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Mountain snowpack provides critical water resources for forest and meadow
ecosystems that are experiencing rapid change due to global warming. An
accurate characterization of snowpack heterogeneity in these ecosystems
requires snow cover observations at high spatial resolutions, yet most existing
snow cover datasets have a coarse resolution. To advance our observation
capabilities of snow cover in meadows and forests, we developed a machine
learning model to generate snow-covered area (SCA) maps from PlanetScope
imagery at about 3-m spatial resolution. The model achieves a median F1 score
of 0.75 for 103 cloud-free images across four different sites in the Western
United States and Switzerland. It is more accurate (F1 score = 0.82) when forest
areas are excluded from the evaluation. We further tested the model performance
across 7,741 mountain meadows at the two study sites in the Sierra Nevada,
California. It achieved a median F1 score of 0.83, with higher accuracy for larger
and simpler geometry meadows than for smaller and more complexly shaped
meadows. While mapping SCA in regions close to or under forest canopy is
still challenging, the model can accurately identify SCA for relatively large forest
gaps (i.e., 15m < DCE < 27m), with a median F1 score of 0.87 across the four
study sites, and shows promising accuracy for areas very close (>10m) to forest
edges. Our study highlights the potential of high-resolution satellite imagery for
mapping mountain snow cover in forested areas and meadows, with implications
for advancing ecohydrological research in a world expecting significant changes
in snow.

KEYWORDS

high-resolution snow cover mapping, forest snow, mountain meadows, Planet imagery,
machine learning

1. Introduction

Seasonal snowpack covers about one-third of Earth’s terrestrial surface at
any time (Dozier, 1989), and its start, end, and duration impact the phenology
of different types and the snow-dominated
ecosystems, such as montane meadows and forests (Dunne et al, 2003;
Blankinship and Hart, 2012; Raleigh et al., 2013; Sherwood et al., 2017). However,

of vegetation functioning  of

01 frontiersin.org



Yang et al.

traditional satellite observations are often unable to provide
detailed information on the spatial distribution of snow cover
in montane meadows and forest gaps due to their coarse spatial
resolutions. Despite the availability of high-resolution satellite
observations, few studies have explored the accuracy of snow cover
mapping in montane forest gaps and meadows, where snowpacks
exhibit high spatial heterogeneity.

Montane meadows are important ecosystems that have many
critical functions, such as flood control, water quality improvement,
and groundwater recharge (Loheide and Gorelick, 2007; Loheide
and Lundquist, 2009). Meadows also provide unique wildlife
habitats to animal and plant species, and recreation values for
human beings (Hille Ris Lambers et al, 2021). Additionally,
meadows are effective carbon sinks, and therefore, the restoration
of meadows has a high potential to serve as climate change
refugia to mitigate climate changes (Yang et al., 2019; Blackburn
et al., 2021; Reed et al., 2022). Global warming has shifted the
timing of snowmelt to earlier in the year and reduced snowpacks
(Nijssen et al., 2001; Mote et al., 2018; Musselman et al., 2021),
which could subsequently lead to changes in plant productivity
and carbon sequestration over these seasonally snow-covered
ecosystems (Vaganov et al., 1999; Brooks et al., 2005, 2011; Zona
etal., 2022). Accurate mapping of seasonal snow cover in meadows
is therefore important to understand the effects of changing
snowpack on meadow ecosystems’ functioning both now and in
the future.

Accurate characterization of snow cover around forests and
forest gaps is essential for effective natural resources management
in montane forest ecosystems and for advancing the understanding
of the critical interactions between forests and snow processes
(Dickerson-Lange et al., 2015; Sun et al., 2018). Snow intercepted
by the forest canopy sublimates more rapidly than snow on the
ground, and therefore sublimation of snow intercepted by the forest
canopy can lead to substantial reductions in snowpack volume
over the course of a season. Meanwhile, forest canopy impacts the
snowpack energy balance by emitting longwave radiation, shading
insolation, and blocking wind. The net effect of these factors can
result in a higher or lower snowmelt rate, with the direction and
magnitude of the overall effect determined by climate factors as
well as the type, density, and configuration of trees in the forest
(Essery et al., 2008a,b; Pomeroy et al., 2008; Rutter et al., 2009;
Lundquist et al,, 2013; Musselman et al., 2015). However, due
to the contradictory impacts, the duration of under-canopy snow
cover could be longer or shorter than snowpack in the adjacent
open areas, subject to local topography and climate conditions
(Lundquist et al., 2013; Dickerson-Lange et al., 2015). Although
observing under-canopy snow cover remains challenging, high-
resolution optical satellite imagery provides new opportunities
for mapping snow cover in forest gaps, which will advance our
understanding of snow-forest interactions and will provide new
insights to support forest and water resources management.

The use of remote sensing for SCA mapping has been evolving
for more than five decades (Barnes and Bowley, 1968; Rango and
Martinec, 1979; Dozier, 1984, 1989; Nolin et al., 1993; Hall et al.,
2002; Painter et al., 2003, 2009; Dozier et al., 2008; Nolin, 2010;
Gascoin et al., 2019; Rittger et al., 2020; Bair et al., 2021). One
of the most popular methods for mapping SCA is the spectral
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index method, which uses the Normalized Difference Snow Index
(NDSI). This method leverages the reflectance difference between
the green and shortwave infrared bands to enhance the contrast
between snow from non-snow land types on multispectral satellite
imagery such as Landsat (Dozier, 1984, 1989), MODIS (Hall
et al., 2010; Hall, 2012), and Sentinel-2 (Gascoin et al., 2019).
While the NDSI thresholding method is simple and effective for
classifying snow pixels, binary SCA maps generated from sensors
with coarse resolution (e.g., 1.1km for AVHRR, and ~500m
for MODIS) are often inadequate to accurately represent the
variability of SCA across smaller scale features such as meadows
and forest gaps.

Linear spectral mixture algorithms decompose mixed pixels
(fSCA). These
algorithms assume that the reflectance of a pixel in a spectral

and retrieve fractional snow-covered areas
band is a linear combination of weighted reflectance values of
endmembers within the pixel (Nolin et al., 1993; Solberg and
Andersen, 1994; Rosenthal and Dozier, 1996; Painter et al., 1998,
2003, 2009; Dozier and Painter, 2004; Bair et al., 2021). While
spectral mixture algorithms have been shown to outperform the
NDSI method in snow cover mapping and provide estimates of
other important snow properties, such as snow grain size, snow
albedo, and the impact of dust on snow albedo (Raleigh et al., 2013;
Masson et al., 2018; Aalstad et al., 2020; Stillinger et al., 2022),
they only provide fractional values of SCA for each pixel. When
the spatial resolution of satellite data is coarse, these methods may
not adequately capture the detailed spatial heterogeneity of SCA
at a sub-pixel scale. Mapping and understanding fine-scale spatial
heterogeneity of SCA are crucial for providing important insights
into the impact of forest canopy on the snowpack.

Airborne lidar scanning also provides an effective means for
observing snow cover at high spatial resolution (meter scale).
This technique measures surface elevation once during snow-oft
conditions and repeatedly during snow-on conditions to derive
snow depth, which is known to be reliable, even in forested areas
(Currier and Lundquist, 2018; Mazzotti et al., 2019). Airborne lidar-
derived snow depth data, such as the Airborne Snow Observatory
snow depth dataset, thus have been widely used in previous
studies to derive high-resolution SCA maps (Cristea et al., 2017;
Raleigh and Small, 2017; Kostadinov et al., 2019; Cannistra et al.,
2021; John et al., 20225 Stillinger et al., 2022), providing valuable
insights into the spatial distribution of snow cover in complex
mountain terrain.

In recent years, the commercial satellite industry has
experienced rapid growth, with companies like Planet and Maxar
providing new opportunities for Earth surface observations at
sub-meter to meter-scale resolution, including snow identification
in complex terrain (Cannistra et al., 2021; Hu and Shean, 2022).
For example, Planet operates small satellite constellations that
provide near-daily coverage of the Earth’s land surface at about
3-5-m spatial resolution, making it an appealing data choice
for investigations of snow patterns in mountainous regions.
Previous studies have used convolutional neural networks (CNN)
to map SCA from Planet PlanetScope images and achieved more
accurate SCA maps than using traditional Landsat-8 and Sentinel-2
imagery for both forests and open areas (Cannistra et al., 2021;
John et al., 2022). However, training CNN-based models is a
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time-consuming and potentially inefficient process given that
it requires large training datasets and significant computational
resources involving the use of graphics processing units (GPUs)
and complex environment configurations. Therefore, there is
a need for more efficient and less computationally demanding
methods to map snow from high-resolution PlanetScope images.

In this study, we leverage PlanetScope imagery and a machine
learning model to map high-resolution SCA and explicitly evaluate
SCA accuracy in montane meadows and forest gaps. We chose
to use a robust Random Forest model approach, which has been
successfully applied to derive snow cover from many satellite
images, such as MODIS (Liu et al., 2020; Kuter, 2021; Luo et al,,
2022), Landsat-8 (Gascoin et al., 2019), Sentinel-1 SAR data (Tsai
et al,, 2019), Sentinel-2 (Gascoin et al., 2019), and high-resolution
Maxar WorldView imagery (Hu and Shean, 2022). Additionally,
Random Forest has shown good performance in data fusion
approaches for mapping SCA (Rittger et al., 2021; Richiardi et al,,
2023).

Following the introduction, Section 2 describes the study area
and datasets, and Section 3 describes the SCA mapping model
training and evaluation. The results and discussions are presented
in Sections 4 and 5, respectively, with the summary and conclusion
given in Section 6.

10.3389/frwa.2023.1128758

2. Study area and datasets
2.1. Study area

We selected three sites in the Western United States and
one in Switzerland, covering a range of elevations, forest covers,
meadow sizes, and availability of high-resolution validation data
from Airborne Snow Observatory (ASO) lidar observations (details
in Section 2.2.2). The four sites are (1) Tuolumne River Basin in
the Central Sierra Nevada of California, (2) San Joaquin Main
Fork in the Southern Sierra Nevada of California, (3) Gunnison—
East River in the Central Rocky Mountains of Colorado, and (4)
Engadin valley in the Eastern Swiss Alps of Switzerland (Figure 1).
Hereafter, we refer to these sites only by the bold portion.

Among the four sites, Tuolumne and San Joaquin are in
maritime mountain regions, while Gunnison and Engadin are in
continental mountain regions. The San Joaquin site is the largest
in size, with the highest forest coverage (50%) and the highest
average canopy height (4.5 m). On the other hand, the Engadin site
is the smallest, with the lowest forest coverage (22%) and second-
shortest average canopy height (2.7 m; Table 1). The Gunnison
site has the highest average elevation and the second-highest
average canopy height (4.1 m), whereas the Tuolumne site has the

Gunnison
»

FIGURE 1
Context maps and satellite image base maps for the four study sites.

TABLE 1 Topographic characteristics of the four study sites and contemporaneous ASO lidar snow depth acquisitions that were used in the study.

Location Size Elevation (meter) Forest Average Contemporaneous
(latitude, (km?) coverage canopy height ASO lidar
longitude) (%) (meter) acquisitions
Ave. (VEVE

Tuolumne 37.97° N, —119.45° W 1,175 2,715 1,142 3,967 30 23 11

San Joaquin | 37.52° N, —119.18° W 1,368 2,462 991 4,006 50 45 5

Gunnison 38.90° N, —117.00° W 966 3,212 2,557 4,324 42 41 1

Engadin 46.62° N, 10.01° E 86 2,251 1,550 3,166 2 2.7 1
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lowest average canopy height (2.3 m; Table 1). The mean slopes
of Tuolumne, San Joaquin, and Gunnison are similar, ranging
from 20.2° to 22.7°, while the Engadin site has a higher mean
slope of 34.4° due to the relatively smaller area being included
in the study.

2.2. Datasets

2.2.1. Planet CubeSat images

We used images from the PlanetScope constellation, which
includes three generations of satellites: Dove Classic (PS2),
Dove-R (PS2.SD), and SuperDove (PSB.SD; Figure 2). To map
SCA, we used an atmospherically corrected surface reflectance
product (Level-3B Ortho Scene-Analytic) that underwent rigorous
geometric and radiometric correction techniques, orthorectified,
and passed all image quality checks in the Planet processing
pipeline (Frazier and Hemingway, 2021).

PlanetScope images provide at least four bands, including
three visible bands (red, green, and blue) and one near-infrared
band (Figure 2). Although the wavelength ranges of these bands
are similar among the three Dove generations, they are not
identical due to changes in sensors over time. The first-generation
Dove Classic sensors lack spectral response separation in RGB
bands, while Dove-R and SuperDove have comparable widths and
placements of four bands (RGB and near-infrared). SuperDove
also provides four additional bands in the visible portion of the
spectrum (Figure 2). While including reflectance information from
additional SuperDove bands may add value to snow cover mapping,
the four bands we excluded do not extend the range of the RGB

A Dove Classic (P52)

Dove-R [P52.5D)

C SuperDove (PSB.SD)

I
I |
600 00

7
Wavelength {(nm)

800 900

FIGURE 2

The distribution of spectral response in three generations of
PlanetScope satellites (adapted from Frazier and Hemingway, 2021),
(A) Dove Classic (PS2), (B) Dove-R (PS2.SD), and (C) SuperDove
(PSB.SD). The blue, green, red, and brown curves correspond to the
spectral response of blue, green, red, and near-infrared bands,
respectively. For the SuperDove instrument, which has eight bands,
we used dashed lines to represent the extra four bands that are not
used in the model. The earliest imagery from PS2, PS2.SD, and
PSB.SD was acquired in July 2014, March 2019, and March 2020,
respectively.
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wavelength where snow reflectance is typically high, nor do they
process any distinctive features. To ensure that our method would
apply to all PlanetScope images, regardless of Dove generation, we
chose not to include the extra SuperDove bands for snow cover
mapping in this study.

However, none of the PlanetScope spectral bands, including
the four additional excluded bands from SuperDove, cover
the shortwave infrared (SWIR) portion of the electromagnetic
spectrum that is used for the calculation of NDSI and plays an
important role in the spectral unmixing models. The lack of SWIR
band in the PlanetScope images is the main reason why the
more traditional SCA mapping methods such as NDSI or spectral
unmixing models which have been used across a range of sensors
with only minor changes are not easily adapted to work with
PlanetScope images (Cannistra et al., 2021). Additionally, snow and
clouds exhibit similar spectrum features and high reflectance in the
visible and NIR bands, making it challenging to distinguish between
snow and clouds.

Therefore, we screened out PlanetScope images with cloud
cover higher than 5% based on the “cloud coverage” metadata
provided by Planet. Considering the uncertainty in cloud coverage
and image issues like saturation, we further reviewed and manually
excluded 11 images, for a total of 103 PlanetScope images finally
used in this study.

2.2.2. ASO Snow depth and canopy height model

Airborne Snow Observatory (ASO), Inc is a commercial
company that provides airborne snow depth and snow water
equivalent (SWE) at very high spatial resolutions (i.e., 3-m for
snow depth and 50-m for SWE). The snow depth product has
an 8 cm root mean squared error at 3-m spatial resolution when
evaluated with 80 ground observations over a relatively flat area
near Tioga Pass, California (Painter et al, 2016). While more
comprehensive evaluation is needed, the ASO snow depth data
are accepted as the current standard by the community and
have increasingly been used to create high-resolution SCA maps,
which have been used as independent ground “truth” validation
data (Cristea et al., 2017; Kostadinov et al., 2019; Cannistra
et al., 2021; John et al.,, 2022; Stillinger et al., 2022). Therefore,
in this study, we used the SCA maps derived from ASO snow
depth data as ground reference to evaluate SCA mapped from
PlanetScope images.

We identified and processed PlanetScope images acquired on
the same days as ASO lidar acquisitions at the four study sites
(Table 1). Since the Tuolumne site has the longest record of lidar
collections and the most frequent observations, we processed all
contemporaneous PlanetScope images for the Tuolumne site from
2017 to 2022 to cover various snow conditions. We excluded
dates with relatively low coverage of contemporaneous cloud-
free PlanetScope images and ASO snow depth data. In total,
we processed 18 ASO snow depth acquisitions for the four sites
(Table 1). The 3-meter snow depth data for the years between
2017 and 2019 were downloaded from the National Snow and
Ice Data Center (Painter, 2018), while the snow depth data after
2019 were downloaded from the ASO, Inc. website (https://data.
airbornesnowobservatories.com).
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We utilized the canopy height model data (CHM) provided
by the ASO team to determine the extent of forests in the four
study sites (details provided in Section 3.3). The CHM data for
Tuolumne, San Joaquin, Gunnison, and Engadin were collected on
27 August 2014, 23 October 2016, 8 September 2018, and 29 August
2017, respectively (Currier and Lundquist, 2018; Mazzotti et al,
2019).

2.2.3. Meadow extent

The Sierra Nevada Multi-source Meadow Polygons
Compilation Version 2 (SNMMPC v.2, Weixelman et al., 2011;
UC Davis, 2017) was used to delineate meadow extent for two
study sites: Tuolumne and San Joaquin. As meadow data were not
available for Gunnison and Engadin, these two sites were excluded
from the model accuracy assessment for meadow areas. The
SNMMPC v.2 dataset was created by the University of California,
Davis, and the United States Department of Agriculture Forest
Service and comprises all meadows larger than one acre (4,047
m?), providing the most comprehensive spatial data on mountain
meadows for the Sierra Nevada, California. The dataset can be
downloaded from https://meadows.sf.ucdavis.edu/resources/326.

3. Method

The workflow of SCA mapping using PlanetScope imagery
includes three main steps (Figure 3). In brief, we first downloaded
and visually checked PlanetScope images. Then we trained the
SCA mapping model following the steps illustrated in Figure 3

10.3389/frwa.2023.1128758

(details in Section 3.2); the last step was SCA evaluation (details in
Section 3.3).

3.1. Random Forest model

We used the Random Forest (RF) model to classify snow
cover in PlanetScope images. RF is a powerful and versatile
supervised machine learning algorithm that is widely used in many
applications, including snow cover mapping (Liu et al., 2020; Kuter,
2021; Hu and Shean, 2022; Luo et al., 2022). Built upon the bagging
approach, RF generates a random subset of both samples and
features for model training to overcome shortcomings that may be
raised by highly correlated features and overfitting (Breiman, 2001).
The final prediction is determined by the average (for regression) or
majority (for classification like SCA mapping in our case) of all the
decision trees.

3.2. SCA mapping model training

To generate training samples, we manually digitized Regions
Of Interest (ROI) polygons on a cloud-free PlanetScope image
and labeled each ROI as snow or snow-free. We selected the
PlanetScope image 20180528_181110_1025_3B in the Tuolumne
River Basin, California to collect training samples because the
region covered a wide elevation range, as well as various land
types, including subalpine dense forests, steep valleys, and alpine
meadows. The image has good contrast in surface reflectance

Download PlanetScope images
with cloud cover less than 5%

-

2) Model training

Draw ROIs on the target image
and label each ROl as snow or
non-snow

+—

Rasterize ROl and extract
surface reflectance from the
target image

Visually check image quality

Apply the final model to the

the scikit-learn Python package
4

Evaluate model performance
iteratively

four study sites

Evaluate SCA accuracy using

1

Develop the final RF model for
SCA mapping

I I
I I
I I
I I
1 I
H I
I

[ !
I I
I [
I I
I I
I I
I I
I I
1 I
I I
: Train RF models using tools in :
I I
I I
I I
I I
| |
I I
I 1
I I
I I
I I
I I
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Generate binary SCA maps

ASQ binary SCA maps

FIGURE 3

Flowchart of the model developed to map snow-covered area (SCA) using PlanetScope standard 4-band surface reflectance data. The flowchart
includes three main steps: (1) image pre-processing, (2) model training, and (3) SCA evaluation.

from ASO snow depth
observations using a threshold

Frontiersin Water

05

frontiersin.org



Yang et al.

10.3389/frwa.2023.1128758

) Example ROl extent. 3
- 42000008 [ Extent of Planet image o 15 3
3 Tuolumne site —t—

c. ROIs in open areas
o o

FIGURE 4

Planet SCA using the Random Forest model Lidar-derived SCA using the 10 cm thredhold

BB Snow cover
[ Exampla site

I snow cover
[ Example site

Lidar-derived

a.Snow in forested areas| |b. Snow in shaded areas

c. Snow in open areas

SCA

Planet SCA

(A) The cloud-free PlanetScope image of the Tuolumne site on 28 May 2018, which was used for generating training samples. The polygons (yellow)
represent sample ROI polygons with three typical land types shown in zoomed views for corresponding locations in (a—c). (B) Spatial distribution of
modeled SCA and SCA extent derived from contemporaneous ASO snow depth data (ASO_3M_SD_USCATE_20180528), which were used as
“ground truth” for model validation. The zoomed views in (a—c) provide details for the corresponding locations in the Planet image in (B).

between snow and snow-free surfaces (Figure 4). We collected
a total of 174,296 individual pixel samples and extracted the
features for each sample, including the surface reflectance in visible
and near-infrared bands. Then, we trained the RF model using
the “RandomForestClassifier” function from the Python package
“scikit-learn,” which took ~2s to complete on the Linux server
running Ubuntu 20.04.4 LTS with an AMD EPYC 7313 Processor
16-core CPU and 256 GB of SATA SSD RAM.

To get an optimal set of model parameters, we conducted
a series of sensitivity tests on the four main parameters to
determine their effect on overall model accuracy. Ultimately, we
finalized the model with all samples, four features, 10 trees,
and a maximum depth of ten. Readers can refer to the Code
and Data Section for more detailed information about model
parameter tuning. After 1,000 repeated K-fold cross-validation,
the fine-tuned model achieved reliable performance with overall
precision, recall, and F1 score higher than 0.99. Details of the
three evaluation metrics and their equations are introduced
in Section 3.3.

3.3. Evaluate model accuracy using ASO
snow depth data

3.3.1. Overall model performance

To generate reference SCA maps across the four study sites, we
used the 10 cm snow depth threshold to classify snow vs. snow-
free extent from the 3-m snow depth data provided by the ASO.
Inc (Painter et al., 2016), in which the snow depth threshold was
determined following earlier studies (Cannistra et al., 2021; John
et al., 2022).
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The following three statistical metrics (Equations 1-3) were
used to represent model performance.

TP

Precision = ————
TP + FP

(1)

where TP represents true positives, and FP represents false
positives. Precision (Equation 1) is the proportion of predicted
snow pixels that are correctly classified and is used to measure
commission-error, which refers to the pixels observed as snow-free
but predicted as snow. Lower precision values usually correspond
to higher commission-error.

TP

Recall = ——
TP 4+ FN

2

where FN represents false negatives. Recall (Equation 2) is
the proportion of actual snow pixels that are predicted as snow
correctly and is also known as the true positive rate. Recall is used
to measure omission-error, which refers to the pixels observed
as snow but predicted as snow-free. Lower recall values usually
correspond to higher omission-error.

2 x Precision x Recall
F1 score =

Precision + Recall 3)

where F1 score (Equation 3) combines both precision and
recall metrics into one single score, providing a more balanced
measurement of model performance. The harmonic mean is used
to calculate the F1 score, which gives more weight to lower values,
making it a more suitable metric for imbalanced datasets where
the number of samples in one class is significantly higher than
the other. In our case, when the snow and snow-free classes are
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heavily imbalanced and detecting true snow pixels is more critical
than detecting snow-free pixels (such as during the late snow
season), F1 score remains a powerful evaluation metric for model
evaluation. However, when TP equals 0, which indicates no snow
on the ground, the F1 score becomes an inappropriate metric for
evaluating model performance.

To evaluate the accuracy of the mapped SCA, we calculated all
three metrics for all 103 PlanetScope images from the four study
sites. The three metrics range from 0 to 1, with higher values
indicating better model performance.

3.3.2. Model performance in meadow areas

We hypothesized that the accuracy of snow cover mapping
in meadows may be affected by their size and shape complexity,
considering the impact of the mixed pixel effect and tree shadows
at the meadow edge. To verify this hypothesis, we assessed model
accuracy across different meadow sizes and shape complexities. To
represent meadow shape complexity, we introduced a parameter
known as the perimeter-area ratio (PAR), which considers the
proportion of meadow area exposed to edges, where we anticipate
larger snow mapping errors due to the tree shadows and mixed
pixels. If two meadows are of the same size, a larger perimeter,
indicating more pixels located at meadow edges, would increase the
PAR, potentially decreasing model accuracy.

There were 2018 meadows larger than 4 x 10* m? (i.e., one
acre) located across the Tuolumne area, and 1,805 meadows across
the San Joaquin site, in the SNMMPC dataset (details provided
in Section 2.2.3). Since the coverage of PlanetScope images on
each ASO date was different, and some meadows might have been
accounted for multiple times on different dates, we treated each
meadow on a specific PlanetScope image as an independent object.
A total of 18,512 meadow objects were analyzed for the two study
sites. To reduce the influence of outliers, we removed the meadows
that exceeded the 90th percentile of meadow size (14.3 acres) and
complexity (PAR = 0.1 m™1), based on meadows within the two
study sites. We also removed 96 meadows without snow cover
because when there is no true positive (lidar-derived snow pixel),
all statistical metrics would be 0, resulting in an inappropriate
evaluation. We classified the remaining 7,741 meadows into 10
groups based on their size and shape complexity, respectively. We
then fitted linear regression models between the median F1 score
of each group and the mean value of each group’s meadow size
and shape complexity. We selected 10 as the group size to ensure
that each group had sufficient meadows to accurately represent the
characteristics of the group.

3.3.3. Model performance in forests

To assess the model performance in forest edges and gaps,
we classified the study sites into six categories (Table 2) based on
the distance to the canopy edge, DCE (Mazzotti et al., 2019). We
calculate DCE using the ASO CHM dataset, following the method
developed by Mazzotti et al. (2019; see Section 2.2.2 for details].
DCE represents the distance of a pixel from the edge of a forest
to the target pixel. We defined “forest” as pixels with a canopy
height higher than 2 m, and “open” as pixels with a canopy height
lower than 2 m, which includes bare ground, grassland, shrubland,
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TABLE 2 Land types in forested areas are based on the distance to canopy
edge.

Category Distance to canopy edge (m)

Outside forest 27 < DCE < 100
Large gaps 15 < DCE <27
Medium gaps 9<DCE<15
Small gaps 3<DCE<9
Forest edges —3<DCE<3
Forest clusters —9<DCE< -3

and small trees (Broxton et al., 2015; Currier and Lundquist, 2018;
Mazzotti et al., 2019). We assumed that PlanetScope images have
the potential to observe snow in regions with a canopy height lower
than 2m, even when those regions may be partially covered by
vegetation. Pixels classified as “forest” would mostly be covered
by tree canopy in a 3 by 3m pixel, based on a scaling exponent
between tree height and diameter (Hulshof et al., 2015; Chen
and Brockway, 2017). Therefore, 2m is a reasonable forest height
threshold to distinguish “forest” from “open” (Broxton et al., 2015;
Currier and Lundquist, 2018; Mazzotti et al., 2019). We excluded
areas with a DCE higher than 100m, as they were far enough
away from the forest to be considered wide-open areas where the
model accuracy would not be influenced by DCE. Additionally, we
excluded areas with a DCE < —9 m, given that optical sensors are
not suitable for mapping ground surface features obscured by dense
forest canopies.

To keep SCA evaluation concise, we only presented F1 scores
for the meadow and forest areas because F1 scores provide a
comprehensive assessment of overall SCA accuracy, considering
both commission-errors (i.e., precision) and omission-errors (i.e.,
recall). We also calculated percentage bias (PBIAS, Equation 4) in
the forested areas to provide an overall estimate of SCA bias.

SCAplanet — SCAlidar
SCAjidar

PBIAS = x 100 (4)

where SCA g i the mean SCA for a specific region mapped
from PlanetScope images, while SCAj;4,, is the mean SCA derived
from ASO lidar data.

4. Results

4.1. Overall SCA accuracy at the four study
sites

Our model achieved a median F1 score, precision, and recall
0f 0.75, 0.91, and 0.70, respectively (Figures 5A-C), demonstrating
good performance in mapping snow cover across mountainous
terrain at a 3-m spatial resolution. The uncertainty of mapped
SCA was dominated by omission-errors, as revealed by the much
lower recall values than the precision values (Figures 5B, C).
Notably, more than 90% of the images exhibited precision values
higher than 0.75, indicating that the model produced consistently
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small commission-errors. Moreover, while the distribution of
recall across images peaked at a high value of 0.81 (Figure 5C),
its distribution was widely spread, primarily due to the high
omission-errors in under-canopy areas (Figures5F, I). When
the under-canopy areas were excluded from the analysis, the
model showed much better and more robust performance, with
a median F1 score of 0.82 (Figure 5D). Compared to the overall
model performance across all areas, omission-errors in open areas
were reduced (Figure 5F), while commission-errors showed little
difference (Figure 5E).

Across the four study sites, the model exhibited the best overall
performance at the Engadin site, which had the lowest forest
coverage and smallest size (Table 1), with the highest F1 score of
0.90 + 0.06. While the precision value at the Engadin site was
relatively lower than that of the Tuolumne and Gunnison sites, its
recall value (0.92 £ 0.04) was notably higher than the other three
sites, indicating minimal omission errors in mapping SCA. This can
be partially explained by snow-free ground under canopy indicated
by lidar-SCA, as the satellite images were collected on March 17,
after most snow in low-elevation forested areas had melted.

While the Tuolumne site had the worst overall accuracy among
the four studied sites, with an overall F1 score of 0.68 £ 0.20
(Table 3), it had a relatively accurate SCA for open areas, with an
F1 score of 0.75 4 0.18 (Table 3). The low overall SCA accuracy
across Tuolumne could be partially explained by the inclusion
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of a larger number of images in the evaluation, some of which
had high forest coverage, a high percentage of terrain shadows,
or low solar illumination conditions, all of which could increase
omission errors.

The F1 score, precision, and recall value for the image that
we used to train the model at the Tuolumne site were 0.81,
0.93, and 0.72, respectively, all of which were only slightly
higher than the median values of all 103 images tested. This
suggests that the model had a very good transferability across
geographic locations (Figures 5A-C). Among all four sites, the
difference in model performance was less noticeable in open
areas (6% in F1 score) compared to under-canopy areas (33% in
F1 score).

To better understand the model’s performance across space, we
selected three example sites in Tuolumne on July 5, 2019, when
the watershed was partially covered by snow (Figure 6). Mapping
SCA in the late snow season can be challenging due to the reduced
snow surface reflectance caused by larger snow grain size or higher
accumulation of light-absorbing particles such as black carbon,
mineral dust, or coniferous leaf litter. Additionally, since a big
portion of the ground is partially covered by snow, the mixed pixels
can be notable and further challenge the accuracy of SCA mapping
in the late snow season. Despite these challenges, the PlanetScope-
derived SCA showed good agreement with the lidar-derived SCA
for all three example locations, even in small forest gaps (Figure 6A)
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TABLE 3 Model performance at the four study sites is represented by the mean and standard deviation of each statistical metric.

Overall Open (CH* < 2m) Under-canopy (CH* > 2m)
Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall
Tuolumne 0.68 £ 0.20 0.90 £ 0.08 0.60 & 0.25 0.7540.18 0.90 & 0.08 0.69 4 0.23 0.28 +0.29 0.81£0.18 0.21 +£0.27
San Joaquin 0.7440.18 0.82 4 0.14 0.70 4 0.20 0.81 +0.14 0.81 +0.14 0.83 +0.16 0.57 +0.24 0.84 +0.16 0.46 4 0.25
Gunnison 0.77 £ 0.10 0.91 £ 0.05 0.67 +0.13 0.85 4 0.07 0.92 4 0.05 0.80 & 0.10 0.29+0.18 0.88 £ 0.06 0.19 4+ 0.16
Engadin 0.90 £ 0.06 0.88 4 0.07 0.92 4 0.04 0.90 £ 0.05 0.88 4 0.07 0.93 4 0.04 0.5540.21 0.58 +0.18 0.534+0.22
Open areas refer to regions with a canopy height <2 m, while under-canopy areas refer to regions with a canopy height >2 m.
CH* represents canopy height.
Planet SCA

Planet false color image
A7 N

Tuolumne - Cherry/Eleanor
(2019-07-05)

FIGURE 6
Examples of the spatial distribution of snow in PlanetScope images. The left panel presents cloud-free PlanetScope images from July 5th, 2019,
overlaid on a Google Satellite base map. A False color scheme using the NIR, red, and green bands highlights vegetation in red and makes it easier to
distinguish it from snow. Rows (A—C) demonstrate the performance of the RF in mapping SCA at three example sites, with a specific focus on open,
shaded, and forested areas, respectively. The right panel has four columns: Planet false color images, binary SCA derived from ASO snow depth using
a 10 cm threshold, binary SCA derived using our RF model for the PlanetScope image, and the difference between lidar-derived SCA and Planet SCA.
The legend OE and CE refer to omission errors and commission errors, respectively.

Lidar-derived SCA

SCA difference

and small snow patches (Figure 6C). Only a small portion of
pixels showed disagreement between lidar-derived SCA and Planet-
derived SCA and were mostly located at the edges of snowpack
and under-canopy areas. Commission-errors were mainly found
at the edges of forests (Figure 6A) and snow patches (Figure 6B),
while omission-errors were mainly found in the forested areas
(Figure 6C).

4.2. SCA accuracy in meadow areas

Within the 7,741 studied meadows in Tuolumne and San
Joaquin, the median F1 score, precision, and recall were 0.85,
0.97, and 0.82, respectively, which are comparable to the model
performance in open areas (CHM < 2m) across the four sites
(Figure 5). While the model’s performance varied notably within
each group, the overall accuracy of SCA mapping in meadows
showed a significant increasing trend as meadow size increased
or meadow shape complexity decreased, as revealed by the best-
fit lines between the median F1 score and the mean value
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of the grouped meadow size (Figure 7A) and shape complexity
(Figure 7B).

The F1 score for meadows in the size range of 5.2 - 5.8 X
10* m2 (13.0 - 14.0 acre), the largest meadow group, was found
to be 9% more accurate than the smallest meadow group, which
includes meadows in the size range of 4 — 9 x 10° m? (1.0 - 2.0
acre; Figure 7A). The median F1 score for meadows larger than
1.5 x 10* m? (3.8 acres), the median size of meadows studied, was
0.90, representing an 11% increase compared to smaller meadows.
However, it is noticeable that the SCA accuracy in the largest
meadow group was lower than that in a few other groups with
smaller meadow sizes. This can be partially explained by the
fact that meadow size is not the only factor that impacts SCA
mapping accuracy. Moreover, the model performance in the largest
meadow group was evaluated based on a relatively small number
of meadows (i.e., 121, or 1.6% of the total meadows), which may
not be representative due to the small sample size. Furthermore,
the shape complexity of meadows also impacted SCA accuracy,
with meadows with the simplest geometry (1.9 - 2.7 x 1072 m~1)
showing 10% more accuracy compared to those meadows with the
most complex geometry (8.7 - 9.5 x 1073 m~1) (Figure 7B).
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FIGURE 7

Relationships between mapped SCA accuracy with the meadow size (A) and meadow shape complexity (B). SCA model accuracy is represented by
the F1 score, and the shape complexity is represented by the perimeter-area ratio (PAR). Each boxplot represents a group of meadows falling within
the range of meadow size or shape complexity labeled on the x-axis. The boxes are colored based on meadow numbers according to the color
scheme shown in the legend. The red lines represent the best-fit line between the median F1 score and the mean values of the grouped meadow

size (A) and shape complexity (B).

4.3. SCA accuracy in forest edges and forest
gaps

The model showed a robust performance in mapping SCA for
areas located at a distance of at least 3-4 pixels (~10m) away
from forest edges (Figure 8). In the under-canopy portion, where
the PlanetScope images were not expected to detect snow, the
F1 score was low, and the overall PBIAS was negative. Notably,
the F1 score showed a dramatic increase in the transition zone,
which spanned ~3-4 pixels on PlanetScope imagery (equivalent
to about 10 meters; Figure 8A). When the DCE exceeded 10
meters, the F1 score remained stable across all four sites.
Moreover, the overall PBIAS for the Gunnison and Engadin sites
was close to 0%, whereas Tuolumne showed a small negative
PBIAS, and San Joaquin had a small positive PBIAS (Figure 8B).
Although many other factors may influence mapped SCA accuracy,
for satellites like the PlanetScope constellation at the about
3-m spatial resolution, the model can provide more robust
SCA information for areas located more than 10m away from
forest edges.

The model showed a promising capacity for mapping snow
cover in forest gaps, which refer to areas with 3m < DCE < 27m
or 1-9 pixels away from forest pixels, as shown in Figure 9. The
median F1 scores for large forest gaps (15m < DCE < 27 m) were
0.82,0.86, 0.87, and 0.93 for the Tuolumne, San Joaquin, Gunnison,
and Engadin sites, respectively. Despite higher SCA uncertainties
in medium and small forest gaps compared to large gaps, the
model still demonstrated a reliable ability to map SCA in those
regions, with median F1 scores of 0.72 and 0.82 across the four sites,
respectively. For small forest gaps (3m < DCE < 9m), where the
model performance was relatively poor, the median F1 score was
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0.62,0.79, 0.80, and 0.77 for the Tuolumne, San Joaquin, Gunnison,
and Engadin sites, respectively.

The overall PBIAS for small, medium, and large forest gaps
and areas outside forests was relatively low for all sites, particularly
for Gunnison and Engadin, while forest clusters and forest
edges showed large negative PBIAS (Figure 9B). Overall, the SCA
accuracy increased with distance from the forest edge and toward
open areas, and the model performed worst in deep forest clusters
(—9m < DCE < —3m) and forest edges (—3m < DCE < 3m),
where the ground surface is obstructed by tree branches.

5. Discussion

5.1. Overall model performance

High spatiotemporal resolution snow cover data is critical
for studying water availability and changes in plant phenology
in seasonal snow-covered ecosystems, such as montane forests
and meadows. In this study, we investigated the performance of
a Random Forest (RF) model in mapping SCA over meadows
and forests using PlanetScope imagery. The RF model achieved
comparable performance with prior studies that applied more
sophisticated and computationally expensive methods (Cannistra
et al., 2021; John et al., 2022). For the open areas in the Gunnison
site. where we used almost the same Planet images as that of
Cannistra et al. (2021), RF achieved an F1 score of 0.85, precision
of 0.92, and recall of 0.80, while the CNN-based method reported
slightly lower performance with an F1 score of 0.82, precision of
0.88, and recall of 0.77 recall. However, the performance of the
CNN-based method could be improved by including additional
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FIGURE 8

Relationships between model performance and the distance to canopy edge (DCE) for all pixels at the four study sites. The model performance is
measured using the F1 score (A) and the percentage bias (PBIAS) (B) of each DCE group. The shaded areas on each curve represent the range of
values within one standard deviation of the F1 score (left) and PBIAS (right) of the images tested at each site. The under-canopy region refers to DCE
values below 0 m; the transition zone, shaded in gray, encompasses DCE values from Om to 10 m; and the forest gaps and edges to outside forests
refer to DCE values higher than 10 m.
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FIGURE 9

Model performance within defined land type in forested areas for the four study sites. The red dots represent the mean F1 score (A) and percentage
bias (PBIAS) (B) of each land type on one PlanetScope image. The boxplot represents the range of F1 score and PBIAS of each land type across all the
PlanetScope images used for each study site.

information, such as the Normalized Difference Vegetation Index  accuracy in more diverse conditions. However, new features like
(John et al., 2022). dates or locations may be necessary to account for the differences in

Including samples from different dates and locations in the  environmental conditions. For simplicity and proof of concept, in
training of the RF model may have the potential to improve SCA  this work, we only used one image to train the model and explored
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the Random Forest algorithm’s capability in snow mapping with the
assumption that it could be extended to a bigger training dataset.
The RF model showed good transferability across four study sites,
as demonstrated by the validation results in Table 3, and proved
efficient for identifying snow in meadows and forest gaps. The
model was trained on one PlanetScope image and applied to 103
images, of which 61% had an F1 score higher than 0.80 in open
areas (canopy height < 2m). The model’s inability to accurately
predict snow cover in under-canopy areas is expected since passive
optical sensors, like those used in the PlanetScope Constellations,
cannot penetrate forest canopy (Figure 5G).

Our model showed much higher omission-errors than
commission-errors. The primary reasons for the omission errors
in SCA mapping from Planet imagery are the canopy obstruction
and the presence of mixed pixels of snow and trees at forest
edges. Other factors such as illumination conditions and landscape
shadows caused by mountain terrain, tall trees, and cloud cover
can further exacerbate the problem and lead to omission-errors
(Raleigh et al., 2013; Hall et al., 2019; Zhang et al., 2021; Luo et al.,
2022). Mapping SCA can be challenging under low illumination
and landcover shadows, as snow pixels and snow-free pixels have
different reflectance characteristics compared with those in open
spaces with good illumination conditions (Raleigh et al., 2013; Hall
et al., 2019; Zhang et al., 2021; Luo et al, 2022). Additionally,
our model is limited to cloud-free images because the PlanetScope
images do not have a shortwave infrared band, which is necessary
to distinguish snow from clouds. Planet provides a cloud mask for
each image, which could be helpful in SCA mapping. However,
future studies are needed to assess the accuracy of the cloud masks.

5.2. Model validation sensitivity

To understand the impact of the snow depth threshold
on the model validation results, we performed a sensitivity
analysis on a randomly selected PlanetScope image
(20180528_181110_1025_3B). In this analysis, we evaluated
Planet-derived SCA using lidar-derived SCA with threshold ranges
from 1 to 15cm (Supplementary Figure 1). This range covers
the thresholds used in previous studies to generate snow extent
from ASO lidar snow depth data (Cristea et al., 2017; Kostadinov
et al., 2019; Cannistra et al., 2021; John et al., 2022). Because
the optical sensors, like those used by PlanetScope, cannot see
the under-canopy ground, we excluded forested areas for the
sensitivity analysis.
that
decreased while recall increased as the threshold increased

The  sensitivity  analysis  showed precision
(Supplementary Figure 1). The overall F1 score showed an
increasing trend with the increase of threshold. However, only
a small difference (1.2 km? or 0.8%) in lidar-derived SCA was
observed between using a 1 and 15 cm threshold. The difference in
F1 score was also negligible at 0.01 or 0.29%, indicating that using
a 10cm threshold to derive snow cover from the lidar-derived
snow depth data was a reliable and reasonable selection for model
validation (Cannistra et al., 2021; John et al., 2022).

The 103 validation images were acquired by three different

generations of PlanetScope instruments (Figure 2). While the
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band configurations varied slightly among the three PlanetScope
satellite instruments (Figure 2), our model proved suitable for
mapping SCA for all three generations with high accuracy
(Supplementary Figure 2). For example, the median F1 scores for
PS2, PS2.SD, and PSB.SD were 0.77, 0.67, and 0.76, respectively.
While training separate models for different PlanetScope
instruments could further improve SCA mapping accuracy, we
chose not to do so, as we aimed to examine the universality of
the model and ensure its high applicability and simplicity. The
impact of sensor discrepancy will become even more negligible in
newer products, such as the harmonized PlanetScope product that
matches the spectral responses of Copernicus Sentinel-2 (Moon
etal., 2021).

We performed a basic image screening to remove images
that were significantly contaminated by cloud cover or showed
low spectral quality (11% of the total image collection). The
overall model accuracy could be further improved by implementing
a more stringent screening process, given the reported data
quality issues such as image saturation artifacts and scene-to-scene
misregistration, as well as inconsistency in geolocation accuracy
and parallax-induced offsets between spectral bands (Frazier and
Hemingway, 2021; Aati et al., 2022). For example, the misaligned
geolocation of different spectral bands, which is particularly
noticeable for the pixels located at the ridge of the mountains and at
the edge of snowpacks in Dove-R and SuperDove images, is likely
to cause commission errors if the “real” ground is not covered by
snow (snow-free; Figure 6).

5.3. SCA in meadows and forest gaps

Our study is motivated by the growing volume of high-
resolution satellites data at the sub-meter to meter scale (Baba
et al., 2020; Cannistra et al., 2021; Li et al., 2021; Hu and Shean,
2022; John et al., 2022), which shows a high potential for mapping
snow cover in mountain ecosystems like meadows and forests.
Changes in snow cover distribution over time and space can result
in significant differences in the spatial variability of soil moisture
and soil temperature, thereby affecting the timing and location of
plant emergence in these ecosystems. Driven by the interaction of
snowfall, wind, vegetation, and terrain, mountain snow cover and
snowmelt time often show high spatial heterogeneity even at fine
scales (<10 m). By analyzing high-resolution PlanetScope images,
we can observe spatial and temporal changes in snow cover, which
can inform plant phenology monitoring in mountainous meadows
and forest gaps.

Our study only considers the impact of meadow size and
geometry on SCA mapping accuracy. It is worth mentioning that
other factors may also influence SCA accuracy in meadow areas.
For example, the decrease in SCA accuracy for the largest meadows
(Figure 7) could be due to the increase of mixed pixels. The meadow
areas in Figure 7 are large enough that wind redistribution of snow
cover creates a patchier snow cover, resulting in more mixed pixels,
which are always more challenging to classify than pure snow or
snow-free pixels. The height and types of trees surrounding the
meadows can cause different shadow and mixed pixel conditions,
potentially affecting SCA accuracy. Additionally, the presence of
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different land cover types within meadows, such as streams, as well
as differences in snowmelt timing, may also lead to the occurrence
of more mixed pixels, which can further affect the accuracy of
SCA mapping.

While mapping snow using optical satellite images in forested
areas remains challenging due to the obstruction caused by tree
canopies, we were able to derive snow cover in areas as close
as 10m from trees, as well as in relatively large forest gaps (i.e.,
15m < DCE < 27m) using PlanetScope imagery. Airborne or
UAV lidar-derived snow depth data may provide better estimates
of SCA under-canopy (Cristea et al., 2017; Kostadinov et al., 2019;
Cannistra et al., 2021; Koutantou et al., 2021; John et al., 2022), but
the spatial coverage of the flights was limited to the available budget.
Canopy adjustment approaches are also commonly used to estimate
under-canopy snow cover based on viewable SCA or viewable snow
fraction, which assumes that the snow cover in open areas is the
same as under-canopy snow cover within one pixel (Painter et al.,
2009; Nolin, 2010; Raleigh et al., 2013; Rittger et al., 2020). With
high-resolution PlanetScope SCA maps in forest gaps, we will better
understand snow cover distributions in forested areas, which could
inform future canopy adjustments to get a better estimate of under-
canopy snow cover. Additionally, high spatial and temporal fusion
datasets, such as the Harmonized Landsat and Sentinel-2 product,
offer new opportunities for mapping SCA in the meadow and
forested areas.

The overlap of meadows and forests with seasonal snow makes
snow cover a critical factor in controlling the eco-hydrological
process at high latitudes and in alpine regions. Recent studies
have documented significant changes in the compositions and
structures of vegetation species due to reduced snow cover, earlier
snow disappearance, and drier soil moisture (Chen et al., 2008;
Myers-Smith et al., 2011; Sherwood et al.,, 2017; Amagai et al.,
2018). Earlier snowmelt could lead to earlier plant emergence
and development, which increases the risk of plants’ exposure
to lower air temperatures in winter and early spring, resulting
in more frequent and serious frost damage and reducing plant
reproduction rate. Therefore, a series of high spatiotemporal
resolution maps of mountain snow cover can support future
analysis of the spatial diversity of plant communities and studies
on meadow or forest ecosystem functions (Loheide and Gorelick,
2007; Loheide and Lundquist, 2009; Lowry et al., 2011; Blackburn
etal., 2021).

6. Summary and conclusion

To advance snow cover mapping in mountainous areas,
we developed a machine learning model to map SCA using
PlanetScope imagery at a 3-m spatial resolution and explicitly
evaluated the mapped SCA accuracy in montane meadows and
forest gaps. The PlanetScope-derived SCA showed good agreement
with SCA derived from a lidar snow depth dataset over four study
sites in the Western United States and Switzerland, with a median
F1 score of 0.75 for all 103 PlanetScope images. Tree canopy
obstruction caused the main omission-errors for SCA mapping,
as indicated by the median recall values of 0.21 and 0.80 for
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under-canopy and open areas, respectively. The model performed
much better in open areas with a relatively high median F1 score
0f 0.82.

The use of high-resolution PlanetScope imagery showed
promising capability for mapping SCA in montane meadows and
forest gaps. The model had an overall median F1 score of 0.83 for
7,741 studied meadows at the Tuolumne and San Joaquin sites.
SCA accuracy in meadow areas was influenced by the meadow size
and meadow shape complexity. Mapped SCA for larger and more
simply shaped meadows was generally more accurate than that
for smaller and more complexly shaped meadows. The median F1
scores in forested areas were higher for large gaps (i.e., 15 m< DCE
< 27 m) than for small gaps (i.e., 3 m< DCE < 9m). Specifically,
the median F1 score for large forest gaps at the Tuolumne, San
Joaquin, Gunnison, and Engadin sites were 0.82, 0.86, 0.87, and
0.93, respectively, which were at least 8% higher than those for
small forest gaps. While mapping SCA accurately over regions close
to or under forest canopy remains challenging, the proposed RF
model could provide robust SCA information for the very close
regions (>10m) to the forest edges and relatively large forest gaps
(i.e., 15m < DCE < 27 m). This advance in our snow mapping
capabilities in montane forests will have profound implications for
future ecohydrological studies.

7. Code and data

The reproducible SCA mapping model and code are available
on GitHub (https://github.com/KehanGit/High_resolution_snow_
cover_mapping.git). The tutorial Jupyter Notebook is published as
a GeoScience Machine Learning Resources and Training “use case
book” in the GeoSMART GitHub repository and hosted on GitHub
pages (GeoSMART, https://geo-smart.github.io/scm_geosmart_
use_case/). More information about the GeoSMART organization,
methods to get in contact, and resources for advancing machine
learning use in the geosciences can be found on the website
at geo-smart.github.io.

To improve the reproducibility and reusability of the SCA
mapping application, we adopted a workflow management
tool—Geoweaver (Sun et al., 2020, 2022), to rebuild the SCA
mapping workflow. The SCA mapping workflow is available on
GitHub (https://github.com/geo-smart/sca_mapping_geoweaver)
and users can download the latest released zip file and
import it into Geoweaver to browse and run. Geoweaver
allows convenient sharing of everyone’s progress among team
members without losing details and model run history, as
source code, model history, and output logs are all saved to
a local database that is easily portable. We hope the adoption
of Geoweaver can greatly improve the FAIRness of the SCA
workflow for the scientific community and help serve as a
valuable community asset fostering collaborative, reproducible
future research.

The PlanetScope images used in this study are accessible
through the NASA Commercial Smallsat Data Acquisition (CSDA)
program or the Planet Education and Research program, and the
SCA maps will be made available in a Zenodo repository.
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