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Abstract. The interpolation of geospatial phenomena is a
common problem in Earth science applications that can be
addressed with geostatistics, where spatial correlations are
used to constrain interpolations. In certain applications, it
can be particularly useful to a perform geostatistical simu-
lation, which is used to generate multiple non-unique real-
izations that reproduce the variability in measurements and
are constrained by observations. Despite the broad utility of
this approach, there are few open-access geostatistical simu-
lation software applications. To address this accessibility is-
sue, we present GStatSim, a Python package for perform-
ing geostatistical interpolation and simulation. GStatSim
is distinct from previous geostatistical tools in that it empha-
sizes accessibility for non-experts, geostatistical simulation,
and applicability to remote sensing data sets. It includes tools
for performing non-stationary simulations and interpolations
with secondary constraints. This package is accompanied by
a Jupyter Book with user tutorials and background informa-
tion on different interpolation methods. These resources are
intended to significantly lower the technological barrier to
using geostatistics and encourage the use of geostatistics in
a wider range of applications. We demonstrate the different
functionalities of this tool for the interpolation of subglacial
topography measurements in Greenland.

1 Introduction

The interpolation of geological and geophysical observa-
tions is a common problem in the geosciences with applica-
tions in mineral exploration (Journel and Huijbregts, 1976;
Emery and Maleki, 2019), oil reservoir modeling (Kelkar
and Perez, 2002; Pyrcz and Deutsch, 2014), groundwater hy-
drology (Kitanidis, 1997; Feyen and Caers, 2006), soil sci-
ences (Goovaerts, 1999; Lark, 2012; Xiong et al., 2015), cli-
mate modeling (Costa and Soares, 2009), natural hazard pre-
diction (Youngman and Stephenson, 2016), and glaciology
(MacKie et al., 2020; Zuo et al., 2020). The field of geostatis-
tics emerged in the 1950s with the development of kriging, a
method for optimizing spatial interpolation, which was orig-
inally used to estimate gold ore grades (Krige, 1951; Cressie,
1990). This theory was expanded by Matheron (1963), who
formalized the variogram as a measure of spatial variance.
Since then, a number of methods have evolved to include
a variety of interpolators and descriptors of spatial statistics
(e.g., Cressie and Hawkins, 1980; Solow, 1986; Goovaerts,
1998; Strebelle, 2002).

In contrast to deterministic methods such as kriging, which
are designed to minimize estimation variance, geostatistical
simulation is designed to reproduce the variability in mea-
surements (Deutsch and Journel, 1992). Geostatistical simu-
lation involves the generation of many stochastic realizations
of a Gaussian random field that retains the spatial statistics of
observations. These realizations are conditioned to observed
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data, meaning they exactly match observations. The ensem-
ble of realizations quantifies uncertainty. This approach is of-
ten used to account for subsurface heterogeneity when mod-
eling petroleum reservoirs (Pyrcz and Deutsch, 2014), per-
forming geophysical inversions (Nunes et al., 2012; Sham-
sipour et al., 2010; Volkova and Merkulov, 2019), and mod-
eling groundwater hydrology (Feyen and Caers, 2006).

Despite this wide range of geological applications, many
existing geostatistical modeling software applications are
primarily intended for use in oil and mineral exploration ap-
plications. For example, T-PROGS (Carle, 1999) is intended
for use with borehole data, and the Leapfrog geological mod-
eling software is used almost exclusively in industry. The
Geostatistics Software Library (GSLIB; Deutsch and Jour-
nel, 1992) test cases are predominantly devoted to modeling
porosity and permeability for oil reservoir modeling. While
these tools were primarily tested on point measurements such
as borehole data, many scientific applications now rely on
large-scale airborne geophysical data sets, which typically
consist of cross-cutting line surveys that are densely sampled
in the along-track direction with large gaps in between survey
lines. This data configuration can prove challenging for geo-
statistical interpolation. Furthermore, geophysical surveys,
and remote sensing methods in particular, can generate ex-
tremely large volumes of data. This can be problematic for
certain software, such as the Stanford Geostatistical Model-
ing Software (SGeMS; Remy, 2005) which becomes slow to
operate and sometimes crashes when users upload large files.
As such, many geostatistical software applications are not di-
rectly suited to the scale and nature of certain geophysical
data interpolation problems.

The commercial nature of many geostatistical applica-
tions and software further restricts the use of geostatistics
in academic and educational settings. Many geostatistical
modeling software applications are locked behind a pay-
wall. For example, Leapfrog and T-PROGS are proprietary
and cost thousands of dollars per year (e.g., GMS, 2021).
Leapfrog and SGeMS only work on Windows operating sys-
tems. GSLIB is written in FORTRAN, which has a limited
user base compared to Python. These interoperability issues
make it difficult to integrate geostatistical simulation with ex-
isting scientific workflows. Furthermore, many of these soft-
ware applications are intended for use by trained experts and
require the purchase of a companion textbook to learn the
documentation (e.g., Deutsch and Journel, 1992; Remy et al.,
2009). These accessibility issues create a barrier to producing
open-access, reproducible workflows and fail to meet mod-
ern accessibility standards such as the FAIR principles (Find-
able, Accessible, Interoperable, Reusable; Wilkinson et al.,
2016). Moreover, the restricted availability of geostatistical
software limits its use in educational settings. As such, de-
velopments in open-access, user-friendly tools are critically
needed for advancing the use of geostatistical simulation in
open science and education.

Recently, a growing number of open-source geosta-
tistical modeling tools have become available. This in-
cludes the gstat package in R (Pebesma, 2004) and the
Python packages PyKrige (Murphy, 2014), GeostatsPy
(Pyrcz et al., 2021), SciKit-GStat (Mälicke, 2022),
and GSTools (Müller et al., 2022). PyKrige provides
tools for performing kriging interpolation. SciKit-GStat
offers variogram modeling functions. GeostatsPy is a
Python wrapper of some of the GSLIB functions. GSTools
provides a number of useful functions including tools for
time-series analysis, data transformations, and interpolation.
While these resources are important steps towards providing
the scientific community with accessible geostatistical soft-
ware and have significantly expanded the repertoire of geo-
statistical functions in Python, additional tools are needed
for performing geostatistical simulation. In particular, exist-
ing Python tools are limited in their ability to accommodate
non-stationary or variations in spatial statistics, incorporate
secondary constraints, and perform interpolations with large
conditioning data sets.

To address the aforementioned needs, we present
GStatSim, a Python package for performing geostatisti-
cal interpolations and simulations. GStatSim enables the
user to perform a variety of deterministic and stochastic in-
terpolations in Python including various versions of kriging
and sequential Gaussian simulation (SGS). GStatSim is
intended to complement existing Python and geostatistical
frameworks. While GStatSim does not include variogram
modeling tools, it is designed to be compatible with existing
variogram modeling packages such as SciKit-GStat, a
robust variogram modeling toolkit with extensive documen-
tation. In contrast to previous tools, GStatSim emphasizes
interpolation, particularly conditional simulation. We pro-
vide new tools for accommodating non-stationarity or vari-
ability in spatial statistics. This package is intended to strike
a balance between flexibility and ease of use. The tools are
sufficiently deconstructed to allow for a variety of interpola-
tion workflows while also limiting the number of parameter
selections that must be made. In contrast to previous software
applications that are tested on point data sets, GStatSim
was constructed with geophysical line data sets specifically
in mind.

In addition to providing tools for scientific analyses,
GStatSim is also intended to be an educational resource.
We developed a Jupyter Book that contains a series of tuto-
rials for reproducing the figures in this paper. These tutorials
provide intuition on the different algorithms and guidance on
parameter selection. This is intended to make GStatSim ac-
cessible to non-experts and reduce the amount of time needed
to develop models.

In this paper, we demonstrate the different functionalities
of GStatSim (Tables 1 and 2) and compare it to existing
packages such as GSTools. We also provide a brief descrip-
tion of the underlying theory behind each function. The in-
terpolation functions are demonstrated for the interpolation
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of ice-sheet bed elevation data measured by airborne ice-
penetrating radar. Our goal is not to recommend a specific in-
terpolation method for this case study; rather, we describe the
implementation considerations and illustrate the advantages
and limitations of each interpolation method. We provide an
overview of the available user support and documentation.
Finally, we discuss possible future directions for further en-
abling the widespread utilization of geostatistical simulation
in academic disciplines.

2 Data

We apply the GStatSim functions to the interpolation of
ice-penetrating radar measurements of subglacial topography
in Greenland. Subglacial topography is a critical parameter in
ice-sheet models (Parizek et al., 2013; Seroussi et al., 2017).
For instance, modeled ice flow behavior and subglacial water
routing models can be highly sensitive to the method used to
interpolate measurements (MacKie et al., 2021; Wernecke et
al., 2022; Law et al., 2023). We use bed elevation measure-
ments from the Center for the Remote Sensing of Ice Sheets
(CReSIS, 2022) over a 150km×150 km region in northwest
Greenland (Fig. 1). This location was chosen for the variabil-
ity in line spacing (10–50 km), abundant crossover points, ir-
regular survey orientations, and the presence of a large-scale
trend. These conditions pose a challenge to interpolation,
making this data set a good case study for testing the rigor of
the GStatSim algorithms. For the multivariate applications
we use ice surface elevation data from ArcticDEM (Porter
et al., 2018) as a secondary source of information for con-
straining interpolations. We use the 500 m resolution version.
The surface and bed elevation coordinates are transformed
from geographic coordinates to polar stereographic coordi-
nates using the National Snow and Ice Data Center (NSIDC)
coordinate transformation tool (Torrence, 2019) so that Eu-
clidean distances can be determined.

3 Interpolation with existing geostatistical tools

It was our original intent to test existing Python interpolation
functions from PyKrige, GSTools, and GeostatsPy

on the aforementioned bed elevation data set in order to es-
tablish a baseline level of performance for comparison with
GStatSim. However, the PyKrige and GSTools kriging
and conditional simulation routines crash when applied to
our data set due to the high random access memory (RAM)
consumption. We are also unable to produce a simulation re-
sult using GeostatsPy due to a “singular matrix” error,
which generally indicates that there is some sort of numer-
ical instability. We discuss these limitations in more detail
in Sect. 7. Only the GeostatsPy kriging function is suc-
cessfully applied to this data set. The GeostatsPy kriging
implementation and results are described in Sect. 4.3.3.

4 GStatSim functions and implementation

GStatSim can be used with Python 3.0–3.10 and relies on
commonly used packages such as scipy (Virtanen et al.,
2020), numpy (Harris et al., 2020), pandas (McKinney,
2010), and scikit-learn (Pedregosa et al., 2011). This
ensures that GStatSim is easy to use in different comput-
ing environments. The source code is written in accordance
with PEP8 standards (Van Rossum et al., 2001), making it
interpretable and easy to modify.

4.1 Data initialization

Prior to performing any geostatistical analysis, we fit the
bed elevation data to a 1 km resolution grid using the
GStatSim grid_data function which averages values
within each grid cell. We do this because the interpola-
tion examples shown in this paper use a 1 km resolution.
In this way, the spatial statistics of the data will be com-
patible with the interpolation grid. This gridded data set has
3650 data points. In order to satisfy the Gaussian assump-
tions of our interpolation functions, we convert our data to
a standard Gaussian distribution using the scikit-learn
QuantileTransformer function. This step converts the
data to a standard Gaussian distribution (mean = 0, vari-
ance = 1), shown in Fig. 2. It is not strictly necessary for data
to be Gaussian when using GStatSim. However, the inter-
polation results will be more robust if a Gaussian distribution
is used.

4.2 Variogram calculation and modeling with

SciKit-GStat

The interpolation functions in GStatSim rely on the vari-
ogram, which describes spatial statistics by quantifying the
covariance between data points as a function of their separa-
tion distance or lag (Matheron, 1963). The experimental var-
iogram γ (h) is defined as the averaged squared differences
of data points separated by a lag distance h:

γ (h) =
1

2N(h)

N
∑

α=1

(Z(uα) − Z(uα + h))2, (1)

where Z is a variable, u is a spatial location, and N(h) is the
number of pairs of data points for a lag h. Typically, the vari-
ance increases with lag distance until a threshold is reached
where measurements are no longer spatially correlated. This
threshold is called the sill, which is, in theory, equal to 1 for
normalized data sets. The lag distance where the variogram
reaches the sill is called the range.
GStatSim does not include variogram estima-

tion tools as there are already existing resources
(e.g., SciKit-GStat). Our interpolation functions
are designed to be integrated with outside variogram
modeling tools. We perform our variogram analysis with
the SciKit-GStat functions, which offer robust tools
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Figure 1. Ice-penetrating radar topography data for test region. The coordinates are shown in a polar stereographic projection.

Figure 2. (a) Original data distribution. (b) Transformed data with a standard Gaussian distribution.

for variogram estimation and modeling. We compute both
the isotropic and anisotropic variograms. The anisotropic
variogram computes the variogram for different angles from
horizontal. Figure 3 shows that the data do not contain
significant anisotropy. While the anisotropic variograms do
exhibit some disagreement at lags greater than ∼ 35 km,
these differences can be attributed to regional trends in the
topography. Additionally, the first part of the variogram
with small lags is more important than the tail distributions
when it comes to calculating the kriging weights used for
interpolation. As such, only the isotropic variogram is used
for the variogram modeling analysis.

In order to use the variogram for interpolation, a var-
iogram model must be fit to the experimental variogram.
GStatSim can currently accommodate exponential, Gaus-
sian, and spherical variogram model types. The exponential
model is as follows:

γexp(h) =

{

0 if h = 0

b + (C0 − b)
[

1 − e− 3h
a

]

if h > 0
, (2)

where a is the range parameter, C0 is the sill, and b is the
nugget. The nugget describes the variance at near-zero lags,
which is often the result of measurement error. In most cases,
the nugget is zero. The Gaussian model is

γGauss(h) =







0 if h = 0

b + (C0 − b)

[

1 − e
− 3h2

a2

]

if h > 0
, (3)

and the spherical model is

γsph(h)

=











0 if h = 0

b + (C0 − b)
(

1.5 · h
a

− 0.5 · h3

a3

)

if 0 < h ≤ a

C0 if h > a

. (4)

See Chiles and Delfiner (2009) for a detailed description
of these models. In practice, variogram model parameters are
often selected manually, though SciKit-GStat also of-
fers automatic variogram modeling tools. Using these tools,
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Table 1. GStatSim interpolation functions.

Function Description

skrige Simple kriging estimator
okrige Ordinary kriging estimator
skrige_sgs Sequential Gaussian simulation using simple kriging
okrige_sgs Sequential Gaussian simulation using ordinary kriging
cluster_sgs Sequential Gaussian simulation using simple kriging, where different variograms are defined in different regions
cokrige_mm1 Co-kriging under Markov model 1 (MM1) assumptions, uses secondary data as a constraint
cosim_mm1 Co-simulation under MM1 assumptions, uses secondary data as a constraint

Table 2. GStatSim accessory functions.

Function Description

grid_data Fits conditioning data to a grid of some specified resolution
prediction_grid Makes an array of coordinates to be interpolated based on bounding coordinates and resolution
rbf_trend Estimates the large-scale trend of the conditioning data using a smoothed radial basis function
adaptive_partitioning Breaks conditioning data into blocks based on the density of measurements
find_colocated Finds the co-located primary and secondary data points for performing co-kriging and co-simulation

we fit each of these model types to the experimental vari-
ogram, shown in Fig. 3a. A visual inspection of Fig. 3a shows
that the exponential variogram model produces the best fit.
As such, we use this model type for the topography inter-
polations shown in this paper. The exponential model has a
nugget of 0, a range of 31.9 km, and a sill of 0.7. Geostatis-
tical interpolations can be sensitive to the methods and pa-
rameters used to compute and model variograms. As such,
we recommend referring to the SciKit-GStat documen-
tation for best practices and considerations when conducting
variogram analysis. The effect of different variogram models
on interpolations is described in Sect. 4.5.

4.3 Kriging

Kriging is used to produce deterministic interpolations of a
spatial variable, where the goal is to minimize estimation
variance (e.g., Matheron, 1963; Cressie, 1990). For a spatial
variable Z, kriging models the residuals Z∗ from a mean m:

Z∗(uα) = Z(uα) − m(uα). (5)

In cases where the mean is constant, m is treated as a
global mean. Each interpolated value Z∗ at a location u is
the weighted sum of neighboring measurements:

Z∗(u0) =

N
∑

α

λαZ(uα), (6)

where λα are the weights on the N data points. These weights
account for the variability in the measurements, their prox-
imity to each other and the node being estimated, and the
redundancy between nearby measurements. Specifically, the
weights are determined by solving the kriging system of

equations which, for a system with three data points, would
look like





C(u1 − u1) C(u1 − u2) C(u1 − u3)

C(u2 − u1) C(u2 − u2) C(u2 − u3)

C(u3 − u1) C(u3 − u2) C(u3 − u3)









λ1
λ2
λ3





=





C(u0 − u1)

C(u0 − u2)

C(u0 − u3)



 , (7)

which can be abbreviated to

Cλ = c, (8)

where C describes the covariance between pairs of data
points, and c describes the covariance between each data
point and the location that is being estimated, u0. Note that
the covariance is linked to the variogram:

C(h) = C(0) − γ (h), (9)

where C(0) is the variance of the data. We use the modeled
variogram parameters determined in Sect. 4.2.
GStatSim contains functions for both simple and ordi-

nary kriging. With simple kriging, it is assumed that the mean
is a constant, known parameter defined by the mean of the
data. For data that have undergone a normal score transfor-
mation, the mean is 0. For ordinary kriging, the mean is es-
timated implicitly within a search neighborhood around the
coordinate being estimated, and simple kriging is applied to
the residuals. This makes ordinary kriging more robust to
spatial trends. The ordinary kriging weight estimation pro-
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Figure 3. (a) Isotropic experimental variogram and variogram model. (b) Anisotropic variogram.

cedure is modified from Eq. (7) to








C(u1 − u1) C(u1 − u2) C(u1 − u3) 1
C(u2 − u1) C(u2 − u2) C(u2 − u3) 1
C(u3 − u1) C(u3 − u2) C(u3 − u3) 1

1 1 1 0

















λ1
λ2
λ3
µ









=









C(u0 − u1)

C(u0 − u2)

C(u0 − u3)

1









, (10)

where µ is a Lagrange multiplier. The covariance function
is also used to compute the uncertainty, or variance, at each
location. The variance of an estimate at location u0, σ 2

E(u0)

is defined as

σ 2
E(u0) = C(0) −

N
∑

α

λαC(u0 − uα). (11)

The ability of kriging to quantify uncertainty is a major ad-
vantage of this method over other deterministic interpolation
methods such as spline interpolation.

4.3.1 Nearest-neighbor octant search

In practice, the covariance matrices in Eqs. (7) and (10), C

and c, used to determine kriging weights typically do not
use every value in the conditioning data. Instead, it is con-
ventional to use the N nearest neighbors, where N is the
number of conditioning nodes (e.g., Pyrcz et al., 2021). This
significantly reduces the size of the covariance matrix and
ensures that estimates are made using only relevant informa-
tion. However, the nearest-neighbor approach can be prob-
lematic when the conditioning data are unevenly spatially
distributed. In the ice-penetrating radar example, measure-
ments are sampled densely along flight lines but are entirely
absent in between lines. This means that the N nearest neigh-
bors of a coordinate next to a flight line could all be on

Figure 4. When measurements are gathered along line surveys, a
simple nearest-neighbor search (a) may result in estimates being
skewed towards values on one side. The octant nearest-neighbor
search (b) used in GStatSim ensures that the conditioning data
surround the coordinate being estimated, which minimizes this bias
in interpolations.

one side, yielding lopsided conditioning data (Fig. 4). This
lopsidedness would produce skewed estimates. To avoid this
bias, our interpolation algorithms use a nearest-neighbor oc-
tant search (e.g., Pebesma, 2004), where the N neighbors are
divided amongst the eight different octants of the coordinate
plane (Fig. 4). This ensures that the conditioning data include
values on all sides of the node being estimated. The ability
of the nearest-neighbor octant search to produce a balanced
conditioning data set is important for producing high-quality
estimates, particularly for remote sensing data sets where the
measurement density is often non-uniform. We note that the
primary drawback of this approach is that it increases the al-
gorithm runtime.
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4.3.2 Covariance matrix inversion

According to Eq. (8), solving for the kriging weights λ re-
quires the inversion of the covariance matrix C:

λ = C−1c. (12)

However, C is not always a positive definite matrix, mean-
ing that C−1 cannot be computed. This is especially com-
mon for complex scenarios such as ice-penetrating radar
data sets which often contain overlapping and conflicting
measurements. The matrix singularity issue can be resolved
by computing the pseudo-inverse, C+, instead. However the
pseudo-inverse requires a time-consuming singular value de-
composition with a runtime that scales by O(n3) with data
input size, making it an impractical choice for applications
with large data sets. For improved performance, we use
the scipy.linalg.lstsq function, which computes the
least-squares solution to the equation Ax = b. Solving for the
weights with lstsq instead of computing the matrix inver-
sion directly lends greater numerical stability to the interpo-
lation functions. Therefore, all functions in GStatSim in-
volving covariance matrix inversions are implemented using
lstsq.

4.3.3 Kriging implementation and results

We implement simple kriging and ordinary kriging using the
GStatSim skrige and okrige functions, respectively.
The input parameters for these functions are the condition-
ing data, search radius, number of conditioning points, var-
iogram parameters, and a list of coordinates that describe
the prediction grid. We use a search radius of 50 km and
100 conditioning points. For convenience, GStatSim in-
cludes a prediction_grid function that automatically
generates a list of coordinates defined by the minimum and
maximum coordinate extents and the grid cell resolution.
After GStatSim interpolation is applied, the kriging es-
timates are back-transformed using the scikit-learn

QuantileTransformer function so that the original
data distribution is recovered. For comparison, we also per-
form simple kriging using the GeostatsPy kb2d func-
tion.

The GStatSim kriging results (Fig. 5) show that the right
side of the ordinary kriging estimate has a slightly higher (∼
tens of meters) elevation than the simple kriging estimate.
This is because ordinary kriging does not assume that the
mean is constant. The GStatSim and GeostatsPy sim-
ple kriging estimates are visually similar but differ by tens of
meters throughout the domain. The black arrows in Fig. 5c
and f highlight a visible seam in the GeostatsPy interpo-
lation. This seam is located along grid cells that are equidis-
tant from conditioning lines and may be the result of using a
simple nearest-neighbor search (Fig. 4).

To investigate the spatial statistics of kriging interpola-
tion, we compute the variogram for the GStatSim simple

kriging estimate. The resulting variogram, shown in Fig. 6a,
has substantially lower variances than the experimental var-
iogram derived from the data. This difference highlights an
important limitation of kriging interpolation: the variogram
is not reproduced, making the interpolated values smoother
than observations.

4.4 Sequential Gaussian simulation

In contrast to kriging, sequential Gaussian simulation (SGS)
is designed to preserve the variance of observations. SGS
is the stochastic alternative to kriging. In contrast to krig-
ing where the objective is to optimize local accuracy, SGS
is used to generate multiple realizations that reproduce the
variogram statistics (e.g., Deutsch and Journel, 1992). The
implementation of SGS, described in Fig. 7, is the following:

1. Define a random simulation order in which to visit each
node.

2. At each node u, use kriging to estimate the mean Z∗(u)

and variance σ 2
E(u).

3. Randomly sample from the Gaussian distribution de-
fined by Z∗(u) and σ 2

E(u). This becomes the simulated
value at that node.

4. Proceed to the next node and repeat steps 2 and 3 until
all nodes have been simulated.

GStatSim has two different SGS functions,
okrige_sgs and skrige_sgs, which use ordinary
kriging and simple kriging for step 2, respectively. The
results are unlikely to differ significantly between these
two methods, but okrige_sgs may be more robust when
large-scale trends are present. The input parameters are the
same as those used for the skrige and okrige functions.
We simulate four realizations using okrige_sgs using
the same input parameters as in Sect. 4.3.3. To evaluate
the ability of SGS to reproduce the spatial statistics of
observations, we compute the variogram for realization no. 1
(Fig. 6). The variogram of the simulated topography matches
the variogram of observations. The realizations are shown in
Fig. 8. Each realization matches the conditioning data and
represents an equally probable solution.

4.5 Interpolation with different variogram models

GStatSim can perform interpolations using the exponen-
tial, Gaussian, or spherical variogram models, as described
in Sect. 4.2. In this section, we demonstrate how interpola-
tions differ when using different variogram model types. We
generate a synthetic conditioning data set of 100 points using
the unconditional Gaussian field tools in GSTools (Fig. 9a).
We use a variance of 2 and length scale of 8. While the true
variogram for the synthetic data is Gaussian, we perform in-
terpolations using different variogram models for demonstra-
tion purposes. We compute the experimental variogram and
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Figure 5. (a) Simple kriging and (b) ordinary kriging interpolations using GStatSim. (c) Simple kriging interpolation using GeostatsPy.
(d) Standard deviation for the simple kriging estimate from panel (a). (e) Difference between simple and ordinary kriging. (f) Difference
between GStatSim and GeostatsPy simple kriging. The black arrows highlight an artifact in the GeostatsPy interpolation that is
likely caused by using a simple nearest-neighbor search (Fig. 4).

Figure 6. (a) Variogram for simple kriging estimate from Fig. 5a. (b) Variogram for SGS realization no. 1.

fit Gaussian, exponential, and spherical variogram models
(Fig. 9b). Then we perform both simple kriging interpolation
and SGS with each variogram model. The results, shown in
Fig. 9, show that the Gaussian model produces the SGS real-
ization with the smoothest spatial structure and lowest krig-
ing variance. The exponential model produces the roughest
SGS topography and highest kriging variance, and the spher-
ical model falls in the middle. These different model types
allow GStatSim to accommodate different types of spatial
structures.

4.6 Interpolation with anisotropy

Geologic phenomena frequently exhibit anisotropy in their
spatial statistics. For example, preferential erosion can cause
subglacial topography to be smoother in the direction that is
parallel to ice flow (MacKie et al., 2021). The GStatSim
interpolation functions can account for this anisotropy by ac-
cepting major and minor range parameters. The major range
is the range of the variogram in the smoothest (major) direc-
tion, and the minor range is the range of the variogram in the
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Figure 7. Schematic of SGS. This figure is modified from MacKie et al. (2021), which was published under a Creative Commons Attribution
license (https://creativecommons.org/licenses/by/4.0/, last access: 1 May 2023).

Figure 8. (a–d) SGS realizations generated with okrige_SGS.

minor direction, which is orthogonal to the major direction.
Not all pairs of data points are oriented along the major or
minor orientations, so the range is treated as the radius of
a rotated ellipse where the major and minor ranges are the
lengths of each axis, and the degree of rotation is determined
by the angle of anisotropy. The major angle orientation is
defined as the angle from zero (horizontal) of the major di-
rection. In practice, these parameters can be determined by

modeling the variogram in multiple directions and determin-
ing the major angle through visual inspection.

To demonstrate the implementation of interpolation with
anisotropy, we perform simple kriging and SGS with
anisotropy for angles of 0 and 60◦. We use the modeled
variogram parameters from previous sections (nugget = 0,
range = 31.9 km, sill = 0.7). We use 31.9 km as the minor
range and set the major range to be 15 km greater than
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Figure 9. Interpolation comparison using different variogram models. Synthetic conditioning data (a), variograms (b), kriging interpolation
(c–e), kriging uncertainty (f–h), and SGS (i–k).
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the minor range for exaggerated effect. These interpolations
(Fig. 10) have clearly visible anisotropy.

4.7 Mean non-stationarity

Data sets often contain variations in spatial statistics, a condi-
tion known as non-stationarity. Mean non-stationarity occurs
in the presence of a large-scale trend or systematic changes
across a study area. While ordinary kriging can accommo-
date variations in the mean, to some extent, it does not ex-
trapolate well (Journel and Rossi, 1989). For this reason, it is
sometimes convenient to detrend the data prior to variogram
modeling and interpolation. This approach is known as krig-
ing (or SGS) with a trend or universal kriging. Detrending
has the additional advantage of producing residual data that
more closely represent a random Gaussian process, which
makes the variogram modeling more robust. In contrast, data
with a strong trend can yield an experimental variogram that
never reaches an obvious sill, making it difficult to fit a vari-
ogram model.

Here we demonstrate kriging and SGS with a trend
(Fig. 11). This is achieved by the following:

1. Estimate the trend.

2. Subtract the trend from the data to obtain residual mea-
surements.

3. Apply a normal score transformation to the residual
data.

4. Conduct a variogram analysis on the transformed resid-
ual measurements.

5. Interpolate the residuals.

6. Back-transform the interpolation to recover the original
data distribution.

7. Add the back-transformed interpolation to the trend.

While it is common practice to estimate the trend by fit-
ting a linear or polynomial function to the data (e.g., Neven
et al., 2021), determining higher-order polynomial models
for complex landscapes can be difficult. Instead, we esti-
mate the trend using a radial basis function (RBF), which
is a function that changes with distance from a location, such
as a thin-plate spline or Gaussian function. RBFs measure
the distance between input values and a center point, as-
signs weights based on these distances, and combines these
weights to produce an output value (Broomhead and Lowe,
1988). The RBF trend estimation was implemented using
the GStatSim rbf_trend function, which relies on the
scipy RBF implementation. rbf_trend uses a multi-
quadric kernel as its RBF, which is known for its high accu-
racy and flexibility (Franke, 1982; Sarra and Kansa, 2009).
The rbf_trend function input parameters are the condi-
tioning data, the grid cell resolution, and a smoothing factor.

The smoothing factor ensures that the trend is not overfit-
ting to measurements. The smoothing parameter should be
at least as large as the largest data gap. We use a smoothing
factor of 100 km.

To evaluate the performance of the detrended SGS ap-
proach, we compute the experimental variogram for residual
data (Fig. 11d) and the residual SGS (Fig. 11e). The vari-
ograms, shown in Fig. 12, show close agreement between
the spatial statistics of the residual measurements and simu-
lation. Note that both variograms reach a sill of 1 in contrast
to the variogram for the data without detrending (Fig. 6). Ac-
cording to the theoretical definition of the variogram (Eq. 2),
data with a standard Gaussian distribution should reach a sill
of 1. As such, the detrended data can often be better suited to
variogram-based interpolation.

4.8 Variogram non-stationarity

Variogram non-stationarity describes the condition when the
variogram statistics vary throughout a domain. For exam-
ple, the topographic roughness varies throughout Greenland
(Cooper et al., 2019). To handle these cases, GStatSim in-
cludes a cluster_sgs function where the user can assign
different variograms to different areas. It is implemented by
partitioning the data into different clusters and then comput-
ing the variogram for each cluster. To simulate a grid cell,

1. choose a random grid cell;

2. find the nearest-neighbor value and look up the cluster
number of the nearest-neighbor point;

3. using the variogram parameters associated with the
cluster of the nearest point, simulate a value with SGS;

4. assign the nearest-neighbor cluster number to the simu-
lated value;

5. repeat until each grid cell is simulated.

This process ensures that the boundaries between different
clusters vary for each realization. cluster_sgs takes the
same inputs as SGS, as well as the cluster numbers for each
data point and a data frame with the variogram parameters for
each cluster. Users can use any method they like to partition
the data into different clusters. In the next two subsections,
we outline two approaches.

4.8.1 K-means clustering approach

One of the simplest ways to cluster data is with k-means clus-
tering, where the data are partitioned into k clusters such that
the average squared sum of distances from the center within
each cluster is minimized. We apply k-means clustering to
the conditioning data and determine three clusters based on
the coordinates and bed elevation (Fig. 13a). The justifica-
tion for using these parameters is that data points that are
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Figure 10. (a) Simple kriging with anisotropy at 0◦. (b) Simple kriging with anisotropy at 60◦. (c) SGS with anisotropy at 0◦. (d) SGS with
anisotropy at 60◦.

geographically close to each other and have similar elevation
values should have similar spatial statistics. We use a k of 3,
which was chosen arbitrarily for demonstration purposes. In
real applications, external information or domain expertise
may be used to inform the clustering decision.

We apply the variogram analysis to the data in each clus-
ter separately using the procedure described in Sect. 4.2. To
make the differences between clusters more pronounced, we
manually modify several of the variogram parameters to ex-
aggerate the differences in spatial statistics for visualization
purposes. Clusters 0 and 2 are assigned angles for anisotropy
(45◦ for Cluster 0 and 90◦ for Cluster 2). The minor ranges
for Clusters 0 and 2 are assigned based on the automatic var-
iogram modeling. The major ranges are set by adding 15 km
to the minor ranges. Cluster 1 is given a sill of 0.6, and Clus-
ters 0 and 2 are assigned sills equal to 1. The cluster_sgs
simulation using these parameters produces visible differ-
ences in spatial statistics throughout the domain. For exam-
ple, the anisotropy is clearly visible in the region defined by
Cluster 0 (Fig. 13b). Despite the extreme differences in pa-
rameters used for each cluster, the cluster boundaries do not
have artifacts or inconsistencies.

4.8.2 Adaptive partitioning

The k-means clustering approach described above provides
a simple approach to partitioning the data, but the decision
boundaries can seem arbitrary and result in clusters with
widely varying sample counts. To overcome these challenges
we present a recursive implementation of a divisive, density-
based clustering approach we call adaptive partitioning. A
similar approach was used in Yin et al. (2022). The algo-
rithm begins by treating the data set as a single cluster and
quartering this cluster into four rectangles of equal area.
For each subsequent cluster, the areal extent of the cluster
continues to be quartered until the number of data samples
contained within the cluster is below the maximum num-
ber of samples allowed or the minimum cluster size has
been reached. GStatSim implements this as a fully re-
cursive function named adaptive_partitioning with
primary parameters max_points, which controls the maxi-
mum points allowed in a cluster, and min_length, which con-
trols the minimum side length of a cluster. It may take tun-
ing of these two parameters to produce a desirable parti-
tioning, including adjusting max_points to create clusters of
adequate sizes given the measurement density; min_length
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Figure 11. (a) Trend estimate. (b) Simple kriging of detrended data. (c) The simple kriging estimate from panel (b) added to the trend from
panel (a). (d) The residual bed elevation data after the trend is subtracted from the data. (e) SGS applied to the detrended data. (f) The SGS
interpolation from panel (e) added to the trend from panel (a).

Figure 12. Variogram for detrended data from Fig. 11d and simula-
tion of trend from Fig. 11e. These variograms have a sill of 1, which
is the theoretical sill for standard Gaussian data.

should be greater than the expected variogram range to en-
sure that there are sufficient data to accurately model the
variogram parameters. Figure 14a shows the clusters result-

ing from adaptive_partitioning with max_points of
800 and min_length of 25 km.

The variogram parameters for each cluster are modeled
automatically and then modified to show exaggerated dif-
ferences between clusters. Cluster 1 is modified to have a
sill of 0.6. Clusters 6 and 12 are given 90 and 45◦ direc-
tions of anisotropy, respectively, with major ranges that are
determined by adding 15 km to the modeled range. These re-
gional differences in variogram parameters are apparent in
the resulting simulation in Fig. 14.

4.9 Co-kriging and co-simulation

Secondary information can be integrated into interpolations
via co-kriging and co-simulation, where a well-sampled sec-
ondary variable is used to constrain the interpolation of a
sparsely sampled primary variable. For example, if the ice
surface elevation (Fig. 15a) is found to be correlated with the
subglacial bed elevation, then the ice surface can be used to
improve the interpolation. We note that the ice surface and
subglacial topography are unlikely to be linearly related (Ng
et al., 2018); this example is merely intended to demonstrate
the usage of our co-kriging and co-simulation tools. In the-
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Figure 13. (a) K-means clustering of conditioning data. (b) SGS using different variogram parameters for each cluster.

Figure 14. (a) Clusters derived from density-based adaptive partitioning function. (b) SGS using a different variogram in each cluster.

ory, co-kriging and co-simulation are implemented by mod-
eling the variogram for each variable and a cross-variogram
that describes the covariation between the variables. In prac-
tice, the full co-kriging system of equations is difficult to
solve, so approximations are used instead (Almeida and Jour-
nel, 1994; Journel, 1999).

While there are several different ways to implement co-
kriging (Journel, 1999), GStatSim only includes functions
for co-located co-kriging under Markov model 1 (MM1) as-
sumptions, as described by Almeida and Journel (1994). This
version was chosen for its simplicity; expert geostatistical
knowledge is not needed to use this algorithm. Co-located
co-kriging means that an estimate is made using only the
secondary data point that is co-located with, or at the same
location as, the grid cell being estimated. This significantly
reduces the number of conditioning data points that are used
to estimate each grid cell. Co-kriging with MM1 approxi-
mates the cross-variogram through a Markov assumption of
conditional independence. It is assumed that a secondary data
variable Z2 at a location u is conditionally independent of the

primary variable Z1 at a location of u′, given Z1(u). u′ refers
to a spatial location that is not u. This statement of condi-
tional independence is written as

E(Z2(u)|Z1(u) = z1,Z1(u
′) = z1(u

′))

= E(Z2(u)|Z1(u) = z1), (13)

where E refers to the expected value. In the geostatistical
community, this Markov assumption is referred to as Markov
model 1 (Almeida and Journel, 1994). See Journel (1999)
and Shmaryan and Journel (1999) for other co-kriging mod-
els. In the case where the ice surface elevation is used as a
secondary constraint, MM1 means that the expected value of
the ice surface at a location u, given knowledge of the bed
elevation at location u, is independent of the bed elevation
value at other locations. Under MM1 assumptions, the cross-
correlogram describing the covariation between the primary
and secondary variables is calculated as

ρ12(h) = ρ12(0)ρ1(h), (14)
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Figure 15. (a) Ice surface elevation data. (b) Normalized ice surface elevation measurements that are co-located with radar measurements.
(c) Co-kriging interpolation. (d) Co-simulation.

where h is the lag distance and ρ is the correlogram, calcu-
lated by

ρ(h) = 1 − γ (h), (15)

assuming that γ (h) is the normal scores variogram. While
the variogram measures spatial covariance, the correlogram
measures spatial correlation. This means that ρ12(0), the cor-
relogram at a lag distance of zero, is simply the correla-
tion coefficient between the primary and secondary variables.
Because the cross-covariance between the primary and sec-
ondary data relies only on the correlation coefficient and pri-
mary variogram, the secondary variogram is not needed. This
means that co-kriging and co-simulation with MM1 only re-
quire the primary variogram and the correlation coefficient
to determine the co-kriging weights. The simple co-located
co-kriging estimate Z∗

1 at a location u0 is defined as

Z∗
1(u0) =

N
∑

α

λαZ1(uα) + λ2Z2(u0), (16)

where λα are the weights on the N primary data points,
Z2(u0) is the co-located secondary datum, and λ2 is the

weight for the secondary datum. This means that the co-
kriging estimate of a bed elevation value is the weighted sum
of bed elevation data points within a specified search radius
and the co-located ice surface elevation datum. The variance
is computed using Eq. (11). Co-SGS is implemented in the
same way as SGS, except that Eq. (16) is used instead of
Eq. (6).

To implement co-kriging and co-SGS, we use the vari-
ogram model parameters from Sect. 4.2 and compute the
correlation coefficient, ρ12(0), between the bed elevation
measurements and co-located ice surface elevation. For
convenience, we developed a find_colocated func-
tion that extracts the co-located data points from the sec-
ondary variable (Fig. 15b). ρ12(0) was determined to be
0.6. The interpolations are performed using the GStatSim
cokrige_mm1 and cosim_mm1 functions. These func-
tions require the same input parameters as skrige,
okrige, skrige_sfs, and okrige_sfs with the ad-
dition of ρ12(0) and the secondary data set.

The co-kriging and co-SGS results are shown in Fig. 15.
Compared to the previous kriging and simulation examples,
these interpolations produce visibly higher-elevation topog-
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raphy on the right side of the region. This is due to the corre-
lation with the ice surface. To evaluate the simulation per-
formance, we compute the correlation coefficient between
the ice surface elevation (Fig. 15a) and co-simulated bed el-
evation (Fig. 15d). This correlation coefficient is found to
be 0.7, which is greater than the correlation coefficient of
the co-located data, 0.6. This inflated correlation between
the primary and secondary data is a known issue with MM1
(Shmaryan and Journel, 1999). Co-simulation with MM1 is
also known to produce interpolation artifacts (MacKie et al.,
2021) and artificially high variance (Journel, 1999). This is
because the MM1 assumption screens out the influence of
the primary data on the secondary data, except at the location
u0, which can lead to the underestimation of the redundancy
between the primary and secondary variables. For this rea-
son, MM1 is most effective in situations where the primary
variable is smoother than the secondary variable, which is
not the case in our example. As such, it is important to check
the statistics (variogram and correlation) of simulations pro-
duced with cosim_mm1 to ensure that this method is used
appropriately.

5 Tutorials and documentation

Each of the previous interpolation examples can be repro-
duced in tutorials found in the GStatSim GitHub page
(https://github.com/GatorGlaciology/GStatSim, last access:
16 May 2023), Jupyter Book (https://gatorglaciology.github.
io/gstatsimbook/intro.html, last access: 16 May 2023), or
Zenodo repository (https://doi.org/10.5281/zenodo.7274640,
MacKie et al., 2022). These tutorials can be downloaded as
Jupyter Notebook files and are intended to enhance educa-
tional pathways to geostatistics.

6 Installation, licensing, and redistribution

GStatSim is added to the Python Package Index, com-
monly known as PyPi, and can be installed via the pip in-

stall gstatsim command. It can also be installed directly from
GitHub with git clone (https://github.com/GatorGlaciology/
GStatSim, last access: 16 May 2023). This package has an
MIT license making it free to use and redistribute without
restriction.

7 Discussion

Many existing geostatistical software applications are not
open-source or directly suited to large-scale remote sensing
problems. For example, we found that GSTools was un-
able to perform conditional interpolations for our topography
case study due to the large RAM requirements, making it an
impractical choice for applications with large conditioning
data sets. Similarly, the GeostatsPy simulation crashed

due to a numerical instability. While it is certainly possible
that these issues can be attributed to user error, they high-
light the need for an open-source geostatistical package that
is specifically tested on large-scale line surveys.

The GStatSim package provides an accessible, robust
alternative to existing software. The functions in this pack-
age are efficient and effective at large scales. Addition-
ally, the octant search can mitigate interpolation bias when
line data are used. GStatSim relies on existing packages
(e.g., SciKit-GStat) where possible and can easily be
integrated with existing Python tools and scientific analyses.
The tutorials and documentation provide ample scaffolding
for users without prior geostatistical experience. This will
encourage the utilization of geostatistical simulation in new
scientific domains and enhance educational pathways in geo-
statistics.

The bed topography interpolation examples show many
different ways to interpolate the same data set, each with dif-
ferent assumptions, advantages, and limitations. We do not
make a recommendation for using one interpolation method
over others. In practice, the optimal interpolation method
or combination of methods will depend on the structure of
the data and the scientific objectives for a specific problem.
For example, kriging methods are best if local accuracy is
desired, while SGS should be used if the goal is to pre-
serve the heterogeneity of a given geological parameter. The
cluster_sgs function is advantageous for enabling vari-
ations in the spatial statistics of simulated phenomena. In
practice, expert domain knowledge will be needed to select
the best clustering approach and parameters. For instance, a
known geological boundary may be used to delineate clus-
ters. Many of these interpolation approaches can be com-
bined. For example, cluster_sgs, cokrige_mm1, and
cosim_mm1 could be applied to detrended data.

Although the focus of this article is subglacial topography,
the GStatSim routines could be applied to numerous geo-
scientific problems. Cryosphere applications could include
the interpolation of englacial layers (MacGregor et al., 2015),
marine sediment cores, and radiometric properties of sub-
glacial conditions (e.g., Chu et al., 2021). Beyond glaciol-
ogy, GStatSim could be used for downscaling, potential
field data analysis (Volkova and Merkulov, 2019), and plan-
etary applications such as improving the resolution of digital
terrain models (Gwinner et al., 2009). The cluster_sgs
function would be particularly useful for capturing regional
changes in spatial statistics, and the nearest-neighbor octant
search makes GStatSim well-suited for geostatistical mod-
eling with geophysical line data. Furthermore, the ability
of co-kriging and co-simulation to include secondary con-
straints provides a mechanism for synthesizing multiple geo-
physical and geological data sets. GStatSim could also be
integrated with geophysical modeling routines such as Sim-
PEG (Cockett et al., 2015) to perform inversions. Specifi-
cally, geostatistical simulation can be used in Markov chain
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Monte Carlo frameworks for solving inverse problems (Haas
and Dubrule, 1994; Oh and Kwon, 2001; Nunes et al., 2012).

Each of the example interpolations in this paper takes 2
to 3 min to run on a MacBook Pro with an Apple M1 chip.
The run times increase exponentially with size and resolution
improvement. Most of this computational time is attributed
to the nearest-neighbor octant search. As such, geostatisti-
cal simulation can become cumbersome and time-intensive
for large ensembles, depending on the simulation grid size,
nearest-neighbor search radius, and number of condition-
ing points. There are many approaches for accelerating SGS
(Dimitrakopoulos and Luo, 2004; Daly et al., 2010; Mari-
ethoz, 2010; Nussbaumer et al., 2018), though these methods
lack flexibility or require greater computational resources.
Future work is needed to develop tools with improved per-
formance while maintaining the flexibility and functionality.
GStatSim could also be modified to include additional var-
iogram models and interpolation methods such as indicator
kriging (Solow, 1986).

8 Conclusions

Spatial interpolation is a common problem in the geo-
sciences, though the availability of open-access software re-
mains a key barrier to the widespread utilization of geo-
statistics. The GStatSim package addresses this barrier by
making available Python tools and educational materials for
implementing various interpolation methods. The tools here
could be applied to a variety of geological and geophysical
data sets for both research and educational purposes and can
be integrated with existing Python tools and workflows. The
inclusion of non-stationary SGS, co-kriging, co-simulation,
and trend estimation functions make GStatSim particularly
useful for applying geostatistics to complex phenomena.

Code and data availability. The source code, data,
and tutorials are permanently archived in Zenodo
(https://doi.org/10.5281/zenodo.7274640, MacKie et al., 2022).
These materials can also be accessed from GitHub (https:
//github.com/GatorGlaciology/GStatSim, 16 May 2023), PyPi
(https://pypi.org/project/gstatsim/, 16 May 2023), and our Jupyter
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