇤. Then for any 1  N  N⇤ we have

��DN (f � �) (x, t)
�� .

NX

m=1

�
N�m |(Dm

f) � �(x, t)| (A.29)

and thus trivially we obtain

��DN (f � �) (x, t)
�� .

NX

m=0

�
N�m |(Dm

f) � �(x, t)|

for any 0  N  N⇤.

Proof of Lemma A.6. Applying (A.20), noting that |`j | = 0 implies |kj | = 0,
and employing assumption (A.28), we have that for any multi-index ↵ 2 N3

0

with |↵| = N ,

|@↵ (f � �) (x, t)| .
NX

|�|=1

��((@�f) � �)(x, t)
��

NY

j=1

X

p(↵,�)

���
�
@
`j�(x, t)

�kj
���

.
NX

|�|=1

��(@�f) � �
��

NY

j=1

X

p(↵,�)

�
(|`j |�1)|kj |

.
NX

m=1

�
N�m |(Dm

f) � �|
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by the definition (A.19). Thus we obtain (A.29).

In order to estimate the perturbation in L
p spaces as well as terms appearing

in the Reynolds stress, we will need the following abstract lemma, which follows
from Lemmas A.2 and A.6.

Lemma A.7. Let p 2 {1, 2}, and fix integers N⇤ � M⇤ � Ndec � 1. Suppose
f : R3 ⇥ R ! R and let � : R3 ⇥ R ! R3 be a vector field advected by an
incompressible velocity field v, i.e., Dt� = (@t + v · r)� = 0. Denote by ��1

the inverse of the flow �, which is the identity at a time slice which intersects
the support of f . Assume that for some �, ⌫, e⌫ � 1 and Cf > 0 the function f

satisfies the estimates

��DN
D

M

t
f
��
Lp . Cf�NM (M,Nt, ⌫, e⌫) (A.30)

for all N  N⇤ and M  M⇤, and that � and ��1 are bounded as

��DN+1�
��
L1(supp f)

. �
N (A.31)

��DN+1��1
��
L1(supp f)

. �
N (A.32)

for all N  N⇤. Lastly, suppose that ' is (T/µ)3-periodic, and that there exist

parameters e⇣ � ⇣ � µ and C' > 0 such that

��DN
'
��
Lp . C'M

⇣
N,Nx, ⇣,

e⇣
⌘

(A.33)

for all 0  N  N⇤. If the parameters

�  µ  ⇣  e⇣

satisfy

e⇣4 
✓

µ

2⇡
p
3�

◆Ndec

, (A.34)

and we have
2Ndec + 4  N⇤ , (A.35)

then the bound

��DN
D

M

t
(f ' � �)

��
Lp . CfC'M

⇣
N,Nx, ⇣,

e⇣
⌘
M (M,Mt, ⌫, e⌫) (A.36)

holds for N  N⇤ and M  M⇤.

Remark A.8. We emphasize that (A.36) holds for the same range of N and M

for which (A.30) holds, as soon as N⇤ is su�ciently large compared to Ndec so
that (A.35) holds.
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Remark A.9. We note that if estimate (A.30) is known to hold for N +M  N�
for some N� � 2Ndec + 4 (instead of for N  N⇤ and M  M⇤), and if the
bounds (A.31)–(A.32) hold for all N  N�, then it follows from the following
proof that the bound (A.36) holds for N +M  N� and M  N� � 2Ndec � 4.
The only modification required to the proof is that instead of considering the
cases N 0  N⇤�Ndec�4 and N

0
> N⇤�Ndec�4, we now have to split according

to N
0 +M  N� � Ndec � 4 and N

0 +M > N� � Ndec � 4. In the second case
we use the fact that N �N

00 � N� �M �Ndec � 4 � Ndec, which holds exactly
because M  N� � 2Ndec � 4.

Proof of Lemma A.7. Since Dt� = 0 we have D
M

t
(' � �) = 0. Using the fact

that div v ⌘ 0, so that � and ��1 preserve volume, and Lemma A.6, which we
may apply due to (A.31), we have

��DN
D

M

t
(f ' � �)

��
Lp .

NX

N 0=0

���DN
0
D

M

t
f D

N�N
0
(' � �)

���
Lp

.
NX

N 0=0

N�N
0X

N 00=0

�
N�N

0�N
00
���DN

0
D

M

t
f (DN

00
') � �

���
Lp

.
NX

N 0=0

N�N
0X

N 00=0

�
N�N

0�N
00
���
⇣
D

N
0
D

M

t
f

⌘
� ��1

D
N

00
'

���
Lp

.

(A.37)

In (A.37) let us first consider the case N 0  N⇤�Ndec�4, so that N 0+M 
N⇤ +M⇤ � Ndec � 4. Under assumption (A.32) we may apply Lemma A.6, and
using (A.30) we have

���Dn

⇣
(DN

0
D

M

t
f) � (��1

, t)
⌘���

Lp
.

nX

n0=0

�
n�n

0
���(Dn

0+N
0
D

M

t
f) � ��1

���
Lp

. Cf
nX

n0=0

�
n�n

0
�
n
0+N

0
M (M,Nt, ⌫, e⌫)

.
⇣
Cf�N

0
M (M,Nt, ⌫, e⌫)

⌘
�
n
, (A.38)

for all n  Ndec +4. This bound matches (A.15), with the constant Cf replaced

by Cf�N
0M (M,Nt, ⌫, e⌫). Since, like ', the function D

N
00
' is (T/µ)3-periodic,

due to (A.38), the fact that �  e⇣, and assumption (A.34), we may apply
Lemma A.2 to conclude

���
⇣
D

N
0
D

M

t
f

⌘
� ��1

D
N

00
'

���
Lp

. Cf�N
0
M (M,Nt, ⌫, e⌫)

���DN
00
'

���
Lp

.

Inserting this bound back into (A.37) and using (A.33) concludes the proof of
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(A.36) for the values of N 0 considered in this case.
Next, let us consider the case N

0
> N⇤ � Ndec � 4. Since 0  N

0  N , in
particular, this means that N > N⇤ �Ndec � 4, and since N

00  N �N
0 we also

obtain that N �N
00 � N

0
> N⇤ � Ndec � 4 � Ndec. Here we have used (A.35).

Then the Hölder inequality, the fact that ��1 is volume preserving, the Sobolev
embedding W

4,p ⇢ L
1, the ordering e⇣ � ⇣ � µ � 1, and assumption (A.34),

imply that

�
N�N

0�N
00
���
⇣
D

N
0
D

M

t
f

⌘
� ��1

D
N

00
'

���
Lp

. �
N�N

0�N
00
���DN

0
D

M

t
f

���
Lp

���DN
00
'

���
L1

. �
N�N

0�N
00
Cf�N

0
M (M,Nt, ⌫, e⌫) C'M

⇣
N

00 + 4, Nx, ⇣,
e⇣
⌘

. CfC'M
⇣
N,Nx, ⇣,

e⇣
⌘
M (M,Nt, ⌫, e⌫) e⇣4

✓
�

⇣

◆N�N
00

. CfC'M
⇣
N,Nx, ⇣,

e⇣
⌘
M (M,Nt, ⌫, e⌫) e⇣4

✓
�

µ

◆Ndec

. CfC'M
⇣
N,Nx, ⇣,

e⇣
⌘
M (M,Nt, ⌫, e⌫) .

Combining the above estimate with (A.37), we deduce that the bound (A.36)
holds also for N 0

> N⇤ � Ndec � 4, concluding the proof of the lemma.

A.6 BOUNDS FOR SUMS AND ITERATES OF OPERATORS

For two di↵erential operators A and B we have the expansion

(A+B)m =
mX

k=1

X

↵,�2Nk

|↵|+|�|=m

 
kY

i=1

A
↵iB

�i

!
. (A.39)

Clearly (A.39) simplifies if [A,B] = 0. A lot of times we need to apply the above
formula with

A = v ·r,

for some vector field v. The question we would like to address in this sec-
tion is the following: Assume that we have already established estimates on
(
Q

i
D
↵iB

�i)v, for |↵| + |�|  m. Can we deduce estimates for the operator
(A+B)m = (v ·r+B)m? The answer is yes, and is summarized in the follow-
ing lemma:

Lemma A.10. Fix Nx, Nt, N⇤ 2 N and ⌦ 2 T3 ⇥ R a space-time domain, and
let v be a vector field. For k � 1 and ↵,� 2 Nk such that |↵| + |�|  N⇤, we
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assume that we have the bounds
�����

 
kY

i=1

D
↵iB

�i

!
v

�����
L1(⌦)

. CvM
⇣
|↵|, Nx,�v,

e�v
⌘
M (|�|, Nt, µv, eµv) (A.40)

for some Cv � 0, 1  �v  e�v, and 1  µv  eµv. With the same notation and
restrictions on |↵|, |�|, let f be a function which for some p 2 [1,1] obeys

�����

 
kY

i=1

D
↵iB

�i

!
f

�����
Lp(⌦)

. CfM
⇣
|↵|, Nx,�f ,

e�f
⌘
M (|�|, Nt, µf , eµf ) (A.41)

for some Cf � 0, 1  �f  e�f , and 1  µf  eµf . Denote

� = max{�f ,�v}, e� = max{e�f , e�v}, µ = max{µf , µv}, eµ = max{eµf , eµv}.

Then, for
A = v ·r

we have the bounds
�����D

n

 
kY

i=1

A
↵iB

�i

!
f

�����
Lp(⌦)

. CfC|↵|
v

M
⇣
n+ |↵|, Nx,�,

e�
⌘
M (|�|, Nt, µ, eµ) (A.42)

. CfM
⇣
n,Nx,�,

e�
⌘
(Cve�)|↵|M (|�|, Nt, µ, eµ)

. CfM
⇣
n,Nx,�,

e�
⌘
M
⇣
|↵|+ |�|, Nt,max{µ, Cve�},max{eµ, Cve�}

⌘
(A.43)

as long as n + |↵| + |�|  N⇤. As a consequence, if k = m then (A.39) and
(A.43) imply the bound

kDn(A+B)mfk
Lp(⌦)

. CfM
⇣
n,Nx,�,

e�
⌘
M
⇣
m,Nt,max{µ, Cve�},max{eµ, Cve�}

⌘
(A.44)

for n+m  N⇤.

Remark A.11. The previous lemma is applied typically with v = uq and B =

Dt,q�1 in order to obtain estimates for D
n(
Q

i
D
↵i
q
D
�i
t,q�1)f , and hence for

D
n
D

m

q
f . A more non-standard application of this lemma uses v = �vq�1

and B = Dt,q�1 in order to obtain estimates for time derivatives via D
n
@
m

t
f =

D
n(�vq�1 ·r+Dt,q�1)mf .

Proof of Lemma A.10. We recall (6.54)–(6.55) and note that we may write (ig-
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noring the way in which tensors are contracted)

A
n = (v ·r)n =

nX

j=1

fj,nD
j where fj,n =

X

⇣2Nn

|⇣|=n�j

cn,j,⇣

nY

`=1

(D⇣`v), (A.45)

where the cn,j,⇣ are certain combinatorial coe�cients (tensors) with the depen-
dence given in the subindex, and D

a represents @↵ for some multi-index ↵ with
|↵| = a. Inserting (A.45) into the product of operators in (A.39), we see that

D
n

kY

i=1

A
↵iB

�i

=
X

�2Nk

1k�↵

D
n

kY

i=1

(f�i,↵iD
�iB

�i)

=
X

�2Nk

1k�↵

X

0n
0n+|�|

0m
0|�|

X

�,2Nk

|�|=n+|�|�n
0

||=|�|�m
0

0

BBBBBB@

kY

i=1

X

�
0
i,

0
i2Nk

|�0i|=�i
|0

i|=i

ec(...)

 
kY

`i=1

D
�
0
i,`iB


0
i,`i

!
f�i,↵i

1

CCCCCCA

⇥

0

BBBBBB@

X

⌘,⇢2Nk

|⌘|=n
0

|⇢|=m
0

c̄(...)

kY

s=1

D
⌘sB

⇢s

1

CCCCCCA
, (A.46)

where the ec(... ), c̄(... ) � 0 are certain combinatorial coe�cients (tensors). Com-
bining (A.39)–(A.46), we obtain that

D
n

 
kY

i=1

A
↵iB

�i

!
f

=
X

�2Nk

1k�↵

X

0n
0n+|�|

0m
0|�|

X

�,2Nk

|�|=n+|�|�n
0

||=|�|�m
0

0

BBBBBB@

X

⌘,⇢2Nk

|⌘|=n
0

|⇢|=m
0

c̄(... )

 
kY

s=1

D
⌘sB

⇢s

!
f

1

CCCCCCA
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⇥

0

BBBBBB@

kY

i=1

X

�
0
i,

0
i2Nk

|�0i|=�i
|0

i|=i

ec(... )

 
kY

`i=1

D
�
0
i,`iB


0
i,`i

!
0

BB@
X

⇣i2N↵i

|⇣i|=↵i��i

c(... )

↵iY

ri=1

(D⇣i,ri v)

1

CCA

1

CCCCCCA
,

(A.47)

where the c(... ),ec(... ), c̄(... ) � 0 are certain combinatorial coe�cients (tensors)
whose dependence is omitted for simplicity (they may depend on all the pa-
rameters in the sums and products). The above expansion combined with the
Leibniz rule, the bound (3.9), and assumptions (A.40)–(A.41), implies

�����D
n

 
kY

i=1

A
↵iB

�i

!
f

�����
Lp(⌦)

.
X

�2Nk

1k�↵

X

0n
0n+|�|

0m
0|�|

X

�,2Nk

|�|=n+|�|�n
0

||=|�|�m
0

0

BBBBBB@

X

⌘,⇢2Nk

|⌘|=n
0

|⇢|=m
0

�����

 
kY
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D
⌘sB

⇢s

!
f

�����
Lp(⌦)

1

CCCCCCA

⇥
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BBBBBB@

kY
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X

⇣i2N↵i
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i,

0
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�����
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0
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0|�|

X
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CfM

⇣
n
0
, Nx,�,

e�
⌘
M (m0

, Nt, µ, eµ)
⌘

⇥
 

kY

i=1

C↵i
v
M
⇣
↵i � �i + �i, Nx,�,

e�
⌘
M (i, Nt, µ, eµ)

!

. Cf
X

0n
0n+|↵|

0m
0|�|

⇣
CfM

⇣
n
0
, Nx,�,

e�
⌘
M (m0

, Nt, µ, eµ)
⌘

⇥
⇣
C|↵|
v

M
⇣
|↵|+ n� n

0
, Nx,�,

e�
⌘
M (|�|�m

0
, Nt, µ, eµ)

⌘

. CfC|↵|
v

M
⇣
|↵|+ n,Nx,�,

e�
⌘
M (|�|, Nt, µ, eµ) ,

which is precisely the bound claimed in (A.42). Estimate (A.43) follows imme-
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diately, while the bound (A.44) is a consequence of the above and (A.39).

A.7 COMMUTATORS WITH MATERIAL DERIVATIVES

Let D represent a pure spatial derivative and let

Dt = @t + v ·r

denote a material derivative along the smooth (incompressible) vector field v.
This vector field v is fixed throughout this section. The question we would like
to address in this section is the following: Assume that for the vector field v

we have D
a
D

b

t
Dv estimates available. Can we then bound the operator norm of

D
b

t
D

a in terms of the operator norm of Da
D

b

t
?

Following Komatsu [47, Lemma 5.2], a useful ingredient for bounding com-
mutators of Eulerian and material derivatives is the following lemma. We use
the following commutator notation:

(adDt)
0(D) = D

(adDt)
1(D) = [Dt, D] = �Dv ·r

(adDt)
a(D) = (adDt)((adDt)

a�1(D)) = [Dt, (adDt)
a�1(D)]

for all a � 2. Note that for any a � 0, (adDt)a(D) is a di↵erential operator of
order 1.

Lemma A.12. Let m,n � 0. Then we have that the commutator of Dm

t
and

D
n is given by

[Dm

t
, D

n] =
X

{↵2Nn : 1|↵|m}

m!

↵!(m� |↵|)!

 
nY

`=1

(adDt)
↵`(D)

!
D

m�|↵|
t

. (A.48)

By the product in (A.48) we mean the product/composition of operators

nY

`=1

(adDt)
↵`(D) = (adDt)

↵n(D)(adDt)
↵n�1(D) . . . (adDt)

↵1(D) ,

so that on the right side of (A.48) we have a sum of di↵erential operators of
order at most n.

For the above lemma to be useful, we need to be able to characterize the
operator (adDt)a(D).

Lemma A.13. Let a 2 N. Then the order 1 di↵erential operator (adDt)a(D)
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may be expressed as

(adDt)
a(D) =

aX

k=1

X

{�2Nk : |�|=a�k}

ca,k,�

kY

j=1

(D
�j

t
Dv) ·r , (A.49)

where the
Q

in (A.49) denotes the product of matrices and ca,k,� are coe�cients
which depend only on a, k, �.

Proof of Lemma A.13. When a = 1 we know that (adDt)(D) = �Dv · r, so
that the lemma trivially holds. We proceed by induction on a. Using the fact
that [Dt,r] = �Dv ·r, we obtain

(adDt)
a+1(D) = Dt

0

@
aX

k=1

X

�2⇡(k,a)

ca,k,�

kY

j=1

(D
�j

t
Dv)

1

A ·r

+
aX

k=1

X

�2⇡(k,a)

ca,k,�

kY

j=1

(D
�j

t
Dv) · [Dt,r]

= Dt

0

@
aX

k=1

X

�2⇡(k,a)

ca,k,�

kY

j=1

(D
�j

t
Dv)

1

A ·r

�
aX

k=1

X

�2⇡(k,a)

ca,k,�

kY

j=1

(D
�j

t
Dv)Dv ·r ,

where we have denoted by

⇡(k, a) =
�
� 2 Nk : |�| = a� k

 

the set of all partitions of a set of a� k elements into k sets. For the first term
we use the Leibniz rule for Dt, so that for any � 2 ⇡(k, a), we obtain an element
�+ej 2 ⇡(k, a+1), with ej = (0, . . . , 0, 1, 0, . . . , 0) 2 Nk, and the 1 lies in the jth

coordinate. For 1  k  a, this in fact lists all the elements in ⇡(k, a+ 1). For
the second sum, we identify � 2 ⇡(k, a) with � 2 ⇡(k + 1, a+ 1), upon padding
it with a 0 in the k + 1st entry. Changing variables k + 1 ! k then recovers an
element � 2 ⇡(k, a + 1), including the case k = a + 1, which was missing from
the first sum.

From Lemma A.12 and Lemma A.13 we deduce the following:

Lemma A.14. Let p 2 [1,1]. Fix Nx, Nt, N⇤,M⇤ 2 N, let v be a vector field,
let Dt = @t+v ·r be the associated material derivative, and let ⌦ be a space-time
domain. Assume that the vector field v obeys

��DN
D

M

t
Dv
��
L1(⌦)

. CvM
⇣
N + 1, Nx,�v,

e�v
⌘
M (M,Nt, µv, eµv) (A.50)
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for N  N⇤ and M  M⇤. Moreover, let f be a function which obeys

��DN
D

M

t
f
��
Lp(⌦)

. CfM
⇣
N,Nx,�f ,

e�f
⌘
M (M,Nt, µf , eµf ) (A.51)

for all N  N⇤ and M  M⇤. Denote

� = max{�f ,�v}, e� = max{e�f , e�v}, µ = max{µf , µv}, eµ = max{eµf , eµv}.

Let m,n, ` � 0 be such that n + `  N⇤ and m  M⇤. Then, we have that the
commutator [Dm

t
, D

n] is bounded as

��D` [Dm

t
, D

n] f
��
Lp(⌦)

. CfCve�vM
⇣
`+ n,Nx,�,

e�
⌘

⇥M
�
m� 1, Nt,max{µ, Cve�v},max{eµ, Cve�v}

�
(A.52)

. CfM
⇣
`+ n,Nx,�,

e�
⌘

⇥M
⇣
m,Nt,max{µ, Cve�v},max{eµ, Cve�v}

⌘
. (A.53)

Moreover, we have that for k � 2, and any ↵,� 2 Nk with |↵|  N⇤ and
|�|  M⇤, the estimate

�����

 
kY

i=1

D
↵iD

�i
t

!
f

�����
Lp(⌦)

. CfM
⇣
|↵|, Nx,�,

e�
⌘
M
⇣
|�|, Nt,max{µ, Cve�v},max{eµ, Cve�v}

⌘
(A.54)

holds.

Remark A.15. If instead of (A.50) and (A.51) holding for N  N⇤ and M  M⇤,
we know that both of these inequalities hold for allN+M  N� for someN� � 1,
then the conclusions of the lemma hold as follows: the bounds (A.52) and (A.53)
hold for `+n+m  N�, while (A.54) holds for |↵|+ |�|  N�. This fact follows
immediately from the proof of the lemma, but may alternatively also be derived
from its statement (see also Lemma A.3).

Remark A.16. In Lemma A.14, if the assumption (A.51) is replaced by

��DN
D

M

t
f
��
Lp(⌦)

. CfM
⇣
N � 1, Nx,�f ,

e�f
⌘
M (M,Nt, µf , eµf ) , (A.55)

whenever 1  N  N⇤, then the conclusion (A.54) changes, and it instead
becomes
�����

 
kY

i=1

D
↵iD

�i
t

!
f

�����
Lp(⌦)
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. CfM
⇣
|↵|� 1, Nx,�,

e�
⌘
M
⇣
|�|, Nt,max{µ, Cve�v},max{eµ, Cve�v}

⌘
(A.56)

whenever |↵| � 1. This follows for instance by noting that the sum on the second
line of (A.61) only contains terms with j � 1, so that (A.55) is not required
when N = 0.

Proof of Lemma A.14. First, we deduce from (A.49) that for any ↵i � 1 and
1  i  n, we have

(adDt)
↵i(D) =

↵iX

i=1

fi,↵i ·r , (A.57)

where the functions fi,↵i are computed as

fi,↵i =
X

{�2Ni : |�|=↵i�i}

c(... )

iY

j=1

(D
�j

t
Dv)

for suitable combinatorial coe�cients (tensors) c(... ) which depend on i,↵i, and
�. In particular, in view of assumption (A.50), and the Leibniz rule, we have
that

��D`
fi,↵i

��
L1(⌦)

. Ci
v
M
⇣
i + `, Nx,�v,

e�v
⌘
M (↵i � i, Nt, µv, eµv) . (A.58)

Next, from (A.57) we deduce that for any ↵ 2 Nn with |↵| � 1, one may write

nY

i=1

(adDt)
↵i(D) =

nX

j=1

gj,↵D
j
, (A.59)

where

gj,↵ =
X

{2Nn : 1n↵}

X

{�2Nn : |�|=n�j}

ec(... )
nY

i=1

D
�ifi,↵i .

As a consequence of (A.58) we see that

��D`
gj,↵

��
L1(⌦)

.
|↵|X

||=1

C||
v

M
⇣
`+ n� j + ||, Nx,�v,

e�v
⌘

⇥M (|↵|� ||, Nt, µv, eµv) . (A.60)

From (A.48), assumption (A.51), identity (A.59), and bound (A.60), we see that

��D` [Dm

t
, D

n] f
��
Lp(⌦)
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.
mX

|↵|=1

nX

j=1

���D`

⇣
gj,↵D

j
D

m�|↵|
t

⌘
f

���
Lp(⌦)

.
mX

|↵|=1

nX

j=1

��D`
gj,↵

��
L1(⌦)

���Dj
D

m�|↵|
t

f

���
Lp(⌦)

+ kgj,↵kL1(⌦)

���D`+j
D

m�|↵|
t

f

���
Lp(⌦)

.
mX

k=1

nX

j=1

CfCk

v
M
⇣
`+ n� j + k,Nx,�v,

e�v
⌘
M
⇣
j,Nx�,

e�
⌘

⇥M (m� k,Nt, µ, eµ)

+ CfCk

v
M
⇣
n� j + k,Nx,�v,

e�v
⌘
M
⇣
j + `, Nx�,

e�
⌘

⇥M (m� k,Nt, µ, eµ)

. CfM
⇣
`+ n,Nx,�,

e�
⌘ mX

k=1

(Cve�v)kM (m� k,Nt, µ, eµ) , (A.61)

from which (A.53) follows directly.
In order to prove (A.54) we proceed by induction on k. For k = 1 the

statement holds in view of (A.51). We assume that (A.54) holds for k0  k� 1,
and denote

Pk0 =

0

@
k
0Y

i=1

D
↵iD

�i
t

1

A f.

With this notation we have

Pk = D
↵kD

�k
t
D
↵k�1D

�k�1

t
Pk�2

= D
↵k+↵k�1D

�k+�k�1

t
Pk�2 +D

↵k

h
D
�k
t
, D

↵k�1

i
D
�k�1

t
Pk�2.

Using (A.54) with k � 1 gives the desired estimate for the first term above.
For the second term, we appeal to the commutator bound (A.53), applied to

D
�k�1

t
Pk�2, which obeys condition (A.51) in view of (A.54) at level k� 1. This

concludes the proof of (A.54) at level k.

A.8 INTERMITTENCY-FRIENDLY INVERSION OF THE

DIVERGENCE

Given a vector field G
i, a zero mean periodic function %, and an incompressible

flow �, our goal in this section is to write G
i(x)%(�(x)) as the divergence of a
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symmetric tensor.

Proposition A.17 (Inverse divergence iteration step). Fix two zero-mean
T3-periodic functions % and #, which are related by % = �#. Let � be a volume
preserving transformation of T3, such that kr�� Idk

L1(T3)  1/2. Define the

matrix A = (r�)�1. Given a vector field G
i, we have

G
i
% � � = @nR̊

in + @iP + E
i
, (A.62)

where the traceless symmetric stress R
in is given by

R̊
in =

�
G

i
A

n

`
+G

n
A

i

`
�A

i

k
A

n

k
G

p
@p�

`
�
(@`#) � �� P �in , (A.63)

where the pressure term is given by

P =
�
2Gn

A
n

`
�A

n

k
A

n

k
G

p
@p�

`
�
(@`#) � � (A.64)

and the error term E
i is given by

E
i =

�
@n

�
G

p
A

i

k
A

n

k
�G

n
A

i

k
A

p

k

�
@p�

` � @nG
i
A

n

`

�
(@`#) � � . (A.65)

Proof of Proposition A.17. Note that by definition we have Ak

`
@j�` = �kj . Since

� is volume preserving, det(r�) = 1, and so each entry of the matrix A equals
the corresponding cofactor of r�, which in three dimensions is a quadratic
function of entries of r� given explicitly by A

i

j
= 1

2"ipq"jk`@k�
p
@`�q. In two

dimensions, A is a linear map in r�. Moreover, since � is volume preserving,
the Piola identity @jA

j

i
= 0 holds for every i 2 {1, 2, 3}. The main identity

that we use in the proof is that for any scalar function ' we have (@i') � � =
A

m

i
@m(' � �) = @m(Am

i
' � �).

Starting from % = �#, we have

G
i
% � � = G

i(@kk#) � �
= G

i
A

n

k
@n(@k#) � �

= @n

�
G

i
A

n

k
(@k#) � �

�
� @nG

i
A

n

k
(@k#) � �

= @n

�
G

i
A

n

k
(@k#) � �+G

n
A

i

k
(@k#) � �

�

� @n

�
G

n
A

i

k
(@k#) � �

�
� @nG

i
A

n

k
(@k#) � � .

Next, we have

@n

�
G

n
A

i

k
(@k#) � �

�
= @n

�
G

n
A

i

k
A

p

k
@p(# � �)

�

= @p@n

�
G

n
A

i

k
A

p

k
# � �

�
� @n

�
@p(G

n
A

i

k
A

p

k
)# � �

�

= @p

�
G

n
A

i

k
A

p

k
@n(# � �)

�
+ @p

�
@n(G

n
A

i

k
A

p

k
)# � �

�

� @n

�
@p(G

n
A

i

k
A

p

k
)# � �

�

= @n

�
G

p
A

i

k
A

n

k
@p(# � �)

�
+ @n

�
@p(G

p
A

i

k
A

n

k
)# � �

�
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� @n

�
@p(G

n
A

i

k
A

p

k
)# � �

�
,

where in the last equality we have just switched the letters of summation n and
p. We further massage the last term in the above equality:

@n

�
@p(G

n
A

i

k
A

p

k
)# � �

�
= @p

�
G

n
A

i

k
A

p

k

�
@n(# � �) + @np

�
G

n
A

i

k
A

p

k

�
# � �

= @p

�
G

n
A

i

k
A

p

k

�
@n(# � �) + @p

�
@n

�
G

n
A

i

k
A

p

k

�
# � �

�

� @n

�
G

n
A

i

k
A

p

k

�
@p(# � �) .

Combining the above three equalities, we arrive at

G
i
% � � = @n

�
(Gi

A
n

k
+G

n
A

i

k
)(@k#) � ��A

i

k
A

n

k
G

p
@p(# � �)

�

+ @n

�
G

p
A

i

k
A

n

k
�G

n
A

i

k
A

p

k

�
@p(# � �)� @nG

i
A

n

k
(@k#) � �

= @n

�
(Gi

A
n

k
+G

n
A

i

k
)(@k#) � ��A

i

k
A

n

k
G

p
@p�

`(@`#) � �
�

+ @n

�
G

p
A

i

k
A

n

k
�G

n
A

i

k
A

p

k

�
@p�

`(@`#) � �� @nG
i
A

n

`
(@`#) � � .

In the last equality, we have exchanged the order of summation. Identities
(A.62)–(A.65) follow upon declaring that the trace part of the symmetric stress
is the pressure.

Proposition A.17 allows us to obtain the following result, which is the main
conclusion of this section.

Proposition A.18 (Inverse divergence with error term). Fix an incom-
pressible vector field v and denote its material derivative by Dt = @t+v ·r. Fix
integers N⇤ � M⇤ � 1. Also fix Ndec, d � 1 such that N⇤ � d � 2Ndec + 4.

Let G be a vector field and assume there exists a constant CG > 0 and
parameters �, ⌫ � 1 such that

��DN
D

M

t
G
��
L1 . CG�NM (M,Mt, ⌫, e⌫) (A.66)

for all N  N⇤ and M  M⇤.
Let � be a volume preserving transformation of T3, such that

Dt� = 0 and kr�� Idk
L1(suppG)  1/2 .

Denote by ��1 the inverse of the flow �, which is the identity at a time slice
which intersects the support of G. Assume that the velocity field v and the flow
functions � and ��1 satisfy the bounds

��DN+1�
��
L1(suppG)

+
��DN+1��1

��
L1(suppG)

. �
0N (A.67)

��DN
D

M

t
Dv
��
L1(suppG)

. ⌫�
0NM (M,Mt, ⌫, e⌫) , (A.68)

for all N  N⇤, M  M⇤, and some �0 > 0.
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Lastly, let %,# : T3 ! R be two zero mean functions with the following prop-
erties:

1. there exists d � 1 and a parameter ⇣ � 1 such that %(x) = ⇣
�2d�d

#(x);
2. there exists a parameter µ � 1 such that % and # are (T/µ)3-periodic;
3. there exist parameters ⇤ � ⇣ and C⇤ � 1 such that

��DN
%
��
L1 . C⇤⇤N and

��DN
#
��
L1 . C⇤M (N, 2d, ⇣,⇤) (A.69)

for all 0  N  Nfin, except for the case N = 2d, when the Calderón-
Zygmund inequality fails. In this exceptional case, the second inequality
in (A.69) is allowed to be weaker by a factor of ⇤↵, for an arbitrary
↵ 2 (0, 1]; that is, we only require that

��D2d
#
��
L1 . C⇤⇤↵⇣2d.

If the above parameters satisfy

�
0  �⌧ µ  ⇣  ⇤ , (A.70)

where by the second inequality in (A.70) we mean that

⇤4

✓
µ

2⇡
p
3�

◆�Ndec

 1 , (A.71)

then we have that

G % � � = div R̊+rP + E =: div (H (G% � �)) +rP + E , (A.72)

where the traceless symmetric stress R̊ = H(G% � �) and the scalar pressure P

are supported in suppG, and for any fixed ↵ 2 (0, 1) they satisfy

���DN
D

M

t
R̊

���
L1

+
��DN

D
M

t
P
��
L1

. ⇤↵CGC⇤⇣�1M (N, 1, ⇣,⇤)M (M,Mt, ⌫, e⌫) (A.73)

for all N  N⇤ � d and M  M⇤. The implicit constants depend on N,M , and
↵ but not on G, %, or �. Lastly, for N  N⇤ � d and M  M⇤ the error term
E in (A.72) satisfies

��DN
D

M

t
E
��
L1 . CGC⇤⇤↵�d⇣�d⇤NM (M,Mt, ⌫, e⌫) . (A.74)

We emphasize that the range of M in (A.73) and (A.74) is exactly the same as
the one in (A.66), while the range of permissible values for N shrinks from N⇤
to N⇤ � d.

Lastly, let N�,M� be integers such that 1  M�  N�  M⇤/2. Assume that
in addition to the bound (A.68) we have the following global lossy estimates:

��DN
@
M

t
v
��
L1(T3)

. Cve�Nq e⌧�M

q
(A.75)
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for all M  M� and N +M  N� +M�, where

Cve�q . e⌧�1
q

, and �
0  e�q  ⇤  �q+1 . (A.76)

If d is chosen large enough so that

CGC⇤⇤
✓
�

⇣

◆d�1
 
1 +

max{e⌧�1
q

, e⌫, Cv⇤}
⌧
�1
q

!M�

 �q+2

�
5
q+1

, (A.77)

then we may write

E = div R̊nonlocal +

 
T3

G% � �dx

=: div (R⇤(G% � �)) +
 
T3

G% � �dx , (A.78)

where R̊nonlocal = R⇤(G% � �) is a traceless symmetric stress which satisfies

���DN
D

M

t
R̊nonlocal

���
L1

 �q+2

�
5
q+1

�
N

q+1⌧
�M

q
(A.79)

for N  N� and M  M�.

Before turning to the proof of Lemma A.18, let us make three remarks. First,
we highlight certain parameter values which will occur commonly in applications
of the proposition. Second, we comment on a technical aspect of the application
of the proposition in Section 8.3. Finally, we comment on the assumptions (1)–
(3) and (A.71) and (A.77) for the functions % and #, which in applications are
related to the transversal densities of the pipe flows.

Remark A.19. Frequently, G will come with derivative bounds which are satis-
fied for N+M  N

]. In this case, we set N⇤ = M⇤ = N
]
/2, so that (A.66) is sat-

isfied. The bounds in (A.67) and (A.68) will be true (due to Corollary 6.27 and
estimate (6.60)) for much higher order derivatives than N

]
/2, and so we ignore

them. The bounds in (A.69) are given by construction in Proposition 4.4. Then
the bounds (A.73) and (A.74) are satisfied for N  N

]
/2� d and M  N

]
/2, and

in particular for N +M  N
]
/2� d. In (A.75) we will then set N� = M�  N

]
/4,

which in practice will give N� = M� = 3Nind,v. Arguing in the same way used
to produce the bound (5.18) shows that for N +M  Nfin,

��DN
@
M

t
v`q

��
L1 .

⇣
�
4
q
�
1/2
q

⌘
e�N
q
e⌧�M

q
(A.80)

and so (A.75) is satisfied with Cv = �
4
q
�
1/2
q up toN+M  2Nfin (which will in fact

be far beyond anything required for the inverse divergence). The inequalities in

(A.76) follow from (9.43), (9.39), and the definitions of �0 = e�q and ⇤ = �q+1.
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In applications, e⌫ = e⌧�1
q
��1
q+1, so that from (9.39) and (9.43) we have that

max{e⌧�1
q

, e⌫, Cv⇤}  ⌧
�1
q
e�3
q
e�q+1  ⌧

�1
q
�
4
q+1 ,

which holds as soon as "� is taken to be su�ciently small. Then, (A.77) will
follow from (9.55). Finally, (A.79) will hold for all N,M  N

]
/4, which will be

taken larger than 3Nind,v. In summary, if (A.66) is known to hold for N +M 
N
], then (A.73) holds for N  N

]
/2� d and M  N

]
/2, while (A.79) is valid for

N,M  N
]
/4.

Remark A.20. In the identification of the error terms in Section 8.3, we apply
Proposition A.18 to write

G% � � = div (H(G% � �)) +rP + div (R⇤ (G% � �)) +
 
T3

G% � �dx.

The estimates on G, %, and �, and then the right-hand side of the above equality,
will be checked in later sections. We emphasize that H is a local operator and is
thus well suited to working with estimates on the support of a cuto↵ function.
Conversely, R⇤ is nonlocal but will always produce extremely small errors which
can be absorbed into R̊q+1 and for which the cuto↵ functions are not relevant.

Remark A.21. We consider examples of functions # and % with which Proposi-
tion A.18 is used.

1. This is the case corresponding to the density of a pipe flow. Recalling
the construction of pipe flows from Proposition 4.4, we let % = %

k

⇠,�,r
and

# = #
k

⇠,�,r
. Set ⇣ = ⇤ = � (where the � refers to Proposition 4.4, not

the � from Proposition A.18) and µ = �r. To verify (1), we appeal to
item (1) from Proposition 4.4 and our choice of ⇤ and µ. The periodicity
requirement in (2) follows from item (2) from Proposition 4.4 and, refer-
ring back, from item (1) from Proposition 4.3. Next, (A.69) is satisfied
with C⇤ = r using (4.11). Finally, (A.71) and (A.77) will follow from
large choice of Ndec and d and the fact that our choice of � can always be
related to ⇣ and µ by a power strictly less than 1 (see (9.48) and (9.55)).

2. This is the case corresponding to the Littlewood-Paley projection for the
square of the density of a pipe flow. Fix 1  µ  ⇣ < ⇤, and a constant
C⇤ > 0. Let ⌘(x) be any (T/µ)3-periodic function (which need not have zero
mean), with k⌘k

Lp(T3)  C⇤. In applications, we shall refer to (4.15) from

Proposition 4.4 and set ⌘ =
⇣
%
k

⇠,�,r

⌘2
and µ = �r. This means that we

may write ⌘(x) = ⌘µ(µx) where ⌘µ is T3-periodic, with k⌘µkL1(T3)  C⇤.
Following (4.15) from Proposition 4.4 with �1 = ⇣, �2 = ⇤, we may define

%(x) =
�
P[⇣,⇤]⌘

�
(x) =

⇣
P[ ⇣µ ,

⇤
µ ]
⌘µ

⌘
(µx) ,
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a function which is (T/µ)3-periodic and has zero mean (since ⇣ � µ > 0),
and clearly ��DN

%
��
L1(T3)

 C⇤⇤N
.

We now define the associated function # by first defining the zero mean
T3-periodic function

#µ =

✓
⇣

µ

◆2d

��dP[ ⇣µ ,
⇤
µ ]
⌘µ ,

where the negative powers of the Laplacian are defined simply as a Fourier
multiplier (since the periodic function we apply it to has zero mean). Then
we let

#(x) = #µ(µx) ,

which has zero mean, is (T/µ)3-periodic, and clearly satisfies �d
# = ⇣

2d
%,

as required. It only remains to estimate the Ẇ
N,1 norms of #, which up

to paying a factor of µN is equivalent to estimating the Ẇ
N,1 norms of

#µ. When 0  N < 2d, the operator

D
N��dP[ ⇣µ ,

⇤
µ ]

is a bounded operator on L
1, whose operator norm is . (⇣/µ)N�2d. This

may be verified via a standard Littlewood-Paley argument. The excep-
tional case N = 2d leads to a logarithmic loss since there are roughly
log(⇤/µ)-many Littlewood-Paley shells to estimate; we absorb this loss
into a factor of ⇤↵, with ↵ > 0 arbitrarily small. Since k⌘µkL1  C⇤, the
second estimate in (3) above clearly follows, at least when N  2d. The
case N > 2d follows similarly, except that now D

N��d is a positive order
operator, and thus the L1 operator norm of DN��dP[ ⇣µ ,

⇤
µ ]

is bounded by

⇡ (⇤/µ)N�2d. We remark that as in the previous case, (A.71) and (A.77)
will follow from large choices of Ndec and d and the fact that our choice
of � can always be related to ⇣ and µ by a power strictly less than 1.

Proof of Proposition A.18. SinceDt� ⌘ 0, we haveDN
D

m

t
r� = D

N [DM

t
,r]�.

We may now appeal to Lemma A.14, more precisely to Remark A.16. Let
⌦ = suppG and f = �, so that (A.67) implies that (A.55) holds with Cf = 1,

�f = e�f = �
0, and µf = eµf = 1 (in fact, whenever M � 1 we may replace

the right side of (A.55) by 0). Moreover, (A.68) implies that (A.50) holds with

Cv = ⌫/�
0, �v = e�v = �

0, Nt = Mt, µv = ⌫, and eµv = e⌫. We deduce from (A.56)
that

���DN
00
D

M

t
D

N
0
D�
���
L1(suppG)

. �
0N 0+N

00
M (M,Mt, ⌫, e⌫) (A.81)

whenever N 0+N
00  N⇤ and M  M⇤. Similarly, we use Lemma A.14 with f =
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G, so that due to (A.66) we know that (A.51) holds with Cf = CG, �f = e�f = �,
µf = ⌫, eµf = e⌫, and Nt = Mt. With ⌦ = suppG, since �0  �, as before

we have that (A.68) implies that (A.50) holds with Cv = ⌫/�, �v = e�v = �,
Nt = Mt, µv = ⌫, and eµv = e⌫. Therefore, from (A.54) we obtain that

���DN
00
D

M

t
D

N
0
G

���
L1

. CG�N
0+N

00
M (M,Mt, ⌫, e⌫) (A.82)

whenever N 0+N
00  N⇤ and M  M⇤. With (A.81) and (A.82), we turn to the

proof of (A.73).
Instead of defining R̊ and P separately, we shall simply construct a symmetric

stress R with a prescribed divergence, and use the convention that P = tr (R)
and R̊ = R� tr (R)Id. The construction is based on iterating Proposition A.17,
d times. For notational purposes, let %(0) = %, and for 1  k  d we let
%(k) = (⇣�2�)d�k

#. Then %(k�1) = ⇣
�2�%(k) and %(d) = #. We also define

G(0) = G.
Since ⇢(0) = ⇣

�2�⇢(1), we deduce from Proposition A.17, identities (A.62)–
(A.65), that

G
i

(0)%(0) � � = @nR
in

(0) +G
i`

(1)(⇣
�1
@`%(1)) � � , (A.83)

where the symmetric stress R(0) is given by

R
in

(0) = ⇣
�1
⇣
G

i

(0)A
n

`
+G

n

(0)A
i

`
�A

i

k
A

n

k
G

p

(0)@p�
`

⌘

| {z }
=:Sin`

(0)

(⇣�1
@`%(1)) � � (A.84)

and the error terms are computed as

G
i`

(1) = ⇣
�1
⇣
@n

⇣
G

p

(0)A
i

k
A

n

k
�G

n

(0)A
i

k
A

p

k

⌘
@p�

`

⌘
� @nG

i

(0)A
n

`
, (A.85)

where, as before, we denote (r�)�1 = A. We first show that the symmetric
stress R(0) defined in (A.84) satisfies the estimate (A.73). First, we note that
the ⇣�1 factor has already been accounted for explicitly in (A.84). Second, we
note that since Dt� = 0, material derivatives may only land on the components
of the 3-tensor S(0). Third, the function ⇣

�1
D%(1) has zero mean, is (T/µ)3

periodic, and satisfies

��DN (⇣�1
D%(1))

��
L1 . C⇤M (N, 1, ⇣,⇤) (A.86)

for 1 6= N  Nfin, in view of (A.69). For N = 1, the above estimate incurs a
logarithmic loss of ⇤, which we can absorb with ⇤↵ for any ↵ > 0 to produce
the estimate

��D(⇣�1
D%(1))

��
L1 . ⇤↵C⇤M (N, 1, ⇣,⇤) . (A.87)
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The implicit constants depend on ↵ and degenerate as ↵ ! 0. Fourth, the
components of the 3-tensor S(0) are sums of terms of two kinds: G(0) ⌦ A is
a linear function of G(0) multiplied by a homogeneous quadratic polynomial in
D�, while G⌦A⌦A⌦D� is a linear function of G multiplied by a homogeneous
polynomial of degree 5 in the entries ofD�. In particular, due to our assumption
(A.66) and the previously established bound (A.81), upon applying the Leibniz
rule and using that �0  �, we obtain that

��DN
D

M

t
S(0)

��
L1 . CG�NM (M,Mt, ⌫, e⌫) (A.88)

for N  N⇤ and M  M⇤. Having collected these estimates, the L1 norm of the
space and material derivatives of R(0) is obtained from Lemma A.7. As dictated
by (A.84) we apply this lemma with f = ⇣

�1
S(0) and ' = ⇣

�1r%(1). Due to
(A.88), the bound (A.30) holds with Cf = CG⇣�1. Due to (A.67) and �0  �,
the assumptions (A.31) and (A.32) are verified. Next, due to (A.86) and (A.87),

the assumption (A.33) is verified, with Nx = 1, e⇣ = ⇤, and C' = C⇤⇤↵. Lastly,
assumption (A.71) verifies the condition (A.34) of Lemma A.7. Thus, applying
estimate (A.36) we deduce that

��DN
D

M

t
R(0)

��
L1 . CGC⇤⇤↵⇣�1M (N, 1, ⇣,⇤)M (M,Mt, ⌫, e⌫) (A.89)

for all N  N⇤ and M  M⇤, which is precisely the bound stated in (A.73).
Here we have used that N⇤ � 2Ndec + 4, which was required due to (A.35).

Next we analyze the second term in (A.83). The point is that this term has
the same structure as what we started with; for every fixed ` 2 {1, 2, 3}, we may
replace G

i

(0) by G
i`

(1), and we replace %(0) with ⇣�1
@`%(1); the only di↵erence is

that the bounds for this term are better. Indeed, from (A.85) we see that the
2-tensor G(1) is the sum of entries in ⇣�1

DG(0) ⌦A, ⇣�1
DG(0) ⌦A⌦A⌦D�,

and ⇣�1
G(0) ⌦DA⌦A⌦D�. Recalling that the entries of A are homogeneous

quadratic polynomials in the entries of D�, from (A.81), (A.82), �0  �, and
the Leibniz rule we deduce that

���DN
00
D

M

t
D

N
0
G

i`

(1)

���
L1

. CG(�⇣�1)�N
0+N

00
M (M,Mt, ⌫, e⌫) (A.90)

for N 0 +N
00  N⇤ � 1 and M  M⇤. Compare the above estimate with (A.82),

and notice that since �⇣�1 ⌧ 1, the bounds for G(1) are indeed better than those
for G(0); the only caveat is the bounds hold for one less spatial derivative. In or-
der to iterate Proposition A.17, for simplicity we ignore the ` index; since the ar-
gument works in exactly the same way for all values of `, we write Gi`

(1) simply as

G
i

(1), and @`%(1) as D%(1). We start by noting that ⇣�1
D%(1) = ⇣

�2�(⇣�1
D%(2)).

Thus, using identities (A.62)–(A.65) we obtain that the second term in (A.83)
may be written as

G
i

(1)(⇣
�1

D%(1)) � � = @nR
in

(1) +G
i`

(2)(⇣
�2
@`D%(2)) � � , (A.91)
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where the symmetric stress R(1) is given by

R
in

(1) = ⇣
�1
⇣
G

i

(1)A
n

`
+G

n

(1)A
i

`
�A

i

k
A

n

k
G

p

(1)@p�
`

⌘

| {z }
=:Sin`

(1)

(⇣�2
@`D%(2)) � � (A.92)

and the error terms are computed as

G
i`

(2) = ⇣
�1
⇣
@n

⇣
G

p

(1)A
i

k
A

n

k
�G

n

(1)A
i

k
A

p

k

⌘
@p�

`

⌘
� @nG

i

(1)A
n

`
. (A.93)

We emphasize that by combining (A.85) with (A.92) and (A.93), we may com-
pute the 3-tensor S(1) and the 2-tensor G(2) explicitly in terms of just space
derivatives of G and D�. Using a similar argument to the one which was used
to prove (A.88), but by appealing to (A.90) instead of (A.82), we deduce that
for N  N⇤ � 1 and M  M⇤,

��DN
D

M

t
S(1)

��
L1 . CG(�⇣�1)�NM (M,Mt, ⌫, e⌫) . (A.94)

Using the bound (A.94) and the estimate

��DN (⇣�2
@`D%(2))

��
L1 . C⇤M (N, 2, ⇣,⇤) ,

which is a consequence of (A.69)—in the case N = 2, as before, we may weaken
the bound by a factor of ⇤↵—we may deduce from Lemma A.7 that

��DN
D

M

t
R(1)

��
L1 . CGC⇤⇤↵(�⇣�2)M (N, 2, ⇣,⇤)M (M,Mt, ⌫, e⌫) (A.95)

for N  N⇤ � 1 and M  M⇤, which is an estimate that is even better than
(A.89), since � ⌧ ⇣  ⇤. This shows that the first term in (A.91) satisfies the
expected bound. The second term in (A.91) may in turn be shown to satisfy

���DN
00
D

M

t
D

N
0
G

i`

(2)

���
L1

. CG(�2⇣�2)�N
0+N

00
M (M,Mt, ⌫, e⌫) . (A.96)

for N 0 +N
00  N⇤ � 2 and M  M⇤, and it is clear that this procedure may be

iterated d times.
Without spelling out the details, the iteration procedure described above

produces

G(0)%(0) � � =
d�1X

k=0

divR(k) +G(d) ⌦ (⇣�d
D

d
#) � �

| {z }
=:E

, (A.97)

where each of the d symmetric stresses satisfies

��DN
D

M

t
R(k)

��
L1 . CGC⇤⇤↵(�k⇣�k+1)M (N, 1, ⇣,⇤)M (M,Mt, ⌫, e⌫) , (A.98)
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for N  N⇤ � k and M  M⇤. Each component of the the error tensor G(d) in
(A.97) is recursively computable solely in terms of G and D� and their spatial
derivatives, and satisfies

���DN
00
D

M

t
D

N
0
G(d)

���
L1

. CG(�d⇣�d)�N
0+N

00
M (M,Mt, ⌫, e⌫) (A.99)

for N
0 + N

00  N⇤ � d and M  M⇤. Lastly, since
��DN (⇣�d

D
d
#)
��
L1 .

C⇤⇤↵M (N, d, ⇣,⇤) and D
d
# is (T/µ)3-periodic, a final application of Lemma A.7

combined with (A.99) and the assumption that N⇤ � d � 2Ndec + 4 show that
estimate (A.74) holds.

Next, we turn to the proof of (A.78) and (A.79). Recall that E is defined
by the second term in (A.97), and thus

�
T3 G% � �dx =

�
T3 Edx. Using the

standard nonlocal inverse divergence operator

Rv = ��1
�
rv + (rv)T

�
� 1

2

�
Id +rr��1

�
��1div v , (A.100)

we may define

R̊nonlocal = RE .

By the definition ofR we have that R̊nonlocal is traceless, symmetric, and satisfies
div R̊nonlocal = E�

�
T3 Edx , i.e., (A.78) holds. In the last equality we have used

the fact that, by assumption, G% � � has zero mean, and thus so does E. The
idea here is very simple: because d is very large, the gain of (�⇣�1)d present in
the E estimate (A.74) is so strong that we may simply convert D and Dt bounds
on E to (terrible) @t bounds, which commute with R, and get away with it.

Using the formulas (5.17a) and (5.17b) and the assumption (A.75), since D

and @t commute with R, we deduce that for every N  N� and M  M� we
have

���DN
D

M

t
R̊nonlocal

���
L1

.
X

M
0M

N
0+M

0N+M

M�M
0X

K=0

CK

v
e�N�N

0+K

q
e⌧�(M�M

0�K)
q

���DN
0
@
M

0

t
RE

���
L1

.
X

M
0M

N
0+M

0N+M

e�N�N
0

q
e⌧�(M�M

0)
q

���DN
0
@
M

0

t
E

���
Lp

(A.101)

for any p 2 (1, 3/2), where in the last inequality we have used the facts that, by

assumption, Cve�q . e⌧�1
q

and that R : Lp(T3) ! L
1(T3) is a bounded operator.

Our goal is to appeal to estimate (A.44) in Lemma A.10, with A = �v ·r,
B = Dt, and f = E in order to estimate the L

p norm of DN
0
@
M

0

t
E = D

N
0
(A+

B)M
0
E.
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First, we claim that v satisfies the lossy estimate

��DN
D

M

t
v
��
L1 . Cve�Nq e⌧�M

q
(A.102)

for M  M� and N+M  N�+M�. This estimate does not follow from (A.68),
which provides bounds for only Dv, instead of v. For this purpose, we apply
Lemma A.10 with f = v, B = @t, A = v ·r, and p = 1. Using (A.75), and the
fact that B = @t and D commute, we obtain that bounds (A.40) and (A.41) hold

with Cf = Cv, �v = e�v = �f = e�f = e�q, and µv = eµv = µf = eµf = e⌧�1
q

. Since

A+B = Dt, we obtain from the bound (A.44) and our assumption Cve�q . e⌧�1
q

that (A.102) holds.
Second, we claim that for any k � 1 we have

�����

 
kY

i=1

D
↵iD

�i
t

!
v

�����
L1(suppG)

. Cve�|↵|q
(max{e⌫, e⌧�1

q
})|�| (A.103)

whenever |�|  M� and |↵|+ |�|  N� +M�. To see this, we use Lemma A.14
with f = v, p = 1, and ⌦ = suppG. From (A.68) we have that (A.50) holds

with Cv = ⌫/�
0, �v = e�v = �

0, µv = ⌫, and eµv = e⌫. On the other hand,

from (A.102) we have that (A.51) holds with Cf = Cv, �f = e�f = e�q, and

µf = eµf = e⌧�1
q

. Since e�q � �
0, we deduce from (A.54) that (A.103) holds.

Third, we claim that

�����

 
kY

i=1

D
↵iD

�i
t

!
E

�����
Lp(suppG)

. CGC⇤(�⇣�1)d⇤|↵|+1M (|�|,Mt, ⌫, e⌫) (A.104)

holds whenever |↵|  N⇤ � d and |�|  M⇤. This estimate again follows from
Lemma A.14, this time with f = E, by appealing to the previously established
bound (A.74) and the Sobolev embedding W

1,1(T3) ⇢ L
p(T3) for p 2 (1, 3/2).

At last, we are in the position to apply Lemma A.10. The bound (A.103)

implies that assumption (A.40) holds with B = Dt, �v = e�v = e�q, and
µv = eµv = max{e⌧�1

q
, e⌫}. The bound (A.104) implies that assumption (A.41)

of Lemma A.10 holds with Cf = CGC⇤(�⇣�1)d⇤, �f = e�f = ⇤, µf = ⌫, and

eµf = e⌫. We may now use estimate (A.44), and the assumption that ⇤ � e�q, to
deduce that

���DN
0
@
M

0

t
E

���
Lp

. CGC⇤(�⇣�1)d⇤N
0+1(max{Cv⇤, e⌫, e⌧�1

q
})M

0
(A.105)

holds whenever M
0  M� and N

0 + M
0  N� + M�. Combining (A.101) and

(A.105) we deduce that
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D

M

t
R̊nonlocal

���
L1
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. CGC⇤(�⇣�1)d
X

M
0M

N
0+M

0N+M

e�N�N
0

q
e⌧�(M�M

0)
q

⇤N
0+1(max{Cv⇤, e⌫, e⌧�1

q
})M

0

. CGC⇤(�⇣�1)d⇤N+1(max{Cv⇤, e⌫, e⌧�1
q

})M (A.106)

whenever N  N� and M  M�. Estimate (A.79) follows by appealing to
the assumption (A.77), which ensures that the gain from (�⇣�1)d�1 is already
a su�ciently strong amplitude gain, and we use the leftover factor of �⇣�1 to
absorb implicit constants.
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