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Abstract: Integrating Artificial Intelligence (AI) techniques with remote sensing holds great potential
for revolutionizing data analysis and applications in many domains of Earth sciences. This review
paper synthesizes the existing literature on Al applications in remote sensing, consolidating and
analyzing AI methodologies, outcomes, and limitations. The primary objectives are to identify
research gaps, assess the effectiveness of Al approaches in practice, and highlight emerging trends and
challenges. We explore diverse applications of Al in remote sensing, including image classification,
land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and
data fusion. We present an overview of the remote sensing technologies, methods employed, and
relevant use cases. We further explore challenges associated with practical Al in remote sensing,
such as data quality and availability, model uncertainty and interpretability, and integration with
domain expertise as well as potential solutions, advancements, and future directions. We provide
a comprehensive overview for researchers, practitioners, and decision makers, informing future
research and applications at the exciting intersection of Al and remote sensing.

Keywords: Artificial Intelligence; remote sensing technology; deep learning; LIDAR; image classification;
object detection; change detection; data analysis

1. Introduction

Remote sensing is a technology that enables data collection without direct contact
with the subject, utilizing sensors to measure or detect various types of energy, such as
electromagnetic radiation and acoustic signals, emitted, reflected, or scattered by the object
under investigation [1]. Multiple sensors and platforms have been developed for remote
sensing. As sensors continue to advance, the amount of remote sensing data generated
has reached staggering proportions. For example, according to NASA’s Earth Science
Data Systems (ESDS), the Earthdata Cloud held more than 59 petabytes (PB) of data as
of September 2021. ESDS estimates that this amount is expected to increase to more than
148 PB in 2023, 205 PB in 2024, and 250 PB in 2025 [2]. To effectively manage this massive
volume of remote sensing data, preprocessing techniques, including noise reduction and
sensor calibration using a variety of algorithms and data compression algorithms, are
utilized to minimize the data size, while computer systems with ample memory and
parallel processing capabilities facilitate the handling of these large datasets [3].

With the increasing data quality and volume from remote sensing platforms, there
is a need for computational platforms and effective tools to handle and extract valuable
information from remote sensing datasets. Al tools can assist in managing large volumes of
observations, modeling, analysis, and environmental forecasting, and have proven effective
for key tasks such as noise reduction [4], data fusion [5], object detection [6,7], and many
other important applications. As Al technologies develop, acquiring and storing remote
sensing data becomes increasingly important. The process of obtaining this large volume
of data entails using various sensors on different platforms, such as Unmanned Aerial
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Vehicles (UAVs) [8], unmanned ground vehicles (UGVs), aircraft, and satellites. These
sensors, including Global Positioning System (GPS), Inertial Measurement Unit (IMU),
LiDAR, and cameras, play an important role in capturing diverse types of energy, such
as electromagnetic radiation and acoustic signals, emitted, reflected, or scattered by the
objects of interest. In remote sensing, fusing data from multiple sensors, such as LiDAR,
multispectral or hyperspectral imaging, and radar, facilitates comprehensive and detailed
analysis of the Earth’s surface, atmosphere, and environment [9]. In advanced applications,
Al-powered onboard and ground processing systems take center stage, autonomously
handling critical tasks like calibration, filtering, filling, and scaling [10,11]. These algorithms
identify intricate patterns and detect anomalies, minimizing subjectivity and bias in the
analysis process and empowering researchers to efficiently assimilate, analyze, and interpret
vast amounts of remote sensing data with unprecedented speed and accuracy.

A number of challenges related to Al approaches may limit their practical applications.
For example, training Al algorithms, especially deep learning models, requires significant
computational resources, making them challenging to develop on resource-constrained
shared devices. Many neural network-based models are often considered black-box models,
and understanding the reasons behind Al predictions is difficult but critical for gaining
trust and ensuring effective decision making [12]. Creating labeled datasets for training
Al models in remote sensing can be labor-intensive and time consuming, especially for
fine-grained or multi-class tasks [13], and transferring Al models trained on one dataset
to perform well on different datasets can also require additional resources. Incorporat-
ing domain-specific knowledge and expertise into Al models is essential to ensure the
representation of relevant features and relationships [14,15].

To successfully deploy an operational Al model, there are a few critical steps to
consider. First, real-world applications usually need Al models to scale efficiently to
process large-scale remote sensing data in real time, with minimal turnaround. Practical
Al systems require collaborative platforms for Al developers, domain experts, and remote
sensing practitioners working together to share knowledge, data, and best practices, with
public-facing applications displaying user-friendly tools and interfaces that enable non-
experts to leverage Al capabilities for remote sensing applications effectively. Uncertainty
estimates are also needed for decision-making processes, especially in accuracy-critical
applications like precision agriculture and environmental monitoring [16]. When integrated
with social media and sensitive data, Al systems need to address privacy concerns, ethical
considerations, and compliance with local and international regulations.

This review paper aims to comprehensively evaluate and synthesize the existing
literature on the need to develop practical Al in remote sensing. We aim to provide
valuable insights that inform future research and applications. Key contributions of this
paper include the following:

1.  Overview of successful examples of practical Al in research and real-world applications;

2. Discussion of research challenges and reality gaps in the practical integration of Al
with remote sensing;

3. Emerging trends and advancements in practical Al techniques for remote sensing;

4. Common challenges practical Al face in remote sensing, such as data quality, avail-
ability of training data, interpretability, and the requirement for domain expertise;

5. Potential practical Al solutions and ongoing or future real-world applications.

We adopted a structured approach to organize this paper. First, we commence with a
background, which is a significant section that provides crucial context on Al and remote
sensing, emphasizing key techniques. Subsequently, we explore various applications of
Al in remote sensing, presenting an overview of the methods employed and relevant use
cases. Additionally, we discuss the challenges related to Al integration in remote sensing.
Finally, we summarize futuristic Al applications that can potentially transform various
fields beyond what we currently imagine.
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2. Basics of Al and Remote Sensing

This section comprehensively explores the fundamental concepts of remote sensing
and discusses key Al techniques in this field. A systematic literature review was con-
ducted to achieve a comprehensive understanding, encompassing reputable sources such
as peer-reviewed publications, conference papers, and technical reports. The selected litera-
ture was critically analyzed, and key insights and findings were synthesized to provide
comprehensive coverage of a broad spectrum of Al techniques in remote sensing.

2.1. Brief Recap of Remote Sensing Technologies

Understanding the fundamental principles of remote sensing is important for compre-
hending its diverse techniques and applications and integrating them with Al techniques.
Remote sensing systems are built to take advantage of the various parts of the electromag-
netic spectrum (Figure 1) and atmospheric windows to observe different targets. Passive
sensors detect natural energy emitted or reflected by the Earth, such as optical sensors that
capture sunlight reflection (Figure 2a), whereas active sensors emit energy and measure the
reflected or backscattered signals (Figure 2b). This wide range of sensors enables remote
sensing data to be acquired via satellites for global coverage, aircraft for higher spatial
resolution, and drones for small-scale data collection [17].
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Figure 1. Simplified representation of the electromagnetic spectrum (adapted from https:/ /crisp.nus.
edu.sg/~research/tutorial /em.htm, accessed on 30 July 2023).

Once remote sensing data is acquired, interpreting images and digital data becomes
crucial in extracting meaningful information. Digital image processing techniques include
filtering, image fusion, feature extraction, and classification algorithms, enabling the extrac-
tion of valuable insights [18]. The following paragraphs describe the main remote sensing
techniques, while Al methods that assist with data processing are presented in Section 2.2.

2.1.1. Optical Remote Sensing

This technique focuses on gathering and interpreting optical data, primarily within
the visible and near-infrared sections of the electromagnetic spectrum (Figure 1) [19]. As
sunlight interacts with the Earth’s surface, materials on the surface absorb and reflect
specific wavelengths of light. This interaction creates unique spectral signatures that are
characteristic of different surface features [20]. The sensors, available in handheld, airborne,
and spaceborne modes, contain detectors that record light intensity across different wave-
lengths (Figure 3). The recorded data are transmitted to ground stations or processing
centers, where they are processed and transformed into images or spectral data.
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Figure 2. (a) Passive remote sensing: the sensor receives information. (b) Active remote sensing: the
sensor emits and receives information.
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Figure 3. The basic mechanism of optical remote sensing: sensors record information received as a
function of wavelength and atmospheric conditions.

In the context of optical remote sensing image (RSI) object detection, the primary
objective is to ascertain whether a given aerial or satellite image contains pertinent objects

and precisely determine their locations [21]. To ensure image quality, several processing
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steps are undertaken. Preprocessing involves noise removal and contrast enhancement
to improve clarity and interpretability, followed by feature extraction, where relevant
characteristics are identified and extracted from the images for further analysis. The
ultimate objective is to classify objects within the images and assess the accuracy of the
results. This classification process allows for effective interpretation and understanding of
the image information. An accuracy assessment is also performed to verify the reliability
and precision of the results.

In optical remote sensing, three primary modes are commonly used as follows: hand-
held, airborne, and spaceborne. Handheld sensors capture spectral signatures of ground
objects, facilitating ground-truthing and small-scale data collection. Airborne sensors
mounted on airplanes or drones offer higher spatial resolution and efficient coverage of
larger areas, making them useful for tasks such as land cover/land-use mapping [22],
crop health assessment, and identification of ecological hotspots. Spaceborne sensors on
satellites provide extensive coverage and repeated observations over time, enabling the
mapping of large areas, monitoring changes in land use, tracking migratory patterns, and
observing atmospheric conditions. The wealth of data collected by spaceborne sensors
contribute significantly to various applications, including environmental monitoring, urban
planning, disaster management [23], and climate studies.

Vegetation indices, like the Normalized Difference Vegetation Index (NDVI) [24], are
derived from optical remote sensing data by analyzing reflectance and absorption [25]. They
serve as early detectors of nutrient deficiencies by studying light reflection changes [26].
For instance, higher near-infrared reflection often means nitrogen shortage, whereas less
red light reflection could indicate phosphorus deficiency [27,28]. Monitoring these indices
over time offers predictive insights into vegetation growth dynamics, which extends to crop
trends. Al analysis of historical data uncovers vegetation responses to changing conditions
and can inform fertilizer and pesticide use by farmers, resulting in resource savings, higher
yields, and reduced chemical reliance. Al-based methods also proved valuable for deriving
snow-covered areas from sensors with radiometric information limited to visible and near-
infrared bands [29,30], allowing for applications in environmental monitoring at m-scale
spatial resolution.

2.1.2. Radar Remote Sensing

This technique operates in the microwave region of the electromagnetic spectrum
(Figure 1), involving the transmission and reception of microwave waves [31]. A radar
antenna emits pulses of microwave radiation toward the Earth or space, capturing the
echoes reflected by the targets and containing data regarding the targets’ characteristics,
including distance, direction, shape, size, roughness, and dielectric properties (Figure 4) [32].
By analyzing the time and intensity of the echo signals, radar remote sensing can generate
images or maps of the targets with varying resolutions and perspectives. It is widely used
in mapping land surfaces, monitoring weather patterns, studying ocean currents, and
detecting objects such as buildings and vehicles [33].

Synthetic Aperture Radar (SAR) produces high-resolution surface images and is par-
ticularly valuable for large-scale forest cover mapping because it can penetrate clouds and
foliage, enabling accurate mapping even in challenging weather or limited visibility condi-
tions [34]. The dual-polarization technology employed by SAR allows for differentiation
between different forest canopy types and the underlying vegetation. When the radar
signal encounters the forest canopy, it scatters, with a portion of the signal returning to the
radar instrument. This returned signal carries crucial information about forest structure and
biomass. By incorporating dual-polarization radar, the accuracy and comprehensiveness of
forest mapping are enhanced, providing detailed insights into both the forest structure and
underlying vegetation. The ability of SAR to effectively distinguish between various forest
canopy types and the vegetation beneath them is a significant advantage. This capability
enables SAR to generate high-resolution data that can detect changes in forest cover with
exceptional precision [35].
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Figure 4. Radar sensor: converts microwave signals into electrical signals.

2.1.3. LiDAR

LiDAR operates by emitting pulsed lasers that reach a target, and the time it takes for
the reflected light to return to the sensor is precisely measured to calculate the distance
between the sensor and the object (Figure 5) [36]. For airborne surveys, the distance
traveled is then converted to elevation, and multiple returns allow for mapping forests
and tree heights [37,38] Figure 5. LIDAR systems incorporate GPS systems, which identify
the locations of the emitted light energy, and an inertial measurement unit, IMU, which
provides the aircraft’s orientation in the sky.
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Figure 5. LiDAR sensor: detects objects at a distance D based on the speed of light, ¢, and the time
between the light being emitted and being detected. Multiple returns assist in mapping objects with
complex shapes. The yellow wave indicates multiple reflected returned rays, while the red-to-black
gradient ray and the adjacent black wave represent the laser pulse.

LiDAR systems record the reflected rays of light in the form of a waveform or distribu-
tion in two different ways. In a Discrete Return LiDAR System [39], the waveform curve
is analyzed to identify individual peaks, with individual points on the ground recorded
at each peak location, whereas a full waveform LiDAR System records the complete dis-
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tribution of the returned light energy, and although data processing is more complex, it
has the potential to capture a larger amount of information compared to discrete return
LiDAR systems. Whether collected as discrete points or entire waveforms, LiDAR data are
often available as a LIDAR point cloud, which represents a three-dimensional collection of
points in space.

2.1.4. Thermal Remote Sensing

This technique is a passive remote sensing method that measures the radiant flux
emitted by ground objects within specific wavelength ranges, typically 3-5 pm and
8-14 pm [40,41]. Thermal cameras, radiometers, and other sensors are utilized to cap-
ture energy within the thermal infrared range. The thermal detector can be either cryogenic
or uncooled and converts the data into electrical signals, which are then processed to
generate thermal images or temperature data of the target object or surface. By analyz-
ing these thermal images and data, valuable information about the object’s emissivity,
reflectivity, and temperature can be obtained. Factors that can impact the accuracy of TIR
remote sensing data include atmospheric conditions, changes in solar illumination, and
variations in target emissivity and radiance. To address these uncertainties, TIR data often
undergo calibration or correction processes to ensure precise temperature measurement
and analysis. Thermal remote sensing can be employed in environmental monitoring and
wildfire detection [42,43]. As an example, Figure 6 shows a temperature map derived from
ECOSTRESS data collected during the historic Pacific Northwest heatwave in 2021.

Land Surface Temperature
68 1
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[ : - T
0 20 40 50°C

Figure 6. Land surface temperature sensed by ECOSTRESS during the 2021 Pacific Northwest
heatwave. Image Courtesy: NASA, https:/ /earthobservatory.nasa.gov/images/148506/exceptional-
heat-hits-pacific-northwest, accessed on 3 August 2023.

2.1.5. Multispectral and Hyperspectral Imaging

Multi-spectral cameras have the ability to detect a broader range of wavelengths
beyond the visible spectrum, including infrared and ultraviolet (Figure 1). It relies on
spectral signature rather than spatial shape to detect and discriminate among different
materials in a scene [44]. The camera captures a sequence of images using different filters
that target specific wavelengths or bands of light in parallel, forming a comprehensive
dataset containing information from various spectral channels. The images then undergo
a series of processing steps, including normalization, calibration, alignment, registration,
noise reduction, and enhancement. Hyper-spectral imaging (HSI) [45] is a more advanced
technique that collects information across the electromagnetic spectrum with very high
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spectral resolution from ground objects using hundreds of narrow bands [46]. HSI data
contain numerous narrow spectral bands, creating a dataset known as a hyper-spectral im-
age cube containing spatial dimensions (x, y coordinates) and spectral bands (wavelengths)
and enabling detailed analysis of reflected or emitted light at specific spectral intervals.
However, the high-dimensional and noisy nature of the data poses analysis challenges,
requiring the application of algorithms that facilitate denoising, classification, detection,
and other tasks. It should be noted that there is no absolute threshold on the number of
bands that distinguish between multispectral and hyperspectral remote sensing [47].

Above all, data from multiple sensors are combined to gain a deeper understanding of
the system investigated [48,49]. Table 1 provides an overview of the pros and cons of each
remote sensing technique, with its advantages, limitations, and applications.

Table 1. Summary of various types of remote sensing techniques.

Technique

Advantages

Limitations

Sample Applications

Optical remote
sensing

- captures reflected solar radiation and
emitted thermal radiation for analysis
within the visible and near-infrared
spectrum bands

- provides various sensor types for the
collection of handheld, airborne, and
space-borne data

- offers extensive coverage and repeated
observations over time with spaceborne
Sensors

- atmospheric conditions can
impact data accuracy,
limitations due to sun angles
and shadows

- night-time data are not
available, and single snapshot
acquisition

- limited visibility due to clouds
which can hinder data
collection, inability to penetrate
clouds

- cost and availability of
high-resolution data

- land-use mapping, crop
health assessment

- Monitoring vegetation

- Monitoring climate change

Radar remote

- operates in the microwave region,
providing valuable data on distance,
direction, shape, size, roughness, and
dielectric properties of targets

- enables accurate mapping even in

- data processing can be
complex, especially for full
waveform LiDAR systems

- lack of spectral information

- mapping land surfaces and
monitoring weather patterns
- studying ocean currents

sensing challenging weather or limited visibility and limited Penetratlon through - de’fectmg buildings, .

conditions some materials vehicles, and changes in

" o - high sensitivity to surface forest cover
- utilizes dual-polarization technology for
) roughness
enhanced forest cover mapping
. o . - i lexity,

- provides precise distance and elevation ejaetgigﬁocfe;rs}r;%cxzi fi));ﬂni]

measurements of ground objects Li% AR systems

- high-resolution 3D data ) accuracy dependent on - create accurate and
LiDAR - penetration of vegetation yoep detailed 3D maps of trees,

- day and night operation
- multiple returns of one single laser pulse
and reduced atmospheric interference

elevation and angle

- high cost and availability

- limited penetration through
thick dense vegetation

buildings, pipelines, etc

Thermal remote

- measures radiant flux emitted by
ground objects within specific
wavelength ranges

- atmospheric conditions,
changes in solar illumination,

- agriculture (e.g., fire
detection, urban heat

sensing - provides information on the emissivity,  and target variations can impact  islands) and environmental
reflectivity, and temperature of target data accuracy monitoring
objects
- captu'res a broad range of we'ivelengths, - high-dimensional and noisy - recognition of vegetation
. including infrared and ultraviolet, for . . patterns such as greenness,
Multispectral and . . data in HSI pose analysis - .
comprehensive data collection vitality, and biomass
hyperspectral . . . challenges : .
. . - HSI provides valuable insights into . L - studying material
imaging - limited spectral resolution in

material composition, structure, and
condition

multispectral imaging

properties (e.g., physical
and chemical alterations
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2.2. Key Al Techniques in Remote Sensing
2.2.1. Conventional Machine Learning in Remote Sensing

The remote sensing community has extensively utilized conventional machine learn-
ing methods for various tasks such as classification, object detection, and geophysical
parameter estimation. These methods have proven effective in handling multi-temporal
and multi-sensor remote sensing data, providing valuable information for environmental
monitoring [14,50-53].

Ensemble decision-tree-derived classifiers are well-known algorithms for classifying
tasks with remote sensing data [54-56]. These algorithms include bagging [57], boost-
ing [58,59], and random forest (RF) techniques [60]. The RF approach was used in a variety
of applications ranging from land cover classification [61-66] to data fusion [7,67] classifica-
tion tasks using hyperspectral data [68,69]. Random forest involves bagging, creating an
ensemble of decision trees by randomly selecting samples and features from the training
data. By combining multiple decision trees, RF classifiers can provide robust predictions
while offering variable importance (VI) measurements and are often used in remote sensing
applications [70]. This feature selection method allows RF to effectively rank and eliminate
irrelevant features, reducing dimensionality and identifying the most significant remote
sensing and geographic data that offer new insights into the Earth system [49,71]. The
selective feature choice in RF is particularly beneficial as it prevents overfitting, enhances
generalization, and reduces computational load and redundancy. Despite these advantages,
accurately selecting discriminatory variables from high-dimensional remote sensing data
remains challenging [72], and the selection of training data may influence the results [73].

Similar to RE, boosting approaches such as the Extreme Gradient Boosting (XGBoost)
method also utilize decision trees as base learners but take the process further by combin-
ing the strengths of individual trees in a boosting technique [74]. This iterative process
sequentially creates decision trees, with each subsequent tree focused on correcting the
errors of its predecessors. This approach helps XGBoost achieve low bias and variance,
ultimately improving classification. An advantage of XGBoost in remote sensing data
classification is its ability to handle cases where different classes (e.g., algal bloom species)
exhibit similar spectral signatures but may have varying concentrations or distributions [75].
To ensure optimal accuracy and prevent overfitting, XGBoost employs hyper-parameter
tuning techniques.

Another conventional technique is Support Vector Machines (SVMs) that categorize
data by discovering high-dimensional hyperplanes that effectively separate distinct classes,
leading to improved data generalization and better image classification [76]. These ma-
chines handle challenges like non-linearity and dimensionality by utilizing the kernel trick,
which involves mapping input data into higher-dimensional spaces and relies on a subset of
training data, referred to as support vectors, to establish decision boundaries. By leveraging
kernel functions, SVMs transform input data, enabling the identification of hyperplanes in
expanded dimensions and effectively accommodating scenarios in which original feature
separability is limited [77]. Notably, SVMs incorporate a flexible soft margin approach,
allowing for a degree of misclassification tolerance [78].

2.2.2. Deep Learning in Remote Sensing

Deep learning, a subfield of machine learning, has emerged as a valuable tool in remote
sensing, offering solutions to unprecedented challenges and creating new opportunities in
remote sensing applications [53,79-81]. Deep learning utilizes hierarchical artificial neural
networks to identify patterns within data and extract valuable features from large and
complex datasets [82]. During training, the network adjusts weights and biases through
a process known as backpropagation, enhancing its ability to recognize patterns and
relationships as it processes more data. Deep learning networks gradually transform the
data into representations suitable for specific tasks such as image preprocessing, object
recognition, and pixel-based classification [83]. This section lists and briefly introduces
some common deep learning algorithms.
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1.  Deep Convolutional Neural Networks (DCNNs)

Deep Convolutional Neural Networks, DCNNSs, utilize a multi-layer architecture
effective for image recognition and classification tasks [84,85]. The architecture of DCNNs
consists of multiple layers, in which the initial layers, known as convolutional layers, play
a fundamental role in detecting low-level features within the input image (Figure 7). They
achieve this by applying convolutional filters, also called kernels, to the image. These filters
effectively act as feature detectors, focusing on edges, corners, and other basic patterns
that characterize the image, helping identify simple shapes and textures in the scene.
A non-linear activation function, Rectified Linear Unit, ReLU [86], is applied after each
convolutional operation to introduce non-linearity and enable the learning of more intricate
patterns. Following the convolutional layers, pooling layers are utilized to reduce the
spatial dimensions of the data while retaining the essential information. Pooling achieves
this downsampling by aggregating information from neighboring pixels and introducing
the ability to detect certain features regardless of their spatial position within the image.
The convolution and pooling process is typically repeated multiple times to allow the
network to learn higher-level features and representations progressively. As the network
goes deeper into its layers, it can capture increasingly abstract and sophisticated features
essential for recognizing complex objects or patterns. The last fully connected layer of
the DCNN generates probabilities associated with the different classes of objects, with the
softmax activation function ensuring that the class probabilities sum up to one. This final
classification step enables the network to recognize and categorize objects present in the
remote sensing image accurately [87].

—
|

J N

/ Convolution : Convolution 2
+ReLU Pooling +ReLU Pooling

Softmax

|
Repeated multiple times Fully connected OUtPUt

Input '
Figure 7. Illustration of a basic DCCN architecture.

The convolution is calculated using the following equation:
yli,j) = LY xli+m,j o+ n) - wlm,n] +b
m n

where y[i,j] is the output feature map at position (i, j), x is the input image, w is the filter, b
is the bias term, and m and #n are the indices of the filter.
An activation function can be defined as

ReLU(x) = max (0,x)

setting all negative values to zero and leaving positive values unchanged.

It is a simple activation function that is computationally efficient to compute and
helps alleviate the vanishing gradient problem, which can occur during backpropagation in
DCNN. It is worth noting that ReLU is not without its limitations. One issue is the “dying
ReLU” problem, where neurons can become “stuck” during training and become inactive,
resulting in zero activations that prevent learning. To address this, variants like Leaky
ReLU [88] and Parametric ReLU [89] have been introduced. While Figure 7 illustrates a
basic DCNN architecture as an example, recent years have seen the evolution of more
specialized architectures for specific applications. Notably, U-Net [90] and SegNet [91]
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are tailored for semantic segmentation tasks in images. U-Net features a contracting
path with repeated 3 x 3 convolutions, ReLU activations, and 2 x 2 max pooling for
feature extraction, followed by an expansive path for upsampling and generating detailed
segmentation masks. On a similar note, SegNet focuses on pixel-wise image labeling. It
comprises an encoder network akin to VGG16's convolutional layers, a decoder network
for low-to-full resolution feature mapping, and a pixel-wise classification layer. Further,
along the timeline, AlexNet [92] ushered in a new era for DCNNs with its multi-layered
architecture, employing convolution, max pooling, and Local Response Normalization
(LRN) to process image features. VGG introduces depth with its 3 x 3 convolutional
kernel, leading to VGG16 and VGG19 models known for their accuracy. The Inception
network, designed by Google, utilizes diverse kernel sizes for capturing features at varying
scales, whereas DeepLab [93] harnesses DCNNSs, atrous convolution, and CRFs for precise
semantic segmentation, achieving high accuracy and efficiency.

2. Deep Residual Networks (ResNets)

In remote sensing, the need for deep neural networks arises due to the complexity
of high-dimensional and noisy data caused by similar spectral characteristics of objects.
However, neural networks are trained using a back-propagation process that relies on
gradient descent, which decreases the loss function and finds the weights that minimize it.
If there are too many layers, repeated multiplications will eventually reduce the gradient
until it “disappears”, and performance will plateau or deteriorate with each additional
layer [94]. To handle this issue, ResNets were introduced as a solution to this “degradation
problem” in deep learning models [95,96].

ResNets introduce residual blocks or “skip connections” or “shortcut connections”.
These skip connections allow for the stacking of multiple identity mappings, which are
essentially convolutional layers that initially do nothing. By bypassing and reusing the
activations of the previous layer, the skip connections introduce a shortcut for the gradients
to flow more directly during backpropagation. This helps to speed up the initial training
phase by compressing the network into fewer layers.

The core difference of residual learning is the residual block and skip connections
which are defined as

y=F(x)+x

where F is the residual mapping (sequence of convolutional layers), x is the input to
the block, and y is the output. Residual blocks allow us to train much deeper neural
networks bypassing one or more layers in between. ‘Shortcut projection’, which is a
1 x 1 convolutional layer, denoted as P(x), is incorporated within the skip connection,
allowing for dimension adjustment and alignment of the feature maps. Shortcut projection
is represented as

y=F(x) + P(x)

where P represents the 1 x 1 convolutional layer used for dimension adjustment. By
ensuring that the information passed between layers is well-aligned and optimized, shortcut
projection contributes to faster training convergence and more effective model learning.
The initial training enables the model to establish a baseline data representation. Once this
initial training is complete, all layers are expanded, and the remaining parts of the network,
known as the residual parts, are allowed to explore more of the feature space of the input
image. Through these techniques, ResNets address the vanishing gradient problem and
facilitate the training of much deeper models, which can effectively capture and represent
the complex and subtle patterns present in remote sensing imagery.

3. You Only Look Once (YOLO)

Algorithms for real-time object detection and segmentation in remote sensing images
represent significant advancement with applications in the identification and classification
of multiple objects within large datasets of images or video frames. The algorithm named
YOLO (You Only Look Once) has gained popularity for its ability to process the entire
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image simultaneously using a Single Shot Detector and a CNN [97], initially leveraging the
Darknet framework [98]. Within YOLO, bounding boxes indicating the location, class, and
confidence score of each detected object within the image are generated [99] (Figure 8). The
confidence score produced by YOLO reflects both the likelihood of an object being present
in the bounding box and the accuracy of the box itself and is used in the final detection
process. Overlapping bounding boxes can still occur. To refine the results and ensure only
the most accurate detections are retained, YOLO incorporated Non-Maximum Suppression
(NMS), a technique that eliminates redundant bounding boxes by keeping only the one
with the highest confidence score. YOLOv2 [100] improves the speed and the type of object
detected, and YOLOV3 enables the prediction of objects of different sizes [101-103].

exnjH ey

Input DarkNet architecture ~ Class probability Output

Object score

Figure 8. YOLO workflow: the output shows identified objects from the original image. Darknet has
been replaced in later versions of YOLO by other frameworks.

YOLO has further evolved through multiple versions, currently eight, with different
updates, including changes in backbone architectures, the addition and then removal of
anchors, and the use of PyTorch and PaddlePaddle frameworks, with the overall goal of
balancing speed and accuracy for real-time object detection [104,105]

4.  Faster Region-Based CNN (R-CNN)

Faster R-CNN is a two-step approach for object detection in remote sensing [106]
based on two key modules: the Region Proposal Network (RPN) and the Fast R-CNN
detector. The Fast R-CNN module is an upgrade of the previous R-CNN approach allowing
simultaneous processing of the entire image and region proposals in a single forward
propagation pass and also replacing the slower SVM-based classification with a softmax
layer, increasing the processing speed while also improving detection accuracy [107]. The
RPN uses predefined bounding boxes of various scales and aspect ratios to determine
areas of interest for the detector. The RPN operates by sliding a small network over the
convolutional feature map, producing object proposals with corresponding objectness
scores that undergo further processing through fully connected layers for box regression
and box classification. This allows the model to refine the positions of the proposed
bounding boxes and classify them accurately.

5.  Self-Attention Methods

In remote sensing, approaches such as Recurrent Neural Networks (RNNs) face
challenges related to capturing complex contextual dependencies when analyzing longer
sequences of images. RNNs are well-suited for sequential data analysis, yet they encounter
difficulties in effectively capturing the nuanced relationships between distant elements
within extended sequences. This limitation can lead to a loss of important contextual
information and hinder their performance on tasks involving long-range dependencies. To
overcome this limitation, attention mechanisms have been designed to allow access to all
elements in a sequence at each time step, facilitating a comprehensive understanding of
dependencies and improving the handling of longer sequences.

The transformer architecture [108], originally developed for natural language process-
ing, has played a key role in advancing attention mechanisms by introducing self-attention
as a standalone mechanism. The model involves transforming feature maps into sequences
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of embeddings, which capture essential information from the input data. This capability
is particularly valuable in modeling spatial and spectral dependencies in remote sensing
imagery. By incorporating attention mechanisms, transformers can effectively learn and
leverage the contextual and spatial relationships present in remote sensing data, making
them highly suited for complex and high-dimensional data analysis [109].

The general formula for attention is

SelfAttention(X) = softmax(Q KT/ di v

where X is the input; Q is the query matrix obtained by linearly transforming the input
embeddings: Q = XWQ; K is the key matrix obtained by linearly transforming the input
embeddings: K = XWK; V is the value matrix obtained by linearly transforming the input
embeddings: V = XWy; dk is the dimension of the key and query vectors; WQ, Wy, and
WK are learnable weight matrices for linear transformations.

BERT (Bidirectional Encoder Representations from Transformers) is an example of a
transformer-based model that has shown remarkable success in language representation
learning tasks that captures bidirectional contextual information by considering both the left
and right context in all layers [110]. When applying BERT to remote sensing data, a specific
approach can be followed as described by [111] regarding the hyperspectral imagery. The
hyperspectral images (HSIs) are flattened and directly inputted into the BERT model for
feature extraction, allowing the model to learn global dependencies among spectral bands.
The addition of a multi-head self-attention (MHSA) mechanism accommodates diverse
pixel relationships regardless of spatial distance, enabling the model to effectively capture
long-range dependencies and complex relationships within the hyperspectral data.

6. Long Short-Term Memory, LSTM

LSTM, short for Long Short-Term Memory [112], is a type of recurrent neural network
(RNN) that is commonly used for sequence modeling and time series analysis [113]. The
LSTM design aims to address the vanishing gradient problem in traditional RNNs, which
can make it challenging to capture long-term dependencies in sequences [114]. LSTMs
receive an input sequence, which could be a sequence of sensor readings, or any other
sequential data, with each element in the sequence representing a feature vector. At each
time step, the LSTM network activates a series of gates: input gate, forget gate, and output
gate, controlling the level of information allowed to enter, exit, or be retained, with the
use of memory cell states and hidden states. The input gate takes the current input and
the previous hidden state as inputs, and a sigmoid activation function for these inputs
produces a value between 0 and 1 for each element in the feature vector. A selection process
is then applied, with 1 being retention and 0 being elimination in the cell. A similar process
occurs in the forget gate that decides which elements of the memory cell should be erased
or forgotten. The memory cell is then updated based on the input from the input and the
forget gates, allowing the LSTM to retain important information and discard irrelevant or
redundant information. The output gate takes the current input and the updated hidden
state from the previous time step and, similarly, determines which elements of the cell
should be outputted. The hidden state is updated based on the output from the output gate
and the updated memory cell, and the LSTM network can output a prediction based on
the updated hidden state. This prediction can be used for various tasks such as sequence
classification, sequence generation, or time series forecasting.

2.2.3. Other Al Methods in Remote Sensing

There is a growing interest in utilizing generative adversarial networks, GANs [115],
in remote sensing applications [116,117]. GANSs are neural networks excelling in handling
complex, high-dimensional data, even with limited or no annotated training data [118].

GAN s consist of two networks, a generator and a discriminator, trained in compe-
tition. The generator produces fake images (forgeries) using random noise, which the
discriminator evaluates alongside real images (Figure 9). Both networks train simulta-
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neously and compete against each other. The generator learns from the discriminator’s
feedback, incorporating synthetic and real images through backpropagation, leveraging the
discriminator’s error signal. This iterative cycle enhances the generator’s ability to produce
higher-quality, more realistic images. The generator becomes proficient at deceiving the
discriminator by refining the forgeries through successive iterations and feeding them back
to the discriminator, completing the GAN training process [119].

Real samples

"| Discriminator | ——}{ ©r
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Random noise FOI‘geI‘iBS

Figure 9. Simplified GAN architecture.
Adversarial training is as follows:
minGmaxD Ex~Pdata[logD(x)] + Ex~Pz[log(1 — D(G(z)))]

where G is the generator network, D is the discriminator network, z is random noise, x is a
real sample, P, is true data distribution, and P; is the prior distribution of the random
noise vector. The generator and discriminator compete to outperform each other in a
min-max game.

GANSs have various applications in remote sensing, including image-to-image transla-
tion tasks like dehazing and removal of thin clouds. For this purpose, the CycleGAN [79]
and its variants can be used to accomplish cloud-removal tasks [120]. CycleGAN can be
trained on datasets with image pairs with clouds and no clouds, with the goal of learning
the mapping between the two sets of images. With the trained CycleGAN, clouds can be re-
moved in new sets of images. CycleGAN consists of two generators and two discriminators,
with each generator handling the forward and back translation between the image domains,
while each discriminator distinguishes between real and synthetic images. During training,
the generators aim to maximize the probability of the discriminators making mistakes
while the discriminators strive to accomplish their tasks. Challenges related to applying
this method for cloud removal tasks include a high percentage of cloud cover in the image
or complex cloud shapes not seen in training datasets.

To enhance the resolution of low-resolution satellite images, the SRGAN (Super-
Resolution Generative Adversarial Network) model can be utilized [121]. Built on a ResNet,
the generator learns to map low-resolution images to high-resolution counterparts. The
discriminator’s task is to differentiate between generated and real high-resolution images.
During training, the generator seeks to deceive the discriminator, while the discriminator
aims to classify the images correctly [7].

For image-to-image translation tasks and other tasks such as image sharpening, clas-
sification, and others, the Pix2Pix GAN model can also be used [122]. A series of other
GAN-based algorithms, such as HRPGAN [123] and similar algorithms, can also be used
for super-resolution, whereas MARTA GANSs [124] can be used for data augmentation,
PSGAN for pan-sharpening [125], and ES-CCGAN [126] and CLOUD-GAN [127] based on
CycleGAN for dehazing and cloud removal [118].

Deep Reinforcement Learning (DRL) offers advantages in remote sensing, such as
learning from unlabeled data and improving decision-making processes [128]. DRL com-
bines reinforcement learning (RL) techniques with deep neural networks to create a pow-
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erful framework for solving complex problems. RL involves an agent interacting with an
environment to maximize cumulative rewards, while deep neural networks approximate
optimal policies. The agent observes the environment’s state, takes an action, and receives
a reward based on the action. The agent updates its policy using the reward signal and
transitions to a new state, aiming to maximize cumulative reward over time. Deep neural
networks serve as function approximators, capturing complex relationships between states
and actions and generalizing to new situations [129].

An example of DRL in remote sensing is unsupervised band selection in hyperspectral
image classification [130], specifically using a deep Q-network, DQN [131]. The currently
selected bands represent the state by formulating the problem as a Markov decision process,
MDP [132], and adding the next band is considered the action. The DQN learns a band-
selection policy by maximizing the reward signal based on classification accuracy from the
selected bands. Training involves normalized spectral signatures and reward signals, up-
dating DQN weights with batches of these data. The learned policy is evaluated on unseen
datasets to assess generalization and accuracy, demonstrating its superiority over other
methods. Adjustments to DQN parameters, such as layer count, neuron count, and learn-
ing rate, can further enhance accuracy and consistency. This model is suitable for remote
sensing image processing applications that analyze large amounts of data, overcoming
challenges related to limited labeled samples and redundant spectral information.

Each technique offers unique benefits and is suited for specific tasks in remote sensing,
enabling researchers and practitioners to choose the most appropriate approach based on
their data and objectives. Table 2 provides an overview of the key Al techniques in remote
sensing, highlighting their advantages, limitations, and applications.

Table 2. Al models comparison table.

Technique

Advantages

Limitations Applications

RF

- effectively handles multi-temporal
and multi-sensor remote sensing data
- provide variable importance
measurements for feature selection

- enhances generalization and reduces
computational load and redundancy
- RF feature selection prioritizes
informative variables by evaluating

- can be sensitive to the choice of
hyper-parameters

- does not guarantee that the selected
features will be the best for all tasks

- classification of remote
sensing data

- object detection in remote
sensing

interrelationships and discriminating
ability in high-dimensional remote
sensing data, leading to more accurate
classification results

XGBoost

- the ability to handle cases where
different classes exhibit similar spectral

signatures

- effective differentiation of classes with
subtle spectral differences, enhancing

- the classification of remote
sensing data with high

- hyperparameter sensitivity
- prone to overfitting

classification performance.

- utilization of hyper-parameter tuning
techniques to ensure optimal accuracy
and prevent overfitting

- slower than RF

accuracy and robustness

DCNNs

- efficiently handle intricate patterns
and features in remote sensing images
- learn hierarchical representations of
features from convolution and pooling
layers

- enable accurate recognition of objects
through fully connected layers with
softmax activation

- training DCNNs can be
computationally expensive, especially
for large-scale datasets

- may suffer from vanishing gradients
or overfitting if not properly
regularized

- remote sensing image
recognition and
classification

- object detection tasks in
remote sensing using RPN
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Table 2. Cont.

Technique Advantages Limitations Applications
- alleviate the degradation problem in
deep learning models, allowing the - implementing very deep networks . . .
o . RSO - image recognition object
ResNets training of much deeper networks may still require significant detection
- handling complex high-dimensional computational resources
and noisy data in remote sensing
- efficiently identify and classify
multlple ob]'ects in large datasets of - may struggle with the detection of . . .
images or video frames . ) . - real-time object detection
. . small objects in low-resolution images o
YOLO - simultaneously process the entire . . and segmentation in remote
. . - requires careful anchor box design for .o
image and region proposals . L sensing images
. . accurate bounding box predictions
- utilize NMS to remove overlapping
bounding boxes and improve precision
- - sequence modeling and
- capture long-range dependencies in . e O
. - transformer models can be image classification in
sequences and handle spatial and ) - . .
. memory-intensive due to their remote sensing data
. spectral dependencies in remote . . . . .
Self Attention . self-attention mechanism - time series analysis of
sensing data . .
methods . . - properly tuning the number of remote sensing data and
- provide access to all elements in a . . . . .
. . attention heads and layers is essential capture diverse pixel
sequence, enabling a comprehensive . . .
. . for optimal performance relationships regardless of
understanding of dependencies 1o
spatial distance
- training LSTMs can be time
- effectively captures long-term consuming, particularly for longer '
. sequences - sequence modeling and
dependencies in sequences . . . . . 9
LSTM L . - can struggle with capturing very time series analysis in
- overcomes the vanishing gradient . .
. ; long-term dependencies in sequences remote sensing data
problem with gate mechanisms . .
- may require careful tuning of
hyperparameters to prevent overfitting
- image-to-image translation
tasks like converting
. - training GANs can be challenging and  satellite images with cloud
- capable of handling complex, .. .
. . . o unstable, requiring careful coverage into cloud-free
high-dimensional data distributions . . .
A .. hyper-parameter tuning versions using CycleGAN
with limited or no annotated training . . . - . .
GANs data - generating high-quality, realistic - enhancing the resolution of
. images may be difficult in some cases low-resolution satellite
- data augmentation method enhances . .
. - may suffer from mode collapse, where images with SRGAN and
the performance of data-reliant deep .. oS
. the generator produces limited similar approaches
learning models T . . .
variations in images - image-to-image translation,
data augmentation, and
pan-sharpening
- requires careful design and tuning of improving unsupervised
- learns from unlabeled data to improve reward functions to ensure the desired P & unsup
.. . . band selection in
decision-making processes behavior hvperspectral image
- combines reinforcement learning (RL) - training deep neural networks in DRL yperspec a8
. - . . classification using DRL
DRL with deep neural networks for solving  can be computationally expensive and

complex problems
- handles redundant spectral
information

time consuming

- exploration vs. exploitation trade-off
in RL can impact the learning process
and can be dependent on the sample

with DON

- image processing
applications that analyze
large amounts of data

3. Current Practical Applications of Al in Remote Sensing

3.1. Land Cover Mapping

Al techniques have been widely used in mapping tasks for assigning labels to indi-
vidual image pixels and allowing for the categorization based on different spectral and
spatial features, providing valuable information about the distribution and characteristics
of land cover types in a specific area [133-135] (Figure 10). As a practical example, the
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Environmental Systems Research Institute (Esri) has recently released a high-resolution
(10 m) annual global land cover map (2017-2022), which was created using a full CNN
with a U-Net architecture developed using Impact Observatory [136]. To train this model, a
massive training dataset of over five billion labeled image pixels was utilized, generously
provided by the National Geographic Society. The map-making process involved utilizing
the comprehensive coverage and high spatial resolution of the European Space Agency’s
(ESA) Sentinel-2 satellite imagery.

LAND COVER

1AG

Figure 10. Esri Land Cover Explorer screenshot.

Creating the map entailed running the AI model on an extensive collection of ap-
proximately 400,000 Earth observations of Land Use/Land Cover, LULC [137], of around
500 terabytes of cached imagery. The model incorporated six Sentinel-2 surface reflectance
bands and generated ten land cover classes, including water, trees, grass, crops, and built
areas. To achieve a comprehensive depiction of land cover, the final map was created by com-
positing the outputs of the model applied to multiple dates of imagery throughout the year,
offering a comprehensive depiction of land cover. The computation process required approx-
imately 1.2 million core hours to handle the immense computational load, with Microsoft
Azure Batch expediting the processing time, with up to 6400 cores running simultaneously.

3.2. Earth Surface Object Detection

SpaceKnow’s GEMSTONE (Global Economy Monitoring System Delivering Trans-
parency and Online Expertise) project aims to develop advanced ML algorithms that utilize
satellite data for monitoring global economic activity [138]. These algorithms combine
spectral unmixing and deep neural networks (DNNSs) to detect [139] raw materials and
manufactured structures, enabling comprehensive monitoring. Spectral unmixing involves
analyzing the spectral properties of satellite imagery to identify and differentiate specific
materials of interest, whereas DNNs classify and distinguish these detected materials,
ensuring accurate and high-quality results. These algorithms are deployed in carefully
selected locations, and the analysis outputs are aggregated into specific economic indices.
Users can access this information via a user-friendly dashboard or an API (Application
Programming Interface), allowing seamless integration into their organizations” workflows.
The effectiveness of these algorithms has been demonstrated via case studies such as the
Nagoya Port Analysis, in which various elements, such as oil tanks, were detected and
tracked [140] over time, providing valuable insights into the port’s activity. A road algo-
rithm successfully monitored the expansion of the road network in Zayed City, Abu Dhabi,
showecasing its potential for large-scale monitoring of urbanization and road development.
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3.3. Multisource Data Fusion and Integration

Integrating information from various remote sensing techniques can provide a com-
prehensive understanding of objects or phenomena. This process involves collecting data
from diverse sources, ensuring accurate data registration and co-registration, integrating
correlated measurements, and estimating desired object attributes or identities [141]. For
instance, the European Space Agency (ESA) utilizes Al and satellite data to tackle survey-
ing water pipe networks, detecting leaks, and identifying new water sources. Access to
clean drinking water and reducing water pipe leaks are significant concerns in regions
dealing with water scarcity, both in developing and developed nations. To handle this,
ESA has developed a service catering to the needs of governments, water utilities, charities,
non-profits, and NGOs operating in these areas. The service merges neural networks with
multi-spectral and synthetic aperture radar satellite data, particularly ESA Sentinel 1 and
2 data. Neural networks recognize water’s spectral and backscatter signatures, indicating
moisture. This enables comprehensive surveys to locate underground water sources and
identify pipe network leaks. As a result, a detailed map of Earth’s sub-surface water has
been created, boasting a spatial resolution of 10 square meters [142]. This map encompasses
over 1.5 trillion [142] satellite tiles and stores vast amounts of data. ESA has also launched
a free underground water mapping service called SpaceWater.Al, with the support of Esri,
Nvidia, and Amazon Web Services. Pilot users, such as the United Nations High Com-
missioner for Refugees (UNHCR) and WaterAid, are already benefiting from this service.
The accuracy of identifying underground water sources reaches a maximum peak of up to
98% [142], although it may vary based on geographic and environmental conditions.

Additionally, ESA has also developed the Total Ecosystem Management of the Inter-
Tidal Habitat (TEMITH) project [143], led by the University of Southampton, to monitor
Solent’s intertidal habitat on England’s south coast using Earth Observation (EO) data.
This project focuses on two pressures: algal mats and sediment disturbance. Gathering and
preparing data involve multiple steps. Satellite data from various sources, including in
situ datasets, are used to select collection dates and locations. For feature detection, two
sensors are used as follows: Copernicus Sentinel-2 (10 m resolution) and the high-resolution
MAXAR (0.31 to 0.61 m). Imagery is captured within a 4 week timeframe, extending to
8 weeks if needed, preferably during low tide and cloud-free conditions. Sediment distur-
bance detection uses mapped polygon datasets for model training, supplemented by drone
imagery, aerial photography, and high-resolution satellite imagery for additional labeling.
The labeling process considers scarring morphology and context, selecting high-confidence
polygons for model training. Similarly, mapped polygon datasets for algal mats, seagrass,
and salt marsh detection come from diverse sources, including the Environment Agency,
Hampshire and Isle Wight Wildlife Trust, Natural England, and the Channel Coastal Obser-
vatory. Dataset selection is based on suitability and compatibility with available satellite
imagery, aiming for a match within two weeks of data collection. Prioritizing Sentinel-2
imagery known for cloud-free, low-tide images, enhances feature visibility. The project
trains three ResU-Net models and six U-Net CNN models. These models identify indicators
like nutrient enrichment, seagrass presence, and salt marsh presence, targeting sediment
disturbance and algal mats.

3.4. Three-Dimensional and Invisible Object Extraction

Remote sensing data are the primary source for extracting valuable information about
the 3D structures and spectral characteristics of objects [144]. Two key types of data used
in remote sensing are LiDAR data and hyperspectral data. LIDAR data provide detailed
information on object heights and shapes within a surveyed area, whereas hyperspectral
data capture the electromagnetic spectrum reflected or emitted by objects, allowing for the
identification and analysis of different materials based on their unique spectral characteris-
tics. However, both data types face challenges, such as spectral redundancy, low spatial
resolution for hyperspectral data, and the presence of high- and low-frequency information
in LiDAR data.
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Startups like Enview have introduced a Web-based Al service specifically designed for
LiDAR data analysis. By utilizing CNNs, Enview enables the automated identification of
physical objects within 3D point clouds, including power lines, pipelines, buildings, trees,
and vehicles. This technology is particularly beneficial for companies in the electricity and
natural gas distribution sector, streamlining object identification through the segmentation
and classification of LiDAR data. Enview’s Al technology has already delivered significant
cost savings by automating power line inspection [145].

In the realm of HSI, Metaspectral, a Vancouver-based company, has developed an
Al platform that combines HSI and edge computing to revolutionize various industries.
The platform incorporates data compression techniques and deep neural networks and
supports various neural architectures. By reducing data streams without compromising
information, the platform enables real time, pixel-by-pixel analysis of hyperspectral data.
Metaspectral’s Al platform finds applications in space exploration, recycling, and agri-
culture. The Canadian Space Agency utilizes this technology to measure greenhouse gas
levels on Earth. In recycling, the system accurately classifies plastics by analyzing their
chemical structures, enhancing the recycling process. In agriculture, the early detection
of diseases is made possible by identifying specific spectral signatures associated with
plant diseases, allowing for timely interventions. Additionally, the platform aids in climate
change mitigation efforts by detecting and analyzing wildfire risks through hyperspectral
analysis, facilitating proactive measures like controlled burns [146,147].

4. Existing Challenges

This section will discuss the challenges and limitations of Al in remote sensing [14],
with potential solutions and advancements for overcoming these challenges.

4.1. Data Availability

Al training data are often sourced from satellites, aerial sensors, or ground-based
instruments. However, these valuable data are not always readily accessible to researchers,
scientists, or organizations. Some datasets may be restricted due to proprietary rights or
controlled by government agencies, limiting their availability for broader use. Additionally,
certain remote sensing datasets have limited temporal coverage, making it challenging to
assess interannual and decadal variability [148,149]. Consequently, the limited access to
remote sensing data can impede the development and application of Al in this field.

To effectively train Al models, a significant amount of labeled data is required to
teach algorithms to recognize and interpret specific features and patterns in remote sensing
data. However, creating labeled datasets can be a time-consuming task that demands
expertise [150]. The availability of accurately labeled data is essential to achieve reliable
results when training Al models. Real-time or frequent updates of remote sensing data are
crucial for monitoring and analyzing dynamic environmental conditions and changes [151].
However, the availability of such timely data can be limited, especially in certain regions
or for specific types of data. This limitation can undermine the effectiveness of Al appli-
cations in remote sensing, as models trained on outdated or infrequent data may need
to represent current conditions accurately. Overcoming the challenge of data availability
in remote sensing requires collaborative efforts to improve data sharing and access [152].
The initiatives that promote open data policies, data-sharing platforms, and partnerships
between organizations can facilitate greater availability of remote sensing data. Collaborat-
ing with space agencies, government organizations, and private entities can also expand
access to the necessary data for training and implementing Al models in remote sensing
applications [153].

4.2. Training Optimization

Achieving optimal performance of AI models in remote sensing demands careful
consideration and a solid grasp of mathematics. Selecting suitable loss functions is im-
portant in guiding models toward improved accuracy. For instance, cross-entropy loss
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is commonly employed for land cover classification, whereas mean squared error (MSE)
loss is preferable for regression tasks [154]. Imbalanced datasets can pose a significant
challenge during model optimization when certain classes are rare or underrepresented. In
these conditions, the model may exhibit bias towards the majority class, resulting in poor
performance for the minority classes [155]. Optimizing complex models in remote sensing
comes with its own set of challenges. Deep learning models like CNNs or RNNs possess
numerous parameters and demand substantial computational resources for training [156].
Algorithms such as stochastic gradient descent (SGD) and its variants, such as Adam or
RMSprop, are commonly employed for parameter updates [157]. Fine-tuning the learning
rate, selecting appropriate batch sizes, and determining convergence criteria are critical
steps in optimizing complex models. Additionally, hardware limitations can introduce
training time and computational efficiency challenges.

4.3. Data Quality

The accuracy, reliability, and completeness of training data directly influence the
model’s performance and generalization capability [158]. Obtaining accurate and reliable
ground truth labels can be difficult due to limited ground-based observations, subjective
interpretations, or human errors [159]. For instance, mislabeling land cover classes or
confusion between similar classes can greatly affect the training and performance of mod-
els in land cover classification. Different sources, sensors, or acquisition times result in
variations in spatial resolution, spectral characteristics, or temporal patterns [160]. These
inconsistencies can introduce biases and complicate the training process. In time series
analysis, inconsistent temporal sampling intervals or missing observations can hinder the
model’s ability to capture temporal patterns accurately [161].

4.4. Uncertainty

Uncertainty arises in remote sensing data from various sources, including atmospheric
conditions, sensor limitations, data acquisition techniques, and natural variability, caused
by factors like clouds, haze, or aerosols, resulting in incomplete or distorted remote sensing
data [162]. Sensor characteristics and calibration also contribute to uncertainty [163].
Al models trained on static datasets may need adjustments to adapt to these dynamic
variations and may not generalize well to different locations or periods. Temporal and
spatial variability of natural phenomena also will further contribute to uncertainty in
remote sensing-based Al models [164].

4.5. Model Interpretability

Interpretability ensures the trustworthiness and validation of Al model outputs [165]
and becomes especially important in sensitive applications like environmental monitor-
ing [166] or disaster response, where transparency and accountability are crucial. However,
Al models, particularly complex deep learning models, often function as black boxes, mak-
ing it difficult to understand or explain their internal mechanisms and decision-making
processes [167]. Efforts are being made to address the interpretability of Al models in
remote sensing [168]. Techniques such as model explainability, feature importance anal-
ysis, or visualization methods can help shed light on the reasoning behind the model’s
predictions [169].

4.6. Diversity

Evaluating and validating Al models on diverse and independent datasets are critical
steps to assess their generalization ability. To ensure consistent and reliable performance in
real-world applications, it is essential to test the models across different geographic regions,
seasons, sensor types, and environmental conditions. However, one of the main challenges
lies in the availability of diverse and representative training data [6]. Currently, various
techniques are employed to address the data availability challenges. Data augmentation
generates additional training examples by applying transformations, such as rotation,
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scaling, or noise addition, to the existing data [170]. This technique exposes the model to
broader variations, enhancing its ability to generalize to unseen data. Another common
approach is transfer learning, where pre-trained models trained on large-scale datasets
like ImageNet serve as a starting point [171]. By fine-tuning these pre-trained models
on a smaller remote sensing dataset, the models can leverage their acquired knowledge
and adapt it to the specific task. Ensemble methods also contribute to diversity and
generalization [172] by combining multiple individual models, each trained with different
algorithms or variations of the training data.

While progress has been made in these areas, there are still unresolved aspects that
researchers are actively working on. Ensuring that the training dataset is representative of
the target population or the real-world distribution of data presents a significant challenge,
and collecting a representative dataset that covers all possible variations, particularly in re-
mote sensing, where data can be scarce or costly to obtain, is demanding [173]. Developing
effective techniques to adapt pre-trained models to remote sensing-specific features and
variations remains an ongoing research area.

Remote sensing applications often involve detecting and analyzing rare or complex
events [174], such as natural disasters or occurrences of rare species. Al models trained
on standard datasets may have yet to encounter such events during training, posing
challenges in generalizing these scenarios. Research efforts are focused on developing
techniques to handle these rare events and improve the generalization capabilities of
Al models. For example, IBM and NASA have collaboratively introduced the largest
geospatial Al foundation model, named watsonx.ai, in partnership with Hugging Face.
This model utilizes NASA'’s satellite data, specifically Harmonized Landsat Sentinel-2
(HLS) data, to revolutionize Earth observation and advance climate science. This joint
initiative aims to democratize Al access, particularly in addressing evolving environmental
conditions. The geospatial model is accessible on Hugging Face’s open-source platform,
showcasing its commitment to open Al and science. It stands out as the first open-source
Al foundation model developed in collaboration with NASA. This partnership emphasizes
the potential of open-source technologies in deepening our understanding of Earth’s
climate and environment. The watsonx.ai model excels in tasks such as flood and burns
scar mapping, demonstrating a 15 percent enhancement over existing techniques. IBM’s
expertise in Al and NASA’s Earth-satellite data contribute to the model’s accuracy and
effectiveness. The collaboration resonates with NASA’s Open Source Science Initiative and
IBM’s broader efforts in Al advancement. Moreover, this geospatial model holds potential
beyond its current applications. It could be adapted for tasks such as deforestation tracking,
crop yield prediction, and greenhouse gas monitoring. IBM’s Environmental Intelligence
Suite will soon feature a commercial version of the model [175]. Another common issue
is the perpetuation of biases and inequities when AI models are trained on biased or
unrepresentative data [56,176].

4.7. Integrity and Security

Biases or inaccuracies in the training data can result in biased or unreliable Al predic-
tions, which can have consequences in real-world applications [177]. To maintain integrity,
it is essential to prioritize transparency, fairness, and accountability throughout the Al
model development and training processes [178]. By adhering to these principles, the
integrity of the Al system can be upheld, instilling trust in its outcomes and promoting
ethical practices. As discussed above, maintaining integrity in remote sensing data involves
multiple aspects, including data quality, data integrity, and the prevention of tampering or
manipulation [179]. Protecting data integrity entails safeguarding the data from unautho-
rized modifications, tampering, or cyberattacks. Remote sensing data can be vulnerable to
malicious actions, such as data breaches or unauthorized access [180]. One concern is the
potential compromise of personal privacy through detailed imagery capturing identifiable
features or activities. To address this, robust encryption protocols [181] and secure commu-
nication channels should be implemented while transmitting remote sensing data [182].
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Additionally, secure storage systems, including servers or cloud platforms equipped with
access controls and encryption mechanisms, are essential for protecting the data from
unauthorized access. Privacy regulations, such as GDPR, impose strict data handling,
storage, and sharing requirements [183].

5. Ongoing and Future Practical AI Applications in Remote Sensing

This section explores ongoing and potential ideas that can advance practical Al appli-
cations. The workaround for these ideas may already be in progress, and some may inspire
future applications with transformative impacts on environmental management.

5.1. Wildfire Detection and Management

The application of Al in wildfire management is increasing steadily [184], using
advanced algorithms and remote sensing technologies to enable early detection and rapid
response. Al systems analyze data from satellites, drones [185], and sensors to track
wildfires in real time and predict fire behavior accurately by considering historical fire data,
weather patterns, and topographical information. This data-driven approach enhances
firefighting efficiency and reduces the impact of wildfires on communities and ecosystems.

Al’s benefit lies in its capacity to handle large-scale data analysis [186] and pattern
recognition, identifying hidden correlations in historical fire data, weather, and other
relevant factors. Al-powered drones equipped with thermal imaging cameras can swiftly
detect fires, leading to quicker response times and reduced costs. The Prometheus system
developed by ESA uses Al and satellite data to predict wildfire behavior. Successful Al
integration in wildfire management relies on a network of sensors collecting real-time
data on fire occurrence, weather, and environment, fed into Al algorithms for analysis.
Advanced ML techniques, like deep learning and neural networks, train AI models on
vast datasets to enhance accuracy. To harness Al’s potential, investments in infrastructure,
communication networks, and technology are necessary. Though initial costs may be
significant, benefits include reduced damages, improved response times, and enhanced
firefighter safety. As Al systems become more sophisticated, their seamless integration into
wildfire management practices will drive automation and efficiency.

5.2. lllegal Logging and Deforestation Monitoring

By analyzing satellite and drone imagery, Al can detect changes in forest cover, logging
patterns, and illegal encroachments. This information can be used to track deforestation
and identify areas that need protection. To revolutionize deforestation monitoring, Al
with satellite imagery helps detect changes in forest cover and detect illegal logging in
real time. The implementation involves effectively utilizing technologies like the Google
Earth Engine (GEE) [187] and employing advanced Al algorithms. Satellite imagery data
are collected from the different sources of remote sensing technology on changes in forest
cover, which are then subjected to data cleaning and organization during the pre-processing
stage of an Al model. The algorithms are then applied to analyze the data and identify
patterns in illegal logging activities in a particular geographical area, which helps in
decision making, ultimately leading to concrete actions against deforestation and holding
illegal loggers accountable. As Al technology advances, we anticipate developing even
more innovative and efficient applications for protecting our forests [188,189]. A notable
example of this approach is Global Forest Watch (GFW), which utilizes satellite imagery
and advanced algorithms to monitor deforestation globally, alerting governments, NGOs,
and stakeholders.

5.3. Coastal and Marine Ecosystem Monitoring

To protect coastal and marine ecosystems, Al can detect changes in coral reefs [190],
identify marine pollution, track marine species, and support the sustainable management
of coastal resources (Figure 11). One noteworthy trend in marine research involves using
image recognition algorithms to analyze photographs or videos of marine environments.



Remote Sens. 2023, 15, 4112

23 of 34

These algorithms can identify organisms or objects of interest, making them valuable
tools for monitoring changes in animal populations and pinpointing areas where human
activities are causing ecological damage. ML algorithms can also analyze underwater
sounds [191]. Understanding underwater soundscapes can be complex, but specific sounds
can be recognized and distinguished from background noise with ML. This capability
allows researchers and managers to monitor changes in ecosystem dynamics and gain
valuable insights into the evolution of marine ecosystems [192]. In marine research [193],
computer vision techniques can be used to analyze high-definition (HD) digital camera
photo sequences captured by fixed underwater stations, Autonomous Underwater Vehicles
(AUVs), and Remotely Operated Vehicles (ROVs) across various oceanic regions. This
technology facilitates the identification of areas with potential fish activity in their natural
habitat, providing details such as the number of fish, species composition, and abundance
in different locations.

Al with remote sensors

Analysis marine environment ‘

‘ Track changes ‘

[ Understand marine vocalization Identify marine pollution

Recognition of species

Figure 11. Al with remote sensors for coastal and marine ecosystem monitoring.

Support sustainable management

5.4. Biodiversity Conservation and Habitat Monitoring

Advanced image analysis techniques, such as object detection and classification, can
offer valuable insights to identify and monitor habitats, track species populations, and
assess ecological connectivity, thereby enhancing the accuracy and efficiency of biodiversity
monitoring [194]. Al helps improve the conservation and sustainable use of biological
and ecosystem values [195]. GEE, which integrates Al for geospatial data analysis, can be
used to process large amounts of satellite imagery and other remote sensing data [187].
Imagine deploying Al-powered cameras that can automatically recognize and count species
in remote areas and generate real-time data on population trends and distribution. This
information becomes invaluable in guiding conservation efforts and assessing the progress
of restoration projects. Another trend is Al applications that analyze extensive scientific
literature, news articles, and social media posts [196] related to biodiversity and envi-
ronmental issues. By extracting relevant information, identifying patterns, and detecting
trends, NLP algorithms enable researchers and policymakers to stay updated on the latest
developments in the field.
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5.5. Airborne Disease Monitoring and Forecasting

The future of using Al and remote sensing envisions a proactive and data-driven
approach to public health, and we might detect outbreaks early, respond rapidly, and
implement targeted interventions [197]. By monitoring various indicators, such as air
quality [198], weather patterns, and population density, Al can identify potential hotspots
and areas at risk. Remote sensing technologies equipped with Al-enabled sensors can
provide real-time surveillance of disease-prone areas [199]. Drones, for example, can collect
data on air quality [200], temperature, and humidity, whereas satellites can capture high-
resolution imagery. Al models trained on historical data, combined with remote sensing
inputs, can generate accurate disease forecasting models. By analyzing factors such as
environmental conditions, population movement, and social interactions, these models can
predict the future spread of airborne diseases, informing public health agencies to prepare
resources, implement preventive measures, and allocate healthcare facilities in advance,
minimizing the impact of outbreaks. Al can also be used to detect and diagnose diseases
early [201].

Al and remote sensing can aid in risk assessment by analyzing various factors that
contribute to disease transmission, including air pollution levels, urbanization patterns,
and human mobility. By understanding the risk factors associated with specific areas
or populations, public health authorities can develop targeted strategies for prevention,
allocate resources efficiently, and prioritize interventions where they are most needed.
Al-powered systems can also play a role in raising public awareness and educating com-
munities about airborne diseases. Through real-time data visualization, interactive maps,
and user-friendly interfaces, individuals can access information about disease prevalence,
preventive measures, and local resources.

5.6. Precision Forestry

The combination of Al, LiDAR [202], and hyperspectral imagery provides detailed in-
formation on forest structure, biomass, and species composition, promoting sustainable and
efficient forestry management [203]. Advanced thermal imaging techniques detect subtle
temperature changes in trees as early indicators of pest infestation or disease outbreaks, and
temperature variations can enable the detection of changes even before visible symptoms
appear. Additionally, non-invasive acoustic sensors provide continuous monitoring and
real-time insights into tree health and growth dynamics. By detecting anomalies such
as wind-induced stress or structural weaknesses, these sensors assist forest managers in
promptly dealing with potential issues [204].

Additionally, short-range remote sensing technology captures data that aid in visu-
alizing various artifacts on tree trunks, providing valuable insights into their current and
future health status [205]. For detecting tassels in RGB imagery acquired by unmanned
aerial vehicles (UAVs), an algorithm, YOLOv5-tassel, is used, and it has significant poten-
tial in precision agriculture [206]. Incorporating Al algorithms significantly increases the
probability of identifying these artifacts. This technological integration enables accurate
measurement of tree characteristics and quality, whether the trees are standing or lying,
facilitating an understanding of tree health and informed decision making in forestry
management practices.

5.7. Urban Heat Island Mitigation

For identifying heat patterns, vegetation cover [207], and surface materials, Al can
help urban planners optimize green infrastructure, develop heat mitigation strategies, and
improve urban liveability. By integrating Al with satellite remote sensing and urban sensor
network data, an integrated framework can provide accurate predictions of the urban heat
island phenomenon [208], offering spatiotemporal granularity. This predictive capability is
valuable for forecasting UHI (Figure 12) at specific times, facilitating the development of
mitigation strategies, and formulating relevant policies to counteract its effects [209].
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Al algorithms can analyze various contributing factors, including land use type, urban
morphology, and anthropogenic heat emissions, which contribute to the formation of
heat islands. Leveraging this knowledge, geospatial and Al-based models can predict
the impacts of different urban design and mitigation strategies on local temperatures,
informing urban planners and decision makers to make informed choices and implement
tailored strategies to combat urban heat islands based on the unique characteristics [210].

5.8. Precision Water Management

Integrating weather patterns and soil conditions with Al systems can yield accurate
irrigation recommendations, predict crop water stress, and facilitate resource allocation,
enhancing water use efficiency and conservation. In water management applications,
particularly in extracting water bodies from remote sensing images, neural network archi-
tectures can be employed for semantic segmentation [211-213]. Furthermore, Al algorithms
offer promising opportunities to develop digital image classification methods, specifically
for assessing water usage in irrigation. These methods utilize multi-temporal image data
from remote sensing systems such as Landsat and Sentinel-2 to generate comprehensive
crop maps encompassing various growing seasons. These emerging technologies enable
cost-effective and accurate mapping of irrigated crops, facilitating effective water resource
management [214]. Moreover, Adaptive Intelligent Dynamic Water Resource Planning
(AIDWRP) could be employed to sustain the urban areas” water environment [215]. The
utilization of Big Data and ML technologies also holds the potential to impact many facets
of environment and water management [216].

5.9. Disaster Resilience Planning

By assessing the exposure and susceptibility of critical infrastructure and communities,
Al-powered remote sensing can support the development of effective disaster response
plans, early warning systems, and resilient urban designs [217]. It guides individuals
during disasters, offering real-time evacuation information, shelter locations, and critical
details of the affected areas [218]. Al-enhanced remote sensing services and products can
enhance disaster preparedness awareness, assisting emergency agencies in evacuations and
resource deliveries. Urban Resilience. Al Lab researchers use big data for AI models, crucial
for mitigation, preparedness, and recovery (Urban Resilience.Al Lab). Predictive analytics
anticipate evacuations using seismic and weather data while combining satellite images,
seismometers, and social media verifies disasters for faster responses (Al for Disaster
Response, AIRD). Al evaluates the damage, allocates resources, and prioritizes recovery
efforts using satellite imagery [219]. Additionally, Al assesses pre-disaster vulnerability,
utilizing remote sensing data to identify high-risk areas [220]. These advancements enhance
disaster readiness, minimizing impacts on communities [221].

6. Conclusions

The integration of Al techniques in remote sensing has emerged as a powerful
paradigm with tremendous potential for practical applications. This convergence cre-
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ates exciting opportunities to advance our understanding of Earth’s dynamics, support
decision-making processes, and foster sustainable development. This review paper pro-
vides a comprehensive overview of the current state of Al in remote sensing, emphasizing
its significance and impact. This paper covers the fundamentals of remote sensing tech-
nologies, including optical remote sensing, radar remote sensing, LiDAR, thermal remote
sensing, and multispectral /HSI. It delves into key Al techniques used in remote sensing,
such as conventional ML and deep learning, including DCNNs, ResNets, YOLO, Faster
R-CNN, and self-attention methods. Various practical applications of Al in remote sensing
are discussed in this paper, including image classification and land cover mapping, object
detection and change detection, data fusion and integration, and hyperspectral/LiDAR
data analysis. These applications showcase the effectiveness of Al in enhancing data anal-
ysis, improving accuracy, and automating processes. The paper also identifies several
challenges: data availability, training optimization, data quality, security of sensitive re-
mote sensing data, uncertainty in real-world scenarios, integrity, and diversity. Addressing
these challenges requires further research and innovative solutions to ensure practical
implementation. This paper outlines ongoing and potential applications, such as wildfire
detection and management, illegal logging and deforestation monitoring, coastal and ma-
rine ecosystem monitoring, biodiversity conservation and habitat monitoring, airborne
disease monitoring and forecasting, precision forestry, urban heat island mitigation, pre-
cision water management, and disaster resilience planning. Beyond these applications,
there are even more possibilities, including precision agriculture optimization, renewable
energy site selection, disaster management, early warning systems, and urban planning and
infrastructure development. These envisioned applications highlight the transformative
benefits of Al in addressing critical challenges and improving decision making in diverse
fields, showcasing its potential to solve environmental and societal issues.
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