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A B S T R A C T 

Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surv e ys 
like the Rubin Observatory Le gac y Surv e y of Space and Time are all critically dependent on estimates of photometric redshifts. 
Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features 
of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images, 
spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400 000 Sloan Digital Sk y Surv e y galaxies to do 

photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers 
that are comparable to or better than current methods for SDSS main galaxy sample-like data sets ( r ≤ 17.8 and z spec ≤ 0.4) while 
requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily 

interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional 
manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular 
to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy 

images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We 
also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension. 
We publicly release our code, estimated redshifts, and additional catalogues at ht tps://biprat eep.github.io/encapZulat e-1 . 

Key words: methods: data analysis – methods: statistical – galaxies: distances and redshifts. 
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 I N T RO D U C T I O N  

ide-field e xtragalactic sk y surv e ys collect photometric or spec-
roscopic measurements to create three-dimensional maps of the 
niverse by measuring on-sky positions and redshifts of a variety 
f astronomical objects. These maps help us study the growth of
he Universe and its large-scale structure over time by measuring 
 arious observ able quantities as a function of redshift. F or e xample,
ubble ( 1929 ) studied distances to nearby galaxies as a function
f redshift to disco v er the e xpansion of the Universe and more
ecently, Riess et al. ( 1998 ) and Perlmutter et al. ( 1999 ) studied
he relationship between luminosity distances of Type Ia supernovae 
nd their redshifts to disco v er cosmic acceleration and hence dark
nergy. Detection of baryon acoustic oscillations (BAO) using large 
edshifts surv e ys (Cole et al. 2005 ; Eisenstein et al. 2005 ) similarly
ave us another independent measurement of the cosmic acceleration 
nd other parameters of the concordance model of cosmology. 
 E-mail: biprateep@pitt.edu 
 NASA Einstein Fellow. 
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osmological redshifts are a proxy for the distance to extragalactic 
bjects thereby allowing us to measure their intrinsic properties (like 
uminosity, mass, star formation rate, etc.) and enabling studies of the
ormation and evolution of galaxies. Accurate redshift measurements 
f satellite galaxies in the nearby Uni verse allo w us to study the nature
nd distribution of dark matter and help us constrain models of galaxy
ormation and evolution. Redshift measurements also help with rapid 
dentification of host galaxies of transient sources for follow-up as 
ade evident by the recent disco v ery of gravitational wave sources
ith electromagnetic counterparts (Abbott et al. 2017 ). 
Given the long exposure times required and the limited multi- 

lexing of spectroscopic instruments, high precision spectroscopic 
edshifts (spec- z’s) can only be measured for a tiny fraction of
alaxies for which we have images. For example, it will be possible
o measure spectroscopic redshifts for less than 1 per cent of the
alaxies that will be used in the Rubin Observatory Le gac y Surv e y
f Space and Time ( LSST ) studies of galaxy evolution and cosmology
LSST Science Collaboration 2009 ). Because of this limitation, 
t will be necessary to infer redshift information using imaging 
ata alone; the resulting measurements are called photometric 
edshifts or photo- z’s. Accurate photo- z estimates along with well-
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alibrated uncertainties will be crucial to achieve the ambitious
cience goals set for the next generation of photometric surveys like
SST . 
Most photo- z estimation methods involve finding a non-linear
apping between photometrically observed properties of galaxies

like apparent magnitudes and colours) and redshift. This is achieved
ither by fitting the observed photometry with redshifted templates
f galaxy spectral energy distributions (SEDs; e.g. LePhare, Arnouts
t al. 1999 ; Ilbert et al. 2006 , 2009 ; BPZ, Ben ́ıtez 2000 ; ZEBRA,
eldmann et al. 2006 ; EAZY, Brammer, van Dokkum & Coppi
008 ; Phosphoros, Apostolakos et al. 2019 ; MAGPHYS, Battisti
t al. 2019 ; Lee & Chary 2020 ) or using a machine learning
ML) based model trained on galaxies with spectroscopic redshifts
o approximate this relationship. The optimal method generally
epends on the amount and quality of data available and the
cientific questions to be addressed. Template-based methods work
ell for deep, high-redshift surv e ys where the faintness of the
alaxies and the broad redshift range co v ered makes it prohibitively
 xpensiv e to collect large data sets. Ho we ver, SED templates of-
en rely on assumptions on galaxy physics (like star formation
istory or initial mass function), have incomplete co v erage of the
ntire wavelength range and model dust attenuation poorly, all of
hich are significant sources of errors (Salvato, Ilbert & Hoyle
019 ). 
In contrast, in regimes with more complete training data like that

rovided by shallow low-redshift spectroscopic surv e ys, common
tatistical methods like linear regression (e.g. Connolly et al. 1995 ;
eck et al. 2016 ) or classical ML techniques such as decision

rees and random forests (e.g. Carliles et al. 2010 ; Dalmasso et al.
020 ; Zhou et al. 2021 ; Li et al. 2022 ), support vector machines
e.g. Wadadekar 2005 ; Jones & Singal 2017 ), K -nearest neighbours
e.g. Ball et al. 2008 ; Graham et al. 2018 ), self-organized mapping
e.g. Geach 2012 ; Carrasco Kind & Brunner 2014 ; Wright et al.
020 ; Myles et al. 2021 ), Gaussian processes (e.g. Way et al. 2009 ;
lmosallam, Jarvis & Roberts 2016 ), and simple neural networks

e.g. Firth, Lahav & Somerville 2003 ; Tagliaferri et al. 2003 ; Collister
 Laha v 2004 ; Ca vuoti et al. 2017 ; Razim et al. 2021 ) tend to

utperform template-based methods (Hildebrandt et al. 2010 ; Euclid
ollaboration 2020 ; Schmidt et al. 2020 ). 
A challenge for photo- z estimation methods that take magnitudes

nd colours as inputs is that there is not enough information available
o break various degeneracies in the colour–redshift relation. One
ay to break these degeneracies is to include information about
orphology, orientation, surface brightness, ratios of magnitudes,

r visual appearance in general (e.g. Stabenau, Connolly & Jain
008 ; Jones & Singal 2017 ; D’Isanto et al. 2018 ; Gomes et al. 2018 ;
akoneczny et al. 2021 ). A galaxy may appear red not just because

ts stellar population is intrinsically red but because it is a dusty edge-
n spiral galaxy. Moreo v er, the fact that farther objects appear to be
maller and fainter to an observer also give us an additional piece
f information to help break degeneracies. Most traditional methods
or quantifying galaxy morphology, like ellipticity and S ́ersic index,
annot fully encode all of the visual information that an image of
 galaxy provides and hence methods that use images of galaxies
irectly as inputs (e.g. Pasquet et al. 2019 ; Hayat et al. 2021 ; Schuldt
t al. 2021 ; Henghes et al. 2022 ) and rely on artificial neural networks
re the current state-of-the-art. 

Artificial neural networks are mathematical models, originally
eveloped to mimic the logical operations of the human brain. The
implest unit of such a model (also called an artificial neuron) is
 linear transformation of an input followed by some non-linear
unction (also called an acti v ation function). Successi ve layers of
NRAS 515, 5285–5305 (2022) 
uch transformations arranged together form a deep neural network.
he process of training such a model involves finding a set of
arameters (also called weights) for these transformations which will
inimize a loss function. The optimization is generally done using

he back propagation algorithm (Lecun 1985 ; Rumelhart, Hinton
 Williams 1986 ) or some optimizer based on it like the Adam

ptimizer (Kingma & Ba 2015 ). The simplest deep neural network
rchitecture called multilayer perceptrons or fully connected (FC)
etworks use successive matrix and non-linear transformations to
onnect every input feature to an output. A sufficiently deep or
ide fully connected network can be used to approximate any func-

ion (Cybenko 1989 ; Hornik, Stinchcombe & White 1989 ; Hornik
991 ) and hence can be used to ef fecti vely predict photometric
edshifts. 

If the input data are images, then the number of trainable weights
equired for a fully connected neural network architecture becomes
ery large, making them very inefficient to train and prone to o v er-
tting to the training data. Convolutional neural networks (CNNs;
ukushima & Miyake 1982 ; LeCun et al. 1989 ), on the other hand,
erform convolution operations using filters whose parameters are
earned. Since the same set of filters are reused by stepping across
he input images, it reduces the number of trainable parameters.

oreo v er, each successiv e convolution layer can extract more
omplex features which in turn increases the model accuracy while
educing the complexity of the model. Various multilayered neural
etwork architectures (i.e. deep neural networks; LeCun, Bengio &
inton 2015 ) built using CNNs have been used to make state-of-the-

rt photo- z prediction algorithms as they can leverage the pixel level
ata to extract additional information thereby achieving even better
rediction accuracy. Hoyle ( 2016 ) modified the ImageNet challenge-
inning Ale xNet (Krizhevsk y, Sutskev er & Hinton 2012 ) to griz

mages of ∼64 000 SDSS galaxies, finding comparable accuracy to
he best tree-based classical ML algorithms. D’Isanto & Polsterer
 2018 ) combined a CNN and a mixture density network to pro-
uce photo- z probability density functions (PDFs) generated using
aussian mixture models and achieved comparable performance to

xisting efforts in the literature. As larger training data sets become
vailable along with advances in graphical processing unit (GPU)
ardware and associated software, training CNNs have become very
fficient and currently form the backbone of most state-of-the-art
hoto- z algorithms. Pasquet et al. ( 2019 ) produced the current best
hoto- z’s using a supervised algorithm for the SDSS Main Galaxy
ample, which consists of ∼500 000 ugriz images with spec- z’s in

he range z = 0–0.4. They applied an innov ati ve deep CNN that
ncluded five inception modules (Szegedy et al. 2015 , 2016 ) which
se multiple filter sizes within the CNN operating at the same level
ather than being stacked sequentially to capture information on
ifferent scales efficiently . Recently , self-supervised learning-based
pproaches have shown promising results on astronomical data sets
e.g. Sarmiento et al. 2021 ; Stein et al. 2021 ). Hayat et al. ( 2021 )
sed a self-supervised training scheme paired with a ResNet50-based
NN (He et al. 2016 ) to achieve similar results but with less data.
hey pre-trained their network on a very large unlabelled data set to
nd similarities between different augmentations of the inputs and

hen fine-tuned the network to predict photometric redshifts. When
ne-tuned using the whole SDSS main galaxy sample, they achieve
tate-of-the-art results. 

Deep neural network-based methods are continuing to impro v e
 ut ha ve substantial limitations in terms of the interpretability of
he features learnt from images and efficiency in training. Models
ith larger number of trainable parameters not only require more
ata and computational resources to train but also are prone to
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 v erfitting. To alleviate some of these issues, we explore the use
f a modern deep learning method called capsule networks (Hinton, 
rizhevsky & Wang 2011 ) to jointly predict photo- z’s and basic
orphological types of galaxies (spiral/elliptical). Capsule networks 

re robust to rotations and invariant to viewpoint – a useful quality for
nalysing randomly oriented galaxies and require less training data 
nd trainable parameters than CNNs because they generalize much 
etter to no v el viewpoints (Mazzia, Salv etti & Chiaberge 2021 ).
apsule networks also learn a low-dimensional representation of the 

nput images, which provides us with a way to interpret the features
earnt by the model. 

In this work, we will focus on predicting photo- z point estimates
ut ideally we w ould lik e to quantify the uncertainty in our estimates
y predicting full photo- z PDFs. Ho we ver, producing properly cali-
rated photo- z PDFs remains extremely challenging. PDFs predicted 
y neural networks are often poorly calibrated (see e.g. Guo et al.
017 ) and provide very misleading uncertainty estimates. Moreover, 
ost methods currently used to check the quality of photo- z PDFs

like distributions of probability integral transform, etc.) focus on 
hecking the calibration of the entire sample of PDFs (i.e. global 
alibration) rather than focusing on the calibration of individual 
DFs (i.e. local/individual calibrations). Amaro et al. ( 2019 ) and 
chmidt et al. ( 2020 ) show that such metrics can be optimized by
athological but non-physical photo- z PDFs. Zhao et al. ( 2021 ) show
hat global calibration of PDFs does not imply local calibration and 
roposes new diagnostics which may be used to check for local 
alibration. In a future paper, we plan to extend our methods and
roduce locally calibrated PDFs following the procedure described 
n Dey et al. ( 2021 , 2022 ). That being said, the prediction errors on
ur photo- z point estimates are sufficiently small that we can safely
se these estimates for studies of the evolution of galaxies, their 
onnection with dark matter haloes, and the localization of transient 
ources. where photo- z PDFs are not strictly required. 

The paper is organized as follows. In Section 2 , we discuss the
arious data sets used in this work. In Section 3 , we introduce the
oncept of capsule networks and explain our network architecture. 
n Section 4 we describe the process of training a multitask capsule
etwork. In Section 5 , we present our results for photo- z point
stimates and compare our results with other similar works. We also 
rovide interpretations of the features learnt by the capsule network 
n order to predict photo- z’s. Lastly, in Section 6 we summarize our
esults. 

 DATA  

.1 SDSS imaging and spectroscopic redshifts 

o train and test our models, we use the same pre-processed images
nd spectroscopic redshifts that were used by Pasquet et al. ( 2019 )
or their CNN-based photo- z estimation method and were generously 
ade publicly available by the authors. 1 The data set contains 

16 525 galaxies with de-reddened r -band petrosian magnitudes, 
 ≤ 17.8, and spectroscopic redshifts, z ≤ 0.4 selected from the 
2th Data Release (DR12) of the Sloan Digital Sk y Surv e y (SDSS;
unn et al. 1998 , 2006 ; York et al. 2000 ; Smee et al. 2013 ; Alam

t al. 2015 ). The sample is mainly defined by the magnitude limit
s the redshift limit remo v es only a few tens of galaxies. The 12th
ata release of SDSS was used as that was the most recent data
elease available when this work be gan. Moreo v er, there has not
 https:// deepdip.iap.fr/#item/ 60ef1e05be2b8ebb048d951d 

p  

m
p

een any changes to the data for this particular set of galaxies since
R8, making all SDSS data releases since DR8 equi v alent for our
urposes. 
For this set of galaxies, Pasquet et al. ( 2019 ) pre-processed the

a w fiv e band images after obtaining them from the 8th Data Release
f SDSS (Aihara et al. 2011 ). They stacked and re-sampled the
mages to a common 64 × 64 × 5 pixel grid centred on the
pectroscopic target. The images were background subtracted and 
hotometrically calibrated with the same zero-point (Padmanabhan 
t al. 2008 ; Blanton et al. 2011 ). No foreground/background objects
ere remo v ed. Most of the galaxies had only one or two imaging

rames per band, whereas galaxies in Stripe 82 (Jiang et al. 2014 )
ad up to 64 imaging frames. So, the Stripe 82 galaxies which
atisfy our magnitude and redshift cuts defining the parent sample 
ave significantly less noise than the other images. The Stripe 82
alaxies form less than 4 per cent of the entire data set and can
e used to check how amount of noise in the images affect our
ethods (see Section 5.2 ). All the galaxies in the data set are spatially

esolved, so their sizes, surface brightnesses, morphologies in each 
and, and the presence of neighbouring and background galaxies 
rovide additional information not captured in spatially integrated 
hotometry. A detailed description of the image processing steps 
an be found in section 2.1 of Pasquet et al. ( 2019 ). The processed
mages along with their spectroscopic redshifts used in this work are
ublicly available. 

.2 Galaxy Zoo-1 morphological class labels 

e use a deep capsule network to jointly predict the basic mor-
hology of a galaxy along with its redshift. We use crowd-sourced
orphological class labels of galaxies from the Galaxy Zoo-1 project 

Lintott et al. 2011 ) to train our capsule network. Galaxy Zoo-1 labels
alaxies as spirals (with various sub-classes), ellipticals, mergers, 
r stars-and-artefacts. The classifications are considered ‘confident’ 
nly if the de-biased fraction of votes received for a class is greater
han 0.8. Since the numbers of mergers and artefacts in the images
f the SDSS-MGS are very low, we use the spiral and elliptical
lasses only. This gives us high-quality morphological classifications 
or 177 442 of the galaxies in our parent data set. We generate
orphological class labels for the remaining 339 083 galaxies in 

ur data set, using an iterative semisupervised system where we 
rain a deep capsule network using the confident class labels and use
t to generate the labels for all other galaxies (see Section 4.1 for
etails). Out of these 339 083 galaxies that do not have a confident
lassification, we obtain the fraction of votes received in Galaxy 
oo-1 for each class for 296 767 galaxies which we use to cross-
heck our results. For the remaining 42 316 galaxies, no morphology
nformation was available since they did not pass some of the quality
uts imposed by Galaxy Zoo-1. We do not use these galaxies to
sses the quality of our morphological class prediction and only their
eep capsule network generated class labels are used for redshift 
rediction. 

.3 Catalogue of galaxy properties 

o interpret the features learnt by our deep capsule network, we
easure correlations between the low-dimensional encodings of the 

nput images produced by the capsules and various other galaxy 
roperties (see Section 5.3.3 ). For this purpose, we created a cross-
atched catalogue of various observed and estimated physical 

roperties for the galaxies in our data set. 
MNRAS 515, 5285–5305 (2022) 
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For all galaxies, we query their model magnitudes, composite
odel (cmodel) magnitudes, 2 and extinction due to Milky Way

ust from Schlegel, Finkbeiner & Davis ( 1998 ) for each of the
ve SDSS photometric bands from the SDSS DR12 data base
Alam et al. 2015 ). We also query the velocity dispersion ( σ v )
easured from the spectra. We use the extinction corrected cmodel
agnitudes as a measure of the galaxy magnitudes and use extinc-

ion corrected model magnitudes to calculate the colours of the
alaxies. We also query measurements of stellar mass ( M � ), star
ormation rate (SFR), and specific star formation rate (sSFR) from
he Max Planck Institute for Astrophysics and the Johns Hopkins
ni versity (MPA-JHU) v alue-added catalogue 3 av ailable as a part
f SDSS DR12. These measurements are based on the methods
e veloped in Kauf fmann et al. ( 2003 ), Brinchmann et al. ( 2004 ),
nd Tremonti et al. ( 2004 ). For estimates of absolute magnitudes
 M u / g / r / i / z ), we use the measurements from the New York University
alue Added Galaxy Catalog 4 (NYU-VAGC; Blanton et al. 2005 )

or objects common between our data set and the NYU-VAGC
ithin a tolerance of 1 arcsec. We also use measurements of S ́ersic-

ndex in the r band ( n r ) and the corresponding 90 per cent light
adius ( R 90, r ) from the NYU-VAGC as a proxy for a galaxy’s
ize. 

A small number of objects in our data set do not have matches with
he external catalogues and there are also some measurements in these
atalogues that are problematic. We only use the objects in our data
et that have cross-matches with the external catalogues for each of
he galaxy properties. We also remo v e measurements of any property
hich are more than five units of median absolute deviation (scaled to

eplicate Gaussian standard deviation) away from the median of that
roperty. This step is done to remo v e the small number ( < 1 per cent )
f problematic measurements of galaxy properties that can affect our
nalysis. 

 CAPSULE  N E T WO R K S  

NNs (Fukushima & Miyake 1982 ; LeCun et al. 1989 ) are currently
he de facto standard for neural network architectures when the
nput data are images. They work by learning weights for a set of
onvolutional filters which extract useful features from the images.
s the filters are reused by translating them across the input, CNNs
ave fewer trainable parameters compared to their fully connected
ounterparts and also invariant to small translations of the object
f interest with respect to the background. Each successive layer
f the deep network extracts more and more complex features in
n hierarchical fashion. CNNs have been immensely successful in
olving problems in computer vision (e.g. Krizhevsky et al. 2012 ;
zegedy et al. 2015 ; Liu et al. 2022 ) and have been used e xtensiv ely
or predicting photometric redshifts from images (e.g. Hoyle 2016 ;
’Isanto & Polsterer 2018 ; Pasquet et al. 2019 ; Hayat et al. 2021 ;
enghes et al. 2022 ). 
Though CNNs are invariant to translations by design (LeCun et al.

998 ; Lee et al. 2009 ), they use pooling layers (i.e. replacing the input
ith the local maximum or average value) to locally combine the

ignal and reduce dimensionality (Ranzato et al. 2007 ). This comes
t the cost of losing precise location and pose information (see e.g.
inton et al. 2011 ; Hinton 2021 ). To solve this problem, Hinton et al.

 2011 ) proposed that artificial neural networks should be organized
NRAS 515, 5285–5305 (2022) 
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o  

e  

f  

c  

s

s local groups that perform complex computations on their inputs
nd encapsulates the results into highly informative output vectors.
hese vector counterparts of artificial neurons are called capsules
nd the entire computational chain is termed as a capsule network.
ach capsule vector should learn to recognize the presence of a visual
ntity irrespective of its orientation, viewing conditions, etc. They
hould not only encode the probability of the object being present
ut also encode a set of ‘instantiation parameters’ for the entity (e.g.
ocation, size, orientation, colour, etc.). For an ideal capsule network,
he encoded probability of an object being present should stay the
ame but the instantiation parameters should change when the input
mage goes through some transformation (like, rotation, translation,
cclusion, etc.). 
Though Hinton et al. ( 2011 ) introduced the idea of a capsule

etwork, a concrete architecture and training methodology was
ot proposed. More recently, Sabour, Frosst & Hinton ( 2017 )
roposed a training method called the dynamic routing algorithm
hich made capsule networks viable. Their architecture encodes

he ‘probability’ of an object being present using the length of
he capsule vectors. During the training process, information from
ach capsule is weighted before passing it on to the next layer of
apsules via the dynamic routing algorithm (Sabour et al. 2017 ).
he elements of the transformation matrices between two successive
apsules are determined by the gradient descent algorithm whereas
he routing weights are determined so as to maximize the cosine
imilarity (i.e. vector dot product) between the capsule vectors of
he two consecutive layers in an iterative fashion. Dynamic routing
llows capsule networks to focus on specific sections or traits of
he input data while making decisions. After each routing step,
he capsules are scaled using the non-linear squashing function,
 ( v ) = 

‖ v ‖ 2 
1 +‖ v ‖ 2 

v 
‖ v ‖ which re-scales the length of each capsule to be

etween 0 and 1 and acts as the non-linear acti v ation function for the
ayer. 

The original implementation of capsule networks in Sabour et al.
 2017 ) was geared towards the classification of grey-scale handwrit-
en digits. The same implementation was adapted for an astronomical
pplication by Katebi et al. ( 2019 ) for morphological classification
f galaxies, both of which are easier problems compared to photo-
 estimation. Consequently, they got state-of-the-art results while
sing only a single layer of capsules and a routing algorithm that
oes not train efficiently if multiple capsule layers are present. To
o well in more complicated tasks, it is helpful to have multiple
ayers of capsules (i.e. a deep capsule network). For this work, we
dopt the deep capsule network architecture and dynamic routing
lgorithm as proposed in Rajasegaran et al. ( 2019 ). They propose
onvolution operation based capsule network layers and a 3D-
onvolution based routing algorithm which reduces the number of
rainable parameters and makes the routing process significantly

ore efficient thereby making deep capsule networks possible. They
lso use skip connections (He et al. 2016 ) which add outputs of
arlier layers with the outputs of layers ahead of it to impro v e the
onvergence of the training process by preventing the gradients from
 anishing and allo wing information from earlier capsules to flow
fficiently to later ones. Rajasegaran et al. ( 2019 ) also introduced an
mpro v ed class independent decoder network which reconstructs the
nput image from the final layer capsules and thereby enforces that the
omponents of the capsule vectors form a low-dimensional encoding
f the input image. The class-independent nature of the decoder
nsures that the capsule dimensions encode the same properties
or both morphological classes. A mathematical description of the
apsule network layers and routing algorithms mentioned in this
ection is given in Appendix A . 

https://www.sdss.org/dr12/algorithms/magnitudes/
https://www.sdss.org/dr12/spectro/galaxy_mpajhu/
http://sdss.physics.nyu.edu/vagc/
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Figure 1. Schematic representation of the neural network architecture we use. The design of the classification and encoder network is based on Rajasegaran et al. 
( 2019 ). The classification network takes ugriz images as inputs and produces two 16-dimensional capsule vectors as outputs, each representing a morphological 
class (spiral or elliptical). During training, the capsule corresponding to the correct morphological class is used as an input for the decoder and redshift regression 
networks whereas during inference the capsule vector with the largest magnitude (i.e. highest class probability) is used as the input for the subsequent networks. 
The numbers in each box represent the shape of the layer being used. For convolutional capsule layers (i.e. Conv-Caps and 3D-Conv-Caps layers), they stand 
for the width × height, the number of capsules and the total number of dimensions for each capsule, respectiv ely. F or convolutional or transposed convolutional 
layers, they represent the width × height of the convolution filter kernel followed by the number of such filters being used. For fully connected layers, the number 
represents the number of nodes in the layer. We use a combination of the classification-and-encoding network and decoder network to generate morphological 
class labels for all the galaxies as a preliminary step and then use a combination of the three networks to predict redshifts. Details of the mathematical operations 
performed by the various kinds of capsule layers can be found in Appendix A . 
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.1 Our capsule network ar chitectur e 

he network architecture we use has three main components: a deep 
apsule network-based classification-and-encoding network, a class 
ndependent decoder network, and a redshift prediction network. 

e use a combination of classification-and-encoding network and 
he decoder network to generate morphological class labels for the 
ntire data set as a preliminary step and then use a combination of
ll three networks to jointly predict the morphology and photo- z as
escribed below and shown in Fig. 1 . 
e  
The classification-and-encoding network (Fig. 1 , left-hand col- 
mn) inherits its architecture from Rajasegaran et al. ( 2019 ). It
akes the 5 band 64 × 64 pixel images of a galaxy as inputs
nd uses a set of convolutional filters to convert the image into
apsules. Next four blocks of skip connected convolutional capsule 
ells are used. The convolutional capsule layers were introduced 
n Rajasegaran et al. ( 2019 ) and use 3D-convolution operations to
erform routing between two capsule layers more efficiently. Skip 
onnections refer to the element-wise summing of outputs of an 
arlier layer with the output of a non-consecutive layer ahead of it.
MNRAS 515, 5285–5305 (2022) 
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M

Figure 2. Comparison of the observed and reconstructed grz images of a few randomly selected spirals (left) and ellipticals (right) from the test set. The 
reconstructions were produced by the decoder network using the 16-dimensional capsule corresponding to the predicted morphological type. We see that the 
reconstructions capture basic properties of the input like shape, orientation, and colour. 
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his impro v es the conv ergence of the training process by prev enting
he gradients from vanishing and allowing information from earlier
apsules to flow efficiently to later ones. The output of the final
ayer is a set of two 16-dimensional capsule vectors that we use to
epresent the spiral or elliptical morphological class of a galaxy. The
uclidean lengths of these capsules denote the probability of the

nput image being a spiral or elliptical. The individual dimensions
f the vectors encode information about the input image, which
an be used to predict the photometric redshift and reconstruct the
nput image. This part of the network has about 7.5 million trainable
eights. 
The class independent decoder network (Fig. 1 middle column)

s composed of successive transposed convolutional layers (also
alled de-convolution layers) which take one of the capsule vectors as
nput and try to reconstruct the input image as its output. Transposed
onvolution layers are mathematically similar to convolution layers
xcept their input and outputs are switched. During the training
rocess, we use the capsule representing the correct morphological
lass as the input of this network. During inference, the capsule with
he largest length (i.e. the capsule representing the most probable
lass) is passed as the input to the decoder network. The decoder
etwork acts as a regularizer and enforces that each dimension
f the capsule vector represents a low-dimensional encoding of
he input. The decoder network also helps us visually interpret
he features encoded by the capsules. Using the same decoder
etwork for both capsules (i.e. class independent decoder) makes
he dimensions for both capsules represent similar properties. The
ecoder network has 0.88 million trainable weights. Some exam-
les of the input and reconstructed images of galaxies are shown
n Fig. 2 . 
NRAS 515, 5285–5305 (2022) 

o  
The redshift regression network (Fig. 1 right column) is a set of
ve fully connected neural network layers for redshift estimation. It

akes as input the capsule corresponding to the correct morphological
lass during training and the capsule with the highest class probability
uring inference. This network has about 13 000 trainable weights. 

.2 Loss functions 

he weights of the networks are obtained by minimizing a composite
oss function which is a weighted sum of the losses calculated from
he outputs of the three networks. The outputs from each of the
etworks are used to calculate a different loss function, a weighted
um of which is minimized depending on the task we are trying
o solv e. F ollowing Sabour et al. ( 2017 ), we use the output of
he classification-and-encoding network to calculate the margin loss
also called the Hinge loss) defined as 

 margin = 

2 ∑ 

j= 1 

T j max (0 , m 

+ − ‖ v j ‖ ) 2 ) 

+ λ(1 − T j ) max (0 , ‖ v j ‖ − m 

−) 2 , (1) 

here T j represent the class labels and T j = 1 when a galaxy
orresponding to class j is present in the input image and T j =
 otherwise, m 

+ = 0.9, m 

− = 0.1 and λ = 0.5. The parameters
 

+ / − define a threshold for the length of the capsule abo v e which
he classification is considered correct/incorrect. The λ parameter
own-weights the margin loss for an absent morphological class,
reventing the lengths of all the capsules from shrinking during the
nitial learning phase. The loss is summed o v er each class (two in
ur case). This loss function is optimized to ensure that the length of

art/stac2105_f2.eps
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ne of the capsules is close to 1 and the other one close to 0 when the
nput is a spiral galaxy and vice versa when the input is an elliptical
alaxy. 

We use the output of the decoder network to calculate the sum
f squared errors between the input and reconstructed image pixels 
efined as 

 decoder = 

5 ∑ 

k= 1 

64 ∑ 

j= 1 

64 ∑ 

i= 1 

( x ijk − ˆ x ijk ) 
2 , (2) 

here x and ˆ x denote the input and reconstructed images, respec- 
ively, and the summation is carried out o v er all the 64 × 64 pixels
nd 5 imaging bands. 

Similarly, we use the output of the redshift regression network to 
alculate the squared error between the spectroscopic redshift and 
he predicted photometric redshift defined as 

 photo −z = ( z spec − z phot ) 
2 . (3) 

All the losses are then averaged over the number of objects present
n the training batch. The exact weighting of these losses will be
iscussed in the next two sections. 

 T R A I N I N G  P RO C E D U R E  

.1 Generating morphological class labels 

orphological class labels from Galaxy Zoo-1 are available for only 
4 per cent of the galaxies in our data set (see Section 2.2 ). We follow
 fully supervised learning approach, and our capsule network design 
elies on the availability of morphological class labels. Therefore, 
e need to generate morphological class labels for the remainder 
f the data set to train the network to predict redshifts. To achieve
his, we train a deep capsule network that is a combination of the
lassification-and-encoding network and the decoder network. The 
ecoder network acts as a regularizer. We minimize the weighted 
um of the margin loss for classification and the total squared error
or reconstruction with a weight of 1 on the margin loss and 0.005
n the reconstruction loss. So, for this task we the loss function ( L )
iven by 

 = L margin + 0 . 005 × L decoder . (4) 

We divide the set of 177 442 galaxies with good morpholog- 
cal class labels into a training set (80 per cent), validation set
10 per cent), and test set (10 per cent). We train the network
o classify the galaxies as spirals or ellipticals and achieve over 
9 per cent classification accuracy on the test set. We then use this
etwork to predict morphology labels for the galaxies that do not 
ave a label from Galaxy Zoo-1. We then calibrate the predicted 
lass probabilities with isotonic regression (Zadrozny & Elkan 2001 , 
002 ) using the validation set for training the isotonic regression
odel and the test set to verify the calibration. This step ensures

hat the class probabilities predicted by the network are statistically 
onsistent. We then select galaxies with calibrated class probabilities 
 v er 0.8, assign them to their corresponding class label and merge
hem with the initial training set. We train the same network again
ith this new training set and follow the same procedure abo v e to

ssign labels and extend the training set. We do this step one more
ime and find that 99.6 per cent of the galaxies in our parent set has
 class label with more than 0.8 class probability. For the remaining
.4 per cent of the galaxies, we assign a label corresponding to the
lass with the highest probability. 
We are generating morphological class labels for 339 083 galaxies 
ased on a human labelled training set of 177 442 galaxies. The bulk
f the galaxies do not have a confident morphological class label
n Galaxy Zoo-1 as a strong consensus was not achieved among
he human volunteers. This either might be because the shape of
he galaxy is ambiguous or there were some artefacts in the image.
 visual inspection of the galaxies in the test set which do not
ave a label from Galaxy Zoo-1 shows that the objects can almost
l w ays be classified into a spiral or elliptical galaxy by the authors
nd the predictions of our model for those objects matches with
he judgement of the authors. The number of images which have
mbiguous morphology or where an artefact or merger makes the 
orphology difficult to infer are negligibly small (0.1 per cent). Since

ur main goal is to impro v e photo- z prediction performance, we
re comfortable with using the smaller training set with only good
lassifications to generate class labels for the entire data set and
gnoring the very small number of ambiguous cases. As a separate
ross-check, we compared the class labels generated by our method 
or the galaxies which do not have a confident label from Galaxy
oo-1 with the most voted Galaxy Zoo-1 class label and find that

hey are in agreement for over 70 per cent of the objects. 

.2 Training for photo- z estimation 

nce we have morphological class labels for all the galaxies in our
ata set, we now train a neural network that is a combination of
he classification-and-encoding network, the redshift regression net- 
ork, and the class independent decoder network. The classification- 

nd-encoding network gives us a low-dimensional representation of 
he input image which is then used by the redshift regression network
o predict the photometric redshift. Although the decoder network 
oes not directly help with redshift prediction, it has been shown to
ave a regularization effect on capsule networks (Sabour et al. 2017 ).
he decoder network also ensures that the low-dimensional encoding 

earnt has physically meaningful information, which can be used to 
econstruct the input image. In Section 5.3.2 , we use the decoder
etwork to interpret the features learnt by the capsule network. 
During the training process, the capsule corresponding to the cor- 

ect morphological class is used as an input for both the decoder and
edshift regression networks whereas during inference the capsule 
ector with the largest Euclidean length (i.e. highest class probability) 
s used as their inputs. To find the optimum set of weights for the
etwork, we minimize a composite loss function which is a weighted
um of the losses from each of the three networks. Similar to Sec-
ion 4.1 , we use the weighted sum of the margin loss and total squared
rror for the classification and reconstruction tasks, but now we also
dd the squared error of the predicted redshift to the total loss ( L ): 

 = L margin + 0 . 005 × L decoder + L phot−z . (5) 

he classification, reconstruction, and redshift regression losses are 
iven the weights of 1, 0.005, and 1 so that they contribute an equal
mount towards the total value of the loss. This allows us to put
qual importance on each of the individual tasks as all of them help
o impro v e the accurac y of photometric redshifts. Some examples of
econstructed images of galaxies obtained after training the network 
re shown in Fig. 2 . 

Instead of directly predicting the redshifts, we scale the redshifts 
sing the logistic transformation defined as 

 ( z) = log 

(
z − z min 

z max − z 

)
. (6) 
MNRAS 515, 5285–5305 (2022) 
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Figure 3. Comparison of photometric redshift point estimates predicted 
by our capsule network with the corresponding spectroscopic redshifts for 
galaxies in the test set. The central grey line shows z phot = z spec , i.e. a 
perfect photo- z estimate. The outer dashed lines mark | �z 

1 + z spec 
|= 0 . 05. Any 

point lying outside these limits (i.e. | �z 
1 + z spec 

| > 0 . 05) is considered to be an 

outlier. The colour on the scatter plot shows the number of data points present 
in each pixel of the figure. We see that the scatter is tight and symmetrically 
distributed about the z phot = z spec line and with a negligible bias. The scatter 
looks random and shows no visible patterns at the limits of training data ( z spec 

≈ 0 and z spec > 0.3) indicating stable performance across the redshift range. 
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or our data set z min = 0 and z max = 0.4. We find that performing
his transformation gives us better performance especially at very
ow redshifts ( z < 0.05). This is because the logistic transformation
akes the distribution of the target variable (redshift in our case)

all gradually at the boundaries, thereby alleviating the problem of
ttenuation bias. 

We randomly split our data into three subsets; the training set
hich is used to train the network, the validation set, which is used

o tune the hyperparameters of the network and decide when to stop
raining and a test set which is used to check the final performance.
ll results quoted in this work use a training set that is 80 per cent

he size of the parent data set and have been calculated on the test set
hich is 10 per cent the size of the parent set (unless stated otherwise).
he remaining 10 per cent of the data is used as the validation set. We
lso check the performance of our photo- z prediction as a function
f the size of the training set as shown in Fig. 6 . 
To randomly initialize the weights for the networks, we use the He-

ormal initializer (He et al. 2015 ). We use the PReLU (He et al. 2015 )
cti v ation function for all the hidden layers and a linear acti v ation
unction for the output layers of the decoder and redshift regression
etworks. To train all the networks, we use the Adam optimizer
Kingma & Ba 2015 ) with an initial learning rate of 0.001. After each
poch the learning rate is decreased following the rule: learning rate
 initial learning rate × 0.95 epoch . We also augment the training set

y randomly rotating the images in steps of 90 ◦ or flipping them along
he horizontal or vertical axis before passing them to the networks
or training. The same setup is used for both the morphological label
rediction and redshift estimation tasks. 
We train the networks for 100 epochs but the training generally

onverges within 70 epochs. We choose the epoch which has the best
erformance – i.e. the highest classification accuracy when gener-
ting morphology labels and the lowest average redshift prediction
rror on the validation set. Since the model is initialized randomly,
ach training run can result in a different set of optimal weights.
ence we run the training process 5 times and take the average of

heir output as our photo- z prediction. For this reason, we also select
pochs that have a low bias and moderate variance since bias stays
oughly the same whereas variance decreases when averaged. 

The models are defined in Keras with Tensorflow 1.15 as the back
nd. The training is done on an Alienware Area 51 PC with an Intel
ore i7 9800X processor, 2 RTX 2080Ti GPUs and 64GB of RAM.
e use a batch size of 400 which takes about 8 h to train for 100

pochs. The model is copied on to the two GPUs and the training is
arallelized by sending half of the batch to each GPU. 

 RESU LTS  

.1 Photo- z evaluation metrics 

n this work, we are focusing only on photo- z point estimates and not
ull PDFs. We will therefore assess the performance of our photo- z
stimates by measuring how much the spectroscopic and photometric
edshifts for each galaxy in the test set differ. We use the following
hree common metrics: 

(i) Prediction bias defined as 〈 �z 
1 + z spec 

〉 , i.e. the average value of
he prediction error. 

(ii) Normalized Median Absolute Deviation ( σ NMAD ) defined
s 1 . 4826 × Median ( | �z 

1 + z spec 
− Median ( �z 

1 + z spec 
) | ). This is a robust

easure of the spread of prediction errors. 
(iii) Fraction of Outliers (f outlier ) defined as the fraction of photo-

 predictions for which | �z 
1 + z spec 

| > 0 . 05, i.e. the fraction of cases
NRAS 515, 5285–5305 (2022) 
here the prediction error is very high. We chose the threshold of
.05 to easily compare our results with other similar works. 
he specific choice of the metrics and the threshold to define an
utlier is based on convention and allows us to easily compare our
esults with recent similar work. 

.2 Photo- z point estimate predictions 

hen trained on 80 per cent and tested on 10 per cent (with the
emaining 10 per cent used as validation set) of the parent data set and
esults averaged over an ensemble of 5 models, our photo- z estimates
ave σ NMAD = 0.00898, f outlier = 0 . 19 per cent , and 〈 �z 

1 + z spec 
〉 = 7 ×

0 −5 . For comparison, other deep learning based methods which take
mages as inputs like Pasquet et al. ( 2019 ) achieve σ NMAD = 0.00912,
 outlier = 0 . 31 per cent and 〈 �z 

1 + z spec 
〉 = 1 × 10 −4 when trained on the

ame data set and Hayat et al. ( 2021 ) achieves σ NMAD = 0.00825,
 outlier = 0 . 21 per cent and 〈 �z 

1 + z spec 
〉 = 1 × 10 −4 , by first pre-training

n a large unlabelled data set (about twice as big as our data set) and
hen fine-tuning on a data set similar to ours. Both of them use models
ith about 3 times as many trainable parameters compared to ours

 ∼24 million versus ∼8 million). Our algorithm has comparable
NMAD and better f outlier performance among these deep learning
ased methods. 
We show a comparison between the photometric and the spec-

roscopic redshifts for the test set in Fig. 3 . We see that the scatter
s tight and distributed symmetrically about the z phot = z spec line.
he scatter in the points and distribution of outliers look random
nd show no visible patterns of a sudden change in performance
t the limits of training data ( z spec ≈ 0 and z spec > 0.3) indicating
table performance across the redshift range. We also see no evidence
f attenuation bias (i.e. almost constant predictions for a subset of
nputs; see Freeman et al. 2009 for a discussion on attenuation bias in

art/stac2105_f3.eps
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Figure 4. Normalized distribution of the redshift prediction errors. The blue 
histogram shows the distribution of redshift prediction errors of our algorithm 

on the test set. The orange line shows a Gaussian distribution with the location 
and scale parameters set as the prediction bias and σNMAD , respectively. The 
distributions are normalized to have unit area under the curves. The shaded 
region marks the threshold for outliers. The distribution of the prediction 
errors is symmetric, centred around 0 and closely resembles a Gaussian 
distribution, indicating little if any systematic preference for overestimation 
or underestimation. 
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hoto- z algorithms). The images used to train the networks include 
bservations of Stripe 82 (Jiang et al. 2014 ), which are about 2 mag
eeper and have less noise than the rest of the images. Since Stripe
2 is a small fraction ( < 4 per cent ) of the whole data set, we do not
ccount for this varying depth by weighing data points differently. 
e find a significantly smaller spread in the predictions ( σ NMAD = 

.00741) and a fraction of outliers consistent with the rest of the
ample (f outlier = 0 . 35 per cent ), given the small number of Stripe 82
bjects in the test set. Galaxies in the test set outside of Stripe 82
roduce photo- z’s with σ NMAD = 0.00906 and f outlier = 0 . 19 per cent .
his shows that having images with a higher signal-to-noise ratio 

mpro v es the quality of photo- z predictions. 
When the test set is split into subsets based on morphology, we

nd that the photo- z predictions have a lower spread for ellipticals
han spirals ( σ NMAD = 0.00844 versus 0.00956) with a comparable 
raction of outliers (0.18 per cent versus 0.20 per cent). This might be
ecause elliptical galaxy populations have similar rest-frame colours 
s older stellar populations tend to change very little in colour with
ime. The observed colours and magnitudes (or any other measure 
f flux) therefore trace the redshift well making it is easier to predict
edshifts of elliptical galaxies than spirals. When we split the test
et based on the availability of human labelled morphology, we find 
hat photo- z prediction performance is better when human labelled 

orphology is available ( σ NMAD = 0.00815, f outlier = 0 . 11 per cent
ersus σ NMAD = 0.00948, f outlier = 0 . 23 per cent ). Although human 
abelled morphology impro v es the performance, the lack of it does
ot reduce the performance drastically. 
We performed a visual inspection of the images of the galax- 

es which were photo- z prediction outliers. We find that around 
8 per cent of these outliers have bad or missing photometry. Re- 
oving these objects from our test set reduces our outlier fraction to

 outlier = 0 . 16 per cent . We kept these rare objects in the parent data
et for easy comparisons with Pasquet et al. ( 2019 ). 

The distribution of prediction errors is shown in Fig. 4 . They
ollow a symmetric distribution centred about 0 indicating little if any 
ystematic preference for o v erestimation or underestimation. Since 
he fraction of outliers is very small and we see that the distribution of
rediction errors closely resembles a Gaussian distribution, σ NMAD 

an be treated as the 1 σ Gaussian uncertainty around each prediction
p to a good approximation. 
We also check the performance (prediction bias and σ NMAD ) of 

ur photo- z estimates as a function of the spectroscopic redshift
nd r -band Petrosian magnitude of galaxies as shown in Fig. 5 . We
se the Petrosian magnitude as it was used to define the faintness
ut of the data set we are using. As a function of redshift, the
bsolute magnitude of the bias is small though it is positive at low
edshifts and ne gativ e at high redshifts with the inflection point being
t the median redshift ( ≈0.1) of our data set. This kind of pattern
s common for ML-based algorithms. When seen as a function of
 -band magnitude, the bias is almost constant and negligibly small in
agnitude throughout the entire range of magnitudes. σ NMAD tends 

o increase both as we go to higher redshifts and fainter magnitudes.
his can be attributed to the fact that there is less training data and

ncreased noise in the images at these regimes. We also see that
NMAD ( ∼0.006) is significantly lower than the global value at low

edshifts ( z < 0.05) even though the number of training samples
vailable is small in this regime due to lower surv e y volume. We
uspect this is because at very low redshifts resolved information in
he images, like morphology, size, and surface brightness, contains 
ich information about galaxy distances. Better photo- z performance 
t very low redshifts can aid in the identification of satellite galaxies
hat require a massive spectroscopic effort to get redshifts (e.g. Geha
t al. 2017 , Mao et al. 2021 ). 

Obtaining spectroscopic redshifts is often an e xpensiv e process, 
o it is important that ML-based methods can perform well when the
raining data sets are smaller. To see how the photo- z performance
f our algorithm changes, we train our capsule network-based model 
sing varying sizes of training data by random sub-sampling of the
arent data set (after obtaining morphological labels) into smaller 
ubsets while keeping everything else the same in the training 
rocess. The results are shown in Fig. 6 and also compared with
ther similar works like Pasquet et al. ( 2019 ), Hayat et al. ( 2021 ),
nd Beck et al. ( 2016 ). The data for Pasquet et al. ( 2019 ) and Beck
t al. ( 2016 ) were obtained from table 2 in Pasquet et al. ( 2019 ), the
ata for Hayat et al. ( 2021 ) were obtained from their fig. 4 using the
ebPlotDigitizer (Rohatgi 2020 ). The metrics for Beck et al. ( 2016 )

rovided here are calculated on their photo- z estimates of the same
bjects as ours. They train on a much larger data set spread o v er a
arger redshift range compared to ours which maybe one reason for
igher prediction errors. We al w ays use 10 per cent of the parent data
et as the validation set and use the remaining amount of data to test
he performance. We observe that we outperform Beck et al. ( 2016 ),
hich is a widely used source of SDSS photo- z estimates using just
 per cent of the parent sample (or ∼10 4 galaxies) as a training set.
an y surv e ys of the high-redshift Univ erse like CANDELS (Grogin

t al. 2011 ; Koekemoer et al. 2011 ) have spectroscopic observations
or a similar number of galaxies, albeit across a larger redshift range
nd our method could potentially be used to impro v e the photo-
 estimates for them. We see that our method has performance
omparable to other deep learning-based photo- z estimation methods 
ike Pasquet et al. ( 2019 ) or Hayat et al. ( 2021 ) when both are trained
n random subsets of data. 

.3 Interpreting the features learnt by the capsule network 

s ML-based methods have started replacing more traditional 
hysics-based methods to model astrophysical phenomena and make 
redictions that reduce the need for making extra observations, it 
MNRAS 515, 5285–5305 (2022) 
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Figure 5. Prediction bias ( 〈 �z 
1 + z spec 

〉 ) and σNMAD of our photometric redshift estimates as a function of spectroscopic redshift ( z spec , left) and r -band Petrosian 

magnitude (right). The metrics have been calculated for 10 bins of equal population. We use bins with varying widths but equal populations so that the standard 
errors on the binned statistics are comparable across all bins. The grey points show the distribution of individual galaxies. Due to the relatively large number 
of samples in each bin, the standard errors on the statistics are very small. We see that σNMAD increases at higher redshifts (where we have less training data) 
and for fainter galaxies (where the signal-to-noise ratio of the images are lower). Though the bias on average is very small, it is higher at the lowest and highest 
redshift bins but with opposite signs with an inflection at the median z spec ( ≈0.1). The bias is constant and negligible in magnitude o v er the entire range of 
r -band Petrosian magnitudes. 

Figure 6. Performance of photometric redshift prediction algorithm as a function of the size of training data. The standard errors on the statistics are negligibly 
small and hence not shown. Our algorithm has comparable σNMAD and better f outlier performance to the two deep learning-based efforts (Pasquet et al. 2019 ; 
Hayat et al. 2021 ) and significantly better performance than the classical ML-based technique (Beck et al. 2016 ) while requiring less training (or pre-training) 
data and fewer trainable parameters ( ∼8 million versus ∼23 million). 
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s becoming increasingly important to peer inside these complex
athematical models to identify what physical features they are

earning. This will not only help us to validate what the algorithms
re predicting but also help us bridge the gap between the traditional
hysics-driven and the newer data-driven approaches. 
In our work, we use the capsule vectors along with the decoder

etwork to shed some light on the features learnt by the network.
ince the capsules composing the output layer of the morphology
lassification network are trained to represent a morphological
lass of galaxies along with holding enough information to predict
he redshift and a reconstruction of the input image, we expect
he components of the capsule vector to learn a low-dimensional
ncoding of the input galaxy image. Moreo v er, we e xpect that each
NRAS 515, 5285–5305 (2022) 

i  
f the component will learn properties so that all capsule dimensions
ombined can ef fecti vely predict the morphology, redshift and a
econstruction of the input image. 

The features learnt by the networks are not constrained to be
asily identifiable visual properties or commonly used physical
uantities derived from images. We will therefore perform both
isual exploration of these features and also measure how well these
eatures correlate with galaxy properties. 

.3.1 Visualizing the capsule encoded space 

e first take a look at how the capsules corresponding to each galaxy
n the test set are organized in their manifold. We use Uniform
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Figure 7. Two-dimensional UMAP embedding of the 16-dimensional capsules colour-coded by photometric redshift (top left), spectroscopic redshift (top 
right), fraction of spiral galaxies in the neighbouring region (bottom left), and redshift prediction error (bottom right). The photo- z outliers are shown in black in 
the bottom right panel. The UMAP embedding of the capsules creates a nearly perfect redshift sequence indicating that the capsules learn a good representation of 
redshift. Spirals and ellipticals tend to occupy separate regions though there is a region with overlap with morphology producing a gradient almost perpendicular 
to the redshift sequence. We notice that regions dominated by spirals tend to have slightly higher redshift prediction errors compared to regions dominated 
by ellipticals. Though spirals and ellipticals have almost the same fraction of outliers, visually it may seem that there are more outliers which are spirals than 
ellipticals. Many of those outliers are actually ellipticals which lie close to the region dominated by the spiral galaxies in the 2D UMAP representation. An 
interactiv e v ersion of this figure sho wing galaxy image thumbnails is av ailable online 5 . 

M
2
s  

a
f
a
e  

p
(  

l  

2
p
s
c

d
c
b
n

t
s
g
w
t
f  

2  

i  

d
t

 

8  

s  

a  

a
e
c
p
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/4/5285/6652127 by U
niversity of Pittsburgh user on 06 Septem

ber 2023
anifold Approximation and Projection (UMAP; McInnes & Healy 
018 ) to embed the 16-dimensional capsules into a two-dimensional 
pace to visualize and interpret any structures, if present. UMAP is
 non-linear dimensionality reduction method that uses techniques 
rom manifold learning and topological data analysis to embed 
 high-dimensional data set into a low-dimensional manifold. To 
nsure that the relative local density of data is preserved when we
roject the capsules on to a two-dimensional space, we use DensMAP 

Narayan, Berger & Cho 2020 ), which computes the estimates of
ocal density and uses them as a regularizer in the optimization of the
D UMAP representation. UMAP with the DensMAP regularizer 
reserves the local structure of the data while capturing global 
tructure better than many other similar algorithms and is also 
omputationally efficient. 

Fig. 7 shows the two-dimensional UMAP embedding of the 16- 
imensional capsules colour coded by various properties. When 
oloured by photometric or spectroscopic redshift (top row), the em- 
edding shows a nearly perfect redshift sequence. As UMAP places 
earby capsules in the high-dimensional space close together in their 
wo-dimensional projection, we can infer that the capsules track a 
mooth redshift sequence. This is in contrast to the representations 
enerated by self-organizing maps (SOMs; Kohonen 1981 , 1982 ), 
hich group galaxies with similar spectral energy distributions 

ogether using their photometry but impose a geometry that can 
orce adjacent cells to have wildly different redshifts (Masters et al.
015 ). Currently, SOMs are widely used to determine regions with
ncomplete spectroscopic data (e.g. Masters et al. 2015 , 2019 ), but
imensionality reduced capsules may perform better at this task due 
o its smooth redshift distribution. 

If we colour the points based on the fraction of spirals among the
0 nearest neighbours in the 2D space (bottom left), we see that the
pirals and ellipticals tend to occupy separate regions of the space
lthough there is a significant o v erlap. The fraction of spirals exhibits
 gradient almost perpendicular to the redshift sequence thereby 
f fecti vely encoding both redshift and morphology, properties the 
apsules were trained to learn. When colour-coded by the redshift 
rediction errors (bottom right) and compared with the plot showing 
he fraction of neighbouring spirals, we notice that regions dominated 
MNRAS 515, 5285–5305 (2022) 
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y spirals tend to have slightly higher redshift prediction errors
ompared to regions dominated by ellipticals. This was quantified in
ection 5.2 where we noted that spirals have slightly higher value of
NMAD compared to ellipticals but equi v alent f outlier . Visually from
ig. 7 it may seem that there are more outliers which are spirals

han ellipticals but many of those outliers are ellipticals which lie
lose to the region dominated by the spiral galaxies in the 2D UMAP
epresentation. 

Most of the galaxies in the 2D UMAP representation lie on the
arge crescent shaped sequence. A small number (about 1–2 per cent)
f galaxies deviate from this sequence forming a smaller sequence
ncircled by the larger crescent. These galaxies all have higher values
or dimension 10 of their capsules. Synthetic images generated by
erturbing capsule dimensions (see Appendix B ) shows that higher
alues of dimension 10 tend to increase the extended component of
he galactic disc. Some of the dimension 10 outliers in the main
edshift sequence clearly have stars in the image. Ho we ver, our
nvestigation of the dimension 10 outliers in the smaller sequence
as yet to yield a clear interpretation. These galaxies are a 50/50 mix
f spirals and ellipticals, and the majority do not have neighbouring
tars, galaxies, or artefacts. A systematic study of these outlier
alaxies will be done in a future work. The other galaxies that
andomly scatter away from the two large sequences almost always
ave a neighbouring star, galaxy, or an artefact. 

.3.2 Generating synthetic ima g es by perturbing capsule 
imensions 

o check whether the components of the capsules represent any
isually identifiable properties of the galaxies, we take the capsule
orresponding to the predicted morphology of a galaxy and add a
mall perturbation to one of the components keeping all the others
xed. The perturbation is added in units of standard deviation of the
alues of the components in our test set. We pass on this perturbed
apsule vector to the decoder network to see how the reconstructed
mage of the input changes. 

Fig. 8 shows the synthetic galaxy images generated from the
erturbed capsule vectors for two galaxies (the first instance of
ach morphological type from Fig. 2 ). We can see that perturbing
pecific components change properties like size (i.e. the angular size
f the galaxy and how fast the light profile falls off), orientation,
mount of central bulge, and surface brightness. This shows that
ome of the features learnt by the capsule network correspond to
hysical properties of galaxies. Visual properties like size and surface
rightness change with the distance of the galaxies and can help to
reak degeneracies in the colour–redshift relation and provide better
edshift inference. Fig. 8 shows the synthetic images from perturbed
apsules for only a subset of dimensions for which the change in
he images is easily identifiable visually. Appendix B shows the
ynthetic images generated by perturbing all 16 of the dimensions
ndividually. 

.3.3 Correlations of capsule dimensions with physical properties 

o check whether any physical properties of the galaxies are encoded
y the capsules that cannot be identified by simply looking at
ynthetic images generated from perturbed capsules, we measure the
orrelations between each dimension of the capsules and various
lobal galaxy properties. Since we expect the correlations to be
on-linear in nature, we use the distance correlation (Sz ́ekely,
izzo & Bakirov 2007 ) to measure them. The distance correlation
NRAS 515, 5285–5305 (2022) 
uantifies the dependence between two random variables by mea-
uring how much the Euclidean distance between two samples of
ne random variable changes for a given change in distance between
wo samples of another random variable. This makes the distance
orrelation sensitive to any kind of dependence between two random
ariables, unlike Pearson or Spearman correlations which measure
inear and strictly monotonic relationships respectively. The distance
orrelation has a value between 0 and 1, where 0 would mean that
he random variables are independent whereas a value of 1 would
ean the linear sub-spaces spanned by the two random variables are

lmost equal, indicating a very high degree of dependence. 
Fig. 9 shows values of distance correlation between each of the

omponents of the capsule vector corresponding to the predicted
orphology and global properties of galaxies in the test set. Unsur-

risingly, we find that many of the capsule components have strong
orrelations with the spectroscopic redshift, with dimensions 8, 14,
nd 3 being the strongest. The capsule dimensions that show strong
orrelations with spectroscopic redshift also show strong correlations
ith observed frame galaxy colours and apparent magnitudes which

re known to be good predictors of photometric redshift. Given
his pattern, we also expect them to be well correlated with galaxy
bsolute magnitudes ( M u / g / r / i / z ) which we can also verify from Fig. 9 .
 ́ersic index (n r ) correlates the most with dimension 13 which we
aw controls the amount of a galaxy’s central bulge (see Fig. 8 ).
imilarly, dimension 2 which we saw control the visual size of the
alaxy image has the strongest correlation with the 90 per cent light
adius ( R 90, r ) among all capsules and also correlates well with S ́ersic
ndex which are the two quantities which together quantify the visual
ize of the galaxy on the sky. We can therefore infer that the capsules
uccessfully encode almost all of the photometric properties of the
alaxy image. A few illustrativ e e xamples of these correlations in
orm of scatter plots can be found in Appendix C . 

Many capsule dimensions show correlation with physical proper-
ies like stellar mass ( M � ) and velocity dispersion of the spectra ( σ v )
nd a small number of dimensions show strong correlations with SFR
nd sSFR. Most likely, these correlations arise because SFR and sSFR
epend on galaxy magnitudes and spectroscopic redshifts which
he capsules efficiently encode, but the capsules may also encode
ome physical properties of the galaxies. Even though we focus on
redicting photometric redshifts in this work, we expect that capsule-
ased encodings can be used to create a general purpose image-based
nference methodology for physical properties of galaxies and will
e explored in a future work. 

.3.4 Feature importance using SHAP values 

s shown in the Sections 5.3.2 and 5.3.3 , each capsule dimension
ends to encode a somewhat different property of the input image,
o we would like to see which of the dimensions are most useful
n predicting photo- z’s. To quantify this, we calculate the SHapley
dditiv e e xPlanations (SHAP; Lundberg & Lee 2017 ) values for

ach of the capsule dimensions that are used by the redshift prediction
etwork using the test data. SHAP is a method to explain a prediction
y computing the contribution of each feature. It takes a game theory
pproach to optimally distribute credit to each feature for a given
rediction using Shapley Values (Shapley 1953 ). The Shapley value
or a feature is defined as the average marginal contribution of a
eature across its all possibilities for a given prediction. The SHAP
alue is then calculated via a weighted sum of Shapley values to
nsure that the contribution of each feature to a prediction add
p to the value of the prediction. Since it would be prohibitively
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Figure 8. Synthetic galaxy images generated by perturbing capsule dimensions. Each column shows the decoded image when one of the 16 dimensions of 
the capsule vector is perturbed in units of its standard deviation (keeping all the others fixed). The 0 σ column shows the decoded image from the unperturbed 
capsule and are identical for each row. We show a subset of the dimensions here for which the perturbations have a clear interpretation (see Appendix B for 
a version with all the dimensions). We see that some of the capsule dimensions, encode physical features like size, orientation, amount of central bulge and 
surface brightness of the galaxies. 
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Figure 9. Measurements of the distance correlation between the capsule dimensions corresponding to the predicted morphological class and global galaxy 
properties (as described in Section 2.3 ). The values have a range between 0 and 1 where a value of 0 means the two random variables being compared are 
independent and a value of 1 indicates a high level of dependence. We have grouped the galaxy properties into two sets: properties which solely depend on 
photometry (top) and properties which include knowledge of the spectroscopic redshift along with photometry (bottom). u , g , r , i , z represent the extinction 
corrected cmodel magnitudes. u − g , g − r , etc. represent galaxy colours calculated using extinction corrected model magnitudes. n r and R 90, r represent the 
S ́ersic index and the 90 per cent light radius obtained from the S ́ersic profile fit to r -band photometry and are used as a proxy for a galaxy’s size. z spec denotes 
the spectroscopic redshift; M u / g / r / i / z represent the absolute magnitudes in each of the five bands. M � stands for the stellar mass, SFR stands for the star formation 
rate, and sSFR stands for the specific star formation rate. σv represents the velocity dispersion of the spectra. We see that the components of the capsule vectors 
are not only correlated with the spectroscopic redshift but also correlated with the apparent magnitudes and colours, measurements that are traditionally used by 
photometric redshift prediction algorithms. We also see that they are well correlated with parameters of a S ́ersic fit which are indirect indicators of morphology 
as well as physical properties of the galaxies that would traditionally require spectroscopic measurements. 
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 xpensiv e to calculate contributions across all possibilities of the
eature space, we use the expected gradients method which combines
deas from Integrated Gradients (Sundararajan, Taly & Yan 2017 ),
HAP (Lundberg & Lee 2017 ), and SmoothGrad (Smilkov et al.
017 ) to approximately calculate the SHAP values for a neural
etwork. A positive SHAP value indicates that the particular value
f the feature increases the value of the output, a ne gativ e SHAP
alue indicates that the output is decreased, whereas a value of
ero means that the feature does not contribute towards the output
or that specific prediction. We then rank the features (i.e. capsule
imensions) based on their magnitude of SHAP values averaged over
ll predictions in the test set. Thus, a capsule dimension is deemed to
e the most important if it influences the output most across all the
redictions. 
NRAS 515, 5285–5305 (2022) 
We show the SHAP values for each prediction in the test set in the
ummary plot shown in Fig. 10 . The capsule dimensions are listed
n decreasing order of their importance (i.e. average magnitude of
HAP values). The points are also colour coded as per the value of

he feature which helps us to qualitatively identify how much the
rediction changes based on a change in the value of the dimension.
e see that capsule dimensions 8 and 14 are the most important,

ollowed by dimensions 3 and 6. The next four capsule dimensions
till contribute significantly to the prediction as dimensions 9, 7,
0, 12 have relatively high SHAP values. All the other dimensions
ontribute to the prediction significantly only a small number of
imes. F or man y of the dimensions, we see a pile up of SHAP
alues around 0. This indicates that the particular feature does not
ontribute much towards the prediction for that specific case. This can
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Figure 10. A SHAP summary plot showing the SHAP values of each 
capsule dimension for the entire test set. The capsule dimensions are listed in 
decreasing order of their importance (i.e. average magnitude of SHAP values). 
The points are colour-coded as per the value of the capsule dimension. We see 
that dimensions 8 and 14 are the most important followed by dimensions 3 and 
6. The pile-up of points at a SHAP value of zero indicates that the dimension 
does not contribute towards the prediction for this specific case and the 
network gets similar information from another capsule dimension. This can 
happen when features are correlated. We do see that all the dimensions have 
some non-zero SHAP values, indicating that all the dimensions contribute 
towards the prediction at least sometimes. 
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appen if the input features are correlated and the model gets similar
nformation from a different dimension for that specific prediction. 
his is also evident from the fact that the 2D UMAP projection of

he capsules form a nearly perfect redshift sequence (see Fig. 7 )
uggesting that the data do not fully span the 16-dimensional latent 
pace. We therefore define the importance ranking of a capsule 
imension as an average over the entire test set and the ranking
ay be different for a specific prediction. 
Dimension 8 has the highest SHAP feature importance. Although 

e cannot clearly discern what physical property it represents from 

he synthetic images generated from perturbed capsules, we can 
ee from the figures in Appendix B that perturbing this dimension 
auses the image to morph from an elliptical galaxy to a spiral
 alaxy. We h ypothesize that dimension 8 learns a representation 
hich is a combination of the morphological type, colour, and 
rientation of the galaxy which helps it to distinguish between an 
lliptical galaxy which is intrinsically red and an edge-on spiral 
alaxy which appears to be reddened because of dust. This helps the
apsule network to learn representations of galaxy colour while being 
ware of the morphology and orientation which can be very useful to
reak degeneracies in the colour–redshift relation. We also see that 
imension 14 is the second most important feature. Fig. 8 shows that
imension 14 encodes information about the surface brightness of 
he observed galaxy. A lower value of dimension 14 corresponds to a
righter object. From Fig. 10 we see that a lower value of dimension
4 reduces the redshift prediction since they have a negative SHAP 

 alue. This sho ws that the neural network assigns a lo wer redshift to
bjects with higher surf ace brightness. Surf ace brightness is a very
ood proxy to the distance of a galaxy (and therefore redshift) since
bjects f arther aw ay appear f ainter at a fixed luminosity. Learning a
epresentation of surface brightness hence helps the network to better 
redict redshifts. 

 SUMMARY  A N D  DI SCUSSI ON  

n this paper, we use a deep capsule network to produce photometric
edshift point estimates from images of galaxies and provide in- 
erpretation of the features learnt by the network. We use ∼400 000
DSS ugriz images, their spectroscopic redshifts, and morphological 
lass labels from Galaxy-Zoo-1 (see Section 2 ) to train our deep
apsule network. Capsule networks are a new type of neural network
rchitecture that are better suited for identifying morphological 
eatures than traditional CNNs. We use a deep capsule network 
rchitecture that uses 3D convolution based routing mechanisms and 
kip connections to efficiently train the network (see Section 3 and
ig. 1 ). 
We achieve a photometric redshift prediction accuracy comparable 

o or better than current methods while requiring less data and fewer
rainable parameters (see Figs 3 and 6 ). The performance of our
lgorithm is stable across the brightness and redshift range of our
ata set (see Fig. 5 ). Moreo v er, the decision-making of our capsule
etwork is easier to interpret as capsules act as a low-dimensional
ncoding of the input image and can be used to produce reconstructed
mages (see Fig. 2 ). We use UMAP, a non-linear dimensionality
eduction method to embed the capsules in two-dimensional space 
nd show that the capsules produce an almost perfect redshift 
equence with the fraction of spirals in a re gion e xhibiting a
radient roughly perpendicular to the redshift sequence (see Fig. 7 ).
e then perturb the encodings of real galaxy images to generate

ynthetic galaxy images that demonstrate the image properties (e.g. 
ize, orientation, and surface brightness) encoded by each capsule 
imension (see Fig. 8 ). We calculate the feature importance of each
apsule dimension using their SHAP values to rank them based 
n their usefulness towards predicting photo- z’s (see Fig. 10 ). We
lso demonstrate that galaxy properties (e.g. magnitudes, colours, 
nd stellar mass) correlate strongly with each capsule dimension 
see Fig. 9 ). This tells us that the capsule dimensions encode and
se visual and morphological properties of galaxy images (like 
urface brightness, orientation) in addition to measures of amount 
f light (like colours and magnitudes) to infer the photometric 
edshift. 

Here, we have presented photo- z point estimates, though for 
any science cases photo- z PDFs are more desirable and sometimes

ecessary for meaningful analyses. Ho we ver, current ML-based 
hoto- z PDF estimation efforts suffer from poor calibration (Schmidt 
t al. 2020 ). In future work, we plan to incorporate methods described
n Dey et al. ( 2021 , 2022 ) to properly calibrate ML-based photo-
 PDFs based on a galaxy’s position in input space with capsule
etwork photo- z PDFs serving as a natural example to demonstrate
he expected improvements. 

More generally, the future of capsule network-based photo- z 
stimation looks bright. Their high training efficiency will allow 

or deeper and wider models with greater capacity to handle the
assive training sets from current and future spectroscopic surv e ys

ike DESI (DESI Collaboration 2016 ) and PFS (Takada et al. 2014 )
hat extend to higher redshifts, span a wider redshift range, and
robe to fainter magnitudes. Specifically, we plan to enable early 
ESI science by estimating photo- z’s for objects in the DESI Le gac y

maging Surv e ys (De y et al. 2019 ) before the DESI spectroscopic
urv e y is complete. At even higher redshifts, we are optimistic that
apsule networks can leverage morphology – especially the evolution 
MNRAS 515, 5285–5305 (2022) 
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f galaxy morphologies from z ∼ 2 to z < 0.5 – from space-
ased high-resolution imaging to help break the SED degeneracies
hat plague template-fitting methods at high- z. With growing high- z
pectroscopic training sets and rapidly progressing capsule network
rchitecture development, we are optimistic that capsule networks
ill provide complementary constraints or even superior photo- z’s

o template-based methods at high- z. 
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PPENDIX  A :  CAPSULE  N E T WO R K S  A N D  

O U T I N G  MEC HANISMS  

o construct the classification-and-encoding network, we first use
 set of convolutional filters, the outputs of which are reshaped
nto a set of tensors which are treated as the initial set of capsules.

e then use two main kind of capsule layers, dynamic routing-
ased class capsules and convolution routing-based capsules (i.e.
onv-Caps and 3D-Conv-Caps layers in Fig. 1 ). As shown in
ig. 1 , the convolution routing based capsules are used to construct

he hidden layers whereas the dynamic routing based capsules are
sed to construct the output layer of the classification-and-encoding
etwork where each capsule represents a morphological type. In this
ection, we give a brief overview of the mathematical aspects of the
apsule layer architectures used in this work. This is intended to be
 short summary and interested readers are recommended to refer
o Sabour et al. ( 2017 ) for a detailed discussion on capsules with
ynamic routing and Rajasegaran et al. ( 2019 ) for convolutional
apsules. We have tried to follow the same mathematical notation
sed by these two works for easy reference. 
NRAS 515, 5285–5305 (2022) 
.1 Dynamic routing (i.e. routing by agreement) 

et u i denote the i th capsule vector in layer l of the network and v j 
enote the j th capsule vectors in layer l + 1. To obtain the capsules
n layer l + 1 from the ones in layer l we define an intermediate
prediction’ vector ( ̂ u j | i ) as 

ˆ  j | i = W ij u i , (A1) 

here W ij is a weight matrix learnt by gradient descent. The capsules
n the following layer ( v j ) are calculated using a weighted sum
f these prediction vectors after being passed through a non-linear
cti v ation function called the squashing function defined as 

 j = 

‖ s j ‖ 2 
1 + ‖ s j ‖ 2 

s j 
‖ s j ‖ , (A2) 

here s j is the weighted sum given by 

 j = 

∑ 

i 

c ij ̂  u j | i , (A3) 

here c ij are the coupling coefficients determined by an iterative
rocess. To ensure that they al w ays add up to 1, they are defined in
erms of the softmax transformed variables b ij as 

 ij = 

exp ( b ij ) ∑ 

k exp ( b ik ) 
. (A4) 

he variables b ij can be treated as the log prior probability that the
apsule i in layer l is coupled to the capsule j in layer l + 1. In a single
ass of back propagation, we begin with b ij = 0 to provide equal
eights to all the capsules initially, and then the coupling coefficients

re iteratively updated by measuring the agreement between the
urrent output of each capsule in layer l + 1, i.e. v j and the prediction
ade by the capsules in layer l , i.e. ˆ u j | i . The agreement is defined

s the scalar product v j . ̂ u j | i and is added to b ij before computing the
oupling coefficients. So, for each step in the iteration: 

 ij ← b ij + v j . ̂ u j | i . (A5) 

he number of iterations is a tunable hyperparameter. Larger number
f iterations will provide better estimates of the coupling coefficients
t the cost of increasing the number of computations. We use
hree iterations as it was found to work reasonably well by Sabour
t al. ( 2017 ) who proposed this algorithm. Since these capsules ( v j )
orm the final layer of the classification-and-encoding network, we
alculate their Euclidean norms which are used as a measure of
he class probabilities the capsules represent. These predicted class
robabilities are then used as inputs to the margin loss function
equation 1 ). 

.2 Convolution based routing 

ne of the drawbacks of the dynamic routing algorithm described in
ection A1 is that the computations are done in a way analogous to
ully connected neural networks. This means that the number of train-
ble weights increase dramatically for a deep network architecture
equired for complex tasks like predicting photo- z’s. To solve this
roblem, Rajasegaran et al. ( 2019 ) proposed capsule network layers
hat use computationally efficient convolutional operations. We use
hem as the intermediate layers of our classification-and-encoding
etwork. The weights of the convolution filters are determined using
radient descent whereas the coupling coefficients for routing are
etermined by an iterative process. In the initial layers, the feature
aps obtained from convolution operations is large and iterative

outing can be e xpensiv e. So, following Rajase garan et al. ( 2019 ),

http://dx.doi.org/10.1093/pasj/pst019
http://dx.doi.org/10.1086/423264
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1086/427710
http://dx.doi.org/10.21105/joss.03021
http://dx.doi.org/10.1088/0004-637X/706/1/623
http://dx.doi.org/10.1051/0004-6361/201936782
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http://arxiv.org/abs/2102.10473
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e use a mix of two kinds of convolutional capsule layers, one
hich does one routing iteration (viz. Conv-Caps ) and another 
ne doing three routing iterations (viz. 3D-Conv-Caps ) in our 
etwork architecture (see Fig. 1 ). 
To facilitate convolution operations, the capsules start out as 3D 

ensors which are flattened into 1D capsule vectors when we reach 
he final layer in our architecture. Let the output of the convolutional
apsule layer l be � 

l ∈ R 

( w l ,w l ,c l ,n l ) , where w 

l denotes the height
nd width, c l the depth, and n l the number of 3D capsule tensors.
imilarly, let � 

l+ 1 ∈ R 

( w l+ 1 ,w l+ 1 ,c l+ 1 ,n l+ 1 ) represent the output of the 
ayer l + 1. 

The Conv-Caps layer first reshapes � 

l into a tensor of shape 
 w 

l , w 

l , c l × n l ) and convolves with ( c l + 1 × n l + 1 ) number of filters,
roducing ( c l + 1 × n l + 1 ) number of feature maps of shape ( w 

l + 1 ,
 

l + 1 ). They are then reshaped into a tensor of shape ( w 

l + 1 , w 

l + 1 ,
 

l + 1 , n l + 1 ). This 3D tensor ( S pqr ) is then used as the input to a
on-linear squashing function defined by 

ˆ 
 pqr = 

‖ S pqr ‖ 2 
1 + ‖ S pqr ‖ 2 

S pqr 

‖ S pqr ‖ . (A6) 

ince we will use just one iteration of routing for this layer, the output
f the squashing function is treated as the output of the layer (i.e.
 

l+ 1 = 

ˆ S ). 
For the 3D-Conv-Caps layer, we first reshape � 

l into a tensor 
f shape ( w 

l , w 

l , c l × n l , 1). Then, it is convolved with ( c l + 1 ×
 

l + 1 ) number of 3D convolution kernels of appropriate shape so as
o produce a tensor of shape ( w 

l + 1 , w 

l + 1 , c l , c l + 1 × n l + 1 ). It is
hen reshaped into a tensor, ˜ V of shape ( w 

l + 1 , w 

l + 1 , c l , n l + 1 , c l + 1 )
hich acts as the intermediate ‘prediction’ tensor. The capsules of the 

ollowing layer are then calculated via the weighted sum of tensors
iven by 

 pqr = 

∑ 

s 

k pqrs . ̃  V pqrs . (A7) 

hen S is used as an input to the tensor squashing function defined in
quation A6 to obtain the squashed tensor, ˆ S which after the iterative 
pdates will be treated as the output capsules( ̂  � 

l+ 1 ). The coupling
oefficients for the weighted sum ( k pqrs ) are determined by an iterative
rocess. To ensure that they are normalized they are defined in terms
f softmax transformed variable B ∈ R 

( w l+ 1 ,w l+ 1 ,c l+ 1 ,c l ) given by 

 pqrs = 

exp ( b pqrs ) ∑ 

x 

∑ 

y 

∑ 

z exp ( b xyzs ) 
. (A8) 

In a single pass of back propagation we begin with b pqrs =
 to provide equal weight to all capsules initially and then the
oupling coefficients are iteratively updated 3 times by measuring 
he agreement (via the scalar product) between the current output of
he capsules and the intermediate prediction tensors in each iteration 
.e. 

 pqrs ← b pqrs + 

ˆ S pqr . ̃  V pqrs . (A9) 

Finally, when the output of the convolutional capsules are used as
nputs to the capsules with dynamic routing, the tensors in a layer
 of shape ( w 

l , w 

l , c l , n l ) are flattened to the shape ( w 

l × w 

l × c l ,
 

l ), i.e. we get n l number of capsule vectors each with w 

l × w 

l × c l 

umber of dimensions. 

PPENDI X  B:  SYNTHETI C  IMAG ES  F RO M  

ERTURBED  CAPSULE  C O M P O N E N T S  

ere, we show an extended version of Fig. 8 with synthetic
alaxy images generated from perturbing all 16 of the dimensions 
ndividually. Each column shows the decoded image when one of 
he 16 dimensions of the capsule vector is perturbed in units of its
tandard deviation (keeping all the others fixed). The 0 σ column 
hows the decoded image from the unperturbed capsule and are 
dentical for each row. Since the capsule network training process 
oes not disentangle the features learnt by each dimension, not all
he dimensions control a single easily identifiable feature. A subset 
f the dimensions for which the features are easily identifiable are
hown in Fig. 8 . 
MNRAS 515, 5285–5305 (2022) 



5304 B. Dey et al. 

M

Figure B1. Reconstructions from perturbed capsule vectors. Each column shows the reconstructions when one of the 16 components of the capsule vector is 
perturbed in units of their standard deviation (keeping all the others fixed). This is an extended version of the Fig. 8 and shows reconstructions from perturbations 
of all the dimensions. 
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PPENDIX  C :  C O R R E L AT I O N S  O F  CAPSULE  

IMENSION S  WITH  PHYSICAL  PROPERTIES  

 fe w illustrati v e e xamples of strong correlations between capsule
imensions and physical properties of galaxies have been visualized
NRAS 515, 5285–5305 (2022) 
sing scatter plots in Fig. C1 . We observe that the value of the
apsule dimensions varies with the galaxy property indicating some
orrelation. 

art/stac2105_fb1.eps
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Figure C1. A few examples of strong correlations between capsule dimensions and physical properties of galaxies visualized using scatter plots. g represents 
the extinction corrected SDSS g -band cmodel magnitude. g − r and g − z represent galaxy colours calculated using extinction corrected model magnitudes. n r 
represents the S ́ersic index obtained from a S ̀ersic profile to the r -band photometry. We observe that the value of the capsule dimensions varies with the galaxy 
property indicating some correlation. 
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