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Mountain snowpack provides critical water resources for forest and meadow

ecosystems that are experiencing rapid change due to global warming. An

accurate characterization of snowpack heterogeneity in these ecosystems

requires snow cover observations at high spatial resolutions, yet most existing

snow cover datasets have a coarse resolution. To advance our observation

capabilities of snow cover in meadows and forests, we developed a machine

learning model to generate snow-covered area (SCA) maps from PlanetScope

imagery at about 3-m spatial resolution. The model achieves a median F1 score

of 0.75 for 103 cloud-free images across four different sites in the Western

United States and Switzerland. It is more accurate (F1 score = 0.82) when forest

areas are excluded from the evaluation. We further tested the model performance

across 7,741 mountain meadows at the two study sites in the Sierra Nevada,

California. It achieved a median F1 score of 0.83, with higher accuracy for larger

and simpler geometry meadows than for smaller and more complexly shaped

meadows. While mapping SCA in regions close to or under forest canopy is

still challenging, the model can accurately identify SCA for relatively large forest

gaps (i.e., 15m < DCE < 27m), with a median F1 score of 0.87 across the four

study sites, and shows promising accuracy for areas very close (>10m) to forest

edges. Our study highlights the potential of high-resolution satellite imagery for

mapping mountain snow cover in forested areas and meadows, with implications

for advancing ecohydrological research in a world expecting significant changes

in snow.
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1. Introduction

Seasonal snowpack covers about one-third of Earth’s terrestrial surface at

any time (Dozier, 1989), and its start, end, and duration impact the phenology

of different types of vegetation and the functioning of snow-dominated

ecosystems, such as montane meadows and forests (Dunne et al., 2003;

Blankinship and Hart, 2012; Raleigh et al., 2013; Sherwood et al., 2017). However,
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traditional satellite observations are often unable to provide

detailed information on the spatial distribution of snow cover

in montane meadows and forest gaps due to their coarse spatial

resolutions. Despite the availability of high-resolution satellite

observations, few studies have explored the accuracy of snow cover

mapping in montane forest gaps and meadows, where snowpacks

exhibit high spatial heterogeneity.

Montane meadows are important ecosystems that have many

critical functions, such as flood control, water quality improvement,

and groundwater recharge (Loheide and Gorelick, 2007; Loheide

and Lundquist, 2009). Meadows also provide unique wildlife

habitats to animal and plant species, and recreation values for

human beings (Hille Ris Lambers et al., 2021). Additionally,

meadows are effective carbon sinks, and therefore, the restoration

of meadows has a high potential to serve as climate change

refugia to mitigate climate changes (Yang et al., 2019; Blackburn

et al., 2021; Reed et al., 2022). Global warming has shifted the

timing of snowmelt to earlier in the year and reduced snowpacks

(Nijssen et al., 2001; Mote et al., 2018; Musselman et al., 2021),

which could subsequently lead to changes in plant productivity

and carbon sequestration over these seasonally snow-covered

ecosystems (Vaganov et al., 1999; Brooks et al., 2005, 2011; Zona

et al., 2022). Accurate mapping of seasonal snow cover in meadows

is therefore important to understand the effects of changing

snowpack on meadow ecosystems’ functioning both now and in

the future.

Accurate characterization of snow cover around forests and

forest gaps is essential for effective natural resources management

in montane forest ecosystems and for advancing the understanding

of the critical interactions between forests and snow processes

(Dickerson-Lange et al., 2015; Sun et al., 2018). Snow intercepted

by the forest canopy sublimates more rapidly than snow on the

ground, and therefore sublimation of snow intercepted by the forest

canopy can lead to substantial reductions in snowpack volume

over the course of a season. Meanwhile, forest canopy impacts the

snowpack energy balance by emitting longwave radiation, shading

insolation, and blocking wind. The net effect of these factors can

result in a higher or lower snowmelt rate, with the direction and

magnitude of the overall effect determined by climate factors as

well as the type, density, and configuration of trees in the forest

(Essery et al., 2008a,b; Pomeroy et al., 2008; Rutter et al., 2009;

Lundquist et al., 2013; Musselman et al., 2015). However, due

to the contradictory impacts, the duration of under-canopy snow

cover could be longer or shorter than snowpack in the adjacent

open areas, subject to local topography and climate conditions

(Lundquist et al., 2013; Dickerson-Lange et al., 2015). Although

observing under-canopy snow cover remains challenging, high-

resolution optical satellite imagery provides new opportunities

for mapping snow cover in forest gaps, which will advance our

understanding of snow-forest interactions and will provide new

insights to support forest and water resources management.

The use of remote sensing for SCA mapping has been evolving

for more than five decades (Barnes and Bowley, 1968; Rango and

Martinec, 1979; Dozier, 1984, 1989; Nolin et al., 1993; Hall et al.,

2002; Painter et al., 2003, 2009; Dozier et al., 2008; Nolin, 2010;

Gascoin et al., 2019; Rittger et al., 2020; Bair et al., 2021). One

of the most popular methods for mapping SCA is the spectral

index method, which uses the Normalized Difference Snow Index

(NDSI). This method leverages the reflectance difference between

the green and shortwave infrared bands to enhance the contrast

between snow from non-snow land types on multispectral satellite

imagery such as Landsat (Dozier, 1984, 1989), MODIS (Hall

et al., 2010; Hall, 2012), and Sentinel-2 (Gascoin et al., 2019).

While the NDSI thresholding method is simple and effective for

classifying snow pixels, binary SCA maps generated from sensors

with coarse resolution (e.g., 1.1 km for AVHRR, and ∼500m

for MODIS) are often inadequate to accurately represent the

variability of SCA across smaller scale features such as meadows

and forest gaps.

Linear spectral mixture algorithms decompose mixed pixels

and retrieve fractional snow-covered areas (fSCA). These

algorithms assume that the reflectance of a pixel in a spectral

band is a linear combination of weighted reflectance values of

endmembers within the pixel (Nolin et al., 1993; Solberg and

Andersen, 1994; Rosenthal and Dozier, 1996; Painter et al., 1998,

2003, 2009; Dozier and Painter, 2004; Bair et al., 2021). While

spectral mixture algorithms have been shown to outperform the

NDSI method in snow cover mapping and provide estimates of

other important snow properties, such as snow grain size, snow

albedo, and the impact of dust on snow albedo (Raleigh et al., 2013;

Masson et al., 2018; Aalstad et al., 2020; Stillinger et al., 2022),

they only provide fractional values of SCA for each pixel. When

the spatial resolution of satellite data is coarse, these methods may

not adequately capture the detailed spatial heterogeneity of SCA

at a sub-pixel scale. Mapping and understanding fine-scale spatial

heterogeneity of SCA are crucial for providing important insights

into the impact of forest canopy on the snowpack.

Airborne lidar scanning also provides an effective means for

observing snow cover at high spatial resolution (meter scale).

This technique measures surface elevation once during snow-off

conditions and repeatedly during snow-on conditions to derive

snow depth, which is known to be reliable, even in forested areas

(Currier and Lundquist, 2018;Mazzotti et al., 2019). Airborne lidar-

derived snow depth data, such as the Airborne Snow Observatory

snow depth dataset, thus have been widely used in previous

studies to derive high-resolution SCA maps (Cristea et al., 2017;

Raleigh and Small, 2017; Kostadinov et al., 2019; Cannistra et al.,

2021; John et al., 2022; Stillinger et al., 2022), providing valuable

insights into the spatial distribution of snow cover in complex

mountain terrain.

In recent years, the commercial satellite industry has

experienced rapid growth, with companies like Planet and Maxar

providing new opportunities for Earth surface observations at

sub-meter to meter-scale resolution, including snow identification

in complex terrain (Cannistra et al., 2021; Hu and Shean, 2022).

For example, Planet operates small satellite constellations that

provide near-daily coverage of the Earth’s land surface at about

3–5-m spatial resolution, making it an appealing data choice

for investigations of snow patterns in mountainous regions.

Previous studies have used convolutional neural networks (CNN)

to map SCA from Planet PlanetScope images and achieved more

accurate SCAmaps than using traditional Landsat-8 and Sentinel-2

imagery for both forests and open areas (Cannistra et al., 2021;

John et al., 2022). However, training CNN-based models is a
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time-consuming and potentially inefficient process given that

it requires large training datasets and significant computational

resources involving the use of graphics processing units (GPUs)

and complex environment configurations. Therefore, there is

a need for more efficient and less computationally demanding

methods to map snow from high-resolution PlanetScope images.

In this study, we leverage PlanetScope imagery and a machine

learning model to map high-resolution SCA and explicitly evaluate

SCA accuracy in montane meadows and forest gaps. We chose

to use a robust Random Forest model approach, which has been

successfully applied to derive snow cover from many satellite

images, such as MODIS (Liu et al., 2020; Kuter, 2021; Luo et al.,

2022), Landsat-8 (Gascoin et al., 2019), Sentinel-1 SAR data (Tsai

et al., 2019), Sentinel-2 (Gascoin et al., 2019), and high-resolution

Maxar WorldView imagery (Hu and Shean, 2022). Additionally,

Random Forest has shown good performance in data fusion

approaches for mapping SCA (Rittger et al., 2021; Richiardi et al.,

2023).

Following the introduction, Section 2 describes the study area

and datasets, and Section 3 describes the SCA mapping model

training and evaluation. The results and discussions are presented

in Sections 4 and 5, respectively, with the summary and conclusion

given in Section 6.

2. Study area and datasets

2.1. Study area

We selected three sites in the Western United States and

one in Switzerland, covering a range of elevations, forest covers,

meadow sizes, and availability of high-resolution validation data

fromAirborne SnowObservatory (ASO) lidar observations (details

in Section 2.2.2). The four sites are (1) Tuolumne River Basin in

the Central Sierra Nevada of California, (2) San Joaquin Main

Fork in the Southern Sierra Nevada of California, (3) Gunnison—

East River in the Central Rocky Mountains of Colorado, and (4)

Engadin valley in the Eastern Swiss Alps of Switzerland (Figure 1).

Hereafter, we refer to these sites only by the bold portion.

Among the four sites, Tuolumne and San Joaquin are in

maritime mountain regions, while Gunnison and Engadin are in

continental mountain regions. The San Joaquin site is the largest

in size, with the highest forest coverage (50%) and the highest

average canopy height (4.5m). On the other hand, the Engadin site

is the smallest, with the lowest forest coverage (22%) and second-

shortest average canopy height (2.7m; Table 1). The Gunnison

site has the highest average elevation and the second-highest

average canopy height (4.1m), whereas the Tuolumne site has the

FIGURE 1

Context maps and satellite image base maps for the four study sites.

TABLE 1 Topographic characteristics of the four study sites and contemporaneous ASO lidar snow depth acquisitions that were used in the study.

Site Location
(latitude,
longitude)

Size
(km2)

Elevation (meter) Forest
coverage

(%)

Average
canopy height

(meter)

Contemporaneous
ASO lidar

acquisitions

Ave. Max. Min.

Tuolumne 37.97◦ N,−119.45◦ W 1,175 2,715 1,142 3,967 30 2.3 11

San Joaquin 37.52◦ N,−119.18◦ W 1,368 2,462 991 4,006 50 4.5 5

Gunnison 38.90◦ N,−117.00◦ W 966 3,212 2,557 4,324 42 4.1 1

Engadin 46.62◦ N, 10.01◦ E 86 2,251 1,550 3,166 22 2.7 1
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lowest average canopy height (2.3m; Table 1). The mean slopes

of Tuolumne, San Joaquin, and Gunnison are similar, ranging

from 20.2◦ to 22.7◦, while the Engadin site has a higher mean

slope of 34.4◦ due to the relatively smaller area being included

in the study.

2.2. Datasets

2.2.1. Planet CubeSat images
We used images from the PlanetScope constellation, which

includes three generations of satellites: Dove Classic (PS2),

Dove-R (PS2.SD), and SuperDove (PSB.SD; Figure 2). To map

SCA, we used an atmospherically corrected surface reflectance

product (Level-3B Ortho Scene-Analytic) that underwent rigorous

geometric and radiometric correction techniques, orthorectified,

and passed all image quality checks in the Planet processing

pipeline (Frazier and Hemingway, 2021).

PlanetScope images provide at least four bands, including

three visible bands (red, green, and blue) and one near-infrared

band (Figure 2). Although the wavelength ranges of these bands

are similar among the three Dove generations, they are not

identical due to changes in sensors over time. The first-generation

Dove Classic sensors lack spectral response separation in RGB

bands, while Dove-R and SuperDove have comparable widths and

placements of four bands (RGB and near-infrared). SuperDove

also provides four additional bands in the visible portion of the

spectrum (Figure 2). While including reflectance information from

additional SuperDove bandsmay add value to snow covermapping,

the four bands we excluded do not extend the range of the RGB

FIGURE 2

The distribution of spectral response in three generations of

PlanetScope satellites (adapted from Frazier and Hemingway, 2021),

(A) Dove Classic (PS2), (B) Dove-R (PS2.SD), and (C) SuperDove

(PSB.SD). The blue, green, red, and brown curves correspond to the

spectral response of blue, green, red, and near-infrared bands,

respectively. For the SuperDove instrument, which has eight bands,

we used dashed lines to represent the extra four bands that are not

used in the model. The earliest imagery from PS2, PS2.SD, and

PSB.SD was acquired in July 2014, March 2019, and March 2020,

respectively.

wavelength where snow reflectance is typically high, nor do they

process any distinctive features. To ensure that our method would

apply to all PlanetScope images, regardless of Dove generation, we

chose not to include the extra SuperDove bands for snow cover

mapping in this study.

However, none of the PlanetScope spectral bands, including

the four additional excluded bands from SuperDove, cover

the shortwave infrared (SWIR) portion of the electromagnetic

spectrum that is used for the calculation of NDSI and plays an

important role in the spectral unmixing models. The lack of SWIR

band in the PlanetScope images is the main reason why the

more traditional SCA mapping methods such as NDSI or spectral

unmixing models which have been used across a range of sensors

with only minor changes are not easily adapted to work with

PlanetScope images (Cannistra et al., 2021). Additionally, snow and

clouds exhibit similar spectrum features and high reflectance in the

visible andNIR bands, making it challenging to distinguish between

snow and clouds.

Therefore, we screened out PlanetScope images with cloud

cover higher than 5% based on the “cloud coverage” metadata

provided by Planet. Considering the uncertainty in cloud coverage

and image issues like saturation, we further reviewed and manually

excluded 11 images, for a total of 103 PlanetScope images finally

used in this study.

2.2.2. ASO Snow depth and canopy height model
Airborne Snow Observatory (ASO), Inc is a commercial

company that provides airborne snow depth and snow water

equivalent (SWE) at very high spatial resolutions (i.e., 3-m for

snow depth and 50-m for SWE). The snow depth product has

an 8 cm root mean squared error at 3-m spatial resolution when

evaluated with 80 ground observations over a relatively flat area

near Tioga Pass, California (Painter et al., 2016). While more

comprehensive evaluation is needed, the ASO snow depth data

are accepted as the current standard by the community and

have increasingly been used to create high-resolution SCA maps,

which have been used as independent ground “truth” validation

data (Cristea et al., 2017; Kostadinov et al., 2019; Cannistra

et al., 2021; John et al., 2022; Stillinger et al., 2022). Therefore,

in this study, we used the SCA maps derived from ASO snow

depth data as ground reference to evaluate SCA mapped from

PlanetScope images.

We identified and processed PlanetScope images acquired on

the same days as ASO lidar acquisitions at the four study sites

(Table 1). Since the Tuolumne site has the longest record of lidar

collections and the most frequent observations, we processed all

contemporaneous PlanetScope images for the Tuolumne site from

2017 to 2022 to cover various snow conditions. We excluded

dates with relatively low coverage of contemporaneous cloud-

free PlanetScope images and ASO snow depth data. In total,

we processed 18 ASO snow depth acquisitions for the four sites

(Table 1). The 3-meter snow depth data for the years between

2017 and 2019 were downloaded from the National Snow and

Ice Data Center (Painter, 2018), while the snow depth data after

2019 were downloaded from the ASO, Inc. website (https://data.

airbornesnowobservatories.com).
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We utilized the canopy height model data (CHM) provided

by the ASO team to determine the extent of forests in the four

study sites (details provided in Section 3.3). The CHM data for

Tuolumne, San Joaquin, Gunnison, and Engadin were collected on

27 August 2014, 23 October 2016, 8 September 2018, and 29 August

2017, respectively (Currier and Lundquist, 2018; Mazzotti et al.,

2019).

2.2.3. Meadow extent
The Sierra Nevada Multi-source Meadow Polygons

Compilation Version 2 (SNMMPC v.2, Weixelman et al., 2011;

UC Davis, 2017) was used to delineate meadow extent for two

study sites: Tuolumne and San Joaquin. As meadow data were not

available for Gunnison and Engadin, these two sites were excluded

from the model accuracy assessment for meadow areas. The

SNMMPC v.2 dataset was created by the University of California,

Davis, and the United States Department of Agriculture Forest

Service and comprises all meadows larger than one acre (4,047

m2), providing the most comprehensive spatial data on mountain

meadows for the Sierra Nevada, California. The dataset can be

downloaded from https://meadows.sf.ucdavis.edu/resources/326.

3. Method

The workflow of SCA mapping using PlanetScope imagery

includes three main steps (Figure 3). In brief, we first downloaded

and visually checked PlanetScope images. Then we trained the

SCA mapping model following the steps illustrated in Figure 3

(details in Section 3.2); the last step was SCA evaluation (details in

Section 3.3).

3.1. Random Forest model

We used the Random Forest (RF) model to classify snow

cover in PlanetScope images. RF is a powerful and versatile

supervised machine learning algorithm that is widely used in many

applications, including snow cover mapping (Liu et al., 2020; Kuter,

2021; Hu and Shean, 2022; Luo et al., 2022). Built upon the bagging

approach, RF generates a random subset of both samples and

features for model training to overcome shortcomings that may be

raised by highly correlated features and overfitting (Breiman, 2001).

The final prediction is determined by the average (for regression) or

majority (for classification like SCA mapping in our case) of all the

decision trees.

3.2. SCA mapping model training

To generate training samples, we manually digitized Regions

Of Interest (ROI) polygons on a cloud-free PlanetScope image

and labeled each ROI as snow or snow-free. We selected the

PlanetScope image 20180528_181110_1025_3B in the Tuolumne

River Basin, California to collect training samples because the

region covered a wide elevation range, as well as various land

types, including subalpine dense forests, steep valleys, and alpine

meadows. The image has good contrast in surface reflectance

FIGURE 3

Flowchart of the model developed to map snow-covered area (SCA) using PlanetScope standard 4-band surface reflectance data. The flowchart

includes three main steps: (1) image pre-processing, (2) model training, and (3) SCA evaluation.
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FIGURE 4

(A) The cloud-free PlanetScope image of the Tuolumne site on 28 May 2018, which was used for generating training samples. The polygons (yellow)

represent sample ROI polygons with three typical land types shown in zoomed views for corresponding locations in (a–c). (B) Spatial distribution of

modeled SCA and SCA extent derived from contemporaneous ASO snow depth data (ASO_3M_SD_USCATE_20180528), which were used as

“ground truth” for model validation. The zoomed views in (a–c) provide details for the corresponding locations in the Planet image in (B).

between snow and snow-free surfaces (Figure 4). We collected

a total of 174,296 individual pixel samples and extracted the

features for each sample, including the surface reflectance in visible

and near-infrared bands. Then, we trained the RF model using

the “RandomForestClassifier” function from the Python package

“scikit-learn,” which took ∼2 s to complete on the Linux server

running Ubuntu 20.04.4 LTS with an AMD EPYC 7313 Processor

16-core CPU and 256 GB of SATA SSD RAM.

To get an optimal set of model parameters, we conducted

a series of sensitivity tests on the four main parameters to

determine their effect on overall model accuracy. Ultimately, we

finalized the model with all samples, four features, 10 trees,

and a maximum depth of ten. Readers can refer to the Code

and Data Section for more detailed information about model

parameter tuning. After 1,000 repeated K-fold cross-validation,

the fine-tuned model achieved reliable performance with overall

precision, recall, and F1 score higher than 0.99. Details of the

three evaluation metrics and their equations are introduced

in Section 3.3.

3.3. Evaluate model accuracy using ASO
snow depth data

3.3.1. Overall model performance
To generate reference SCA maps across the four study sites, we

used the 10 cm snow depth threshold to classify snow vs. snow-

free extent from the 3-m snow depth data provided by the ASO.

Inc (Painter et al., 2016), in which the snow depth threshold was

determined following earlier studies (Cannistra et al., 2021; John

et al., 2022).

The following three statistical metrics (Equations 1–3) were

used to represent model performance.

Precision =
TP

TP + FP
(1)

where TP represents true positives, and FP represents false

positives. Precision (Equation 1) is the proportion of predicted

snow pixels that are correctly classified and is used to measure

commission-error, which refers to the pixels observed as snow-free

but predicted as snow. Lower precision values usually correspond

to higher commission-error.

Recall =
TP

TP + FN
(2)

where FN represents false negatives. Recall (Equation 2) is

the proportion of actual snow pixels that are predicted as snow

correctly and is also known as the true positive rate. Recall is used

to measure omission-error, which refers to the pixels observed

as snow but predicted as snow-free. Lower recall values usually

correspond to higher omission-error.

F1 score =
2× Precision× Recall

Precision+ Recall
(3)

where F1 score (Equation 3) combines both precision and

recall metrics into one single score, providing a more balanced

measurement of model performance. The harmonic mean is used

to calculate the F1 score, which gives more weight to lower values,

making it a more suitable metric for imbalanced datasets where

the number of samples in one class is significantly higher than

the other. In our case, when the snow and snow-free classes are
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heavily imbalanced and detecting true snow pixels is more critical

than detecting snow-free pixels (such as during the late snow

season), F1 score remains a powerful evaluation metric for model

evaluation. However, when TP equals 0, which indicates no snow

on the ground, the F1 score becomes an inappropriate metric for

evaluating model performance.

To evaluate the accuracy of the mapped SCA, we calculated all

three metrics for all 103 PlanetScope images from the four study

sites. The three metrics range from 0 to 1, with higher values

indicating better model performance.

3.3.2. Model performance in meadow areas
We hypothesized that the accuracy of snow cover mapping

in meadows may be affected by their size and shape complexity,

considering the impact of the mixed pixel effect and tree shadows

at the meadow edge. To verify this hypothesis, we assessed model

accuracy across different meadow sizes and shape complexities. To

represent meadow shape complexity, we introduced a parameter

known as the perimeter–area ratio (PAR), which considers the

proportion of meadow area exposed to edges, where we anticipate

larger snow mapping errors due to the tree shadows and mixed

pixels. If two meadows are of the same size, a larger perimeter,

indicating more pixels located at meadow edges, would increase the

PAR, potentially decreasing model accuracy.

There were 2018 meadows larger than 4 × 104 m2 (i.e., one

acre) located across the Tuolumne area, and 1,805 meadows across

the San Joaquin site, in the SNMMPC dataset (details provided

in Section 2.2.3). Since the coverage of PlanetScope images on

each ASO date was different, and some meadows might have been

accounted for multiple times on different dates, we treated each

meadow on a specific PlanetScope image as an independent object.

A total of 18,512 meadow objects were analyzed for the two study

sites. To reduce the influence of outliers, we removed the meadows

that exceeded the 90th percentile of meadow size (14.3 acres) and

complexity (PAR = 0.1 m−1), based on meadows within the two

study sites. We also removed 96 meadows without snow cover

because when there is no true positive (lidar-derived snow pixel),

all statistical metrics would be 0, resulting in an inappropriate

evaluation. We classified the remaining 7,741 meadows into 10

groups based on their size and shape complexity, respectively. We

then fitted linear regression models between the median F1 score

of each group and the mean value of each group’s meadow size

and shape complexity. We selected 10 as the group size to ensure

that each group had sufficient meadows to accurately represent the

characteristics of the group.

3.3.3. Model performance in forests
To assess the model performance in forest edges and gaps,

we classified the study sites into six categories (Table 2) based on

the distance to the canopy edge, DCE (Mazzotti et al., 2019). We

calculate DCE using the ASO CHM dataset, following the method

developed by Mazzotti et al. (2019; see Section 2.2.2 for details].

DCE represents the distance of a pixel from the edge of a forest

to the target pixel. We defined “forest” as pixels with a canopy

height higher than 2m, and “open” as pixels with a canopy height

lower than 2m, which includes bare ground, grassland, shrubland,

TABLE 2 Land types in forested areas are based on the distance to canopy

edge.

Category Distance to canopy edge (m)

Outside forest 27 < DCE≤ 100

Large gaps 15 < DCE≤ 27

Medium gaps 9 < DCE≤ 15

Small gaps 3 < DCE≤ 9

Forest edges −3 < DCE≤ 3

Forest clusters −9 < DCE≤−3

and small trees (Broxton et al., 2015; Currier and Lundquist, 2018;

Mazzotti et al., 2019). We assumed that PlanetScope images have

the potential to observe snow in regions with a canopy height lower

than 2m, even when those regions may be partially covered by

vegetation. Pixels classified as “forest” would mostly be covered

by tree canopy in a 3 by 3m pixel, based on a scaling exponent

between tree height and diameter (Hulshof et al., 2015; Chen

and Brockway, 2017). Therefore, 2m is a reasonable forest height

threshold to distinguish “forest” from “open” (Broxton et al., 2015;

Currier and Lundquist, 2018; Mazzotti et al., 2019). We excluded

areas with a DCE higher than 100m, as they were far enough

away from the forest to be considered wide-open areas where the

model accuracy would not be influenced by DCE. Additionally, we

excluded areas with a DCE < −9m, given that optical sensors are

not suitable for mapping ground surface features obscured by dense

forest canopies.

To keep SCA evaluation concise, we only presented F1 scores

for the meadow and forest areas because F1 scores provide a

comprehensive assessment of overall SCA accuracy, considering

both commission-errors (i.e., precision) and omission-errors (i.e.,

recall). We also calculated percentage bias (PBIAS, Equation 4) in

the forested areas to provide an overall estimate of SCA bias.

PBIAS =
SCAplanet − SCAlidar

SCAlidar
× 100 (4)

where SCAplanet is the mean SCA for a specific region mapped

from PlanetScope images, while SCAlidar is the mean SCA derived

from ASO lidar data.

4. Results

4.1. Overall SCA accuracy at the four study
sites

Our model achieved a median F1 score, precision, and recall

of 0.75, 0.91, and 0.70, respectively (Figures 5A–C), demonstrating

good performance in mapping snow cover across mountainous

terrain at a 3-m spatial resolution. The uncertainty of mapped

SCA was dominated by omission-errors, as revealed by the much

lower recall values than the precision values (Figures 5B, C).

Notably, more than 90% of the images exhibited precision values

higher than 0.75, indicating that the model produced consistently
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FIGURE 5

Distribution of model evaluation metrics F1 score, Precision, and Recall for all 103 PlanetScope images across four study sites, with the rows

corresponding to statistics for overall (A–C), open (canopy height ≤ 2m) (D–F), and under-canopy regions (canopy height > 2m) (G–I), while the

columns represent each performance metric. The median value for each metric is indicated by a green arrow and a dashed line, while the highest

concentration of data (based on kernel density estimation) is denoted by a red arrow and a dashed line. The density plots provide a visual

representation of the probability distribution of the metrics across the images.

small commission-errors. Moreover, while the distribution of

recall across images peaked at a high value of 0.81 (Figure 5C),

its distribution was widely spread, primarily due to the high

omission-errors in under-canopy areas (Figures 5F, I). When

the under-canopy areas were excluded from the analysis, the

model showed much better and more robust performance, with

a median F1 score of 0.82 (Figure 5D). Compared to the overall

model performance across all areas, omission-errors in open areas

were reduced (Figure 5F), while commission-errors showed little

difference (Figure 5E).

Across the four study sites, the model exhibited the best overall

performance at the Engadin site, which had the lowest forest

coverage and smallest size (Table 1), with the highest F1 score of

0.90 ± 0.06. While the precision value at the Engadin site was

relatively lower than that of the Tuolumne and Gunnison sites, its

recall value (0.92 ± 0.04) was notably higher than the other three

sites, indicatingminimal omission errors inmapping SCA. This can

be partially explained by snow-free ground under canopy indicated

by lidar-SCA, as the satellite images were collected on March 17,

after most snow in low-elevation forested areas had melted.

While the Tuolumne site had the worst overall accuracy among

the four studied sites, with an overall F1 score of 0.68 ± 0.20

(Table 3), it had a relatively accurate SCA for open areas, with an

F1 score of 0.75 ± 0.18 (Table 3). The low overall SCA accuracy

across Tuolumne could be partially explained by the inclusion

of a larger number of images in the evaluation, some of which

had high forest coverage, a high percentage of terrain shadows,

or low solar illumination conditions, all of which could increase

omission errors.

The F1 score, precision, and recall value for the image that

we used to train the model at the Tuolumne site were 0.81,

0.93, and 0.72, respectively, all of which were only slightly

higher than the median values of all 103 images tested. This

suggests that the model had a very good transferability across

geographic locations (Figures 5A–C). Among all four sites, the

difference in model performance was less noticeable in open

areas (6% in F1 score) compared to under-canopy areas (33% in

F1 score).

To better understand the model’s performance across space, we

selected three example sites in Tuolumne on July 5, 2019, when

the watershed was partially covered by snow (Figure 6). Mapping

SCA in the late snow season can be challenging due to the reduced

snow surface reflectance caused by larger snow grain size or higher

accumulation of light-absorbing particles such as black carbon,

mineral dust, or coniferous leaf litter. Additionally, since a big

portion of the ground is partially covered by snow, the mixed pixels

can be notable and further challenge the accuracy of SCA mapping

in the late snow season. Despite these challenges, the PlanetScope-

derived SCA showed good agreement with the lidar-derived SCA

for all three example locations, even in small forest gaps (Figure 6A)
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TABLE 3 Model performance at the four study sites is represented by the mean and standard deviation of each statistical metric.

Site
Overall Open (CH∗ ≤ 2m) Under-canopy (CH∗

> 2m)

F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall

Tuolumne 0.68± 0.20 0.90± 0.08 0.60± 0.25 0.75± 0.18 0.90± 0.08 0.69± 0.23 0.28± 0.29 0.81± 0.18 0.21± 0.27

San Joaquin 0.74± 0.18 0.82± 0.14 0.70± 0.20 0.81± 0.14 0.81± 0.14 0.83± 0.16 0.57± 0.24 0.84± 0.16 0.46± 0.25

Gunnison 0.77± 0.10 0.91± 0.05 0.67± 0.13 0.85± 0.07 0.92± 0.05 0.80± 0.10 0.29± 0.18 0.88± 0.06 0.19± 0.16

Engadin 0.90± 0.06 0.88± 0.07 0.92± 0.04 0.90± 0.05 0.88± 0.07 0.93± 0.04 0.55± 0.21 0.58± 0.18 0.53± 0.22

Open areas refer to regions with a canopy height ≤2m, while under-canopy areas refer to regions with a canopy height >2 m.

CH∗ represents canopy height.

FIGURE 6

Examples of the spatial distribution of snow in PlanetScope images. The left panel presents cloud-free PlanetScope images from July 5th, 2019,

overlaid on a Google Satellite base map. A False color scheme using the NIR, red, and green bands highlights vegetation in red and makes it easier to

distinguish it from snow. Rows (A–C) demonstrate the performance of the RF in mapping SCA at three example sites, with a specific focus on open,

shaded, and forested areas, respectively. The right panel has four columns: Planet false color images, binary SCA derived from ASO snow depth using

a 10cm threshold, binary SCA derived using our RF model for the PlanetScope image, and the difference between lidar-derived SCA and Planet SCA.

The legend OE and CE refer to omission errors and commission errors, respectively.

and small snow patches (Figure 6C). Only a small portion of

pixels showed disagreement between lidar-derived SCA and Planet-

derived SCA and were mostly located at the edges of snowpack

and under-canopy areas. Commission-errors were mainly found

at the edges of forests (Figure 6A) and snow patches (Figure 6B),

while omission-errors were mainly found in the forested areas

(Figure 6C).

4.2. SCA accuracy in meadow areas

Within the 7,741 studied meadows in Tuolumne and San

Joaquin, the median F1 score, precision, and recall were 0.85,

0.97, and 0.82, respectively, which are comparable to the model

performance in open areas (CHM < 2m) across the four sites

(Figure 5). While the model’s performance varied notably within

each group, the overall accuracy of SCA mapping in meadows

showed a significant increasing trend as meadow size increased

or meadow shape complexity decreased, as revealed by the best-

fit lines between the median F1 score and the mean value

of the grouped meadow size (Figure 7A) and shape complexity

(Figure 7B).

The F1 score for meadows in the size range of 5.2 – 5.8 ×

104 m2 (13.0 – 14.0 acre), the largest meadow group, was found

to be 9% more accurate than the smallest meadow group, which

includes meadows in the size range of 4 – 9 × 103 m2 (1.0 – 2.0

acre; Figure 7A). The median F1 score for meadows larger than

1.5 × 104 m2 (3.8 acres), the median size of meadows studied, was

0.90, representing an 11% increase compared to smaller meadows.

However, it is noticeable that the SCA accuracy in the largest

meadow group was lower than that in a few other groups with

smaller meadow sizes. This can be partially explained by the

fact that meadow size is not the only factor that impacts SCA

mapping accuracy. Moreover, the model performance in the largest

meadow group was evaluated based on a relatively small number

of meadows (i.e., 121, or 1.6% of the total meadows), which may

not be representative due to the small sample size. Furthermore,

the shape complexity of meadows also impacted SCA accuracy,

with meadows with the simplest geometry (1.9 – 2.7 × 10−2 m−1)

showing 10% more accuracy compared to those meadows with the

most complex geometry (8.7 – 9.5× 10−3 m−1) (Figure 7B).
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FIGURE 7

Relationships between mapped SCA accuracy with the meadow size (A) and meadow shape complexity (B). SCA model accuracy is represented by

the F1 score, and the shape complexity is represented by the perimeter-area ratio (PAR). Each boxplot represents a group of meadows falling within

the range of meadow size or shape complexity labeled on the x-axis. The boxes are colored based on meadow numbers according to the color

scheme shown in the legend. The red lines represent the best-fit line between the median F1 score and the mean values of the grouped meadow

size (A) and shape complexity (B).

4.3. SCA accuracy in forest edges and forest
gaps

The model showed a robust performance in mapping SCA for

areas located at a distance of at least 3–4 pixels (∼10m) away

from forest edges (Figure 8). In the under-canopy portion, where

the PlanetScope images were not expected to detect snow, the

F1 score was low, and the overall PBIAS was negative. Notably,

the F1 score showed a dramatic increase in the transition zone,

which spanned ∼3–4 pixels on PlanetScope imagery (equivalent

to about 10 meters; Figure 8A). When the DCE exceeded 10

meters, the F1 score remained stable across all four sites.

Moreover, the overall PBIAS for the Gunnison and Engadin sites

was close to 0%, whereas Tuolumne showed a small negative

PBIAS, and San Joaquin had a small positive PBIAS (Figure 8B).

Althoughmany other factors may influence mapped SCA accuracy,

for satellites like the PlanetScope constellation at the about

3-m spatial resolution, the model can provide more robust

SCA information for areas located more than 10m away from

forest edges.

The model showed a promising capacity for mapping snow

cover in forest gaps, which refer to areas with 3m < DCE < 27m

or 1–9 pixels away from forest pixels, as shown in Figure 9. The

median F1 scores for large forest gaps (15m < DCE < 27m) were

0.82, 0.86, 0.87, and 0.93 for the Tuolumne, San Joaquin, Gunnison,

and Engadin sites, respectively. Despite higher SCA uncertainties

in medium and small forest gaps compared to large gaps, the

model still demonstrated a reliable ability to map SCA in those

regions, withmedian F1 scores of 0.72 and 0.82 across the four sites,

respectively. For small forest gaps (3m < DCE < 9m), where the

model performance was relatively poor, the median F1 score was

0.62, 0.79, 0.80, and 0.77 for the Tuolumne, San Joaquin, Gunnison,

and Engadin sites, respectively.

The overall PBIAS for small, medium, and large forest gaps

and areas outside forests was relatively low for all sites, particularly

for Gunnison and Engadin, while forest clusters and forest

edges showed large negative PBIAS (Figure 9B). Overall, the SCA

accuracy increased with distance from the forest edge and toward

open areas, and the model performed worst in deep forest clusters

(−9m < DCE < −3m) and forest edges (−3m < DCE < 3m),

where the ground surface is obstructed by tree branches.

5. Discussion

5.1. Overall model performance

High spatiotemporal resolution snow cover data is critical

for studying water availability and changes in plant phenology

in seasonal snow-covered ecosystems, such as montane forests

and meadows. In this study, we investigated the performance of

a Random Forest (RF) model in mapping SCA over meadows

and forests using PlanetScope imagery. The RF model achieved

comparable performance with prior studies that applied more

sophisticated and computationally expensive methods (Cannistra

et al., 2021; John et al., 2022). For the open areas in the Gunnison

site where we used almost the same Planet images as that of

Cannistra et al. (2021), RF achieved an F1 score of 0.85, precision

of 0.92, and recall of 0.80, while the CNN-based method reported

slightly lower performance with an F1 score of 0.82, precision of

0.88, and recall of 0.77 recall. However, the performance of the

CNN-based method could be improved by including additional
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FIGURE 8

Relationships between model performance and the distance to canopy edge (DCE) for all pixels at the four study sites. The model performance is

measured using the F1 score (A) and the percentage bias (PBIAS) (B) of each DCE group. The shaded areas on each curve represent the range of

values within one standard deviation of the F1 score (left) and PBIAS (right) of the images tested at each site. The under-canopy region refers to DCE

values below 0m; the transition zone, shaded in gray, encompasses DCE values from 0m to 10m; and the forest gaps and edges to outside forests

refer to DCE values higher than 10m.

FIGURE 9

Model performance within defined land type in forested areas for the four study sites. The red dots represent the mean F1 score (A) and percentage

bias (PBIAS) (B) of each land type on one PlanetScope image. The boxplot represents the range of F1 score and PBIAS of each land type across all the

PlanetScope images used for each study site.

information, such as the Normalized Difference Vegetation Index

(John et al., 2022).

Including samples from different dates and locations in the

training of the RF model may have the potential to improve SCA

accuracy in more diverse conditions. However, new features like

dates or locations may be necessary to account for the differences in

environmental conditions. For simplicity and proof of concept, in

this work, we only used one image to train the model and explored
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the RandomForest algorithm’s capability in snowmapping with the

assumption that it could be extended to a bigger training dataset.

The RF model showed good transferability across four study sites,

as demonstrated by the validation results in Table 3, and proved

efficient for identifying snow in meadows and forest gaps. The

model was trained on one PlanetScope image and applied to 103

images, of which 61% had an F1 score higher than 0.80 in open

areas (canopy height < 2m). The model’s inability to accurately

predict snow cover in under-canopy areas is expected since passive

optical sensors, like those used in the PlanetScope Constellations,

cannot penetrate forest canopy (Figure 5G).

Our model showed much higher omission-errors than

commission-errors. The primary reasons for the omission errors

in SCA mapping from Planet imagery are the canopy obstruction

and the presence of mixed pixels of snow and trees at forest

edges. Other factors such as illumination conditions and landscape

shadows caused by mountain terrain, tall trees, and cloud cover

can further exacerbate the problem and lead to omission-errors

(Raleigh et al., 2013; Hall et al., 2019; Zhang et al., 2021; Luo et al.,

2022). Mapping SCA can be challenging under low illumination

and landcover shadows, as snow pixels and snow-free pixels have

different reflectance characteristics compared with those in open

spaces with good illumination conditions (Raleigh et al., 2013; Hall

et al., 2019; Zhang et al., 2021; Luo et al., 2022). Additionally,

our model is limited to cloud-free images because the PlanetScope

images do not have a shortwave infrared band, which is necessary

to distinguish snow from clouds. Planet provides a cloud mask for

each image, which could be helpful in SCA mapping. However,

future studies are needed to assess the accuracy of the cloud masks.

5.2. Model validation sensitivity

To understand the impact of the snow depth threshold

on the model validation results, we performed a sensitivity

analysis on a randomly selected PlanetScope image

(20180528_181110_1025_3B). In this analysis, we evaluated

Planet-derived SCA using lidar-derived SCA with threshold ranges

from 1 to 15 cm (Supplementary Figure 1). This range covers

the thresholds used in previous studies to generate snow extent

from ASO lidar snow depth data (Cristea et al., 2017; Kostadinov

et al., 2019; Cannistra et al., 2021; John et al., 2022). Because

the optical sensors, like those used by PlanetScope, cannot see

the under-canopy ground, we excluded forested areas for the

sensitivity analysis.

The sensitivity analysis showed that precision

decreased while recall increased as the threshold increased

(Supplementary Figure 1). The overall F1 score showed an

increasing trend with the increase of threshold. However, only

a small difference (1.2 km2 or 0.8%) in lidar-derived SCA was

observed between using a 1 and 15 cm threshold. The difference in

F1 score was also negligible at 0.01 or 0.29%, indicating that using

a 10 cm threshold to derive snow cover from the lidar-derived

snow depth data was a reliable and reasonable selection for model

validation (Cannistra et al., 2021; John et al., 2022).

The 103 validation images were acquired by three different

generations of PlanetScope instruments (Figure 2). While the

band configurations varied slightly among the three PlanetScope

satellite instruments (Figure 2), our model proved suitable for

mapping SCA for all three generations with high accuracy

(Supplementary Figure 2). For example, the median F1 scores for

PS2, PS2.SD, and PSB.SD were 0.77, 0.67, and 0.76, respectively.

While training separate models for different PlanetScope

instruments could further improve SCA mapping accuracy, we

chose not to do so, as we aimed to examine the universality of

the model and ensure its high applicability and simplicity. The

impact of sensor discrepancy will become even more negligible in

newer products, such as the harmonized PlanetScope product that

matches the spectral responses of Copernicus Sentinel-2 (Moon

et al., 2021).

We performed a basic image screening to remove images

that were significantly contaminated by cloud cover or showed

low spectral quality (11% of the total image collection). The

overall model accuracy could be further improved by implementing

a more stringent screening process, given the reported data

quality issues such as image saturation artifacts and scene-to-scene

misregistration, as well as inconsistency in geolocation accuracy

and parallax-induced offsets between spectral bands (Frazier and

Hemingway, 2021; Aati et al., 2022). For example, the misaligned

geolocation of different spectral bands, which is particularly

noticeable for the pixels located at the ridge of the mountains and at

the edge of snowpacks in Dove-R and SuperDove images, is likely

to cause commission errors if the “real” ground is not covered by

snow (snow-free; Figure 6).

5.3. SCA in meadows and forest gaps

Our study is motivated by the growing volume of high-

resolution satellites data at the sub-meter to meter scale (Baba

et al., 2020; Cannistra et al., 2021; Li et al., 2021; Hu and Shean,

2022; John et al., 2022), which shows a high potential for mapping

snow cover in mountain ecosystems like meadows and forests.

Changes in snow cover distribution over time and space can result

in significant differences in the spatial variability of soil moisture

and soil temperature, thereby affecting the timing and location of

plant emergence in these ecosystems. Driven by the interaction of

snowfall, wind, vegetation, and terrain, mountain snow cover and

snowmelt time often show high spatial heterogeneity even at fine

scales (<10m). By analyzing high-resolution PlanetScope images,

we can observe spatial and temporal changes in snow cover, which

can inform plant phenology monitoring in mountainous meadows

and forest gaps.

Our study only considers the impact of meadow size and

geometry on SCA mapping accuracy. It is worth mentioning that

other factors may also influence SCA accuracy in meadow areas.

For example, the decrease in SCA accuracy for the largest meadows

(Figure 7) could be due to the increase ofmixed pixels. Themeadow

areas in Figure 7 are large enough that wind redistribution of snow

cover creates a patchier snow cover, resulting in more mixed pixels,

which are always more challenging to classify than pure snow or

snow-free pixels. The height and types of trees surrounding the

meadows can cause different shadow and mixed pixel conditions,

potentially affecting SCA accuracy. Additionally, the presence of
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different land cover types within meadows, such as streams, as well

as differences in snowmelt timing, may also lead to the occurrence

of more mixed pixels, which can further affect the accuracy of

SCA mapping.

While mapping snow using optical satellite images in forested

areas remains challenging due to the obstruction caused by tree

canopies, we were able to derive snow cover in areas as close

as 10m from trees, as well as in relatively large forest gaps (i.e.,

15m < DCE < 27m) using PlanetScope imagery. Airborne or

UAV lidar-derived snow depth data may provide better estimates

of SCA under-canopy (Cristea et al., 2017; Kostadinov et al., 2019;

Cannistra et al., 2021; Koutantou et al., 2021; John et al., 2022), but

the spatial coverage of the flights was limited to the available budget.

Canopy adjustment approaches are also commonly used to estimate

under-canopy snow cover based on viewable SCA or viewable snow

fraction, which assumes that the snow cover in open areas is the

same as under-canopy snow cover within one pixel (Painter et al.,

2009; Nolin, 2010; Raleigh et al., 2013; Rittger et al., 2020). With

high-resolution PlanetScope SCAmaps in forest gaps, we will better

understand snow cover distributions in forested areas, which could

inform future canopy adjustments to get a better estimate of under-

canopy snow cover. Additionally, high spatial and temporal fusion

datasets, such as the Harmonized Landsat and Sentinel-2 product,

offer new opportunities for mapping SCA in the meadow and

forested areas.

The overlap of meadows and forests with seasonal snow makes

snow cover a critical factor in controlling the eco-hydrological

process at high latitudes and in alpine regions. Recent studies

have documented significant changes in the compositions and

structures of vegetation species due to reduced snow cover, earlier

snow disappearance, and drier soil moisture (Chen et al., 2008;

Myers-Smith et al., 2011; Sherwood et al., 2017; Amagai et al.,

2018). Earlier snowmelt could lead to earlier plant emergence

and development, which increases the risk of plants’ exposure

to lower air temperatures in winter and early spring, resulting

in more frequent and serious frost damage and reducing plant

reproduction rate. Therefore, a series of high spatiotemporal

resolution maps of mountain snow cover can support future

analysis of the spatial diversity of plant communities and studies

on meadow or forest ecosystem functions (Loheide and Gorelick,

2007; Loheide and Lundquist, 2009; Lowry et al., 2011; Blackburn

et al., 2021).

6. Summary and conclusion

To advance snow cover mapping in mountainous areas,

we developed a machine learning model to map SCA using

PlanetScope imagery at a 3-m spatial resolution and explicitly

evaluated the mapped SCA accuracy in montane meadows and

forest gaps. The PlanetScope-derived SCA showed good agreement

with SCA derived from a lidar snow depth dataset over four study

sites in the Western United States and Switzerland, with a median

F1 score of 0.75 for all 103 PlanetScope images. Tree canopy

obstruction caused the main omission-errors for SCA mapping,

as indicated by the median recall values of 0.21 and 0.80 for

under-canopy and open areas, respectively. The model performed

much better in open areas with a relatively high median F1 score

of 0.82.

The use of high-resolution PlanetScope imagery showed

promising capability for mapping SCA in montane meadows and

forest gaps. The model had an overall median F1 score of 0.83 for

7,741 studied meadows at the Tuolumne and San Joaquin sites.

SCA accuracy in meadow areas was influenced by the meadow size

and meadow shape complexity. Mapped SCA for larger and more

simply shaped meadows was generally more accurate than that

for smaller and more complexly shaped meadows. The median F1

scores in forested areas were higher for large gaps (i.e., 15 m< DCE

< 27m) than for small gaps (i.e., 3 m< DCE < 9m). Specifically,

the median F1 score for large forest gaps at the Tuolumne, San

Joaquin, Gunnison, and Engadin sites were 0.82, 0.86, 0.87, and

0.93, respectively, which were at least 8% higher than those for

small forest gaps.While mapping SCA accurately over regions close

to or under forest canopy remains challenging, the proposed RF

model could provide robust SCA information for the very close

regions (>10m) to the forest edges and relatively large forest gaps

(i.e., 15m < DCE < 27m). This advance in our snow mapping

capabilities in montane forests will have profound implications for

future ecohydrological studies.

7. Code and data

The reproducible SCA mapping model and code are available

on GitHub (https://github.com/KehanGit/High_resolution_snow_

cover_mapping.git). The tutorial Jupyter Notebook is published as

a GeoScience Machine Learning Resources and Training “use case

book” in the GeoSMART GitHub repository and hosted on GitHub

pages (GeoSMART, https://geo-smart.github.io/scm_geosmart_

use_case/). More information about the GeoSMART organization,

methods to get in contact, and resources for advancing machine

learning use in the geosciences can be found on the website

at geo-smart.github.io.

To improve the reproducibility and reusability of the SCA

mapping application, we adopted a workflow management

tool—Geoweaver (Sun et al., 2020, 2022), to rebuild the SCA

mapping workflow. The SCA mapping workflow is available on

GitHub (https://github.com/geo-smart/sca_mapping_geoweaver)

and users can download the latest released zip file and

import it into Geoweaver to browse and run. Geoweaver

allows convenient sharing of everyone’s progress among team

members without losing details and model run history, as

source code, model history, and output logs are all saved to

a local database that is easily portable. We hope the adoption

of Geoweaver can greatly improve the FAIRness of the SCA

workflow for the scientific community and help serve as a

valuable community asset fostering collaborative, reproducible

future research.

The PlanetScope images used in this study are accessible

through the NASA Commercial Smallsat Data Acquisition (CSDA)

program or the Planet Education and Research program, and the

SCA maps will be made available in a Zenodo repository.
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