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Abstract

We present a novel ML framework for modeling the wavelength-dependent gain of mul-

tiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer
learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy
transfer-learning even when operated across different amplifier types. ©2023 The Author(s)

Introduction

The gain spectrum of an Erbium-Doped Fiber
Amplifier (EDFA) has a complex dependence
on channel loading, pump power, and oper-
ating mode, making accurate modeling diffi-
cult to achieve. Recently, Machine Learning
(ML) techniques such as Neural Networks (NNs)
have been used to build EDFA gain models!'}?,
Other work®® has produced generalized ML-
based EDFA models using training datasets col-
lected from multiple EDFAs of the same make and
model, which are shown to achieve lower Mean
Absolute Error (MAE) of the gain spectrum pre-
diction across multiple devices of the same make.
Although these models achieve high prediction
accuracy, they do require a large number of mea-
surements, which can be time-consuming and dif-
ficult to obtain if the EDFA is in a live network.
Due to the complexity of the model, NN also suf-
fer from non-convex training criteria and local min-
ima, which complicate the training process espe-
cially with limited number of measurements.

Transfer Learning (TL) techniques!* have been
recently used to try and mitigate this issue, by
training a base model on one EDFA and then us-
ing this to model different devices, by only using
minimal additional data from the new device. Re-
cently, it was demonstrated!® that a single EDFA
model can be transferred between different ED-
FAs of the same type using only 0.5% of the en-
tire dataset, showcasing the potential for efficient
model transfer in this domain. Yet, the application
of transfer learning across amplifiers of different
types (i.e., from a EDFA Booster base model to-
wards an EDFA Preamp target model) requires
further investigation. In addition, work to date has
mostly relied on training data from external fea-
tures, such as input power levels and output gain
spectra, which may not fully capture the complex
behaviour of EDFAs.

In this paper, we implement and study a novel

semi-supervised, self-normalizing NN approach
(hereafter referred to as the SS-NN model) that
characterizes the wavelength-dependent gain of
an EDFA using just 256 labeled measurements
along with additional unlabeled data (which are
easier to obtain). By incorporating internal EDFA
features that are typically available in commer-
cial telecom equipment, our model can be trans-
ferred to different EDFA types with only a sin-
gle new measurement through transfer learning.
We evaluate our approach on 22 different EDFAs
across the Open Ireland (based in Dublin, Ire-
land) and PAWR COSMOS (based in Manhattan,
USA) testbeds, achieving a MAE within 0.14 dB
for same-type transfers and 0.17 dB for cross-
type transfers.

EDFA Gain Spectrum Measurement Dataset

We carry out gain measurements across multiple
wavelengths in the C-band from 3 commercial-
grade Lumentum ROADM-20 units deployed in
the Open Ireland testbed!® and 8 similar units de-
ployed in the PAWR COSMOS testbed!”} 8 each
with 2 EDFAs (a Booster and a Pre-Amplifier),
resulting in a total number of 22 EDFAs. To
ensure consistency, we followed a similar mea-
surement setup and data collection pipeline for
both testbeds!®l. In the Open Ireland testbed,
all EDFAs were measured at target gains of
15/20/25 dB, while in the COSMOS testbed, the
target gains were 15/18/21 dB for Boosters and
15/18/21/24/27 dB for Pre-Ampilifiers in high gain
mode with 0 dB gain tilt (we adopt different gain
setting to emulate diversity of operation in differ-
ent networks). The dataset includes 3,168 gain
measurements (at multiple wavelengths) for each
EDFA, for each given target gain settings, across
95x50 GHz channels in the C-band. In addi-
tion, measurements for each EDFAs are collected
under two channel loading modes: Random and
Goalpost allocation (i.e., loading groups of chan-
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Fig. 1: Model Training and Transfer Learning (TL) Framework

nels in different spectrum bands).

Training of the Base Model

We construct a base model (used as the source
model in the transfer learning process) for both
booster and pre-amplifier EDFAs using a 5-layer
NN with neurons initialized with zero weights. The
NN architecture consists of 200 neurons in the
first two layers, 100 neurons in the next two lay-
ers, and 95 neurons in the final layer, predicting
the wavelength-dependent gain output. Input fea-
tures to the model include EDFA target gain set-
ting, total input/output power, input power for each
channel, a binary vector for each channel rep-
resenting the channel loading configuration, and
three internal features related to the embedded
Variable Optical Attenuator (VOA): total VOA in-
put/output power and attenuation.

Due to the limitations of batch normalization
when fine-tuning models with less than 32 ob-
servations!'?, we utilize Self Normalizing Neural
Networks (SNN) with Scaled Exponential Linear
Unit (SELU) activation function'"l instead of the
Rectified Linear Unit (ReLU). This choice enables
us to effectively normalize the hidden layer out-
puts with a small amount of data, while maintain-
ing the benefits of hidden layer normalization and
preserving high accuracy. This step is the key en-
abling factor of our developed NN architecture to
achieve effective one-shot training and transfer-
ability between models.

We employ a 2-step process to train the source
model, including unsupervised pre-trainingl'l3l
and supervised fine-tuning!'# (see Fig. 1):

First, in the unsupervised pre-training step, we
initialize the source model’s weights using unla-
beled data from 512 measurements for each tar-
get EDFA gain setting. Noise is added to the data,
and the input layer is trained as an autoencoder
to denoise and reconstruct the input. We con-
struct this autoencoder by removing subsequent
layers and adding a decoder layer on top. The au-
toencoder is trained for 1,800 epochs with a learn-
ing rate of 0.001, using the Adam Optimizer and

Mean Squared Error (MSE) loss function. The
weights of this layer are fixed and used as the ba-
sis for training the subsequent layers.

Second, in the supervised fine-tuning step, we
utilize 256 randomly loaded gain spectrum mea-
surements to train the model in a supervised
manner. The model is trained using the MSE loss
function across all loaded channels, with a learn-
ing rate of 0.001 over 1,200 epochs. The test
set comprises all Fixed Goalpost (270 measure-
ments) and 20% of the Random Baseline (220
measurements) EDFA gain spectrum measure-
ments, so that we can compare the performance
for the two different channel loading scenarios!®l.

Transfer Learning (TL) to Target EDFA

To transfer from a source model to a target EDFA,
we re-train the same model using a single ran-
domly loaded measurement for 10,000 epochs,
using MSE as the loss function and Adam opti-
mizer. We use a differential learning rate across
layers, where the output layer has a larger learn-
ing rate of 1e-03 compared to the subsequent hid-
den layers, which have progressively decreasing
learning rates, with each layer’s rate being 10%
of the next layer’s rate. In this way, the weights of
the output layer are modified more aggressively,
allowing it to capture the specific characteristics
of the target EDFA more effectively. At the same
time, the lower levels of the NN are fine-tuned
more gradually to avoid overfitting and ensure that
the model can be generalized to new inputs.

Results

We compare our SS-NN based TL technique with
a benchmark state-of-the-art method!®, using the
same set of features to highlight the benefit of our
approach. Additionally, we demonstrate the ad-
vantage of incorporating internal EDFA features
by comparing the results of the SS-NN model with
and without these additional features.

TL to the Same EDFA Type: Figs. 2(a) and 2(b)
present the MAE of the three approaches for TL
for source Booster—Target Booster and Source
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Fig. 2: Boxplot distribution of MAE across 22 EDFAs of (a) Booster to Booster TL, (b) PreAmp to Preamp TL, (c) Booster to

Preamp TL and (d) Preamp to Booster TL. The boxes denote the inter-quartile range, and the whiskers denote the min/max.
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Fig. 3: Transfer Learning MAE matrix of SS-NN model with internal features on random loading. The (i, j) entry corresponds to
the TL-based EDFA model, where the it" and j" EDFA serve as the source and target models, respectively. EDFA 1-3 are
deployed in Open Ireland, while EDFA 4-11 are deployed in COSMOS.

Pre-Amplifier—Target Pre-Amplifier respectively,
for both random and goalpost channel loading,
across 22 EDFAs. Our SS-NN model outper-
forms the benchmark technique for goalpost load-
ing and exhibits comparable performance for ran-
dom channel loading. In addition, when we in-
clude additional features, we see improvement in
both channel loading configurations.

TL to Cross-EDFA Types: Figs. 2(c) and 2(d)
report the MAE of the three approaches
for TL between different types of EDFAs
(Booster—Preamp and Preamp—Booster) re-
spectively, under random and goalpost channel
loading configurations. The SS-NN model again
displays significant improvement and consistency
in cross-type transfer, with a 3x improvement in
MAE over the benchmark algorithm even if us-
ing the same features. Including internal VOA
features further improves performance, leading to
similar performance as the same-type transfer.

A key advantage of the SS-NN model is its
consistent performance across TL between all
EDFAs. Fig. 3 shows the MAE of the TL model
incorporating internal features on random chan-

nel loading. The model demonstrates consistent
performance in terms of the EDFA gain spectrum
prediction accuracy, with an MAE within 0.13 dB
for same-type transfers and within 0.11 dB for
cross-type transfers.

Conclusions

We analyze a novel semi-supervised learning
technique to model the gain spectrum of an EDFA
using a minimal amount of data. The model can
be transferred to EDFAs of different types using
a single new measurement, showing that a sin-
gle EDFA can be used to characterize multiple
EDFAs using minimal data collection. We also
find that using internal EDFA features available to
the operator provides enhanced performance in
both same-type and cross-type transfers, show-
ing potential for improvement by incorporating in-
ternal features.
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