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Abstract
For V ~ aloglogT with 0 < o < 2, we prove

%meas{t € [T,2T) :log|C(1/2 +it)| > V} < \/logllwe—w/logbg?

This improves prior results of Soundararajan and of Harper on the large deviations
of Selberg’s Central Limit Theorem in that range, without the use of the Riemann
hypothesis. The result implies the sharp upper bound for the fractional moments of
the Riemann zeta function proved by Heap, Radziwilt and Soundararajan. It also shows
a new upper bound for the maximum of the zeta function on short intervals of length
(logT)?, 0 < 6 < 3, that is expected to be sharp for # > 0. Finally, it yields a sharp
upper bound (to order one) for the moments on short intervals, below and above the
freezing transition. The proof is an adaptation of the recursive scheme introduced by
Bourgade, Radziwilt and one of the authors to prove fine asymptotics for the maximum
on intervals of length 1.

1 Introduction

1.1 Main Result

Selberg’s Central Limit Theorem [Seld6, Sel92] states that the logarithm of the Riemann
zeta function ((s) at a typical point on the critical line Re s = 1/2 behaves like a complex
Gaussian random variable of mean 0 and variance loglogT'. Specifically, if 7 is uniformly
distributed on [T, 277], then for the real part of the logarithm we have

0o ,—22/2
e
P(lo 1/2 +i7)| > 4/ Lloglog T - )w —dz, eR, as T — oc.
g|¢(1/ )| > /3 loglogT -y o y
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See [RS17] for an elegant self-contained proof of this, and [Sou21] for a survey on the distri-
bution of values of L-functions in general. In this paper, we prove that the above Gaussian
decay persists in the large deviation regime:

Theorem 1.1. Let V ~ aloglogT with 0 < a < 2. We have for T large enough

1 —V?
P(l 1/2+ir)| >V T '
(log [¢(1/2 + iT)] ) < \/WGXP (loglogT)

The implicit constant in the inequality can be taken uniform in o« in any compact subset of

(0,2).

Throughout the paper, the notation <« means that the left is O of the right side as
T — oo, and that the implicit constant is possibly a-dependent.

In the interval 0 < V < 2loglogT', Theorem 1.1 is an improvement of a more general
theorem of Soundararajan [Sou09], which states for this particular range that

—V?
P(log|¢(1/2 +ir)| > V) < (log T)°W - exp (w) . (1)

Harper [Harl3| also proved sharp bounds for the moments of the zeta function, which by
Markov’s inequality imply

. —V?
P(log|¢(1/2 +i7)| > V) < exp (loglogT) : (2)

Both results assume the Riemann hypothesis, whereas Theorem 1.1 is unconditional. Equa-
tions (1) and (2) do hold conditionally on a wider range of V, for example V' ~ kloglogT
for any k£ > 0.

Heap, Radziwilt and Soundararajan proved sharp upper bounds for the moments between
0 and 4, cf. Corollary 1.2, which imply Equation (2) unconditionally. For v/loglog T log loglog T' <
V < 2loglog T — 2v/Toglog T log log log T, Heap and Soundararajan [HS20] also proved the
following behavior unconditionally

—V? L0 VlogloglogT
loglog T VdioglogT '

It was conjectured by Radziwill [Rad11] that the Gaussian behavior actually extends to the
whole range V' ~ kloglogT, k > 0, up to a multiplicative factor

P(log |((1/2+1iT)| > V) = exp (

0 e—yQ/loglogT
—dy,
v VmloglogT Y

where C} is the conjectured leading coefficient of the 2k-moment (cf. [KS00]). If we write
V = aloglogT + oy for o = o(y/loglog T), then Theorem 1.1 also gives an upper bound to
order one for a local version of Selberg’s Central Limit Theorem, as proposed in [DBMN19].
(See Proposition 4.8 there for a more precise result for a random model of zeta.) Finally, we
also remark that for characteristic polynomials of random unitary matrices, large deviations

P<log|C(1/2+iT)| > v) ~ C
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in the equivalent regime to Theorem 1.1 were proved in [HKOO01] and precise asymptotics
(including the constant) were proved in [FMN16].

Theorem 1.1 is proved in Section 2. The method is an adaptation of a recursive scheme
introduced in [ABR20] to prove a sharp upper bound to the Fyodorov-Hiary-Keating Con-
jecture, cf. Equation (7). Consider the Dirichlet polynomials

R S A (3)

1/2 =

log 2<log p<ek

These partial sums are a good proxy for log [((1/2 + i7)| for k close to loglogT. Moreover,
the moments of Sy are very close to Gaussian, see for example Lemma A.2 or [ABB*19,
Lemma 3.4]. However, the error for these moments is too large to handle simultaneously k
close to loglog T as well as moments of order loglog T
The idea is to restrict the estimate of the probability to good events where the partial
sums (3) takes values in a narrow interval. The implementation of this recursive scheme is
much simpler here than in [ABR20], where restrictions at every k were needed. Namely, for
Theorem 1.1, the partial sums only need to be constrained on a sparse collection of k’s of
the form
ty =loglogT —slog, , T, (>1, (4)

for some (a-dependent) s, where log, stands for the logarithm iterated ¢ times. Moreover,
since Theorem 1.1 only concerns large values of ( at a single point, no discretization is
needed here compared to [ABR20] where the authors considered the maximum of ¢ over a
short O(1)-range. This simplifies the statements and proofs of various foundational results
(cf. Lemmas 2.4, 2.6, and 2.7) regarding second and twisted fourth moments of Dirichlet
polynomials. As a corollary to Theorem 1.1, we prove an upper bound on the maximum of
¢ over a growing window, cf. Corollary 1.3.
The restriction is on good events of the form

{Stz € [LK’UZ]}a 14 > 17

where L, is slightly below the linear interpolation at, and Uy is slightly above. These barriers
must be chosen carefully and dependent on «. Also, U, must be much higher than the upper
barrier picked in [ABR20] as the fluctuations here can be greater. It turns out that the
dominant term of the probability in Theorem 1.1 comes from the intersection of all the good
events above. On these events, the increments S, , — S, are restricted to a range where
large deviations can be estimated.

Theorem 1.1 must be restricted to a < 2 since we rely on a twisted fourth moment esti-
mate (Lemma 2.10). More generally, large deviations in the range «loglog T are controlled
by the 2a-moment of zeta. This suggests that the method of proof should be adaptable
to prove Theorem 1.1 for any a > 0 assuming the Riemann hypothesis, where all such
moments can be sharply bounded. This would improve the bounds (1) and (2) in the full
range aloglogT, o > 0, conditionally. We also expect that a matching lower bound (up
to constant) can be found using the techniques of [ABR23]. In [Radll], it was proved that
Selberg’s theorem holds up to V' of the order of (loglog T')*/°~¢. Subsequently, Inoue [Ino19]
improved the range of V up to (loglog T)%®. The techniques involved in the proof of Theo-
rem 1.1 do not seem to be applicable to the range V' = o(loglogT"). Interestingly, this leaves

'
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a gap between V < (loglogT)?/? and V ~ aloglogT where the Gaussian decay remains
open.

1.2 Applications

The first corollary of Theorem 1.1 is an alternative proof of a sharp upper bound for fractional
moments of the zeta function, proved unconditionally by Heap, Radziwilt and Soundararajan.

Corollary 1.2 (Theorem 1 in [HRS19)). Let 0 < 5 < 4. We have for T large enough

1 2T 2
Mp = T/T €(1/2 +it)|"dt < (log T)"/, (5)

where the implicit constant depends on (3.

The proof in [HRS19] depends on twisted fourth moment estimates, as for Theorem 1.1.
Hence, their proof might be considered at the same conceptual level as the proof of Corollary
1.2. Corollary 1.2 is proved in Section 3.1. Note that, via Markov’s inequality, Equation (5)
shows in particular the Gaussian decay (2) unconditionally, for V' ~ g loglog T and 8 € [0, 4].

In short intervals, of size (logT)? for 0 < § < 3, Theorem 1.1 implies an upper bound for
the maximum up to order one precision:

Corollary 1.3. Let 0 <0 < 3 and y > 0 such that y = o (bgl—ogT>. We have

logloglog T

L (log T)Vito
1/2+it+1h)| < €Y 6
IhISH(llggXT)"K( [2+it+in) <e (loglogT)l/(4v1+9)’ (6)

for all t € [T, 2T] except on a set of Lebesque measure < e 2V 1+0ye—y*/loglogT

The restriction to # < 3 is due to the limitations in the range of large deviation, up to
2loglog T, in Theorem 1.1. The result also gives a precise decay for the right tail of the
maximum, which is exponential for small y’s and Gaussian for large ones. The condition on
the size of y in the statement of the corollary can be relaxed at the expense of a different decay
rate, as can be easily observed within the proof. Upper and lower bounds for the maximum
with error (logT)® were proved in [AOR21]. Corollary 1.3 proves the fine asymptotics up
to order one as given in Conjecture 1.3 of [AOR21]. The proof of Corollary 1.3 is given in
Section 3.2. It is a simple union bound after suitably discretizing the interval on (log T')'*+?
points. It is expected that the bound is sharp for # > 0, see [AABT21] for numerical evidence
of this. This is because for # > 0, the values of zeta at the (logT)**? points should each
behave like IID Gaussians of variance 3 loglogT, see for example [AOR21] '. This is in
contrast with the case § = 0. Corollary 1.3 holds for this case, but it is not sharp. It was
conjectured by Fyodorov, Hiary & Keating and Fyodorov & Keating, that the maximum

LClosely related is a class of models called ‘continuous random energy models’, cf. [BKL02, Bov06, Bov17,
BH15] that exhibit similar extreme value statistics for a suitable choice of parameters.



of log || on intervals of size one should behave exactly like the maximum of log-correlated
stochastic processes [FHK12, FK14]. It was shown in [ABR20] that

. . log 1
< y____ o
%2}1<|C(1/2+1t+1h)| e (log log T)/1" (7)

for all t € [T, 2T except on a set of Lebesgue measure < ye_de_yQ/ loglog T " Jpper and lower
bounds with error (logT)¢ were proved in [Najl8 ABB'19]. A hybrid regime interpolating
between IID and log-correlated statistics was also proposed in [ADH21]. For more on recent
developments in extreme values of log-correlated processes, see for example [BK22].

Theorem 1.1 can also be applied to improve current bounds for the moments of ( in short
intervals.

Corollary 1.4. Let 0 < 0 < 3. For all 8 > 0, we have for A > 1
2
/ 1C(1/2 + it + ih)|*dh < A(log T) T+, (8)
|h|<(log T)?

for all t € [T, 2T] except possibly on a subset of Lebesque measure < 1/A.
For 8> 5. =214 0, a sharper bound holds:

_L Be
/ IC(1/2 + it +1h)|[Pdh < Cyp - (loglog T) 25 - (log T) 2 771, (9)
|h|<(log T)?

for all t € [T, 2T] except possibly on a subset of Lebesque measure < 1/A, where Cy g is an
explicit constant dependent on A and 5.

Equation (8) was proved in [AOR21]. It follows easily by Markov’s inequality and the
bound (5). Nevertheless, we provide another proof of this using the Lebesgue measure of
high points. This is helpful in understanding the proof of the sharper bound for the moments
above (.. Equation (9) is an improvement on [AOR21], where the result was given with a
(log T')¢ error. Interestingly, Equation (9) is exactly the behavior expected for the moments
of (logT)*? 1ID Gaussian random variables of variance %log logT" as computed by Bovier,
Kurkova & Lowe [BKLO02, Theorem 1.6] for large £.

Equations (8) and (9) exhibit a freezing transition (also referred to as intermittency)
where the moments transition from quadratic to linear growth. In view of this, it is natural
to ask if the bound (8) at criticality 5 = (. is sharp. At 6 = 0, where the system seems to
behave like a log-correlated process, it can be improved as shown by Harper:

Theorem 1.5 (Theorem 1 and Corollary 1 in [Har19]). We have

logT

C(1/2 4 it +ih)Pdh < A—2—,
/|h§1’ 1/ ) VloglogT

. (log A)A/loglog T
for allt € [T,2T7] except possibly on a subset of Lebesque measure < 222N



The presence of the correction 1/+/loglog T is related to the phenomenon of critical Gaus-
sian multiplicative chaos, see [Pow18]. In Section 4, we explain how this correction appears
in view of the Lebesgue measure of high points. For § > 0, where the IID heuristic prevails,
such a correction should be absent as predicted by Theorem 1.6 (i) of [BKL02]. Hence,
Equation (8) is expected to be sharp to order one at 8 = f..

Notation. Throughout the proofs, 7 designates a uniform random variable on [T, 27]. To
lighten the notation, we will often use the probabilistic convention for random variables and
drop the dependence on 7. Most dramatically, we will simply write

¢ for the random variable {(1/2 + ir).

Another convenient notation is
t =loglogT.

It turns out that loglog is the correct scale for the primes in the considered problems. This
is because the Dirichlet sums considered, see for example (3) and (10) below, behave like a
random walk on that scale.

Acknowledgements We thank Paul Bourgade and Maksym Radziwilt for insightful dis-
cussions on the subject. The research of LPA is supported in part by the awards NSF
CAREER DMS-1653602 and NSF DMS-2153803. Part of this work was conducted whilst
EB participated in a program during the Fall 2021 semester hosted by the Mathematical
Sciences Research Institute in Berkeley, California, which was supported by the NSF Grant
DMS-1928930.

2 Proof of Theorem 1.1

The proof is an adaptation of the recursive scheme of [ABR20]. First, we introduce some
notations. Consider the partial Dirichlet sums

Re p—ir Re p—2i7-
Se= Y S T k2L (10)

2<p<exp(ek)

with Sy = 0. (As opposed to the simpler Equation (3), we include here the square of primes
within the definition. This simplifies the application of Lemma 2.5 below.) For Sy to be a
good approximation for log|(|, the parameter k£ must be taken close to ¢. With this in mind,

set

ty=t—slog,t, (>1, (11)
with the convention that t; = 0. The parameter s here depends on a. A good choice
(reflecting the symmetry in «) is

(22— a)2a?



We will say more on this choice below Equation (19), but as a first remark notice that s > 10°
since av € (0,2). The last ¢, denoted by L, is defined as the largest ¢ such that

1
exp(108(t — £,)'0et+1) < exp <met> — /100, (13)
Note that the left-hand side is
¢
10%(s log, )"+ )
exp < (5 0gy ) (loge t)ﬁ )
therefore the choice of s ensures that such a £ exists if T is large enough. The finite sequence

t1,...,te approaches t such that t —t, = slog,t = O(1) and log, t > 0.
The corresponding complex partial sums are also needed and are denoted by

—ir —2iT
i p p
Sy = E v + , k>1, (14)

2<p<exp(ek) 2P

and §0 = 0. We stress that only the values of the partial sums at t,, 1 < ¢ < L, are necessary.
To approximate exp(—Sy,), we use the mollifiers:

1.9
e

plm = loglog p€(tr_1,te]
5
Qe(m)<(te—te—1)1°

where Qy(m) is the number of prime factors of m in (exp(e’*~1), exp(e’*)] with multiplicity,
and p(m) is the Mébius function. The proof will show that product My --- M, is typically
a good approximation for exp(—5Sy,).

The idea of the proof is to partition the event
H = {log|¢((1/2+1ir)| > V'}

into recursively defined events that greatly restrict the values of the Dirichlet sums (10)
and (14). It is expected that, if log|((1/2 +1i7)| > V and V ~ at, then the partial sum 5,
should be close to kt, where
Vv
K=~ (16)
More precisely, consider for 1 < ¢ < L, the decreasing events

Ar= A n{|Sy, = Sy | < Alte = o)}

Bg = Bg_l N {Stz S Iftg + Blogé t}

Co=Co_1 N {Stg > Kty — Clogz If}

Dy = Dyy 0 {[Ce™ %] < co(My - My| 4 e PUT1e),

(17)

where ¢, = H§:1<1 + e7%i-1), and Ag, By, Co, Dy = [T,2T] (the full sample space). The
parameters A, B, C, D will be chosen carefully as discussed below. For now, we simply observe
that on the good event

Gg:AgﬂBgﬂCgﬂDg,

7



the partial sums are restricted in a narrow corridor between an upper and lower barrier:
Uy = Kty + Blog,t Ly =kt —Clog,t, 1<(<L. (18)

The auxiliary event D, ensures that exp(—Sy,) is well approximated by the mollifier, and
Ay is an a priori estimate needed for the estimates involving Cy, and D,. The probability
of H = {log|¢(1/2 + ir)| > V} can then be decomposed over the G,’s. The dominant
contribution comes from H N G, where the sums are restricted up to order one away from
t. The precise estimates are:

Proposition 2.1. Let V ~ at with 0 < o < 2. With the notation above, we have for some
d >0 (dependent on «) and t large enough

-V2/t
Vi

Proposition 2.2. Let V ~ at with 0 < a < 2. With the notation above, we have for
1 << L—1, somed >0 (dependent on o but not £), and t large enough

N

P(HNG)) <

c €_V2/t -4
P(H NG N Gi) € - (log 1)

Proposition 2.3. Let V ~ at with 0 < a < 2. With the notation above, we have for t large
enough

1 )
PHNG,) < —e V'
( ﬁ) \/ge

The theorem is a simple consequence of the three propositions.

Proof of Theorem 1.1. It suffices to notice that

£—1
P(H)=P(HNG)+> PHNG,\Gra)+P(HNG,).
=1
The result follows by applying Propositions 2.1, 2.1, 2.3. O]

As mentioned above, the parameters in (17) need to be chosen in a delicate manner. As
we shall see from the proof (cf. Equations (29) and (35)), the choice of B must satisfy the
following restrictions.

1+a’s —2aB <0

19
B—as <O0. (19)

The first equation forces B to be proportional to 1/a to handle small o’s. In turn, the second
equation leads to s > 1/a?, motivating in part the choice of s in (12). With this choice, the
defining inequalities for B becomes

1 109 109 109

5+a(2—0z)2 <B < a2 —a)? +oz(2—oz)2'




This is a non-empty interval since a > 0. Therefore, a valid choice is

3-10° 1
= 4+ 2
20(2 — )2 * 4oy (20)
The restrictions on C (cf. Equations (32) and (39)) will be
1
{1+ 2 a)s}. 21
C>2(2_a){ +(2-a)s (21)

(We note in passing that this is the first constraint for B in (19), after the transformation
a — 2 — a.) Therefore, a valid choice for C is

3- 106 1
= ) 22
222 —a)  A2—a) (22)
This choice implies the upper bound C < (2 — «)s.
The parameter A will need to satisfy (cf. Equations (34) and (43)):
a? ol
>— 4+ — 4+ 2. 23
A> oo+ (23)
This choice implies in particular
2aC
A2>a2+%+4 (24)
For example, one can take
A =107, (25)
since, with the choices of C and s above, and for 0 < a < 2, we have
9 _
A=10° >4+¥(0¢2+3)
2 (26)
>2 4 ac +2
4 2s '
Finally, the conditions on D will be as in [ABR20]
D = 10" (27)

2.1 Proof of Proposition 2.1
First, notice that

HNGSC AS U BSU (HNCSNA NDy) U (DSNA).

We estimate the probability of the four events in the union on the right individually.
We first evaluate Af:

P(A5) = P(IS,| > At).

9



Equation (79) of the appendix is applicable with the choice ¢ = [A%¢;], and implies that
this is
<V - eXp(—A2t1).
Since A = 103, for some § > 0 this is clearly
—K2t

Vit

Turning to By, and applying Markov’s inequality for some ¢ > 1 yields

<& 4 (28)

P(B}) < P(S,, > U1) < Uy “E[|S,, [*1].

Equation (80) then applies with ¢ = [U?/t;], with U; as in (18) giving

—K2t
P(BT) < \/Eerf/h < € .t1+n2572/€8. (29>

Vit
By the choice of B in Equation (19), one has 1 + a?s — 2aB8 < 0. Since £ = a + o(1) by
Equation (16), the above is

.2
ent

Vit

for some 0 > 0, depending on « and different from (28).
To evaluate H N CY N A; N Dy, we require the following lemma, proved in Section 2.5.

< 70 (30)

Lemma 2.4. For w with |w| < 4t1, we have

—w2/t1
Vi

Let us explain the intuition behind the result. One should think of (M as a random
Euler product involving primes larger than exp(e’t). Furthermore, Selberg’s result suggests
its logarithm should be distributed like a Gaussian random variable of variance ¢ — ¢;. This
explains the first factor e**~*) as the contribution from the moment generating function of
such a variable. As explained in Section 2.4, the indicator function can be approximated
by a suitable Dirichlet polynomial involving primes less than S;,. Since primes should be-
have independently, it is not surprising to see the decoupling between the factors. Most
importantly, we obtain a Gaussian behavior for the variable S;, in a large deviation regime.

The estimate P(H N C{N Ay N Dy) is done by first partitioning on the value of Sy, using
the restrictions given by A; and CY:

E [[(My[* 1(S,, € (w,w+1])] < el 2

(31)

P(HNC{NA NDy) < > P({S,, € (u,u+1],|¢| > €'} NDy)

—.A(tl —t0)<u<L1

Y P({S, € (wut1],|¢e ] > N Dy),

—A(t1—to)<u<Li

IN
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where we recall that V' = kt and L, is given by Equation (18). The event D; implies that
[Ce™5n] < 2CMy| + e P,

Therefore if [Ce™51| > eV ~%7!, then it must be that either

1
2|CM1| > §€V—u—1

or

7D(t7t0) V—u—1

- 1
—e
2
The latter case is impossible, since the exponent on the left side is negative, whereas on the

right side we have on the range of u

(&

V—-—u—1>kt—rt; +Clogt—1>0.

This implies that

1
P(A,NDNHNCE) < > P(cMy| > Tooev_u N{S;, € (u,u+1]})
—A(t1—to)<u<Li
< 0 I BOM (S, € (uu+ 1))

u<ly

a2
The sum over u < 0 is < =% - ¢2¢=11) which is much smaller than ¢ - 479 for the range of

V considered. Lemma 2.4 can be applied on the range 0 < u < L; This gives

—u2/t1

e
< eAlt=t) Z e~ 4V—u) '
u<lq \/E

After the change of variable w = kt; — u, this becomes

—u? /tl —I{Ztl

(A—4k)(t—t1) —A(kt1—u) © € (A—4k)(t—t1) —(4—2K)w
e g e — < —c g e

u<lq t]' tl

w>C logt
—K2t
< e\/_ . or2+s(4—4r) 22— R)C (32)
t
—Kk2t
< =0,

Vit

for some § > 0, by the choice of C in (21).

Finally we estimate D{. In order to proceed, we need the following lemma from [ABR20].
The proof follows by expressing e~ =5%) in terms of an Buler product, and by bounding
the contribution of integers m with Qy(m) > (t, — t,_1)'*" using Rankin’s trick.

Lemma 2.5 (Lemma 23 in [ABR20]). Suppose ¢ > 0 and that |§té+1 — Sy, < 103(tpsy — o).
Then we have
e e =5t < (1 4 e7)| M| 4 710 et

11



Now, observe that the event A; N {|¢| < e*} is contained in A; N D;. Indeed, since
1Sy, — Sty | < 103(¢; — to) on Ay, Lemma 2.5 implies

[Gem (S| < 2CMu| - [¢le ) < 2CMy| 4 2O,

which implies D; since D = 10*. Hence, to estimate P(D$ N A;), it suffices to estimate
P(I¢| > ¢*):
1 2
P(DiN Ay <P([¢] > e*) < e VB[] < 7 e, (33)

since E[[¢]?] < €' [Theorem 2.41 in [HL18]].
Summarising, we have by a union bound and successively applying Equations (28), (30), (32),
and (33),

P(HNGY) <P(A)) +P(B))+P(AinD;NnHNCY) +P(A; N DY)
i 7!{2tt 5
\/Z

for some 9 > 0 dependent on «.

2.2 Proof of Proposition 2.2
Notice that

HNGNGS,, C (A5 NGy) U (BE NGe) U (HNCE NA1NDeiNGy) U (D5 N A 1NGY).

The probability of each event in the union on the right side are now evaluated. In order to
handle the event involving A7, ; we will need the following lemma, proved in Section 2.4.

Lemma 2.6. Let { > 1 be such that 10%(t — #,)'®ee+t < oe'. Let Q be a Dirichlet
polynomial of length N < exp(m0 e'), supported on integers all of whose prime factors are

greater than exp(e'). Then for w € [Ly, U], we have

—w? [t

N

As in Lemma 2.7, the decoupling is due to the fact that the Dirichlet polynomials involve
primes in different intervals. Though the events B,NC, do not appear explicitly in the result,
their presence here is crucial to obtain the Gaussian behavior of S, in a large deviation
regime.

We first show that for £ > 1

e

E[|QG% +in)*1 (B, N CrN{S, € (w,w+1]})] < E[|Q(3 +i7)[*] -

-V2/t

P(AS, NGy < NG - (log, t)~°

For any g > 1, the probability P(Aj, ; N Gy) is smaller than

|St/z+1 §t4|2q
E E 5oL (BeNCr N {Sy, € (u,u+1]})
el Aty — 1))
u 2] Z

12



With the choice ¢ = [A*(ty11 — t;)], the polynomial Q = |§t€+1 — 5,2 both satisfies the
assumptions of Lemma 2.6 and Lemma A.1. Therefore, the above is

—u?/t
UG[L[,U@] \/E
e_L%/tZ

< (te+1 _ te)1/2 . e*AQ(terﬂ) .

Vie

where the last inequality is by estimating the sum over u trivially. Since L, = xt, — Clog, t,
this is
—H2tg —K2t

(&
<7 - (log,_, t)~4+2¢ « 7 (logr 1

)n257,425+2nc' (34)

The choice of parameters in Equation (24) guarantees that the exponent is negative.
Now we show that for ¢ > 1,

1
P(Bf, NGy < —=e - (log,t)~°.

Vit

By partitioning on the position of S;,, we have

P(BE_H N Gg) <K P(Bl?—i—l N B, N Cg)
< > P({Siy, — S, > U —u} N {S;, € (w,u+ 1]} N By NCry)

ue [LZ 7UZ]

(Ste+1 - Ste)2q
< Z E Wl(ste € (U,U+ 1]>Stk € [Lk,Uk] Vk < g) y
u€[Ly,Ur]

where the final line holds for any ¢ > 1 by an application of Markov’s inequality, provided
that Upy1 — Up > 0. This holds by the choice of B and s in Equations (12) and (19).

Choosing ¢ = [(Us — u)?/(te41 — te)], then the Dirichlet polynomial (S;,,, — S;,)? has
length at most exp(2ge’*+1) so the the conditions of Lemma 2.6 and Lemma A.2 are satisfied.
An application of Equation (81) then yields

W —w? —u? /b e~ U1/t
P(B; , NGy < e ‘it LK \/tpy1 — o
( 0+1 ) Z \/E +1 \/E

ue[LZ7UZ]

The last bound follows by bounding the sum over u by the Gaussian integral. Since Uy, =
ktey1 + Blog,, t, this is bounded by

—K2t

- (log, t
\/g(gé

e
<

)1/2+5/{27258‘ (35>

The choice of B in Equation (19) ensures that 1/2 + sx? — 2kB < 0.
The next estimate is
P(H N CZH N AZ—I—I N Dyyq N Gg) (36)

For this, we need a more detailed version of Lemma 2.4.
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Lemma 2.7. Let £ > 1 such that 106(t — t,)'%ele+1 < €t Forw € [Ly, Uy, we have

—w?/tg
E “CMI et Mg‘4 1 (Bg N Cg, Ste c [w, w + 1])} < 64(t7tl) . 67

Moreover, let v(m) be a sequence of complex coefficients with |y(m)| < eXp(ﬁet) for all

(37)

m > 1. Set
_ v(m)
o= y
plm = log logpe(te,tetﬂ
Qep1(m)<(tgp1—te) 0
We have
e_wQ/té

E [|CM, - Mea|* Q1 (BN Gy, S, € fw,w + 1))] < ) B[], - . (39)

Vit

We now partition the values of S;, = u for Ly < u < U, (on the event G,) as well as the
values of the increments S;,, , — S;, = v with the restrictions u +v < Ly (on the event
Cf,1) and |v| < A(teyr — ty) (on the event Aypq). The probability in (36) is then smaller
than

Z P({Ste S (u>u+1]> Stl+1 _Ste S (U,’U—l—l], |<675t2+1‘ > €V7(u+v)}mB£ﬂC£ﬂD£+1)'

Ue[Lg,Ug]
u+v<Lyiq
[v|<A(te41—1te)

The definition of the event Dy, together with the fact that |Ce_st’f+1 > V=) implies
that either

1
CZ+1|CM1 T M@+1| > §€V_(U+U+1)7

or

e—D(t—tg) > %eV—(u—H}-‘rl)
The last case cannot occur, since the exponent on the left side is negative whereas the one
on the right is

V—(ut+v)—1>V —Liy—1=(sx+C)log, t —1>0,

for 1 < ¢ < L —1 aslog,t > 0 by definition. This reduces this estimate to

1
Z P({St[ S (U, U+ ].], Stu-l - St[ S (U, v+ 1], |CM1 s M[+1| > mev_(u+v)} N Bg N Og)
uG[Lz,U[]

u+v<Lyiq
[v|<A(ter1—te)

< Z €—4V+4(u+v)E [lCMl . MZ+1|4 .

'U«E[L[,U[}
u+v<Lgiy
|v|<A(tet1—te)

|Stzz+1 - St£|2q

o]

1(B,NCyN{S,, € (u,u+ 1]})],

14



by Markov’s inequality with g = [|v|*/(tes1 — t¢)] < A%*(tes1 — t¢). Applications of Lemma
2.7, Equation (38) with Q, = (S;,,, — S;,)? and Equation (81) then implies that this is
> AV | At |ttt €
< e~ utv) | oAlt—terr) | o—v7 /(b1 —te ]
UE[LZ,UZ] \/E
ut+v<Lgiq
[V SA(te1—te)
The change of variables u = u — kt, and v = v — k(s — t;) and dropping some conditions
on the sum gives

.2
e Kt

<« & U iten) Z 6(4—2H)(ﬂ+1_))6—7_)2/(tg+1—t4)7
vt =
u+9<—Clog, ¢t
where we dropped the term e~ "/t gince it is of order one by the restriction on @. It remains
to sum over u + v first, then do the Gaussian sum on v to get
—rK2t

- (log, t
\/%(ge

)5(27@272(2711)C+1/2. (39)

Again, the last term is (log,t)~° by the choice of parameters in (21).
Finally we consider Dj, ; N Ay, NGy We claim that it is enough to evaluate

P({'CMl s Mg| > eA(t_t")} N Gg)

To see this, it suffices to notice that Ay N{|CMy -+ M| < eAEIYN Dy s in Agyy N Dyyy.
Indeed, on the event Ay y N {|CM; - M| < At} N Dy, we have

Sty — Stl < Al — te) (40)
|C6_5t2] < /My - M| + e~ Dlt—te1) (41)
ICMy - M| < eAlt=te) (42)

Equations (40) and (41) imply that
(e P ] < (CZ|<M1 e M|+ 6_104“_“*1)) e~ (Ste1=5t)
< Cg|CM1 . -./\/lg|e_(stf+1_8t‘-’) + 6—103(t—t5_1)7
for ¢ large enough. Then, Lemma 2.5 gives
]Ce_sté”rl] < ColCMy -+ M| + C€6103(t—te)—105(tul—tg) + o103 (t—te1)

We conclude that Dy, holds.
It remains to estimate P({|CM,| > A=)} N G,). We have by subsequent applications
of Markov’s inequality and Lemma 2.7, Equation (37),

P({|(M,] > A0} N Gy) < e ATIE[[CM|*1(G)]

72
—4(A=1)(t—t) € Li/te

NGz

< ie—n2t6—45(,4_1) log, tean log, t+2kC log, t

Vit

<L e

15



We conclude that

P(Dg_’_1 N AK—H N GE) < _6—5215 . (logg,1 t)552+2r-cC—45(A—1). (43)

N

The exponent is negative by Equation (23).

2.3 Proof of Proposition 2.3

Finally we establish that

1 2
P(HNG,) < —e "
( E) \/g

After partitioning on the value of S;,, applying Markov’s inequality, and subsequently

Lemma 2.7 we have
6*U2/t£

N

Applying the transformation w = v — kt,, the probability is bounded by

< iefn2te(2fﬁ)2 log, t Z 62(271€)w'

Vit

Since a < 2, the sum is bounded by exp(2(2 — x)Blog, t), so after grouping we find

P(HNG,) K Z etlt—te) gt

ve[Le,Ur]

—Clog, t<w<Blog,t

< Lot onrama et

Vit

By the choice of L, this is <« \/%e_"?t.

2.4 Proof of Lemma 2.6

We express the event B, N Cy N {S;, € (w,w+ 1]} in terms of the increments
}/} = Stj - Stj,N 1 S ] S E (44)

Recall that w € [L, Uy]. Therefore the event implies that S;, € [L;, U;] for all j < /, and
St, € [Le, Up + 1]. We partition these intervals into subintervals of width Aj’l where

Aj = (t; —tj1),

so Aj <slog; ;¢ for j>1,and Ay is {; =1 —slogi. Note that A; is of the same order as
the variance of Y;. Moreover, we have

ZA;l <1.

Jj=1

Consider the set Z of ¢-tuples u = (uy, ..., u,) such that
J 14
Ywell;-1U;+1], j<t > wew—1lw+l]. (45)
i=1 i=1

16



As a consequence of the definition, we have for all 7 > 1
Lj—l—(Ujfl‘i‘l)SUjSUj‘i‘l—(Lj,l—l)

which implies [u;| < (ks + B+ C)log;_;t + 2. We will also shortly require the following
estimate. Since B < as and C < (2 — «a)s (by (20) and (22)), we conclude from « < 2 that
lu;| < 4A; + 2. (46)

With these definitions, it is straightforward to check that we have the following inclusion of
events
BeNCyN{S, € (w,w+ 11} € J{Y) € fuju; + A7, 1 < j < ¢} (47)
ue’l
In particular, this implies

1(B,NCn{S, € (ww+1]}) <> J]105 € [uj,u; + AF]). (48)
ueZ j
We first prove:

Lemma 2.8. In the above notation, we have for A > 10 and 7 </,

A—

I(YJ S [Uj’ uj + Aj_l]) < |DA]'7A(YJ' - uj)|2(1 +ce™ 1)7 (49)

where c is an absolute constant and Da, a(Y; — u;) is a Dirichlet polynomial on integers n
whose prime factors are in (exp(e'-1), exp(e)] with Q(n) < A4, In particular, its length
is less than exp(2e' AJ04).

Proof. Lemma 6 in [ABR20] states that for any A; A > 3, there exists an entire function
Ga.a(r) € L*(R) such that for some absolute constant ¢ > 0:

1. the Fourier transform Ga_4(z) is supported on [—A24, A24];
2. 0<Gaa(zr) <1forall zeR;
3. 1(z €[0,A™]) < Gaalz) (1 +ce 2",
4. Gaa(z) <1(z e [~A A2 A~ AAR)) e,
5. [y |Gaa(z)|de < 2424,
From the property (3), we get
1(Y; € [ug, u + A7) < |G, a(Y; —u)P(1+ ce™7). (50)

Writing Ga, 4 in terms of its Fourier transform, we have by truncating the exponential at
v = A% (this choice will be motivated by the estimate (57) below):

G, alr) = / PTGy 4 (€)de

R
2mi k ~ 2\ ¥ R (51)
-y en ﬂ,z,x) /ngGAj,A(f)df‘f‘O* <%/R§”GA].,A(§)d§>,

k<v
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where O* means that implicit constant is smaller than 1 in absolute value. The polynomial
term in (51) is our definition of the polynomial Da, a(x) in (49). Since the Y; is a sum over
primes in (exp(e®-1), exp(e%)], it is clear that D, 4(Y; —u;) is a Dirichlet polynomial involv-
ing integers with prime factors in that interval and that its length is at most exp(2e% A}OA).
(The factor 2 comes from the fact that Y; includes squares of primes.) It remains to estimate
the error term. Since Equation (49) is trivial if |Y; — u;| > Aj_l, we assume without loss of

generality that [Y; — u;| < A7, Therefore the error term is

(2m)¥ 2m 2m v 100)" \ 54,
/f” d£<( L /\sr (G, a(§)lde << v -2A§A””é<yy> A,

(52)

where we use properties (1) and (5) above. This is e=2"" for the choice v = A4 Putting

this back in (50) yields
A—-1

1(Y; € [ugyu + A7) < [Daya(Yy —uy) + 0% e )P (L4 e ),

The term O*(e‘AfA) can be absorbed in the multiplicative error by adjusting c¢. The choice
A > 10 ensures a decay much better than Gaussian. O

It follows from Equation (48) and Lemma 2.8 that

L(BNCyN{S,, € (w,w+113) <Y [ 1Pa,a(V; —up)P(1 + ce™® 7). (53)

ueZ j

We choose A = 20 for the rest of the proof. The product over j of |Da, a(Y; — u;)|* is a
Dirichlet polynomial of length at most

¢ _
exp ( Z JAIOA) < exp (26tZA10A Z <loge1 t)s 10,4> - exp(2et4A}0A), (54)

= log,; ;t

since 5 > 10° > 10A by the choice of s in (12) and the choice A = 20. The mean-value
theorem for Dirichlet polynomials, see Lemma A.3 (which applies by the assumption on /),

implies
B [T 1Pa,a(¥; —u)P| = (1 +o01 [Hum =), (55)

where (), j < /) are independent random variables of the form

cosf, cos?b,
Vi = Z pl/2 + o (56)

eli—1<log p<e's

and (6,,p primes) are independent random variables uniform on [0, 27]. It remains to esti-
mate E[\DAWA(JJJ‘ — uj)]2] for each j.

Lemma 2.9. With the above notation, we have for j < ¢ and an absolute constant ¢ > 0,

E[|Da, () — )| SPOs —uy € [FA72 A7 4+ A7) 4 e

18



Proof. The idea is to use the approximation with Ga; 4 in reverse. For this, it is necessary
to re-introduce the error term in Equation (51), assuming it is small enough. On the event

| V; — u;| < A%, the estimate (52) becomes

(2m)” AOA

vl

(2m)"
V!

AR (100)VA?AV' (57)
I/V

/RfyaAj,A(f)dﬁ <

This is e %" for the choice v = A4 On the event |¥; — u;| > A%, Cauchy-Schwarz
inequality yields

1/2

1/2
E[/Da, () = w)PL(Ys =] > AY)| < B|1Da, as = u)!] P (35 = ] > AY)

The fourth moment of E[|Da, 4(Y;(h) — u;)|*] is bounded by

2T ¢ 4 5
B[(( X CRRaat e n i+ ul)) ] < A Elep@nati (] +48,)] < . (58
ESAJI-OA :

where we used Equation (46) and the fact that E[e’] < exp(A\2A;) by Lemma A.5. The
probability is bounded by Chernoft’s inequality using the same lemma

1
P(|Y; —uj| > AM) < exp(—EA?A). (59)

Equations (58) and (59) together imply

1 ABA

E|[|Da, () = w) P11, — ] > A%)| < e84

Altogether, we have shown

1A6A

E|[Da, (Vs — w)P?] < E[IGa,a(d; — us) + O(e™81") 2] 4+ 7349,

Since G, 4 is in [0, 1] the error inside the expectation can be made additive. The statement
of the lemma then follows from property (4) of the function Ga, 4. O

The proof of Lemma 2.6 can now be concluded.

Proof of Lemma 2.6. We write Q for Q(% + ir). Following Equation (53), we have

E||Q|*1(B, N Cin{S;, € (w,w + 1}})} < ZE

uel

A—1
|Q‘2 H ‘DAJ»A(YJ - Uj)|2(1 + e )
J

The Dirichlet polynomials Da, 4 are supported on integers whose prime factors at most
exp(e'7), so the product features primes as large as exp(e’). As for Q, it is supported on
integers whose prime factors are at least exp(e'?). Recall from (54) that the length of the
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product over j of |Da; a|? is at most exp(2e’(slog,_, t)'°4) < exp(3g€’). By assumption

the length of Q is less than exp(-L- TG e'). Thus, Lemma A.4 applies and the expectation splits:

A—1
QF H Da,,aY; — ui)|*(1 + ce 2 )]

J

::]&

<E[Qf ] E [DAj,A(Yj — )21+ e

<.
Il
-

::]§

< B[ [T (PO, —w € [-4;2 A7+ A7) 4 ")

<.
Il
-

which follows from applying Lemma 2.9.
Now notice that by a direct application of Berry-Esseen theorem, see Lemma A.6, we
have for any j > 2

PV —uj € [-A AT L AT = PN —uy € [FA Y AT AT+ O(ee f(‘l)).

60
where N is a Gaussian random variable of mean 0 with variance 3(t; — ¢;_1) + o(1). For
j =1, we use the less accurate estimate in Lemma A.7:

PO —w € [FATY2 AT + ALY « PO —wr € [FATY2 AT+ A7),

Since |u;| < 4A; by Equation (46), we have that u; - A]-_A/ ? is very small, and therefore by
using a Gaussian estimate, we get for all j > 2,

PN —u; € [A Y2 AT 4 AT = POV —wy € [0, A7])(1 + O(A,) 4.

For j = 1, the corresponding estimate holds with < instead of =. We also notice that
the error term in (60) is much smaller than the probability and can be absorbed in the
multiplicative error above. Therefore we have shown for j > 2 that

PV —uy € [-A7 "2 A7 + A7) = POV, — u; € [0, A7) (1 + 0(4,),
and for j =1
P(yl — U € [_A;A/Q’ Afl + A;A/Q]) < P(Nl —uy € [OvAfl])( + O(A A/4))

It follows that (noticing again that the additive error from Lemma 2.9 can be made multi-
plicative),

E[|Q(5 +in)["L(B, N C,n{S, € (w,w +1]})]

<Y E[|QG +in)]

ue’l J

P(N; € [uj,u; + A7) (1 +O(A;YY).
1
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It remains to re-express the events in terms of the partial sums of N, exactly as we did
in Equation (47) but in reverse. By the definition of Z and the summability of Aj_l, we

conclude that ,

PN € [uj,u; + A7) < P(D) N € (w—1Lw+2)).
j=1
Here, we dropped the intermediate restrictions on the partial sums that are no longer needed.
The right side is < \/LEG*WZ/“ as claimed. .

2.5 Proof of Lemma 2.4 and Lemma 2.7

We prove Equation (38). The proof of Lemma 2.4 and of Equation (37) are similar and
simpler. The proof follows closely the one of Lemma 2.6 with an additional tool from
[ABR20]. Given ¢ > 1, a Dirichlet polynomial Q is said to be degree-e' well-factorable if it
can be expressed as

H Ox(s), where Qy(s)= Z v(m)

ms '

1<A<e plm = log pe(e'r—1 efA]
O (m)<10(tr—tr—1)10"

and ~y are arbitrary coefficients such that |y(m)| < exp(z5s€’) for every m > 1. We need the
following twisted fourth moment estimate.

Lemma 2.10 (Lemma 9 in [ABR20]). Let £ > 0 be such that exp(10%(t,q — t,)'%et+1) <
exp(ﬁet). Let Q be a degree-et+' well-factorable Dirichlet polynomial. Then, we have

E[|CMy - Mo+ 1Q(1/2 +in)P(1/2 + ir)| < /) B Q(1/2 + in)f?].

Proof of Lemma 2.7. We proceed as in the proof of Lemma 2.6 by approximating the indi-
cator function by a Dirichlet polynomial. More precisely, using Equations (48) and (49), the
left-hand side of (38) becomes

< SUB[ICMy - Mo | T] Da, s — )]
J

ue’l

We choose A = 20. The polynomial QQ = @, Hj Da,,4(Y; — ;) is well-factorable, and Qy is
as defined in the statement of Lemma 2.7. Since the coefficients of Da; 4 are bounded by

2A(v+1 1
Aj 500

< exp(10+ (ten — t)'"") - exp (26" AZ) < exp(e/100),

), the coefficients of Q are bounded by exp(z=¢'). Moreover, its length is

since § > 10° and by the assumption on £. This implies by Lemma 2.10 that the above is
< eXt=tet) Z E[’QKP H DAj,A(i/}' _ uj)\2 ‘
ue’l 7
The expectation splits by Lemma A.4. It remains to proceed as before from Equation (55)

to get Equation (38). O
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3 Proofs of Corollaries

3.1 Proof of Corollary 1.2

Consider the CDF of the random variable log [((1/2+i7)|, i.e., F(V) = P(log|((1/2+ir)| <
V). Write for short
S(V)="P(log|((1/2 +iT)| > V).

Recall that 7 is distributed uniformly on [T, 277, and we write ¢ = loglogT. Clearly, the
moments (cf. Equation (5)) can be written as

+o0o
Mg = / VAR (V).

Integration by parts yields

00 +oo
M, — _eﬂVsa/)\+ + [ B svyav. (61)

—0o0 —00

Since S(V') is bounded by one, the boundary term at —oo is zero. Moreover, Markov’s
inequality with the fourth moment of zeta [Theorem B [Ing26]] gives

Ly v
In particular, this implies that the boundary term at +oo is zero for § < 4. The contribution
to negative V’s in the integral in Equation (61) is also negligible since

0 0
/ BePVS(V)AV < / BePVav = 1. (63)

It remains to estimate f0+00 BePVS(V)dV. Consider B_ and B, such that 0 < 3. < 8 <

B4 < 4. These have to be chosen close enough to 0 and to 4 respectively. It turns out that
the choices

B

b-=3

B =B+ ;

(4=-B)=3+7

1w

are adequate. The dominant contribution to the f-moment comes from the interval [%t, %t]

Indeed, by Theorem 1.1, we have

LA Bty -V2/t 2 Tt —(Bt-v)2t 2
/ ’ PV S(V)AV < / ToepvE dV =e t/ T gv et
iy by Vit i Wi

2

p‘u

The contribution of the intervals [0, %t] is less since it is smaller than

B_
=t 2,
BePVdV < eBT, (64)
0
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by the choice of S_. For the interval [%t, oo], we use the bound (62) to get that the
contribution is

< ot /Oo BV QY < 1 et(ﬁﬂT*—26++4)‘
e 1-3

2

This is < e##/* by the choice of f,.

3.2 Proof of Corollary 1.3

We will require the following discretization result of [FGHO07]. Effectively, this shows that
the maximum of concern in Corollary 1.3 can be restricted to those h lying 1/logT apart.
Corollary 1.3 may also be deduced from a more general discretization result of [AOR21],
applicable to Dirichlet polynomials.

Lemma 3.1 (Lemma 2.2 of [FGHO7]). Let t* be such that |((1/2+it*)| = maxer,on [((1/2+
it)|. There is an absolute constant A > 0 such that if |t —t*| < A/logT then 2|((1/2+it)| >
1C(1/2 4 it*)].

Thus, as u ranges over a window of size A/log T, the value of |((1/2+iu)| is close to the
maximum within the window. Hence, we deduce via a union bound that, for some universal
positive constant C' > 0,

1
P( max |C(1/2 + iu + ih)| > eV> < 140t P(|C(1/2 +iw)| > —eV>. (65)
|h|<log? T C

Corollary 1.3 now follows by setting V' = /14 0t — ﬁ logt +y (for y = o(t/logt),
0 € [0,3)), and applying Theorem 1.1.

3.3 Proof of Corollary 1.4
Case [ > 0: We write

1

Z,B(T) = 200t

/h|< . 1C(1/2 4 it + 1h)|Pdh,

i.e., the left-hand side of Equation (8) normalized by 2e? and with the identification t =
loglogT. The moment Z3 is a random variable dependent on 7. From now on, we use the
probabilistic convention and drop the dependence on 7 from the notation. Consider also the
(normalized) Lebesgue measure of high points in the interval [—e%, ¢] around 7:

1 . .
S\V)= @meas{|h| < e log|C(1/2 +ir +ih)| > V1.
Proceeding as in the proof of Corollary 1.2, we have by integration by parts:
+o00 o0
Z5 = —eﬁVS(V)‘ + 8 / AVS(V)av.

Again, since S(V') < 1 for all V, we have that the boundary term at V = —oo is 0.
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For V' = +o0, it is necessary to restrict the estimate to a good event. Define

E = {lirlna:g: log [((1/2 + it +ih)| Sm(t)—l—A}, (66)
<eft
where . 5 .
H=V1+0t — ——1logt = —t — —logt, 67
N A R T o

and S, = 2v/1+ 6. In view of Corollary 1.3 with the choice y = A (and since 6 € [0,3) by
assumption), the probability of E° is

P(E°) < e P, (68)

This handles the upper limit V' = +o0.

On the event E, there are clearly no values of V' beyond m(t) + A. Moreover, as in the
proof of Corollary 1.2, the contribution of negative values is of order one (cf. Equation (63)).
Finally, the bound (64) still holds. The problem is therefore reduced to finding a good event
on which to bound

m(t)+A

/ PVS(V)dV. (69)

Bt/8
The idea now is that S(V) should behave like e~V?*/=1/218t " thanks to Theorem 1.1. In
particular, as can be seen easily in the proof, the dominant contribution to the integral
should come from V’s around ft/2. Hence, the specifics of the interval of integration do
not matter much as long as it contains this optimizer. The main technical difficulty in
implementing this idea is to control S(V') on a range of V' simultaneously.

Consider (V;,1 < j < J) the set of V’s in [gt, m(t) + Al N V/tZ, and additionally define
Vo = Vi —+/t and Vila=Vy+ V. (The choice of the mesh size V/t is informed by the typical
fluctuation of log |(|.) Define

Vit
Jj:/ AVS(VYdv, 0<j <

Vi

Vit1 5V67V2/t
E,=<q1 < a-/ e dv », 70
J j i, NG (70)

for a collection of a;’s to be fixed later.
We have P(ES) < a;', since by linearity and Theorem 1.1

Consider the events

Vi Vit e—V2/t
E[l;] :/ PVE[S(V)]AV <</ e’V
V; V; Vit

v, (71)

The good event to consider is

G=FEn <ﬂE])

J
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so that by (68)

P(G°) < Y aj' e A (72)
j
On the event G, we have
m(t)+A , Vit1 o= (5t=V)?/t
/ VSV < Y g / S | (73)
pt/8 j Vi Vit

Since the quadratic form is maximized at §t/2, we pick for a;:
(Vi- 5"+ s V> o2
a; = A (5VI— )" + oy iV, <Bt/2 and V; < Vi < Bt/2
1 if V; < Bt/2 and V41 > fSt/2.

100

(The term 1/100 is simply there to make sure a; is bounded away from 0.) This choice
ensures that a; < A (355 + (5vt — %)2) for Ve [V}, Vi)
Thus, on one hand from Equation (73), we have on G

m(t)+A ) m(t)+A 1 ﬁ 174 2 e—(gt—V)2/t
PVS(V)AV < Aef t/4/ —+(_\/E__> . | 7
/ﬁt/S ( ) Bt/8 100 2 \/E \/E
2

YV 1
S A€62t/4/ (1—00 + U2) e “du
(5*250) \/£+O(1)

2t/4
< AP

where the last bound follows by integrating over the whole line. On the other hand, from
Equation (72) the probability of G¢ is

1
P(G) <) aj' +e Pt <« "

J

The a;’s are summable since V; € v/#Z. This proves Equation (8).

Case [ > [.: We can use a reduction as in the previous case. We use the same event E in
(66) for the maximum. For a lower bound on the values of V', we take [.t/4 since

Bet/4 &
/ AVS(VYAV < ea
0
which is much smaller than the the desired bound. Therefore, it remains to estimate

m(t)+A
/ PVS(V)av. (74)
B

ot/4

The partitioning of the interval of integration is more delicate as it is close to the level of
the maximum. A mesh size of 1 instead of v/t is needed. More precisely, we take (Vj,1 <
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Jj < J) to be [%t, m(t) + A]NZ. The events E; are defined as in (70). As before, we take
G = EN (N, £;). The difference here is that the optimizer lies outside the interval, so the
bound can be sharpened. On the event GG, the above becomes

Vit -V2/t

SZaj/ eﬁve\/% dv.

The change of variable V' = m(t) + y yields (with y; = V; —m(t))

Yj+1 —m(t)2/t 2m(t)
S
(logt)® t)2

(1+9)tz / eB=Be)y Y ap2t dy,

(75)

since m(t)? = (1 + 0)t — logt + (IZ%E and e ¥’/ < 1. We pick a; = A(1 + y7) if y; is
positive, and a; = A(1 + yj+1) if y,;41 is negative. If y; < 0 < y,41 then set a; = A. This
choice ensures that a; < A(2 + y?) for y € [y;,y;11], the term 2 taking care of the values
close to 0.

This gives that Equation (75) is bounded by

A (logt)2
< Aeﬁm(t)(lJr@)t/ (2+y2)e(ﬁfﬁ6)yey 4p32t dy

< ( (A2+2)>6(6—6c+1)z4 . BmH—(1+0)t

G55 T 5B

(log 1)
since ¢’ 482t < ¢4 and by direct integration of (2 4 y?)e®=#<)v. The probability of G¢ is
then

1
c\ __ ,—BA —
P(G°) =e —|—Ej aj1<<Z.

This proves the corollary in the case 8 > f..

Remark (Case 5 = f.). Since it is possible to improve the bound (8) in the range 5 > f.,
one might hope to do the same at = (.. This is possible in the case 6§ = 0, as discussed in
the next section, but it is not expected to be possible for # > 0. Indeed, in this range of 6,
the above proof should be optimal. In fact, Equation (9) would become (dropping the a;’s
for simplicity)

A —mt)?/t A
eﬁcm(t)/ eﬁye—e—#e—yz/tdt < el eﬁ‘ft/ ¢ dy. (76)
N NG NG

B2 _ B . . .
This is because e~ 119t = ¢~ 7%t and ¢t~ 26c = t~1/2. The integral is now finite, so one recovers
the bound (8) up to a factor of order one.
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4 Relation to Theorem 1.5 for 0 =0

We briefly explain an alternative approach to proving a sharp upper bound to the S.-moment
in the case § = 0. It is based on the measure of the level sets in the spirit of the proof of
Corollary 1.4.

The deterministic level of the maximum is now by Equation (7)

3 Be 3
t)=t——logt=—t — —logt.
m(t) plost="51— 55 loe
There is a factor 3 in the logarithmic correction and not 1 as in (67). The important
observation is that the typical measure of the level sets S(m(t)+) is no longer e te~2e~v"/!

as for the case # > 0. In fact, the proof of (7) in [ABR20] also shows that
S(m(t) +y) < Ae™* - lyle e /%, |yl = oft), (77)

except on an event of probability A. This is what is expected from the study of the extreme
values of log-correlated processes, see for example Theorem 1.1 and Lemma 4.2 in [CHL19].
We explain how the additional y in the decay is responsible for the extra 1/+/f factor in the
size of the moment. The integral (74) with 5 = . = 2 becomes

m(t)+A e2t A )
/ VS(V)dV < A% e tyle ¥ /tdy
t/2 t —t/2+§110gt
S T sl

t1/2 —t/2—|—%logt\/g \/1_f

Gt AIVE 2
- Am/ lule™ du.
t —Vt/2+0(1)

The last integral is of order one. At criticality, there is now an extra factor 1/y/f coming
from t3/2 that is left, thereby giving the overall magnitude of t% for the moment. It is
also important to observe that, because of the v/t-normalization in the integral, it is not

necessary to know the level of the maximum up to order one as in Equation (7).
A Appendix

The appendix gathers known results on moments of Dirichlet polynomials and probability
estimates of random models.

A.1 Moments of Dirichlet Polynomials

Lemma A.1. Let gj as in Equation (14). For any integers j < k and 2q < =%, we have
E[|S: — 5% < ql(k — j + 1)*.

Proof. This is the content of [Sou09, Lemma 3]. O
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With the choice ¢ = [#2“1, Markov’s inequality, Lemma A.1 and Stirling’s formula
imply
s 3 V+1 %
P(15 - 5> V) <« ———exp (- ——). 79
Lemma 16 of [ABR20]] gives a more precise estimate for the moments of the real part 5.

Lemma A.2. For any integers t/2 < j < k and 2q < =% we have

2 (29)! (k—=J\*
E[|Sk—5j|q]<<2q—q!(T :

Moreover, there exists C > 0 such that for any j < k, and 2q < et™* such that

B[S, — 5] < va& )(’“‘”O)q. (80)

24¢! 2

As in Equation (79), one gets a Gaussian decay from Lemma A.2 for the choice ¢ =

’V (k— ]—i—l)—‘
2
P(|Sk— S| > V) < e i, (81)
when j > /2 and V2 < f5letk,

We now explain the link between Dirichlet polynomials and the random model (55). We
consider the following general setup. Let (6, p prime) be a sequence of IID random variables,
uniformly distributed on [0, 27]. For an integer n with prime factorization n = pi™* ...p*
with py,...,pe all distinct, define the random variable

k
Zn = H exp(ic6,.)
j=1

By construction, we have the orthogonality relation E[Z,Z,,] = 1,—,,. Therefore, for an
arbitrary sequence a(n) of complex numbers, the following holds

S latn) = E[| 3 atn) 2, 2].

The expectation for the random variable is directly related to the mean-value of the square
of Dirichlet polynomial, see [MV07, Corollary 3].

Lemma A.3. We have
EH S a(nyn” 2] - (1 +0 (%)) 3 Jan)P = (1 +0 (%))EH S a(n)Z, 2]

A direct consequence of Lemma A.3 is the splitting of the expectation for Dirichlet
polynomials involving different range of primes, see for example [ABR20, Lemma 14].

Lemma A.4. Let

A(s) = Z @ and B(s) = Z b(n)

n ns
n<N n<N

pln = p<w pln = p>w
be two Dirichlet polynomials with N < T'*. Then, we have
E[|A(3 +in)*[B(5 +i7)[] = (1 + O(T™*)E[JA(5 + ir) P| E[| B(5 + i7)[?].
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A.2 Estimates for the random model

Recall the definition of the random model in Equation (55).

cosf, cos?b,
V) = Z T T 2 (82)

eli—1<log p<e's

The moment generating function is easily estimated using the independence between the
0,’s.

Lemma A.5. For A < exp(3¢'), we have

2

Blexp(\))] < exp (% (1~ 1,)).

Proof. See for example [ABR20, Lemma 15]. m

The comparison between the random model and the Gaussian model can be made more
precise at the level of the probabilities. A version was proved in [ABH17, Proposition 2.11]
using a Berry-Esseen estimate. See also [ABR20, Lemma 20].

Lemma A.6. For j > 2, let N; be a Gaussian random variable of mean 0 and variance

%(tj —tj_1). There exists a constant ¢ > 0 such that, for any interval A and j > 2,

P()Jj c A) = P(/\/j c A) +0(e").

In the case j = 1 above, the variable )); is not asymptotically Gaussian because of the
small primes. Nevertheless, the following estimate holds by a saddle-point method [ABR20,
Lemma 18].

Lemma A.7. Let |v| < 100r. Then, for r > 1000 and for all A > 1, we have

1 1 2
P € [v,v+A7Y) XK-%exp<—%>.
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