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ABSTRACT

Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surveys
like the Rubin Observatory Legacy Survey of Space and Time are all critically dependent on estimates of photometric redshifts.
Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features
of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images,
spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ~400000 Sloan Digital Sky Survey galaxies to do
photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers
that are comparable to or better than current methods for SDSS main galaxy sample-like data sets (r < 17.8 and zgpec < 0.4) while
requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily
interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional
manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular
to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy
images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We
also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension.

We publicly release our code, estimated redshifts, and additional catalogues at https://biprateep.github.io/encapZulate- 1.
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1 INTRODUCTION

Wide-field extragalactic sky surveys collect photometric or spec-
troscopic measurements to create three-dimensional maps of the
Universe by measuring on-sky positions and redshifts of a variety
of astronomical objects. These maps help us study the growth of
the Universe and its large-scale structure over time by measuring
various observable quantities as a function of redshift. For example,
Hubble (1929) studied distances to nearby galaxies as a function
of redshift to discover the expansion of the Universe and more
recently, Riess et al. (1998) and Perlmutter et al. (1999) studied
the relationship between luminosity distances of Type la supernovae
and their redshifts to discover cosmic acceleration and hence dark
energy. Detection of baryon acoustic oscillations (BAO) using large
redshifts surveys (Cole et al. 2005; Eisenstein et al. 2005) similarly
gave us another independent measurement of the cosmic acceleration
and other parameters of the concordance model of cosmology.
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Cosmological redshifts are a proxy for the distance to extragalactic
objects thereby allowing us to measure their intrinsic properties (like
luminosity, mass, star formation rate, etc.) and enabling studies of the
formation and evolution of galaxies. Accurate redshift measurements
of satellite galaxies in the nearby Universe allow us to study the nature
and distribution of dark matter and help us constrain models of galaxy
formation and evolution. Redshift measurements also help with rapid
identification of host galaxies of transient sources for follow-up as
made evident by the recent discovery of gravitational wave sources
with electromagnetic counterparts (Abbott et al. 2017).

Given the long exposure times required and the limited multi-
plexing of spectroscopic instruments, high precision spectroscopic
redshifts (spec-z’s) can only be measured for a tiny fraction of
galaxies for which we have images. For example, it will be possible
to measure spectroscopic redshifts for less than 1 percent of the
galaxies that will be used in the Rubin Observatory Legacy Survey
of Space and Time (LSST) studies of galaxy evolution and cosmology
(LSST Science Collaboration 2009). Because of this limitation,
it will be necessary to infer redshift information using imaging
data alone; the resulting measurements are called photometric
redshifts or photo-z’s. Accurate photo-z estimates along with well-
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calibrated uncertainties will be crucial to achieve the ambitious
science goals set for the next generation of photometric surveys like
LSST.

Most photo-z estimation methods involve finding a non-linear
mapping between photometrically observed properties of galaxies
(like apparent magnitudes and colours) and redshift. This is achieved
either by fitting the observed photometry with redshifted templates
of galaxy spectral energy distributions (SEDs; e.g. LePhare, Arnouts
et al. 1999; Ilbert et al. 2006, 2009; BPZ, Benitez 2000; ZEBRA,
Feldmann et al. 2006; EAZY, Brammer, van Dokkum & Coppi
2008; Phosphoros, Apostolakos et al. 2019; MAGPHYS, Battisti
et al. 2019; Lee & Chary 2020) or using a machine learning
(ML) based model trained on galaxies with spectroscopic redshifts
to approximate this relationship. The optimal method generally
depends on the amount and quality of data available and the
scientific questions to be addressed. Template-based methods work
well for deep, high-redshift surveys where the faintness of the
galaxies and the broad redshift range covered makes it prohibitively
expensive to collect large data sets. However, SED templates of-
ten rely on assumptions on galaxy physics (like star formation
history or initial mass function), have incomplete coverage of the
entire wavelength range and model dust attenuation poorly, all of
which are significant sources of errors (Salvato, Ilbert & Hoyle
2019).

In contrast, in regimes with more complete training data like that
provided by shallow low-redshift spectroscopic surveys, common
statistical methods like linear regression (e.g. Connolly et al. 1995;
Beck et al. 2016) or classical ML techniques such as decision
trees and random forests (e.g. Carliles et al. 2010; Dalmasso et al.
2020; Zhou et al. 2021; Li et al. 2022), support vector machines
(e.g. Wadadekar 2005; Jones & Singal 2017), K-nearest neighbours
(e.g. Ball et al. 2008; Graham et al. 2018), self-organized mapping
(e.g. Geach 2012; Carrasco Kind & Brunner 2014; Wright et al.
2020; Myles et al. 2021), Gaussian processes (e.g. Way et al. 2009;
Almosallam, Jarvis & Roberts 2016), and simple neural networks
(e.g. Firth, Lahav & Somerville 2003; Tagliaferri et al. 2003; Collister
& Lahav 2004; Cavuoti et al. 2017; Razim et al. 2021) tend to
outperform template-based methods (Hildebrandt et al. 2010; Euclid
Collaboration 2020; Schmidt et al. 2020).

A challenge for photo-z estimation methods that take magnitudes
and colours as inputs is that there is not enough information available
to break various degeneracies in the colour—redshift relation. One
way to break these degeneracies is to include information about
morphology, orientation, surface brightness, ratios of magnitudes,
or visual appearance in general (e.g. Stabenau, Connolly & Jain
2008; Jones & Singal 2017; D’Isanto et al. 2018; Gomes et al. 2018;
Nakoneczny et al. 2021). A galaxy may appear red not just because
its stellar population is intrinsically red but because it is a dusty edge-
on spiral galaxy. Moreover, the fact that farther objects appear to be
smaller and fainter to an observer also give us an additional piece
of information to help break degeneracies. Most traditional methods
for quantifying galaxy morphology, like ellipticity and Sérsic index,
cannot fully encode all of the visual information that an image of
a galaxy provides and hence methods that use images of galaxies
directly as inputs (e.g. Pasquet et al. 2019; Hayat et al. 2021; Schuldt
etal. 2021; Henghes et al. 2022) and rely on artificial neural networks
are the current state-of-the-art.

Artificial neural networks are mathematical models, originally
developed to mimic the logical operations of the human brain. The
simplest unit of such a model (also called an artificial neuron) is
a linear transformation of an input followed by some non-linear
function (also called an activation function). Successive layers of
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such transformations arranged together form a deep neural network.
The process of training such a model involves finding a set of
parameters (also called weights) for these transformations which will
minimize a loss function. The optimization is generally done using
the back propagation algorithm (Lecun 1985; Rumelhart, Hinton
& Williams 1986) or some optimizer based on it like the Adam
optimizer (Kingma & Ba 2015). The simplest deep neural network
architecture called multilayer perceptrons or fully connected (FC)
networks use successive matrix and non-linear transformations to
connect every input feature to an output. A sufficiently deep or
wide fully connected network can be used to approximate any func-
tion (Cybenko 1989; Hornik, Stinchcombe & White 1989; Hornik
1991) and hence can be used to effectively predict photometric
redshifts.

If the input data are images, then the number of trainable weights
required for a fully connected neural network architecture becomes
very large, making them very inefficient to train and prone to over-
fitting to the training data. Convolutional neural networks (CNNs;
Fukushima & Miyake 1982; LeCun et al. 1989), on the other hand,
perform convolution operations using filters whose parameters are
learned. Since the same set of filters are reused by stepping across
the input images, it reduces the number of trainable parameters.
Moreover, each successive convolution layer can extract more
complex features which in turn increases the model accuracy while
reducing the complexity of the model. Various multilayered neural
network architectures (i.e. deep neural networks; LeCun, Bengio &
Hinton 2015) built using CNNs have been used to make state-of-the-
art photo-z prediction algorithms as they can leverage the pixel level
data to extract additional information thereby achieving even better
prediction accuracy. Hoyle (2016) modified the ImageNet challenge-
winning AlexNet (Krizhevsky, Sutskever & Hinton 2012) to griz
images of ~64 000 SDSS galaxies, finding comparable accuracy to
the best tree-based classical ML algorithms. D’Isanto & Polsterer
(2018) combined a CNN and a mixture density network to pro-
duce photo-z probability density functions (PDFs) generated using
Gaussian mixture models and achieved comparable performance to
existing efforts in the literature. As larger training data sets become
available along with advances in graphical processing unit (GPU)
hardware and associated software, training CNNs have become very
efficient and currently form the backbone of most state-of-the-art
photo-z algorithms. Pasquet et al. (2019) produced the current best
photo-z’s using a supervised algorithm for the SDSS Main Galaxy
Sample, which consists of ~500 000 ugriz images with spec-z’s in
the range z = 0-0.4. They applied an innovative deep CNN that
included five inception modules (Szegedy et al. 2015, 2016) which
use multiple filter sizes within the CNN operating at the same level
rather than being stacked sequentially to capture information on
different scales efficiently. Recently, self-supervised learning-based
approaches have shown promising results on astronomical data sets
(e.g. Sarmiento et al. 2021; Stein et al. 2021). Hayat et al. (2021)
used a self-supervised training scheme paired with a ResNet50-based
CNN (He et al. 2016) to achieve similar results but with less data.
They pre-trained their network on a very large unlabelled data set to
find similarities between different augmentations of the inputs and
then fine-tuned the network to predict photometric redshifts. When
fine-tuned using the whole SDSS main galaxy sample, they achieve
state-of-the-art results.

Deep neural network-based methods are continuing to improve
but have substantial limitations in terms of the interpretability of
the features learnt from images and efficiency in training. Models
with larger number of trainable parameters not only require more
data and computational resources to train but also are prone to
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overfitting. To alleviate some of these issues, we explore the use
of a modern deep learning method called capsule networks (Hinton,
Krizhevsky & Wang 2011) to jointly predict photo-z’s and basic
morphological types of galaxies (spiral/elliptical). Capsule networks
are robust to rotations and invariant to viewpoint — a useful quality for
analysing randomly oriented galaxies and require less training data
and trainable parameters than CNNs because they generalize much
better to novel viewpoints (Mazzia, Salvetti & Chiaberge 2021).
Capsule networks also learn a low-dimensional representation of the
input images, which provides us with a way to interpret the features
learnt by the model.

In this work, we will focus on predicting photo-z point estimates
but ideally we would like to quantify the uncertainty in our estimates
by predicting full photo-z PDFs. However, producing properly cali-
brated photo-z PDFs remains extremely challenging. PDFs predicted
by neural networks are often poorly calibrated (see e.g. Guo et al.
2017) and provide very misleading uncertainty estimates. Moreover,
most methods currently used to check the quality of photo-z PDFs
(like distributions of probability integral transform, etc.) focus on
checking the calibration of the entire sample of PDFs (i.e. global
calibration) rather than focusing on the calibration of individual
PDFs (i.e. local/individual calibrations). Amaro et al. (2019) and
Schmidt et al. (2020) show that such metrics can be optimized by
pathological but non-physical photo-z PDFs. Zhao et al. (2021) show
that global calibration of PDFs does not imply local calibration and
proposes new diagnostics which may be used to check for local
calibration. In a future paper, we plan to extend our methods and
produce locally calibrated PDFs following the procedure described
in Dey et al. (2021, 2022). That being said, the prediction errors on
our photo-z point estimates are sufficiently small that we can safely
use these estimates for studies of the evolution of galaxies, their
connection with dark matter haloes, and the localization of transient
sources. where photo-z PDFs are not strictly required.

The paper is organized as follows. In Section 2, we discuss the
various data sets used in this work. In Section 3, we introduce the
concept of capsule networks and explain our network architecture.
In Section 4 we describe the process of training a multitask capsule
network. In Section 5, we present our results for photo-z point
estimates and compare our results with other similar works. We also
provide interpretations of the features learnt by the capsule network
in order to predict photo-z’s. Lastly, in Section 6 we summarize our
results.

2 DATA

2.1 SDSS imaging and spectroscopic redshifts

To train and test our models, we use the same pre-processed images
and spectroscopic redshifts that were used by Pasquet et al. (2019)
for their CNN-based photo-z estimation method and were generously
made publicly available by the authors.! The data set contains
516525 galaxies with de-reddened r-band petrosian magnitudes,
r < 17.8, and spectroscopic redshifts, z < 0.4 selected from the
12th Data Release (DR12) of the Sloan Digital Sky Survey (SDSS;
Gunn et al. 1998, 2006; York et al. 2000; Smee et al. 2013; Alam
et al. 2015). The sample is mainly defined by the magnitude limit
as the redshift limit removes only a few tens of galaxies. The 12th
data release of SDSS was used as that was the most recent data
release available when this work began. Moreover, there has not

Thttps://deepdip.iap.fr/#item/60ef 1e05be2b8ebb048d951d
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been any changes to the data for this particular set of galaxies since
DRS, making all SDSS data releases since DR8 equivalent for our
purposes.

For this set of galaxies, Pasquet et al. (2019) pre-processed the
raw five band images after obtaining them from the 8th Data Release
of SDSS (Aihara et al. 2011). They stacked and re-sampled the
images to a common 64 x 64 x 5 pixel grid centred on the
spectroscopic target. The images were background subtracted and
photometrically calibrated with the same zero-point (Padmanabhan
et al. 2008; Blanton et al. 2011). No foreground/background objects
were removed. Most of the galaxies had only one or two imaging
frames per band, whereas galaxies in Stripe 82 (Jiang et al. 2014)
had up to 64 imaging frames. So, the Stripe 82 galaxies which
satisfy our magnitude and redshift cuts defining the parent sample
have significantly less noise than the other images. The Stripe 82
galaxies form less than 4 percent of the entire data set and can
be used to check how amount of noise in the images affect our
methods (see Section 5.2). All the galaxies in the data set are spatially
resolved, so their sizes, surface brightnesses, morphologies in each
band, and the presence of neighbouring and background galaxies
provide additional information not captured in spatially integrated
photometry. A detailed description of the image processing steps
can be found in section 2.1 of Pasquet et al. (2019). The processed
images along with their spectroscopic redshifts used in this work are
publicly available.

2.2 Galaxy Zoo-1 morphological class labels

We use a deep capsule network to jointly predict the basic mor-
phology of a galaxy along with its redshift. We use crowd-sourced
morphological class labels of galaxies from the Galaxy Zoo-1 project
(Lintott et al. 2011) to train our capsule network. Galaxy Zoo-1 labels
galaxies as spirals (with various sub-classes), ellipticals, mergers,
or stars-and-artefacts. The classifications are considered ‘confident’
only if the de-biased fraction of votes received for a class is greater
than 0.8. Since the numbers of mergers and artefacts in the images
of the SDSS-MGS are very low, we use the spiral and elliptical
classes only. This gives us high-quality morphological classifications
for 177442 of the galaxies in our parent data set. We generate
morphological class labels for the remaining 339 083 galaxies in
our data set, using an iterative semisupervised system where we
train a deep capsule network using the confident class labels and use
it to generate the labels for all other galaxies (see Section 4.1 for
details). Out of these 339 083 galaxies that do not have a confident
classification, we obtain the fraction of votes received in Galaxy
Zoo-1 for each class for 296 767 galaxies which we use to cross-
check our results. For the remaining 42 316 galaxies, no morphology
information was available since they did not pass some of the quality
cuts imposed by Galaxy Zoo-1. We do not use these galaxies to
asses the quality of our morphological class prediction and only their
deep capsule network generated class labels are used for redshift
prediction.

2.3 Catalogue of galaxy properties

To interpret the features learnt by our deep capsule network, we
measure correlations between the low-dimensional encodings of the
input images produced by the capsules and various other galaxy
properties (see Section 5.3.3). For this purpose, we created a cross-
matched catalogue of various observed and estimated physical
properties for the galaxies in our data set.

MNRAS 515, 5285-5305 (2022)
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For all galaxies, we query their model magnitudes, composite
model (cmodel) magnitudes,” and extinction due to Milky Way
dust from Schlegel, Finkbeiner & Davis (1998) for each of the
five SDSS photometric bands from the SDSS DRI12 data base
(Alam et al. 2015). We also query the velocity dispersion (o)
measured from the spectra. We use the extinction corrected cmodel
magnitudes as a measure of the galaxy magnitudes and use extinc-
tion corrected model magnitudes to calculate the colours of the
galaxies. We also query measurements of stellar mass (M,), star
formation rate (SFR), and specific star formation rate (sSSFR) from
the Max Planck Institute for Astrophysics and the Johns Hopkins
University (MPA-JHU) value-added catalogue® available as a part
of SDSS DRI12. These measurements are based on the methods
developed in Kauffmann et al. (2003), Brinchmann et al. (2004),
and Tremonti et al. (2004). For estimates of absolute magnitudes
(Mysg1r1is), we use the measurements from the New York University
Value Added Galaxy Catalog* (NYU-VAGC; Blanton et al. 2005)
for objects common between our data set and the NYU-VAGC
within a tolerance of 1 arcsec. We also use measurements of Sérsic-
index in the r band (n,) and the corresponding 90 percent light
radius (Rgo,,) from the NYU-VAGC as a proxy for a galaxy’s
size.

A small number of objects in our data set do not have matches with
the external catalogues and there are also some measurements in these
catalogues that are problematic. We only use the objects in our data
set that have cross-matches with the external catalogues for each of
the galaxy properties. We also remove measurements of any property
which are more than five units of median absolute deviation (scaled to
replicate Gaussian standard deviation) away from the median of that
property. This step is done to remove the small number (< 1 per cent)
of problematic measurements of galaxy properties that can affect our
analysis.

3 CAPSULE NETWORKS

CNNs (Fukushima & Miyake 1982; LeCun et al. 1989) are currently
the de facto standard for neural network architectures when the
input data are images. They work by learning weights for a set of
convolutional filters which extract useful features from the images.
As the filters are reused by translating them across the input, CNNs
have fewer trainable parameters compared to their fully connected
counterparts and also invariant to small translations of the object
of interest with respect to the background. Each successive layer
of the deep network extracts more and more complex features in
an hierarchical fashion. CNNs have been immensely successful in
solving problems in computer vision (e.g. Krizhevsky et al. 2012;
Szegedy et al. 2015; Liu et al. 2022) and have been used extensively
for predicting photometric redshifts from images (e.g. Hoyle 2016;
D’Isanto & Polsterer 2018; Pasquet et al. 2019; Hayat et al. 2021;
Henghes et al. 2022).

Though CNNs are invariant to translations by design (LeCun et al.
1998; Lee et al. 2009), they use pooling layers (i.e. replacing the input
with the local maximum or average value) to locally combine the
signal and reduce dimensionality (Ranzato et al. 2007). This comes
at the cost of losing precise location and pose information (see e.g.
Hinton et al. 2011; Hinton 2021). To solve this problem, Hinton et al.
(2011) proposed that artificial neural networks should be organized

Zhttps://www.sdss.org/dr12/algorithms/magnitudes/
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as local groups that perform complex computations on their inputs
and encapsulates the results into highly informative output vectors.
These vector counterparts of artificial neurons are called capsules
and the entire computational chain is termed as a capsule network.
Each capsule vector should learn to recognize the presence of a visual
entity irrespective of its orientation, viewing conditions, etc. They
should not only encode the probability of the object being present
but also encode a set of ‘instantiation parameters’ for the entity (e.g.
location, size, orientation, colour, etc.). For an ideal capsule network,
the encoded probability of an object being present should stay the
same but the instantiation parameters should change when the input
image goes through some transformation (like, rotation, translation,
occlusion, etc.).

Though Hinton et al. (2011) introduced the idea of a capsule
network, a concrete architecture and training methodology was
not proposed. More recently, Sabour, Frosst & Hinton (2017)
proposed a training method called the dynamic routing algorithm
which made capsule networks viable. Their architecture encodes
the ‘probability’ of an object being present using the length of
the capsule vectors. During the training process, information from
each capsule is weighted before passing it on to the next layer of
capsules via the dynamic routing algorithm (Sabour et al. 2017).
The elements of the transformation matrices between two successive
capsules are determined by the gradient descent algorithm whereas
the routing weights are determined so as to maximize the cosine
similarity (i.e. vector dot product) between the capsule vectors of
the two consecutive layers in an iterative fashion. Dynamic routing
allows capsule networks to focus on specific sections or traits of
the input data while making decisions. After each routing step,
the capsules are scaled using the non-linear squashing function,

2
fv) = ller”“v”z H—:H which re-scales the length of each capsule to be
between 0 and 1 and acts as the non-linear activation function for the
layer.

The original implementation of capsule networks in Sabour et al.
(2017) was geared towards the classification of grey-scale handwrit-
ten digits. The same implementation was adapted for an astronomical
application by Katebi et al. (2019) for morphological classification
of galaxies, both of which are easier problems compared to photo-
z estimation. Consequently, they got state-of-the-art results while
using only a single layer of capsules and a routing algorithm that
does not train efficiently if multiple capsule layers are present. To
do well in more complicated tasks, it is helpful to have multiple
layers of capsules (i.e. a deep capsule network). For this work, we
adopt the deep capsule network architecture and dynamic routing
algorithm as proposed in Rajasegaran et al. (2019). They propose
convolution operation based capsule network layers and a 3D-
convolution based routing algorithm which reduces the number of
trainable parameters and makes the routing process significantly
more efficient thereby making deep capsule networks possible. They
also use skip connections (He et al. 2016) which add outputs of
earlier layers with the outputs of layers ahead of it to improve the
convergence of the training process by preventing the gradients from
vanishing and allowing information from earlier capsules to flow
efficiently to later ones. Rajasegaran et al. (2019) also introduced an
improved class independent decoder network which reconstructs the
inputimage from the final layer capsules and thereby enforces that the
components of the capsule vectors form a low-dimensional encoding
of the input image. The class-independent nature of the decoder
ensures that the capsule dimensions encode the same properties
for both morphological classes. A mathematical description of the
capsule network layers and routing algorithms mentioned in this
section is given in Appendix A.
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Figure 1. Schematic representation of the neural network architecture we use. The design of the classification and encoder network is based on Rajasegaran et al.
(2019). The classification network takes ugriz images as inputs and produces two 16-dimensional capsule vectors as outputs, each representing a morphological
class (spiral or elliptical). During training, the capsule corresponding to the correct morphological class is used as an input for the decoder and redshift regression
networks whereas during inference the capsule vector with the largest magnitude (i.e. highest class probability) is used as the input for the subsequent networks.
The numbers in each box represent the shape of the layer being used. For convolutional capsule layers (i.e. Conv-Caps and 3D-Conv-Caps layers), they stand
for the width x height, the number of capsules and the total number of dimensions for each capsule, respectively. For convolutional or transposed convolutional
layers, they represent the width x height of the convolution filter kernel followed by the number of such filters being used. For fully connected layers, the number
represents the number of nodes in the layer. We use a combination of the classification-and-encoding network and decoder network to generate morphological
class labels for all the galaxies as a preliminary step and then use a combination of the three networks to predict redshifts. Details of the mathematical operations
performed by the various kinds of capsule layers can be found in Appendix A.
3.1 Our capsule network architecture The classification-and-encoding network (Fig. 1, left-hand col-
umn) inherits its architecture from Rajasegaran et al. (2019). It
takes the 5 band 64 x 64 pixel images of a galaxy as inputs
and uses a set of convolutional filters to convert the image into
capsules. Next four blocks of skip connected convolutional capsule
cells are used. The convolutional capsule layers were introduced
in Rajasegaran et al. (2019) and use 3D-convolution operations to
perform routing between two capsule layers more efficiently. Skip
connections refer to the element-wise summing of outputs of an
earlier layer with the output of a non-consecutive layer ahead of it.

The network architecture we use has three main components: a deep
capsule network-based classification-and-encoding network, a class
independent decoder network, and a redshift prediction network.
We use a combination of classification-and-encoding network and
the decoder network to generate morphological class labels for the
entire data set as a preliminary step and then use a combination of
all three networks to jointly predict the morphology and photo-z as
described below and shown in Fig. 1.
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Spirals
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Reconstructed

Ellipticals

Observed Reconstructed

Figure 2. Comparison of the observed and reconstructed grz images of a few randomly selected spirals (left) and ellipticals (right) from the test set. The
reconstructions were produced by the decoder network using the 16-dimensional capsule corresponding to the predicted morphological type. We see that the
reconstructions capture basic properties of the input like shape, orientation, and colour.

This improves the convergence of the training process by preventing
the gradients from vanishing and allowing information from earlier
capsules to flow efficiently to later ones. The output of the final
layer is a set of two 16-dimensional capsule vectors that we use to
represent the spiral or elliptical morphological class of a galaxy. The
Euclidean lengths of these capsules denote the probability of the
input image being a spiral or elliptical. The individual dimensions
of the vectors encode information about the input image, which
can be used to predict the photometric redshift and reconstruct the
input image. This part of the network has about 7.5 million trainable
weights.

The class independent decoder network (Fig. 1 middle column)
is composed of successive transposed convolutional layers (also
called de-convolution layers) which take one of the capsule vectors as
input and try to reconstruct the input image as its output. Transposed
convolution layers are mathematically similar to convolution layers
except their input and outputs are switched. During the training
process, we use the capsule representing the correct morphological
class as the input of this network. During inference, the capsule with
the largest length (i.e. the capsule representing the most probable
class) is passed as the input to the decoder network. The decoder
network acts as a regularizer and enforces that each dimension
of the capsule vector represents a low-dimensional encoding of
the input. The decoder network also helps us visually interpret
the features encoded by the capsules. Using the same decoder
network for both capsules (i.e. class independent decoder) makes
the dimensions for both capsules represent similar properties. The
decoder network has 0.88 million trainable weights. Some exam-
ples of the input and reconstructed images of galaxies are shown
in Fig. 2.
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The redshift regression network (Fig. 1 right column) is a set of
five fully connected neural network layers for redshift estimation. It
takes as input the capsule corresponding to the correct morphological
class during training and the capsule with the highest class probability
during inference. This network has about 13 000 trainable weights.

3.2 Loss functions

The weights of the networks are obtained by minimizing a composite
loss function which is a weighted sum of the losses calculated from
the outputs of the three networks. The outputs from each of the
networks are used to calculate a different loss function, a weighted
sum of which is minimized depending on the task we are trying
to solve. Following Sabour et al. (2017), we use the output of
the classification-and-encoding network to calculate the margin loss
(also called the Hinge loss) defined as

2
Liyargin = »_ Tj max(0, m™ — [[v;[)*)
j=1

+ A(1 = T;) max(0, |[v;|| —m™)?, M

where T; represent the class labels and 7; = 1 when a galaxy
corresponding to class j is present in the input image and 7; =
0 otherwise, m™ = 0.9, m~ = 0.1 and A = 0.5. The parameters
m*~ define a threshold for the length of the capsule above which
the classification is considered correct/incorrect. The A parameter
down-weights the margin loss for an absent morphological class,
preventing the lengths of all the capsules from shrinking during the
initial learning phase. The loss is summed over each class (two in
our case). This loss function is optimized to ensure that the length of
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one of the capsules is close to 1 and the other one close to 0 when the
input is a spiral galaxy and vice versa when the input is an elliptical
galaxy.

We use the output of the decoder network to calculate the sum
of squared errors between the input and reconstructed image pixels
defined as

64 64

5
Lgecoder = Z Z Z(xijk - )?ijk)z’ (2)

k=1 j=1 i=1

where x and X denote the input and reconstructed images, respec-
tively, and the summation is carried out over all the 64 x 64 pixels
and 5 imaging bands.

Similarly, we use the output of the redshift regression network to
calculate the squared error between the spectroscopic redshift and
the predicted photometric redshift defined as

2
Lphoto—z_ = (Zspec - thot) . (3)

All the losses are then averaged over the number of objects present
in the training batch. The exact weighting of these losses will be
discussed in the next two sections.

4 TRAINING PROCEDURE

4.1 Generating morphological class labels

Morphological class labels from Galaxy Zoo-1 are available for only
34 per cent of the galaxies in our data set (see Section 2.2). We follow
a fully supervised learning approach, and our capsule network design
relies on the availability of morphological class labels. Therefore,
we need to generate morphological class labels for the remainder
of the data set to train the network to predict redshifts. To achieve
this, we train a deep capsule network that is a combination of the
classification-and-encoding network and the decoder network. The
decoder network acts as a regularizer. We minimize the weighted
sum of the margin loss for classification and the total squared error
for reconstruction with a weight of 1 on the margin loss and 0.005
on the reconstruction loss. So, for this task we the loss function (L)
given by

L= Lmargin =+ 0.005 x Lgecoder- (4)

We divide the set of 177442 galaxies with good morpholog-
ical class labels into a training set (80 percent), validation set
(10 percent), and test set (10 percent). We train the network
to classify the galaxies as spirals or ellipticals and achieve over
99 per cent classification accuracy on the test set. We then use this
network to predict morphology labels for the galaxies that do not
have a label from Galaxy Zoo-1. We then calibrate the predicted
class probabilities with isotonic regression (Zadrozny & Elkan 2001,
2002) using the validation set for training the isotonic regression
model and the test set to verify the calibration. This step ensures
that the class probabilities predicted by the network are statistically
consistent. We then select galaxies with calibrated class probabilities
over 0.8, assign them to their corresponding class label and merge
them with the initial training set. We train the same network again
with this new training set and follow the same procedure above to
assign labels and extend the training set. We do this step one more
time and find that 99.6 per cent of the galaxies in our parent set has
a class label with more than 0.8 class probability. For the remaining
0.4 per cent of the galaxies, we assign a label corresponding to the
class with the highest probability.
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We are generating morphological class labels for 339 083 galaxies
based on a human labelled training set of 177 442 galaxies. The bulk
of the galaxies do not have a confident morphological class label
in Galaxy Zoo-1 as a strong consensus was not achieved among
the human volunteers. This either might be because the shape of
the galaxy is ambiguous or there were some artefacts in the image.
A visual inspection of the galaxies in the test set which do not
have a label from Galaxy Zoo-1 shows that the objects can almost
always be classified into a spiral or elliptical galaxy by the authors
and the predictions of our model for those objects matches with
the judgement of the authors. The number of images which have
ambiguous morphology or where an artefact or merger makes the
morphology difficult to infer are negligibly small (0.1 per cent). Since
our main goal is to improve photo-z prediction performance, we
are comfortable with using the smaller training set with only good
classifications to generate class labels for the entire data set and
ignoring the very small number of ambiguous cases. As a separate
cross-check, we compared the class labels generated by our method
for the galaxies which do not have a confident label from Galaxy
Zoo-1 with the most voted Galaxy Zoo-1 class label and find that
they are in agreement for over 70 per cent of the objects.

4.2 Training for photo-z estimation

Once we have morphological class labels for all the galaxies in our
data set, we now train a neural network that is a combination of
the classification-and-encoding network, the redshift regression net-
work, and the class independent decoder network. The classification-
and-encoding network gives us a low-dimensional representation of
the input image which is then used by the redshift regression network
to predict the photometric redshift. Although the decoder network
does not directly help with redshift prediction, it has been shown to
have a regularization effect on capsule networks (Sabour et al. 2017).
The decoder network also ensures that the low-dimensional encoding
learnt has physically meaningful information, which can be used to
reconstruct the input image. In Section 5.3.2, we use the decoder
network to interpret the features learnt by the capsule network.
During the training process, the capsule corresponding to the cor-
rect morphological class is used as an input for both the decoder and
redshift regression networks whereas during inference the capsule
vector with the largest Euclidean length (i.e. highest class probability)
is used as their inputs. To find the optimum set of weights for the
network, we minimize a composite loss function which is a weighted
sum of the losses from each of the three networks. Similar to Sec-
tion 4.1, we use the weighted sum of the margin loss and total squared
error for the classification and reconstruction tasks, but now we also
add the squared error of the predicted redshift to the total loss (L):

L= Lmargin =+ 0.005 x Lgecoder + Lphm—z- (5)

The classification, reconstruction, and redshift regression losses are
given the weights of 1, 0.005, and 1 so that they contribute an equal
amount towards the total value of the loss. This allows us to put
equal importance on each of the individual tasks as all of them help
to improve the accuracy of photometric redshifts. Some examples of
reconstructed images of galaxies obtained after training the network
are shown in Fig. 2.

Instead of directly predicting the redshifts, we scale the redshifts
using the logistic transformation defined as

h(z) = log (l) : ©6)

Zmax — <
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For our data set zpi, = 0 and z,,x = 0.4. We find that performing
this transformation gives us better performance especially at very
low redshifts (z < 0.05). This is because the logistic transformation
makes the distribution of the target variable (redshift in our case)
fall gradually at the boundaries, thereby alleviating the problem of
attenuation bias.

We randomly split our data into three subsets; the training set
which is used to train the network, the validation set, which is used
to tune the hyperparameters of the network and decide when to stop
training and a test set which is used to check the final performance.
All results quoted in this work use a training set that is 80 per cent
the size of the parent data set and have been calculated on the test set
whichis 10 per cent the size of the parent set (unless stated otherwise).
The remaining 10 per cent of the data is used as the validation set. We
also check the performance of our photo-z prediction as a function
of the size of the training set as shown in Fig. 6.

To randomly initialize the weights for the networks, we use the He-
Normal initializer (He et al. 2015). We use the PReLLU (He et al. 2015)
activation function for all the hidden layers and a linear activation
function for the output layers of the decoder and redshift regression
networks. To train all the networks, we use the Adam optimizer
(Kingma & Ba 2015) with an initial learning rate of 0.001. After each
epoch the learning rate is decreased following the rule: learning rate
= initial learning rate x 0.95°°°h, We also augment the training set
by randomly rotating the images in steps of 90° or flipping them along
the horizontal or vertical axis before passing them to the networks
for training. The same setup is used for both the morphological label
prediction and redshift estimation tasks.

We train the networks for 100 epochs but the training generally
converges within 70 epochs. We choose the epoch which has the best
performance — i.e. the highest classification accuracy when gener-
ating morphology labels and the lowest average redshift prediction
error on the validation set. Since the model is initialized randomly,
each training run can result in a different set of optimal weights.
Hence we run the training process 5 times and take the average of
their output as our photo-z prediction. For this reason, we also select
epochs that have a low bias and moderate variance since bias stays
roughly the same whereas variance decreases when averaged.

The models are defined in Keras with Tensorflow 1.15 as the back
end. The training is done on an Alienware Area 51 PC with an Intel
Core 17 9800X processor, 2 RTX 2080Ti GPUs and 64GB of RAM.
We use a batch size of 400 which takes about 8 h to train for 100
epochs. The model is copied on to the two GPUs and the training is
parallelized by sending half of the batch to each GPU.

5 RESULTS

5.1 Photo-z evaluation metrics

In this work, we are focusing only on photo-z point estimates and not
full PDFs. We will therefore assess the performance of our photo-z
estimates by measuring how much the spectroscopic and photometric
redshifts for each galaxy in the test set differ. We use the following
three common metrics:

(i) Prediction bias defined as (; fzfpe\ ), i.e. the average value of

the prediction error.

(ii) Normalized Median Absolute Deviation (o yy4p) defined
as 1.4826 x Median(| ; H;ec — Median(; fzfpec) |). This is a robust
measure of the spread of prediction errors.

(iii) Fraction of Outliers (fyugier) defined as the fraction of photo-

z predictions for which | —=*— |> 0.05, i.e. the fraction of cases

I+2zspec
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Figure 3. Comparison of photometric redshift point estimates predicted
by our capsule network with the corresponding spectroscopic redshifts for
galaxies in the test set. The central grey line shows zZphot = Zspec, i.€. @

perfect photo-z estimate. The outer dashed lines mark | +7:pec |= 0.05. Any
point lying outside these limits (i.e. | 7 +,§pec |> 0.05) is considered to be an

outlier. The colour on the scatter plot shows the number of data points present
in each pixel of the figure. We see that the scatter is tight and symmetrically
distributed about the zphot = Zspec line and with a negligible bias. The scatter
looks random and shows no visible patterns at the limits of training data (zspec
~ 0 and zgpec > 0.3) indicating stable performance across the redshift range.

where the prediction error is very high. We chose the threshold of
0.05 to easily compare our results with other similar works.

The specific choice of the metrics and the threshold to define an
outlier is based on convention and allows us to easily compare our
results with recent similar work.

5.2 Photo-z point estimate predictions

When trained on 80 percent and tested on 10 percent (with the
remaining 10 per cent used as validation set) of the parent data set and
results averaged over an ensemble of 5 models, our photo-z estimates
have onmap = 0.00898, fouier = 0.19 per cent, and ( A2y —7x

I+2Zspec

1073 For comparison, other deep learning based methods which take
images as inputs like Pasquet et al. (2019) achieve o xnvap = 0.00912,
foutier = 0.31 per cent and ( fzfpec) = 1 x 10™* when trained on the
same data set and Hayat et al. (2021) achieves onvap = 0.00825,
foutiier = 0.21 per cent and (5 fz;;c) = 1 x 107%, by first pre-training
on a large unlabelled data set (about twice as big as our data set) and
then fine-tuning on a data set similar to ours. Both of them use models
with about 3 times as many trainable parameters compared to ours
(~24 million versus ~8 million). Our algorithm has comparable
onmap and better foyie; performance among these deep learning
based methods.

We show a comparison between the photometric and the spec-
troscopic redshifts for the test set in Fig. 3. We see that the scatter
is tight and distributed symmetrically about the Zphot = Zspec line.
The scatter in the points and distribution of outliers look random
and show no visible patterns of a sudden change in performance
at the limits of training data (Zspec ~ 0 and zgee > 0.3) indicating
stable performance across the redshift range. We also see no evidence
of attenuation bias (i.e. almost constant predictions for a subset of
inputs; see Freeman et al. 2009 for a discussion on attenuation bias in
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Figure 4. Normalized distribution of the redshift prediction errors. The blue
histogram shows the distribution of redshift prediction errors of our algorithm
on the test set. The orange line shows a Gaussian distribution with the location
and scale parameters set as the prediction bias and o nmaD, respectively. The
distributions are normalized to have unit area under the curves. The shaded
region marks the threshold for outliers. The distribution of the prediction
errors is symmetric, centred around 0 and closely resembles a Gaussian
distribution, indicating little if any systematic preference for overestimation
or underestimation.

photo-z algorithms). The images used to train the networks include
observations of Stripe 82 (Jiang et al. 2014), which are about 2 mag
deeper and have less noise than the rest of the images. Since Stripe
82 is a small fraction (< 4 per cent) of the whole data set, we do not
account for this varying depth by weighing data points differently.
We find a significantly smaller spread in the predictions (o xmap =
0.00741) and a fraction of outliers consistent with the rest of the
sample (fouier = 0.35 per cent), given the small number of Stripe 82
objects in the test set. Galaxies in the test set outside of Stripe 82
produce photo-z’s with o nvap = 0.00906 and fougier = 0.19 per cent.
This shows that having images with a higher signal-to-noise ratio
improves the quality of photo-z predictions.

When the test set is split into subsets based on morphology, we
find that the photo-z predictions have a lower spread for ellipticals
than spirals (o xmap = 0.00844 versus 0.00956) with a comparable
fraction of outliers (0.18 per cent versus 0.20 per cent). This might be
because elliptical galaxy populations have similar rest-frame colours
as older stellar populations tend to change very little in colour with
time. The observed colours and magnitudes (or any other measure
of flux) therefore trace the redshift well making it is easier to predict
redshifts of elliptical galaxies than spirals. When we split the test
set based on the availability of human labelled morphology, we find
that photo-z prediction performance is better when human labelled
morphology is available (o xnvap = 0.00815, fouuier = 0.11 per cent
versus o xpap = 0.00948, founier = 0.23 per cent). Although human
labelled morphology improves the performance, the lack of it does
not reduce the performance drastically.

We performed a visual inspection of the images of the galax-
ies which were photo-z prediction outliers. We find that around
18 per cent of these outliers have bad or missing photometry. Re-
moving these objects from our test set reduces our outlier fraction to
Joutier = 0.16 per cent. We kept these rare objects in the parent data
set for easy comparisons with Pasquet et al. (2019).

The distribution of prediction errors is shown in Fig. 4. They
follow a symmetric distribution centred about 0 indicating little if any
systematic preference for overestimation or underestimation. Since
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the fraction of outliers is very small and we see that the distribution of
prediction errors closely resembles a Gaussian distribution, o xmaD
can be treated as the 1o Gaussian uncertainty around each prediction
up to a good approximation.

We also check the performance (prediction bias and onmap) of
our photo-z estimates as a function of the spectroscopic redshift
and r-band Petrosian magnitude of galaxies as shown in Fig. 5. We
use the Petrosian magnitude as it was used to define the faintness
cut of the data set we are using. As a function of redshift, the
absolute magnitude of the bias is small though it is positive at low
redshifts and negative at high redshifts with the inflection point being
at the median redshift (=0.1) of our data set. This kind of pattern
is common for ML-based algorithms. When seen as a function of
r-band magnitude, the bias is almost constant and negligibly small in
magnitude throughout the entire range of magnitudes. o xmap tends
to increase both as we go to higher redshifts and fainter magnitudes.
This can be attributed to the fact that there is less training data and
increased noise in the images at these regimes. We also see that
oxmabp (~0.0006) is significantly lower than the global value at low
redshifts (z < 0.05) even though the number of training samples
available is small in this regime due to lower survey volume. We
suspect this is because at very low redshifts resolved information in
the images, like morphology, size, and surface brightness, contains
rich information about galaxy distances. Better photo-z performance
at very low redshifts can aid in the identification of satellite galaxies
that require a massive spectroscopic effort to get redshifts (e.g. Geha
et al. 2017, Mao et al. 2021).

Obtaining spectroscopic redshifts is often an expensive process,
so it is important that ML-based methods can perform well when the
training data sets are smaller. To see how the photo-z performance
of our algorithm changes, we train our capsule network-based model
using varying sizes of training data by random sub-sampling of the
parent data set (after obtaining morphological labels) into smaller
subsets while keeping everything else the same in the training
process. The results are shown in Fig. 6 and also compared with
other similar works like Pasquet et al. (2019), Hayat et al. (2021),
and Beck et al. (2016). The data for Pasquet et al. (2019) and Beck
et al. (2016) were obtained from table 2 in Pasquet et al. (2019), the
data for Hayat et al. (2021) were obtained from their fig. 4 using the
WebPlotDigitizer (Rohatgi 2020). The metrics for Beck et al. (2016)
provided here are calculated on their photo-z estimates of the same
objects as ours. They train on a much larger data set spread over a
larger redshift range compared to ours which maybe one reason for
higher prediction errors. We always use 10 per cent of the parent data
set as the validation set and use the remaining amount of data to test
the performance. We observe that we outperform Beck et al. (2016),
which is a widely used source of SDSS photo-z estimates using just
2 per cent of the parent sample (or ~10* galaxies) as a training set.
Many surveys of the high-redshift Universe like CANDELS (Grogin
etal. 2011; Koekemoer et al. 2011) have spectroscopic observations
for a similar number of galaxies, albeit across a larger redshift range
and our method could potentially be used to improve the photo-
z estimates for them. We see that our method has performance
comparable to other deep learning-based photo-z estimation methods
like Pasquet et al. (2019) or Hayat et al. (2021) when both are trained
on random subsets of data.

5.3 Interpreting the features learnt by the capsule network

As ML-based methods have started replacing more traditional
physics-based methods to model astrophysical phenomena and make
predictions that reduce the need for making extra observations, it
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Figure 6. Performance of photometric redshift prediction algorithm as a function of the size of training data. The standard errors on the statistics are negligibly
small and hence not shown. Our algorithm has comparable oxmap and better fouier performance to the two deep learning-based efforts (Pasquet et al. 2019;
Hayat et al. 2021) and significantly better performance than the classical ML-based technique (Beck et al. 2016) while requiring less training (or pre-training)
data and fewer trainable parameters (~8 million versus ~23 million).

is becoming increasingly important to peer inside these complex
mathematical models to identify what physical features they are
learning. This will not only help us to validate what the algorithms
are predicting but also help us bridge the gap between the traditional
physics-driven and the newer data-driven approaches.

In our work, we use the capsule vectors along with the decoder
network to shed some light on the features learnt by the network.
Since the capsules composing the output layer of the morphology
classification network are trained to represent a morphological
class of galaxies along with holding enough information to predict
the redshift and a reconstruction of the input image, we expect
the components of the capsule vector to learn a low-dimensional
encoding of the input galaxy image. Moreover, we expect that each
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of the component will learn properties so that all capsule dimensions
combined can effectively predict the morphology, redshift and a
reconstruction of the input image.

The features learnt by the networks are not constrained to be
easily identifiable visual properties or commonly used physical
quantities derived from images. We will therefore perform both
visual exploration of these features and also measure how well these
features correlate with galaxy properties.

5.3.1 Visualizing the capsule encoded space

We first take a look at how the capsules corresponding to each galaxy
in the test set are organized in their manifold. We use Uniform
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Figure 7. Two-dimensional UMAP embedding of the 16-dimensional capsules colour-coded by photometric redshift (top left), spectroscopic redshift (top
right), fraction of spiral galaxies in the neighbouring region (bottom left), and redshift prediction error (bottom right). The photo-z outliers are shown in black in
the bottom right panel. The UMAP embedding of the capsules creates a nearly perfect redshift sequence indicating that the capsules learn a good representation of
redshift. Spirals and ellipticals tend to occupy separate regions though there is a region with overlap with morphology producing a gradient almost perpendicular
to the redshift sequence. We notice that regions dominated by spirals tend to have slightly higher redshift prediction errors compared to regions dominated
by ellipticals. Though spirals and ellipticals have almost the same fraction of outliers, visually it may seem that there are more outliers which are spirals than
ellipticals. Many of those outliers are actually ellipticals which lie close to the region dominated by the spiral galaxies in the 2D UMAP representation. An
interactive version of this figure showing galaxy image thumbnails is available online’.

Manifold Approximation and Projection (UMAP; Mclnnes & Healy
2018) to embed the 16-dimensional capsules into a two-dimensional
space to visualize and interpret any structures, if present. UMAP is
a non-linear dimensionality reduction method that uses techniques
from manifold learning and topological data analysis to embed
a high-dimensional data set into a low-dimensional manifold. To
ensure that the relative local density of data is preserved when we
project the capsules on to a two-dimensional space, we use DensMAP
(Narayan, Berger & Cho 2020), which computes the estimates of
local density and uses them as a regularizer in the optimization of the
2D UMAP representation. UMAP with the DensMAP regularizer
preserves the local structure of the data while capturing global
structure better than many other similar algorithms and is also
computationally efficient.

Fig. 7 shows the two-dimensional UMAP embedding of the 16-
dimensional capsules colour coded by various properties. When
coloured by photometric or spectroscopic redshift (top row), the em-
bedding shows a nearly perfect redshift sequence. As UMAP places
nearby capsules in the high-dimensional space close together in their

two-dimensional projection, we can infer that the capsules track a
smooth redshift sequence. This is in contrast to the representations
generated by self-organizing maps (SOMs; Kohonen 1981, 1982),
which group galaxies with similar spectral energy distributions
together using their photometry but impose a geometry that can
force adjacent cells to have wildly different redshifts (Masters et al.
2015). Currently, SOMs are widely used to determine regions with
incomplete spectroscopic data (e.g. Masters et al. 2015, 2019), but
dimensionality reduced capsules may perform better at this task due
to its smooth redshift distribution.

If we colour the points based on the fraction of spirals among the
80 nearest neighbours in the 2D space (bottom left), we see that the
spirals and ellipticals tend to occupy separate regions of the space
although there is a significant overlap. The fraction of spirals exhibits
a gradient almost perpendicular to the redshift sequence thereby
effectively encoding both redshift and morphology, properties the
capsules were trained to learn. When colour-coded by the redshift
prediction errors (bottom right) and compared with the plot showing
the fraction of neighbouring spirals, we notice that regions dominated
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by spirals tend to have slightly higher redshift prediction errors
compared to regions dominated by ellipticals. This was quantified in
Section 5.2 where we noted that spirals have slightly higher value of
onmap compared to ellipticals but equivalent foyyie;. Visually from
Fig. 7 it may seem that there are more outliers which are spirals
than ellipticals but many of those outliers are ellipticals which lie
close to the region dominated by the spiral galaxies in the 2D UMAP
representation.

Most of the galaxies in the 2D UMAP representation lie on the
large crescent shaped sequence. A small number (about 1-2 per cent)
of galaxies deviate from this sequence forming a smaller sequence
encircled by the larger crescent. These galaxies all have higher values
for dimension 10 of their capsules. Synthetic images generated by
perturbing capsule dimensions (see Appendix B) shows that higher
values of dimension 10 tend to increase the extended component of
the galactic disc. Some of the dimension 10 outliers in the main
redshift sequence clearly have stars in the image. However, our
investigation of the dimension 10 outliers in the smaller sequence
has yet to yield a clear interpretation. These galaxies are a 50/50 mix
of spirals and ellipticals, and the majority do not have neighbouring
stars, galaxies, or artefacts. A systematic study of these outlier
galaxies will be done in a future work. The other galaxies that
randomly scatter away from the two large sequences almost always
have a neighbouring star, galaxy, or an artefact.

5.3.2 Generating synthetic images by perturbing capsule
dimensions

To check whether the components of the capsules represent any
visually identifiable properties of the galaxies, we take the capsule
corresponding to the predicted morphology of a galaxy and add a
small perturbation to one of the components keeping all the others
fixed. The perturbation is added in units of standard deviation of the
values of the components in our test set. We pass on this perturbed
capsule vector to the decoder network to see how the reconstructed
image of the input changes.

Fig. 8 shows the synthetic galaxy images generated from the
perturbed capsule vectors for two galaxies (the first instance of
each morphological type from Fig. 2). We can see that perturbing
specific components change properties like size (i.e. the angular size
of the galaxy and how fast the light profile falls off), orientation,
amount of central bulge, and surface brightness. This shows that
some of the features learnt by the capsule network correspond to
physical properties of galaxies. Visual properties like size and surface
brightness change with the distance of the galaxies and can help to
break degeneracies in the colour—redshift relation and provide better
redshift inference. Fig. 8 shows the synthetic images from perturbed
capsules for only a subset of dimensions for which the change in
the images is easily identifiable visually. Appendix B shows the
synthetic images generated by perturbing all 16 of the dimensions
individually.

5.3.3 Correlations of capsule dimensions with physical properties

To check whether any physical properties of the galaxies are encoded
by the capsules that cannot be identified by simply looking at
synthetic images generated from perturbed capsules, we measure the
correlations between each dimension of the capsules and various
global galaxy properties. Since we expect the correlations to be
non-linear in nature, we use the distance correlation (Székely,
Rizzo & Bakirov 2007) to measure them. The distance correlation
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quantifies the dependence between two random variables by mea-
suring how much the Euclidean distance between two samples of
one random variable changes for a given change in distance between
two samples of another random variable. This makes the distance
correlation sensitive to any kind of dependence between two random
variables, unlike Pearson or Spearman correlations which measure
linear and strictly monotonic relationships respectively. The distance
correlation has a value between 0 and 1, where 0 would mean that
the random variables are independent whereas a value of 1 would
mean the linear sub-spaces spanned by the two random variables are
almost equal, indicating a very high degree of dependence.

Fig. 9 shows values of distance correlation between each of the
components of the capsule vector corresponding to the predicted
morphology and global properties of galaxies in the test set. Unsur-
prisingly, we find that many of the capsule components have strong
correlations with the spectroscopic redshift, with dimensions 8, 14,
and 3 being the strongest. The capsule dimensions that show strong
correlations with spectroscopic redshift also show strong correlations
with observed frame galaxy colours and apparent magnitudes which
are known to be good predictors of photometric redshift. Given
this pattern, we also expect them to be well correlated with galaxy
absolute magnitudes (M,//i-) which we can also verify from Fig. 9.
Sérsic index (n,) correlates the most with dimension 13 which we
saw controls the amount of a galaxy’s central bulge (see Fig. 8).
Similarly, dimension 2 which we saw control the visual size of the
galaxy image has the strongest correlation with the 90 per cent light
radius (R, ) among all capsules and also correlates well with Sérsic
index which are the two quantities which together quantify the visual
size of the galaxy on the sky. We can therefore infer that the capsules
successfully encode almost all of the photometric properties of the
galaxy image. A few illustrative examples of these correlations in
form of scatter plots can be found in Appendix C.

Many capsule dimensions show correlation with physical proper-
ties like stellar mass (M, ) and velocity dispersion of the spectra (o)
and a small number of dimensions show strong correlations with SFR
and sSFR. Most likely, these correlations arise because SFR and sSFR
depend on galaxy magnitudes and spectroscopic redshifts which
the capsules efficiently encode, but the capsules may also encode
some physical properties of the galaxies. Even though we focus on
predicting photometric redshifts in this work, we expect that capsule-
based encodings can be used to create a general purpose image-based
inference methodology for physical properties of galaxies and will
be explored in a future work.

5.3.4 Feature importance using SHAP values

As shown in the Sections 5.3.2 and 5.3.3, each capsule dimension
tends to encode a somewhat different property of the input image,
so we would like to see which of the dimensions are most useful
in predicting photo-z’s. To quantify this, we calculate the SHapley
Additive exPlanations (SHAP; Lundberg & Lee 2017) values for
each of the capsule dimensions that are used by the redshift prediction
network using the test data. SHAP is a method to explain a prediction
by computing the contribution of each feature. It takes a game theory
approach to optimally distribute credit to each feature for a given
prediction using Shapley Values (Shapley 1953). The Shapley value
for a feature is defined as the average marginal contribution of a
feature across its all possibilities for a given prediction. The SHAP
value is then calculated via a weighted sum of Shapley values to
ensure that the contribution of each feature to a prediction add
up to the value of the prediction. Since it would be prohibitively
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Figure 8. Synthetic galaxy images generated by perturbing capsule dimensions. Each column shows the decoded image when one of the 16 dimensions of
the capsule vector is perturbed in units of its standard deviation (keeping all the others fixed). The Oc column shows the decoded image from the unperturbed
capsule and are identical for each row. We show a subset of the dimensions here for which the perturbations have a clear interpretation (see Appendix B for
a version with all the dimensions). We see that some of the capsule dimensions, encode physical features like size, orientation, amount of central bulge and
surface brightness of the galaxies.
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Figure 9. Measurements of the distance correlation between the capsule dimensions corresponding to the predicted morphological class and global galaxy
properties (as described in Section 2.3). The values have a range between 0 and 1 where a value of 0 means the two random variables being compared are
independent and a value of 1 indicates a high level of dependence. We have grouped the galaxy properties into two sets: properties which solely depend on
photometry (top) and properties which include knowledge of the spectroscopic redshift along with photometry (bottom). u, g, r, i, z represent the extinction
corrected cmodel magnitudes. u — g, g — r, etc. represent galaxy colours calculated using extinction corrected model magnitudes. n, and Rog, , represent the
Sérsic index and the 90 per cent light radius obtained from the Sérsic profile fit to r-band photometry and are used as a proxy for a galaxy’s size. zspec denotes
the spectroscopic redshift; M,yg//i/; represent the absolute magnitudes in each of the five bands. M, stands for the stellar mass, SFR stands for the star formation
rate, and sSFR stands for the specific star formation rate. o, represents the velocity dispersion of the spectra. We see that the components of the capsule vectors
are not only correlated with the spectroscopic redshift but also correlated with the apparent magnitudes and colours, measurements that are traditionally used by
photometric redshift prediction algorithms. We also see that they are well correlated with parameters of a Sérsic fit which are indirect indicators of morphology

as well as physical properties of the galaxies that would traditionally require spectroscopic measurements.

expensive to calculate contributions across all possibilities of the
feature space, we use the expected gradients method which combines
ideas from Integrated Gradients (Sundararajan, Taly & Yan 2017),
SHAP (Lundberg & Lee 2017), and SmoothGrad (Smilkov et al.
2017) to approximately calculate the SHAP values for a neural
network. A positive SHAP value indicates that the particular value
of the feature increases the value of the output, a negative SHAP
value indicates that the output is decreased, whereas a value of
zero means that the feature does not contribute towards the output
for that specific prediction. We then rank the features (i.e. capsule
dimensions) based on their magnitude of SHAP values averaged over
all predictions in the test set. Thus, a capsule dimension is deemed to
be the most important if it influences the output most across all the
predictions.

MNRAS 515, 5285-5305 (2022)

‘We show the SHAP values for each prediction in the test set in the
summary plot shown in Fig. 10. The capsule dimensions are listed
in decreasing order of their importance (i.e. average magnitude of
SHAP values). The points are also colour coded as per the value of
the feature which helps us to qualitatively identify how much the
prediction changes based on a change in the value of the dimension.
We see that capsule dimensions 8 and 14 are the most important,
followed by dimensions 3 and 6. The next four capsule dimensions
still contribute significantly to the prediction as dimensions 9, 7,
10, 12 have relatively high SHAP values. All the other dimensions
contribute to the prediction significantly only a small number of
times. For many of the dimensions, we see a pile up of SHAP
values around 0. This indicates that the particular feature does not
contribute much towards the prediction for that specific case. This can
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Figure 10. A SHAP summary plot showing the SHAP values of each
capsule dimension for the entire test set. The capsule dimensions are listed in
decreasing order of their importance (i.e. average magnitude of SHAP values).
The points are colour-coded as per the value of the capsule dimension. We see
that dimensions 8 and 14 are the most important followed by dimensions 3 and
6. The pile-up of points at a SHAP value of zero indicates that the dimension
does not contribute towards the prediction for this specific case and the
network gets similar information from another capsule dimension. This can
happen when features are correlated. We do see that all the dimensions have
some non-zero SHAP values, indicating that all the dimensions contribute
towards the prediction at least sometimes.

happen if the input features are correlated and the model gets similar
information from a different dimension for that specific prediction.
This is also evident from the fact that the 2D UMAP projection of
the capsules form a nearly perfect redshift sequence (see Fig. 7)
suggesting that the data do not fully span the 16-dimensional latent
space. We therefore define the importance ranking of a capsule
dimension as an average over the entire test set and the ranking
may be different for a specific prediction.

Dimension 8 has the highest SHAP feature importance. Although
we cannot clearly discern what physical property it represents from
the synthetic images generated from perturbed capsules, we can
see from the figures in Appendix B that perturbing this dimension
causes the image to morph from an elliptical galaxy to a spiral
galaxy. We hypothesize that dimension 8 learns a representation
which is a combination of the morphological type, colour, and
orientation of the galaxy which helps it to distinguish between an
elliptical galaxy which is intrinsically red and an edge-on spiral
galaxy which appears to be reddened because of dust. This helps the
capsule network to learn representations of galaxy colour while being
aware of the morphology and orientation which can be very useful to
break degeneracies in the colour-redshift relation. We also see that
dimension 14 is the second most important feature. Fig. 8 shows that
dimension 14 encodes information about the surface brightness of
the observed galaxy. A lower value of dimension 14 corresponds to a
brighter object. From Fig. 10 we see that a lower value of dimension
14 reduces the redshift prediction since they have a negative SHAP
value. This shows that the neural network assigns a lower redshift to
objects with higher surface brightness. Surface brightness is a very
good proxy to the distance of a galaxy (and therefore redshift) since
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objects farther away appear fainter at a fixed luminosity. Learning a
representation of surface brightness hence helps the network to better
predict redshifts.

6 SUMMARY AND DISCUSSION

In this paper, we use a deep capsule network to produce photometric
redshift point estimates from images of galaxies and provide in-
terpretation of the features learnt by the network. We use ~400 000
SDSS ugriz images, their spectroscopic redshifts, and morphological
class labels from Galaxy-Zoo-1 (see Section 2) to train our deep
capsule network. Capsule networks are a new type of neural network
architecture that are better suited for identifying morphological
features than traditional CNNs. We use a deep capsule network
architecture that uses 3D convolution based routing mechanisms and
skip connections to efficiently train the network (see Section 3 and
Fig. 1).

We achieve a photometric redshift prediction accuracy comparable
to or better than current methods while requiring less data and fewer
trainable parameters (see Figs 3 and 6). The performance of our
algorithm is stable across the brightness and redshift range of our
data set (see Fig. 5). Moreover, the decision-making of our capsule
network is easier to interpret as capsules act as a low-dimensional
encoding of the input image and can be used to produce reconstructed
images (see Fig. 2). We use UMAP, a non-linear dimensionality
reduction method to embed the capsules in two-dimensional space
and show that the capsules produce an almost perfect redshift
sequence with the fraction of spirals in a region exhibiting a
gradient roughly perpendicular to the redshift sequence (see Fig. 7).
We then perturb the encodings of real galaxy images to generate
synthetic galaxy images that demonstrate the image properties (e.g.
size, orientation, and surface brightness) encoded by each capsule
dimension (see Fig. 8). We calculate the feature importance of each
capsule dimension using their SHAP values to rank them based
on their usefulness towards predicting photo-z’s (see Fig. 10). We
also demonstrate that galaxy properties (e.g. magnitudes, colours,
and stellar mass) correlate strongly with each capsule dimension
(see Fig. 9). This tells us that the capsule dimensions encode and
use visual and morphological properties of galaxy images (like
surface brightness, orientation) in addition to measures of amount
of light (like colours and magnitudes) to infer the photometric
redshift.

Here, we have presented photo-z point estimates, though for
many science cases photo-z PDFs are more desirable and sometimes
necessary for meaningful analyses. However, current ML-based
photo-z PDF estimation efforts suffer from poor calibration (Schmidt
etal. 2020). In future work, we plan to incorporate methods described
in Dey et al. (2021, 2022) to properly calibrate ML-based photo-
z PDFs based on a galaxy’s position in input space with capsule
network photo-z PDFs serving as a natural example to demonstrate
the expected improvements.

More generally, the future of capsule network-based photo-z
estimation looks bright. Their high training efficiency will allow
for deeper and wider models with greater capacity to handle the
massive training sets from current and future spectroscopic surveys
like DESI (DESI Collaboration 2016) and PFS (Takada et al. 2014)
that extend to higher redshifts, span a wider redshift range, and
probe to fainter magnitudes. Specifically, we plan to enable early
DESI science by estimating photo-z’s for objects in the DESI Legacy
Imaging Surveys (Dey et al. 2019) before the DESI spectroscopic
survey is complete. At even higher redshifts, we are optimistic that
capsule networks can leverage morphology —especially the evolution
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of galaxy morphologies from z ~ 2 to z < 0.5 — from space-
based high-resolution imaging to help break the SED degeneracies
that plague template-fitting methods at high-z. With growing high-z
spectroscopic training sets and rapidly progressing capsule network
architecture development, we are optimistic that capsule networks
will provide complementary constraints or even superior photo-z’s
to template-based methods at high-z.
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APPENDIX A: CAPSULE NETWORKS AND
ROUTING MECHANISMS

To construct the classification-and-encoding network, we first use
a set of convolutional filters, the outputs of which are reshaped
into a set of tensors which are treated as the initial set of capsules.
We then use two main kind of capsule layers, dynamic routing-
based class capsules and convolution routing-based capsules (i.e.
Conv-Caps and 3D-Conv-Caps layers in Fig. 1). As shown in
Fig. 1, the convolution routing based capsules are used to construct
the hidden layers whereas the dynamic routing based capsules are
used to construct the output layer of the classification-and-encoding
network where each capsule represents a morphological type. In this
section, we give a brief overview of the mathematical aspects of the
capsule layer architectures used in this work. This is intended to be
a short summary and interested readers are recommended to refer
to Sabour et al. (2017) for a detailed discussion on capsules with
dynamic routing and Rajasegaran et al. (2019) for convolutional
capsules. We have tried to follow the same mathematical notation
used by these two works for easy reference.
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A.1 Dynamic routing (i.e. routing by agreement)

Let u; denote the ith capsule vector in layer [ of the network and v;
denote the jth capsule vectors in layer / 4 1. To obtain the capsules
in layer / + 1 from the ones in layer / we define an intermediate
‘prediction’ vector ({i;;) as

ﬁj\[ = Wjju;, (AD)

where W;; is a weight matrix learnt by gradient descent. The capsules
in the following layer (v;) are calculated using a weighted sum
of these prediction vectors after being passed through a non-linear
activation function called the squashing function defined as

2
||

IIs; Sj

N i (A2)
T L s s

where s; is the weighted sum given by

Sj = Zcijﬁjlia (A3)

where ¢;; are the coupling coefficients determined by an iterative
process. To ensure that they always add up to 1, they are defined in
terms of the softmax transformed variables b;; as

exp(b;;)

Cj T = . <

> exp(bi)
The variables b; can be treated as the log prior probability that the
capsule i in layer / is coupled to the capsule j in layer / + 1. In a single
pass of back propagation, we begin with b; = 0 to provide equal
weights to all the capsules initially, and then the coupling coefficients
are iteratively updated by measuring the agreement between the
current output of each capsule in layer / + 1,1.e. v; and the prediction
made by the capsules in layer /, i.e. @i;;. The agreement is defined
as the scalar product v; .1 ;;; and is added to b;; before computing the
coupling coefficients. So, for each step in the iteration:

(A4)

b,’j (—b[j+Vj.ﬁj|,'. (AS)

The number of iterations is a tunable hyperparameter. Larger number
of iterations will provide better estimates of the coupling coefficients
at the cost of increasing the number of computations. We use
three iterations as it was found to work reasonably well by Sabour
et al. (2017) who proposed this algorithm. Since these capsules (v;)
form the final layer of the classification-and-encoding network, we
calculate their Euclidean norms which are used as a measure of
the class probabilities the capsules represent. These predicted class
probabilities are then used as inputs to the margin loss function
(equation 1).

A.2 Convolution based routing

One of the drawbacks of the dynamic routing algorithm described in
Section Al is that the computations are done in a way analogous to
fully connected neural networks. This means that the number of train-
able weights increase dramatically for a deep network architecture
required for complex tasks like predicting photo-z’s. To solve this
problem, Rajasegaran et al. (2019) proposed capsule network layers
that use computationally efficient convolutional operations. We use
them as the intermediate layers of our classification-and-encoding
network. The weights of the convolution filters are determined using
gradient descent whereas the coupling coefficients for routing are
determined by an iterative process. In the initial layers, the feature
maps obtained from convolution operations is large and iterative
routing can be expensive. So, following Rajasegaran et al. (2019),
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we use a mix of two kinds of convolutional capsule layers, one
which does one routing iteration (viz. Conv-Caps) and another
one doing three routing iterations (viz. 3D-Conv-Caps) in our
network architecture (see Fig. 1).

To facilitate convolution operations, the capsules start out as 3D
tensors which are flattened into 1D capsule vectors when we reach
the final layer in our architecture. Let the output of the convolutional
capsule layer [ be @' e R®'»' ") \where w! denotes the height
and width, ¢! the depth, and n' the number of 3D capsule tensors.
Similarly, let ®'*! € R wth e alh represent the output of the
layer [ + 1.

The Conv-Caps layer first reshapes @' into a tensor of shape
(w!, w!, ¢! x n') and convolves with (¢! *! x n'* 1) number of filters,
producing (c!*! x n'*!) number of feature maps of shape (w'*!,
w! T 1). They are then reshaped into a tensor of shape (w! !, w!*!,
1 n'+1). This 3D tensor (S,,) is then used as the input to a
non-linear squashing function defined by

& _ ”Spt[r ”2 Spqr
PaT T 1 e 12 N
L+ (1S pgr 12 11S pgr |

Since we will use just one iteration of routing for this layer, the output
of the squashing function is treated as the output of the layer (i.e.
Pt — S)

For the 3D-Conv-Caps layer, we first reshape ®! into a tensor
of shape (w', w!, ¢! x n/, 1). Then, it is convolved with (c/*! x
n'* 1) number of 3D convolution kernels of appropriate shape so as
to produce a tensor of shape (w'*!, w'* ! ¢, !+ x o'+ 1) It is
then reshaped into a tensor, V of shape (w!* !, w1, ¢/, n! T1, 1)
which acts as the intermediate ‘prediction’ tensor. The capsules of the
following layer are then calculated via the weighted sum of tensors
given by

Spar = kpgrs-Vipgrs. (A7)

(A6)

Then S is used as an input to the tensor squashing function defined in
equation A6 to obtain the squashed tensor, S which after the iterative
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updates will be treated as the output capsules(®'*'). The coupling
coefficients for the weighted sum (k) are determined by an iterative
process. To ensure that they are normalized they are defined in terms
of softmax transformed variable B € R ™ »'™.1.e) given by

k _ exp (bpqrs)
pars = .
D0 2oy 22 XP (bryes)

In a single pass of back propagation we begin with b,,, =
0 to provide equal weight to all capsules initially and then the
coupling coefficients are iteratively updated 3 times by measuring
the agreement (via the scalar product) between the current output of
the capsules and the intermediate prediction tensors in each iteration
ie.

(A8)

Bpars < bpgrs + Spgr-Vipgrs- (A9)

Finally, when the output of the convolutional capsules are used as
inputs to the capsules with dynamic routing, the tensors in a layer
1 of shape (w', w', ¢!, n') are flattened to the shape (w' x w' x ¢,
n'), i.e. we get n' number of capsule vectors each with w' x w! x ¢!
number of dimensions.

APPENDIX B: SYNTHETIC IMAGES FROM
PERTURBED CAPSULE COMPONENTS

Here, we show an extended version of Fig. 8 with synthetic
galaxy images generated from perturbing all 16 of the dimensions
individually. Each column shows the decoded image when one of
the 16 dimensions of the capsule vector is perturbed in units of its
standard deviation (keeping all the others fixed). The Oo column
shows the decoded image from the unperturbed capsule and are
identical for each row. Since the capsule network training process
does not disentangle the features learnt by each dimension, not all
the dimensions control a single easily identifiable feature. A subset
of the dimensions for which the features are easily identifiable are
shown in Fig. 8.
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(a) The first spiral galaxy from Fig. 2 (b) The first elliptical galaxy from Fig. 2

Figure B1. Reconstructions from perturbed capsule vectors. Each column shows the reconstructions when one of the 16 components of the capsule vector is
perturbed in units of their standard deviation (keeping all the others fixed). This is an extended version of the Fig. 8 and shows reconstructions from perturbations
of all the dimensions.

APPENDIX C: CORRELATIONS OF CAPSULE using scatter plots in Fig. C1. We observe that the value of the
DIMENSIONS WITH PHYSICAL PROPERTIES capsule dimensions varies with the galaxy property indicating some
correlation.

A few illustrative examples of strong correlations between capsule
dimensions and physical properties of galaxies have been visualized
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Figure C1. A few examples of strong correlations between capsule dimensions and physical properties of galaxies visualized using scatter plots. g represents
the extinction corrected SDSS g-band cmodel magnitude. g — r and g — z represent galaxy colours calculated using extinction corrected model magnitudes. n,
represents the Sérsic index obtained from a Seérsic profile to the r-band photometry. We observe that the value of the capsule dimensions varies with the galaxy
property indicating some correlation.
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