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We investigate the linear stability of a sinusoidal shear flow with an initially uniform
streamwise magnetic field in the framework of incompressible magnetohydrodynamics
(MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin-
Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where
dissipation is neglected, provided the magnetic field strength does not exceed a critical
threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that
including viscosity and resistivity introduces two new modes of instability. One of these
modes, which we call a resistively-unstable Alfvén wave due to its connection to shear Alfvén
waves, exists for any nonzero magnetic field strength as long as the magnetic Prandtl number
Pm < 1. We present a reduced model for this instability that reveals its excitation mechanism
to be the negative eddy viscosity of periodic shear flows described by Dubrulle & Frisch
(1991). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary
state dominated by counter-propagating solitons.
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1. Introduction
The prevalence of shear in fluids makes it one of the most common sources of turbulence
in nature. As such, interest in the linear and nonlinear stability of shear flows dates as
far back as the 19th century to the early works of Reynolds (1883) and von Helmholtz
(1896), and still continues today. A large class of shear-driven instabilities can loosely be
categorized as Kelvin-Helmholtz (KH) instabilities, which occur in plane-parallel continuous
or interfacial shear flows (Chandrasekhar 1961; Drazin & Reid 1981). Turbulence driven by
KH instabilities can cause substantial mixing of momentum, heat and/or chemicals in fluid
bodies such as the Earth’s atmosphere, oceans, and liquid core, as well as planetary and
stellar atmospheres and interiors. Quantifying shear-induced mixing is therefore a crucial
step towards improving evolutionary models of these large-scale systems.

In fluids which are composed of partially or fully ionized plasma (e.g. stellar interiors,
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magnetically-confined laboratory plasmas, etc.), or made of liquid metals (e.g. planetary
interiors), magnetic fields and the forces they exert must also be taken into account. Studies
of the stability and mixing properties of parallel shear flows in that context are often
performed using the magnetohydrodynamic (MHD) approximation (see, e.g. Chandrasekhar
1961; Hughes & Tobias 2001), with a few notable exceptions (Rogers & Dorland 2005;
Karimabadi et al. 2013; Henri et al. 2013; Faganello & Califano 2017; Fraser et al. 2018;
Vogman et al. 2020).

Many of these MHD works additionally use the ideal limit, where both viscosity and
resistivity are neglected (despite the fact that such mixing problems are often fundamentally
ill-posed, see, e.g., Lecoanet et al. 2016). In ideal MHD, the magnetic field lines are frozen
into the flow and are forced to move with it. Meanwhile, a magnetic tension proportional to
the square of the field amplitude resists the deformation of field lines, and has a tendency
to rigidify the flow, imbuing it with elastic-like properties. As a result, the presence of a
magnetic field parallel to the mean flow can hinder the development of KH billows. It has
been shown that, in the ideal limit, a uniform streamwise magnetic field stabilizes KH modes
provided its Alfvén velocity exceeds the characteristic flow speed by a factor that depends
on the flow profile but is typically of order unity (Chandrasekhar 1961).

Magnetic fields are also known to modify or fully invalidate several important exact
theoretical results on the stability of incompressible, hydrodynamic, parallel shear flows.
For example, Tatsuno & Dorland (2006) showed that magnetized shear instabilities can
exist even when the background flow does not have an inflection point, contrary to the
hydrodynamic case where the latter is necessary (Rayleigh 1879). Similarly, Lecoanet
et al. (2010) provided examples of unstable magnetized stratified shear flows in which
the Richardson number always exceeds 1/4, showing that the Miles-Howard theorem (Miles
1961; Howard 1961) does not apply in MHD. Finally, Hughes & Tobias (2001) showed that
Howards’ semicircle theorem (Howard 1961) is modified in the presence of magnetic fields,
and that the eigenvalues of the linear stability problem must now lie within the intersection of
two semicircles in the complex plane, whose existence and position depend on the amplitude
and profiles of the background flow and magnetic field.

In non-ideal MHD, the resistivity of the fluid allows the field to partially decouple from
the flow, and reduces its (usually) stabilizing influence. For magnetized KH instabilities,
gradually increasing the resistivity can thus raise the growth rate of unstable modes to a
value between that obtained in the ideal MHD limit and in the hydrodynamic case (Palotti
et al. 2008). It is also worth mentioning that by contrast with the hydrodynamic case, three-
dimensional perturbations are sometimes the fastest-growing modes in non-ideal MHD shear
instabilities (Hunt 1966; Hughes & Tobias 2001).

With these general results in mind, we investigate in this paper a very specific problem,
namely the stability and evolution of a sinusoidal, incompressible shear flow with finite
viscosity and resistivity, in the presence of a uniform, streamwise magnetic field. This problem
is highly relevant to a number of applications but has not, to our knowledge, been studied in
detail yet. Sinusoidal shear flows are defined here as unidirectional plane-parallel flows whose
amplitude varies sinusoidally in the transverse direction. They commonly arise in nature from
the development of a primary instability that results in the exponential growth of so-called
"elevator" modes, as in homogeneous Rayleigh-Bénard convection (HRBC; Calzavarini et al.
2006; Garaud et al. 2010), the double-diffusive fingering instability (Baines & Gill 1969),
and the Goldreich-Shubert-Fricke (GSF) instability (Goldreich & Schubert 1967; Fricke
1968). In these examples, secondary shear instabilities between elevators flowing in opposite
directions are thought to be responsible for the saturation of the primary instability and have
successfully been used to model it in the hydrodynamic limit (Radko & Smith 2012; Brown
et al. 2013; Barker et al. 2019). In the MHD case, the presence of a uniform magnetic field
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aligned with the direction of the primary elevator mode flow has no effect on its growth rate,
but can stabilize the secondary shearing mode, for the reasons discussed earlier. As such,
understanding the linear stability and nonlinear evolution of magnetized shear instabilities
in sinusoidal shear flows is a key step in quantifying the effects of magnetic fields on HRBC,
and on various double-diffusive instabilities. Furthermore, numerical simulations of the latter
show that the effective kinetic and/or magnetic Reynolds numbers of the saturated nonlinear
flow can remain modest over a broad range of parameter space (Brown et al. 2013). As such,
diffusive effects (viscosity and resistivity) should be taken into account to correctly model
the development of the secondary shear instabilities.

In this paper, we therefore investigate the linear stability and nonlinear saturation of a
sinusoidal, incompressible shear flow in the presence of a uniform, streamwise magnetic
field. We present the background state and linearized equations in Section 2. Section 3
performs a linear stability analysis of this flow over a wide range of parameter space,
demonstrating the presence of three distinct branches of instability, two of which have not, to
our knowledge, been discussed before. We then focus on one of the two new branches, which
exists even in the presence of very strong magnetic fields, and takes the form of overstable
Alfvén waves. We derive a heavily truncated model for the unstable modes in Section 4, and
use it in Section 5 to speculate that this instability is driven by the anti-diffusive properties
of sinusoidal shear flows discussed by Dubrulle & Frisch (1991). In Section 6 we present
an illustrative example of the nonlinear evolution of this instability using a direct numerical
simulation, demonstrating a linear growth phase consistent with our earlier linear stability
analysis, and a saturated state dominated by counter-propagating solitons. We conclude in
Section 7 with a short discussion of the potential relevance of this new instability for natural
systems, and of future work.

2. Model and linear stability analysis
We consider a background flow u𝐸 directed in the 𝑧 (streamwise) direction, whose amplitude
varies sinusoidally in the 𝑥 (cross-stream) direction. Units are selected based on the flow’s
amplitude𝑈∗ and horizontal wavenumber 𝑘∗𝑥 , and in these units, u𝐸 is given by

u𝐸 = sin(𝑥)e𝑧 (2.1)

(the subscript "𝐸" is used here to denote "elevator", following the motivating example given
in Section 1). We assume that the background flow is maintained against viscous decay by
an external force applied to the system, and is therefore a laminar steady-state solution of
the governing equations (see below). We also assume the existence of a uniform background
magnetic field b𝐸 oriented in the streamwise direction, whose amplitude 𝐵∗ defines the unit
magnetic field strength so that, in these units,

b𝐸 = e𝑧 . (2.2)

The total flow and field are written as the sum of this background plus a perturbation, namely

u = u𝐸 + ũ, b = b𝐸 + b̃, (2.3)

and satisfy the governing equations
𝜕u
𝜕𝑡

+ u · ∇u = −∇𝑝 + 𝐶𝐵 (∇ × b) × b + 1
𝑅𝑒

∇
2(u − u𝐸 ),

𝜕b
𝜕𝑡

= ∇ × (u × b) + 1
𝑅𝑚

∇
2b,

∇ · u = 0 ∇ · b = 0. (2.4)



4

Note the viscous term in the momentum equation, where the non-dimensional applied force
has been written as −𝑅𝑒−1∇2u𝐸 . The nondimensional parameters are the usual viscous
and magnetic Reynolds numbers, as well as the ratio of characteristic magnetic and kinetic
energies of the background flow (alternatively, an inverse Alfvénic Mach number squared),
namely

𝑅𝑒 =
𝑈∗

𝜈∗𝑘∗𝑥
, 𝑅𝑚 =

𝑈∗

𝜂∗𝑘∗𝑥
and 𝐶𝐵 =

(𝐵∗)2

𝜌∗0𝜇
∗
0(𝑈∗)2 , (2.5)

where 𝜈∗ and 𝜂∗ are the kinematic viscosity and magnetic diffusivity of the fluid, 𝜌∗0 is the
constant density of the fluid and 𝜇∗0 is the permeability of the vacuum. Note that the magnetic
Prandtl number, 𝑃𝑚 = 𝜈∗/𝜂∗, is the ratio of 𝑅𝑚 and 𝑅𝑒. It is usually smaller than one in
stellar interiors, but not necessarily asymptotically small (Rincon 2019).

Linearization around the background state yields the evolution equations for the perturba-
tions ũ and b̃ as:

𝜕ũ
𝜕𝑡

+ u𝐸 · ∇ũ + ũ · ∇u𝐸 = −∇𝑝 + 𝐶𝐵 (∇ × b̃) × e𝑧 +
1
𝑅𝑒

∇
2ũ,

𝜕b̃
𝜕𝑡

= ∇ × (u𝐸 × b̃) + ∇ × (ũ × e𝑧) +
1
𝑅𝑚

∇
2b̃,

∇ · ũ = 0 ∇ · b̃ = 0, (2.6)

which can be expressed, component-wise, as

𝜕𝑢̃𝑥

𝜕𝑡
+ sin(𝑥) 𝜕𝑢̃𝑥

𝜕𝑧
= −𝜕𝑝

𝜕𝑥
+ 𝐶𝐵

(
𝜕𝑏̃𝑥

𝜕𝑧
− 𝜕𝑏̃𝑧

𝜕𝑥

)
+ 1
𝑅𝑒

∇2𝑢̃𝑥 ,

𝜕𝑢̃𝑦

𝜕𝑡
+ sin(𝑥)

𝜕𝑢̃𝑦

𝜕𝑧
= −𝜕𝑝

𝜕𝑦
− 𝐶𝐵

(
𝜕𝑏̃𝑧

𝜕𝑦
−
𝜕𝑏̃𝑦

𝜕𝑧

)
+ 1
𝑅𝑒

∇2𝑢̃𝑦 ,

𝜕𝑢̃𝑧

𝜕𝑡
+ sin(𝑥) 𝜕𝑢̃𝑧

𝜕𝑧
+ 𝑢̃𝑥 cos(𝑥) = −𝜕𝑝

𝜕𝑧
+ 1
𝑅𝑒

∇2𝑢̃𝑧 ,

𝜕𝑏̃𝑥

𝜕𝑡
= − sin(𝑥) 𝜕𝑏̃𝑥

𝜕𝑧
+ 𝜕𝑢̃𝑥
𝜕𝑧

+ 1
𝑅𝑚

∇2𝑏̃𝑥 ,

𝜕𝑏̃𝑦

𝜕𝑡
= − sin(𝑥)

𝜕𝑏̃𝑦

𝜕𝑧
+
𝜕𝑢̃𝑦

𝜕𝑧
+ 1
𝑅𝑚

∇2𝑏̃𝑦 ,

𝜕𝑏̃𝑧

𝜕𝑡
= − sin(𝑥) 𝜕𝑏̃𝑧

𝜕𝑧
+ cos(𝑥)𝑏̃𝑥 +

𝜕𝑢̃𝑧

𝜕𝑧
+ 1
𝑅𝑚

∇2𝑏̃𝑧 ,

𝜕𝑢̃𝑥

𝜕𝑥
+
𝜕𝑢̃𝑦

𝜕𝑦
+ 𝜕𝑢̃𝑧
𝜕𝑧

= 0,

𝜕𝑏̃𝑥

𝜕𝑥
+
𝜕𝑏̃𝑦

𝜕𝑦
+ 𝜕𝑏̃𝑧
𝜕𝑧

= 0, (2.7)

where we have defined ũ = (𝑢̃𝑥 , 𝑢̃𝑦 , 𝑢̃𝑧) and b̃ = (𝑏̃𝑥 , 𝑏̃𝑦 , 𝑏̃𝑧).
Next, we assume that the linearized eigenmodes have the same periodicity as that of the

background flow (we have checked that these modes are the fastest-growing in all of the
cases presented in this paper), and use the ansatz

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = exp(𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧 + 𝜆𝑡)
∞∑︁

𝑛=−∞
𝑞𝑛𝑒

𝑖𝑛𝑥 , (2.8)

Focus on Fluids articles must not exceed this page length
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for 𝑞 ∈ {𝑢̃𝑥 , 𝑢̃𝑦 , 𝑢̃𝑧 , 𝑝, 𝑏̃𝑥 , 𝑏̃𝑦 , 𝑏̃𝑧} to obtain the linear system:

𝜆𝑢𝑥,𝑛 +
𝑘𝑧

2
(𝑢𝑥,𝑛−1 − 𝑢𝑥,𝑛+1) = −𝑖𝑛𝑝𝑛 + 𝐶𝐵

(
𝑖𝑘𝑧𝑏𝑥,𝑛 − 𝑖𝑛𝑏𝑧,𝑛

)
− 𝐾2

𝑛

𝑅𝑒
𝑢𝑥,𝑛,

𝜆𝑢𝑦,𝑛 +
𝑘𝑧

2
(𝑢𝑦,𝑛−1 − 𝑢𝑦,𝑛+1) = −𝑖𝑘𝑦 𝑝𝑛 − 𝐶𝐵

(
𝑖𝑘𝑦𝑏𝑧,𝑛 − 𝑖𝑘𝑧𝑏𝑦,𝑛

)
− 𝐾2

𝑛

𝑅𝑒
𝑢𝑦,𝑛,

𝜆𝑢𝑧,𝑛 +
𝑘𝑧

2
(𝑢𝑧,𝑛−1 − 𝑢𝑧,𝑛+1) +

1
2
(𝑢𝑥,𝑛−1 + 𝑢𝑥,𝑛+1) = −𝑖𝑘𝑧 𝑝𝑛 −

𝐾2
𝑛

𝑅𝑒
𝑢𝑧,𝑛,

𝜆𝑏𝑥,𝑛 = − 𝑘𝑧
2
(𝑏𝑥,𝑛−1 − 𝑏𝑥,𝑛+1) + 𝑖𝑘𝑧𝑢𝑥,𝑛 −

𝐾2
𝑛

𝑅𝑚
𝑏𝑥,𝑛,

𝜆𝑏𝑦,𝑛 = − 𝑘𝑧
2
(𝑏𝑦,𝑛−1 − 𝑏𝑦,𝑛+1) + 𝑖𝑘𝑧𝑢𝑦,𝑛 −

𝐾2
𝑛

𝑅𝑚
𝑏𝑦,𝑛,

𝜆𝑏𝑧,𝑛 = − 𝑘𝑧
2
(𝑏𝑧,𝑛−1 − 𝑏𝑧,𝑛+1) +

1
2
(𝑏𝑥,𝑛−1 + 𝑏𝑥,𝑛+1) + 𝑖𝑘𝑧𝑢𝑧,𝑛 −

𝐾2
𝑛

𝑅𝑚
𝑏𝑧,𝑛,

𝑛𝑢𝑥,𝑛 + 𝑘𝑦𝑢𝑦,𝑛 + 𝑘𝑧𝑢𝑧,𝑛 = 0,
𝑛𝑏𝑥,𝑛 + 𝑘𝑦𝑏𝑦,𝑛 + 𝑘𝑧𝑏𝑧,𝑛 = 0, (2.9)

where 𝐾2
𝑛 = 𝑛2 + 𝑘2

𝑦 + 𝑘2
𝑧 . Finally, by renaming 𝑖𝑝𝑛 = 𝜋𝑛, and 𝑖𝑏𝑥,𝑛 = 𝛽𝑥,𝑛 (and similarly

for 𝑏𝑦,𝑛 and 𝑏𝑧,𝑛), the system can be cast into a form where all the coefficients are real.
When truncated over a finite number of Fourier modes (so 𝑛 = −𝑁, ..., 0, ..., +𝑁), the first 7
equations form a generalized 7(2𝑁 + 1) × 7(2𝑁 + 1) linear eigenvalue problem with constant
real coefficients, which can be solved using standard linear algebra solvers (e.g. such as the
LAPACK DGGEV routine). For each input wavenumber (𝑘𝑦 , 𝑘𝑧), at a given set of input
parameters (𝑅𝑒, 𝑅𝑚,𝐶𝐵), we select the eigenvalue which has the largest real part and refer
to the latter as the growth rate of the mode (𝑘𝑦 , 𝑘𝑧).

By contrast with the hydrodynamic case, the most unstable modes in MHD shear flows are
not guaranteed to be strictly two-dimensional (with 𝑘𝑦 = 0) (Hunt 1966; Vorobev & Zikanov
2007). However, for the parameter regimes explored here, we find that the growth rate of the
2D mode (0, 𝑘𝑧) always exceeds that of corresponding 3D modes (𝑘𝑦 , 𝑘𝑧), for 𝑘𝑦 ≠ 0. In
what follows, we therefore only discuss the properties of the 2D modes.

When the system is restricted to two-dimensional perturbations, the flow and field may
more efficiently be expressed in terms of a streamfunction 𝜓 and flux function 𝐴, defined so
that

ũ = ∇ × (𝜓e𝑦) = (−𝜕𝜓/𝜕𝑧, 0, 𝜕𝜓/𝜕𝑥), (2.10)
b̃ = ∇ × (𝐴e𝑦) = (−𝜕𝐴/𝜕𝑧, 0, 𝜕𝐴/𝜕𝑥). (2.11)

With these definitions, the conditions ∇ · ũ = 0 and ∇ · b̃ = 0 are implicitly satisfied, and the
linearized governing equations for 𝜓 and 𝐴 are:

𝜕

𝜕𝑡
(∇2𝜓) + sin(𝑥) 𝜕

𝜕𝑧
∇2𝜓 + sin(𝑥) 𝜕𝜓

𝜕𝑧
= 𝐶𝐵𝜕𝑧∇2𝐴 + 1

𝑅𝑒
∇4𝜓, (2.12)

𝜕𝐴

𝜕𝑡
=
𝜕𝜓

𝜕𝑧
− sin(𝑥) 𝜕𝐴

𝜕𝑧
+ 1
𝑅𝑚

∇2𝐴. (2.13)

Using ansatz (2.8) as before, the linearized equations become

𝜆𝜓𝑛 =
𝑘𝑧

2𝐾2
𝑛

[
(1 − 𝐾2

𝑛−1)𝜓𝑛−1 − (1 − 𝐾2
𝑛+1)𝜓𝑛+1

]
+ 𝑖𝐶𝐵𝑘𝑧𝐴𝑛 −

1
𝑅𝑒
𝐾2
𝑛𝜓𝑛, (2.14)
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Figure 1: Growth rate of the fastest-growing mode as a function of 𝐶𝐵 and Re for three
values of Pm. Black hatches indicate regions where the sinuous KH mode (hatches going

down/to the right) and the varicose KH mode (hatches going down/to the left) are
unstable. The red vertical line is the critical Re for resistively-unstable Alfvén waves

calculated using Eq. (4.19). Red horizontal lines indicate 𝐶𝐵 = 0.5, the marginal stability
threshold in ideal MHD. For Pm < 1, resistively-unstable Alfvén waves exist for all 𝐶𝐵 .

and

𝜆𝐴𝑛 = −1
2
𝑘𝑧 (𝐴𝑛−1 − 𝐴𝑛+1) + 𝑖𝑘𝑧𝜓𝑛 −

1
𝑅𝑚

𝐾2
𝑛𝐴𝑛. (2.15)

This alternative definition of the flow and field, and its corresponding equations, have been
used to cross-check the results of the linear stability analysis for 2D modes, and will be
useful in Sections 3 and 4 below. Note that solving Eqs (2.14) and (2.15) is much faster than
solving (2.9).

3. Results of the linear stability analysis and the existence of resistively-unstable
Alfvén waves for 𝑃𝑚 < 1

For each set of physical parameters 𝐶𝐵, Re, and Rm (or, equivalently, 𝐶𝐵, Re, and Pm =

Rm/Re), the stability of the equilibrium flow u𝐸 = sin(𝑥)e𝑧 and field b𝐸 = e𝑧 to 2D
perturbations is assessed by solving Eqs. (2.14) and (2.15) for the eigenvalues 𝜆, for all
possible wavenumbers 𝑘𝑧 . If there exists a 𝑘𝑧 that admits one or more solutions with Re[𝜆] >
0, then the system is said to be unstable at these parameters. When this is the case, we define
𝑘max
𝑧 as the value of 𝑘𝑧 that maximizes Re[𝜆]. Figure 1 shows Re[𝜆(𝑘max

𝑧 )] as a function of
𝐶𝐵 and Re for three values of Pm. For the parameters explored, we find that there are three
distinct branches of instability in this system, which we describe in the following subsections.

3.1. Sinuous KH modes
The first of these three branches is a simple extension of the hydrodynamic KH instability,
which continues to exist for sufficiently weak magnetic fields (small 𝐶𝐵). Regions in
parameter space where this mode is unstable are marked by hatches going down and to the
right in Fig. 1. We will refer to it as the “sinuous" KH mode, because it meanders sideways,
with a non-zero mean horizontal flow. Mathematically, this translates into a Fourier expansion
[Eq. (2.8)] where 𝜓0 ≠ 0 and (when 𝐶𝐵 ≠ 0) 𝐴0 ≠ 0.

The sinuous KH modes exist for sufficiently large Re in the non-resistive case (Rm → ∞)
for 𝐶𝐵 < 0.5, i.e., as long as magnetic tension is small enough to permit the growth of KH
billows. The modes also exist in the resistive case (finite Rm), and in that case can persist
at somewhat larger values of 𝐶𝐵 as long as Rm is low enough to relax the frozen-in-flux
condition and reduce magnetic tension.

The sinuous KH modes have Im[𝜆] = 0, and generally have a growth rate
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Figure 2: Left: Wavenumber of the fastest-growing mode, 𝑘max
𝑧 , as a function of Re and

𝐶𝐵 for Pm = 1. Right: Kinetic energy as a fraction of total energy for the fastest-growing
mode. Note that the colorbar ranges from 0.5 to 1 – the fraction never drops below 0.5 for

the values shown here. Red horizontal lines indicate 𝐶𝐵 = 0.5.

Re[𝜆(𝑘max
𝑧 )] & 0.1 for most of the physical parameters where they are found, except

when they are nearly stabilized by either magnetic tension or dissipation. The wavenumber
where their growth rate peaks is generally in the vicinity of 𝑘max

𝑧 ∼ 0.5, as shown in Fig. 2.
The two panels on the left in Fig. 3 illustrate the structure of the fastest-growing mode
(𝑘𝑧 = 𝑘max

𝑧 ) for 𝐶𝐵 = 0.1, Re = 100, and Pm = 0.1. The first panel shows the contours of the
streamfunction, representing streamlines of flow, and the second panel shows contours of
the flux function, representing magnetic field lines. Here, 𝜓 and 𝐴 are the spatial structure
of the eigenmodes, obtained by solving Eqs. (2.14) and (2.15) for 𝜓𝑛 and 𝐴𝑛, which are
then used to compute 𝜓 = Re[exp(𝑖𝑘𝑧𝑧)

∑
𝑛 𝜓𝑛𝑒

𝑖𝑛𝑥] (and likewise for 𝐴). The amplitude
is normalized such that the total energy of the mode (defined below) is 1. The structure of
𝜓, as expected, resembles that of a hydrodynamic KH mode. The perturbations take the
form of alternating clockwise and counterclockwise recirculating eddies tilted against the
mean shear. The dominant horizontal wavenumbers can be gleaned from the figure and
include 𝑛 = 0 (driving a mean horizontal flow, as discussed above) and 𝑛 = ±1; higher-order
wavenumbers are present as well, but not as prominent.

The streamfunction and flux function of the eigenmodes can be used to compute their
kinetic and magnetic energy, given in this nondimensionalization by

KE =
1
2

∫
𝑑𝑥

∫
𝑑𝑧

[(
𝜕𝜓

𝜕𝑧

)2
+

(
𝜕𝜓

𝜕𝑥

)2
]
=

𝑁∑︁
𝑛=−𝑁

(𝑘2
𝑧 + 𝑛2) |𝜓𝑛 |2, (3.1)

and

ME =
𝐶𝐵

2

∫
𝑑𝑥

∫
𝑑𝑧

[(
𝜕𝐴

𝜕𝑧

)2
+

(
𝜕𝐴

𝜕𝑥

)2
]
= 𝐶𝐵

𝑁∑︁
𝑛=−𝑁

(𝑘2
𝑧 + 𝑛2) |𝐴𝑛 |2. (3.2)

Using these definitions, we show in Fig. 2 (right panel) the kinetic energy as a fraction of the
total energy for the most unstable mode as a function of Re and 𝐶𝐵 for Pm = 0.1. Consistent
with their interpretation as being primarily driven by a fundamentally hydrodynamic
instability, we see that the kinetic energy of sinuous KH modes is significantly more than
half of the total energy across these parameters.
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Figure 3: Mode structures are shown for the fastest-growing sinuous KH mode at
Pm = 0.1, Re = 102, 𝐶𝐵 = 0.1 (left pair of panels), and the fastest-growing varicose KH
mode at Pm = 0.1, Re = 103, 𝐶𝐵 = 0.6 (right pair). Within each pair of panels, the left

panel shows contours of the streamfunction 𝜓, and the right panel shows contours of the
flux function 𝐴. Note that the (vertical) wavelength of each mode is 2𝜋/𝑘max

𝑧 , so the true
aspect ratio of the modes is not accurately represented here.

3.2. Varicose KH modes
Another class of unstable modes that also emerges is what we call the varicose KH modes
hereafter, where the term varicose here is used by analogy with varicose modes in, e.g.,
shear instabilities in jets (Mattingly & Criminale 1972; Drazin & Reid 1981; Mikhaylov &
Wu 2020). While they also have Im[𝜆] = 0, they can be distinguished from the sinuous KH
modes because they have no 𝑥-averaged horizontal flow or field, and thus 𝜓0 = 𝐴0 = 0.

The varicose KH modes are only found at sufficiently large Re, but did not appear in ideal
MHD in any of the cases we tested, nor do they exist in the hydrodynamic limit 𝐶𝐵 → 0.
In Fig. 1, the region of parameter space where varicose modes are unstable is marked by
hatches going down and to the left. For 𝐶𝐵 < 0.5, they are generally subdominant to sinuous
modes; for 𝐶𝐵 > 0.5, by contrast, varicose modes persist while sinuous modes are typically
stabilized (for sufficiently large Rm, as described in Sec. 3.1). They are always eventually
stabilized for sufficiently large magnetic field, however. Their most-unstable wavenumber,
shown in Fig. 2 (left), is generally on the order of 𝑘max

𝑧 ∼ 0.1, slightly smaller than for
the sinuous KH modes. Figure 2 (right) also shows that varicose modes are much closer to
equipartition between kinetic and magnetic energy than sinuous modes are.

Figure 3 shows that the structure of varicose modes differs significantly from sinuous
modes. In particular, we see that the horizontal lengthscale of the perturbations is smaller,
and dominated by the 𝑛 = ±2 mode for the streamfunction, and the 𝑛 = ±1 mode for the
flux function. The flow contains convergent and divergent regions, consistent with varicose
modes in other systems (Mattingly & Criminale 1972; Drazin & Reid 1981; Mikhaylov &
Wu 2020). While these modes appear (to our knowledge) to be unnoticed in the literature,
they are not the focus of this paper, and will be discussed in greater detail in future work.

3.3. Resistively-unstable Alfvén waves
Contrary to the other modes discussed so far, the third type of unstable modes, called
resistively-unstable Alfvén waves hereafter, exist for arbitrarily large field strength 𝐶𝐵. They
are found for Pm < 1 and for Re above a critical value that depends on Pm. Unlike KH
modes, they have nonzero frequencies Im[𝜆], and appear in complex-conjugate pairs at each
unstable 𝑘𝑧 . Their phase velocity Im[𝜆]/𝑘𝑧 scales roughly with the Alfvén velocity

√
𝐶𝐵, as
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Figure 4: Left: Phase velocity |Im[𝜆] |/𝑘𝑧 of the fastest-growing mode at Pm = 0.1 as a
function of 𝐶𝐵 and Re, with the horizontal red line indicating 𝐶𝐵 = 0.5. Right: Phase
velocity versus 𝐶𝐵 for Re = 100, 𝑃𝑚 = 0.1. Also shown is the nondimensional Alfvén

velocity
√
𝐶𝐵 for reference.

shown in Fig. 4. Figure 1 shows that their growth rates are much smaller than those of KH
modes, and decrease with increasing 𝐶𝐵. Meanwhile, Fig. 2 reveals that the fastest-growing
modes have much smaller values of 𝑘max

𝑧 than KH modes, and that most of the energy is
kinetic when 𝑃𝑚 � 1.

The structure of the fastest-growing resistively-unstable Alfvén waves for Pm = 0.1,
Re = 102, and 𝐶𝐵 = 1 is shown in Fig. 5. We see that, contrary to both the sinuous
and varicose KH modes, these unstable waves are highly asymmetric with respect to the
background flow profile and behave differently depending on whether Im[𝜆] > 0 (i.e. the
wave travels downward in the −𝑧 direction) or Im[𝜆] < 0 (i.e. the wave travels upward). More
specifically, we see that the downward-travelling perturbations are localized in the upward-
moving region of the mean flow, and the upward-travelling perturbations are localized in the
downward-moving region of the flow.

To our knowledge, the resistively-unstable Alfvén waves have not been studied elsewhere
in the literature. In what follows, we now present a reduced model of these new unstable
modes in an effort to characterize them and clarify their origin.

4. A reduced model for the resistively-unstable Alfvén waves
We begin by noting that resistively-unstable Alfvén waves have a relatively simple spatial
structure (especially at moderate Reynolds numbers) that is well-approximated by the most
dramatic truncation of (2.9), namely that for 𝑁 = 1 (where the perturbations only contain a
total of three Fourier modes, for 𝑛 = −1, 𝑛 = 0 and 𝑛 = 1). This is illustrated in Figure 6,
which compares the growth rate and wavenumber of the fastest growing mode for truncations
at 𝑁 = 20, 𝑁 = 5 and 𝑁 = 1, respectively, for 𝑅𝑒 = 100 and 𝑅𝑒 = 10000. In all cases,
𝑃𝑚 = 𝑅𝑚/𝑅𝑒 = 0.1, and𝐶𝐵 varies between 0.01 and 1000. We see that in general, the 𝑁 = 1
truncation captures most of the physics of the problem, including the overall amplitude of
the growth rate Re(𝜆) and wavenumber 𝑘𝑧 of the fastest growing mode, and the clear regime
transition that happens around 𝐶𝐵 = 0.5. However, we also see that the properties of the
resistively-unstable Alfvén waves (which are the only modes that exist for 𝐶𝐵 � 0.5) are
particularly well captured by the 𝑁 = 1 truncation.
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Figure 5: Mode structures are shown for the fastest-growing pair of resistively-unstable
Alfvén waves at Pm = 0.1, Re = 102, 𝐶𝐵 = 1, with each pair of panels showing contours
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Note that the aspect ratio of the plots does not reflect the aspect ratio of the modes, whose
vertical wavelength 2𝜋/𝑘𝑧 is much longer than 2𝜋, the wavelength of the background flow.
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With this in mind, we now consider the 𝑁 = 1 truncation only, and restrict our analysis to
two-dimensional modes (so 𝑘𝑦 = 𝑢̃𝑦 = 0). We also limit our analysis to cases where 𝑃𝑚 < 1
(so 𝑅𝑚 < 𝑅𝑒), as the modes of interest do not exist when 𝑃𝑚 > 1.

The 𝑁 = 1 truncation of the Fourier mode expansion is equivalent to seeking solutions of
the kind

𝜓(𝑥, 𝑧, 𝑡) = 𝑒𝜆𝑡+𝑖𝑘𝑧 𝑧
(
𝜓0 + 𝜓1𝑒

𝑖𝑥 + 𝜓−1𝑒
−𝑖𝑥 ) , (4.1)

𝐴(𝑥, 𝑧, 𝑡) = 𝑖𝑒𝜆𝑡+𝑖𝑘𝑧 𝑧
(
𝑎0 + 𝑎1𝑒

𝑖𝑥 + 𝑎−1𝑒
−𝑖𝑥 ) . (4.2)

Note that the added factor of 𝑖 in the expression for 𝐴 (so 𝑖𝑎𝑛 = 𝐴𝑛 for all 𝑛) makes
the coefficients in the resultant system shown below real, which is both convenient and
without loss of generality. The first term in each definition (terms in 𝜓0, 𝑎0) corresponds to
𝑥−invariant modes, sometimes referred to as "shearing modes" hereafter, while the second
and third terms correspond to inclined modes that have structure in both horizontal and
vertical directions. Substituting this ansatz into (2.12) and (2.13), and projecting onto the
relevant Fourier modes, yields the linear system(

𝜆 +
𝑘2
𝑧

𝑅𝑒

)
𝜓0 − 𝜓𝐸 𝑘𝑧 (𝜓1 − 𝜓−1) = −𝑘𝑧𝐶𝐵𝑎0,(

𝜆 + 𝐾
2

𝑅𝑒

)
𝜓1 − 𝜓𝐸 𝑘𝑧

1 − 𝑘2
𝑧

𝐾2 𝜓0 = −𝑘𝑧𝐶𝐵𝑎1,(
𝜆 + 𝐾

2

𝑅𝑒

)
𝜓−1 + 𝜓𝐸 𝑘𝑧

1 − 𝑘2
𝑧

𝐾2 𝜓0 = −𝑘𝑧𝐶𝐵𝑎−1,(
𝜆 +

𝑘2
𝑧

𝑅𝑚

)
𝑎0 = 𝑘𝑧𝜓0 − 𝜓𝐸 𝑘𝑧 (𝑎−1 − 𝑎1),(

𝜆 + 𝐾2

𝑅𝑚

)
𝑎1 = 𝑘𝑧𝜓1 − 𝜓𝐸 𝑘𝑧𝑎0,(

𝜆 + 𝐾2

𝑅𝑚

)
𝑎−1 = 𝑘𝑧𝜓−1 + 𝜓𝐸 𝑘𝑧𝑎0, (4.3)

where here 𝐾2 = 1 + 𝑘2
𝑧 and the scalar 𝜓𝐸 = 1/2 is the amplitude of the Fourier coefficients

of the streamfunction associated with the background shear flow u𝐸 . Its presence will later
help identify the role of that shear flow in driving the resistive instability.

Note that in the limit of extremely strong field and negligible diffusivity (i.e. neglecting
terms in 𝜓𝐸 and in 1/𝑅𝑒 or 1/𝑅𝑚), the system reduces to

𝜆𝜓0 = −𝑘𝑧𝐶𝐵𝑎0, 𝜆𝑎0 = 𝑘𝑧𝜓0,

𝜆𝜓1 = −𝑘𝑧𝐶𝐵𝑎1, 𝜆𝑎1 = 𝑘𝑧𝜓1,

𝜆𝜓−1 = −𝑘𝑧𝐶𝐵𝑎−1, 𝜆𝑎−1 = 𝑘𝑧𝜓−1, (4.4)

so that 𝜆2𝑞 = −𝑘2
𝑧𝐶𝐵𝑞 for 𝑞 ∈ {𝜓0, 𝜓1, 𝜓−1, 𝑎0, 𝑎1, 𝑎−1}. Each of these leads to 𝜆 =

±𝑖𝑘𝑧
√
𝐶𝐵, which is the non-dimensional version of the dispersion relationship for non-

dissipative Alfvén waves travelling on a constant vertical magnetic field, which is as expected
in the limit considered.

Going back to (4.3) and taking the sum of the 𝜓1 and 𝜓−1 equations, and the sum of the
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𝑎−1 and 𝑎1 equations, we obtain the reduced system(
𝜆 + 𝐾

2

𝑅𝑒

)
(𝜓1 + 𝜓−1) = −𝑘𝑧𝐶𝐵 (𝑎1 + 𝑎−1),(

𝜆 + 𝐾2

𝑅𝑚

)
(𝑎1 + 𝑎−1) = 𝑘𝑧 (𝜓1 + 𝜓−1), (4.5)

which shows that, for modes with 𝑎1 + 𝑎−1 ≠ 0 and 𝜓1 + 𝜓−1 ≠ 0, 𝜆 satisfies the simple
quadratic equation (

𝜆 + 𝐾
2

𝑅𝑒

) (
𝜆 + 𝐾2

𝑅𝑚

)
= −𝑘2

𝑧𝐶𝐵, (4.6)

whose solutions are

𝜆 = −𝐾
2

2

(
1
𝑅𝑒

+ 1
𝑅𝑚

)
± 𝑖𝑘𝑧

√︁
𝐶𝐵

√︄
1 − 𝐾4

4𝑘2
𝑧𝐶𝐵

(
1
𝑅𝑒

− 1
𝑅𝑚

)2
. (4.7)

These correspond to viscously and resistively damped Alfvén waves, that decay on the
timescale of order 𝑅𝑚/𝐾2, with𝐾 of order unity. This result implies that the system dynamics
relax to the subset of eigenmodes for which 𝑎1 = −𝑎−1, and 𝜓1 = −𝜓−1, on a relatively short
timescale (unless 𝑅𝑚 is very large).

To look outside of this strictly decaying subspace (since we are looking for growing
modes), we then assume 𝑎1 = −𝑎−1, and 𝜓1 = −𝜓−1 in (4.3), and obtain the new reduced
system (

𝜆 +
𝑘2
𝑧

𝑅𝑒

)
𝜓0 = 2𝜓𝐸 𝑘𝑧𝜓1 − 𝑘𝑧𝐶𝐵𝑎0,(

𝜆 + 𝐾
2

𝑅𝑒

)
𝜓1 = 𝜓𝐸 𝑘𝑧

1 − 𝑘2
𝑧

𝐾2 𝜓0 − 𝑘𝑧𝐶𝐵𝑎1,(
𝜆 +

𝑘2
𝑧

𝑅𝑚

)
𝑎0 = 𝑘𝑧𝜓0 + 2𝜓𝐸 𝑘𝑧𝑎1,(

𝜆 + 𝐾2

𝑅𝑚

)
𝑎1 = 𝑘𝑧𝜓1 − 𝜓𝐸 𝑘𝑧𝑎0. (4.8)

It can be shown with a little algebra that this yields a quartic equation for the eigenvalue 𝜆:(
𝜆 + 𝐾

2

𝑅𝑒

) (
𝜆 +

𝑘2
𝑧

𝑅𝑒

) (
𝜆 + 𝐾2

𝑅𝑚

) (
𝜆 +

𝑘2
𝑧

𝑅𝑚

)
+𝑘2

𝑧𝐶𝐵

[(
𝜆 + 𝐾2

𝑅𝑚

) (
𝜆 + 𝐾

2

𝑅𝑒

)
+

(
𝜆 +

𝑘2
𝑧

𝑅𝑒

) (
𝜆 +

𝑘2
𝑧

𝑅𝑚

)]
−2𝜓2

𝐸 𝑘
2
𝑧

1 − 𝑘2
𝑧

𝐾2

(
𝜆 + 𝐾2

𝑅𝑚

) (
𝜆 +

𝑘2
𝑧

𝑅𝑚

)
+ 2𝜓2

𝐸 𝑘
2
𝑧

(
𝜆 + 𝐾

2

𝑅𝑒

) (
𝜆 +

𝑘2
𝑧

𝑅𝑒

)
= 4𝜓2

𝐸 𝑘
4
𝑧𝐶𝐵

𝑘2
𝑧

𝐾2 − (𝑘4
𝑧𝐶

2
𝐵 − 4𝜓4

𝐸 𝑘
4
𝑧

1 − 𝑘2
𝑧

𝐾2 ). (4.9)

Based on the finding that the resistively-unstable Alfvén waves dominate only for large
magnetic field strength (i.e. 𝐶𝐵 > 1/2), but persist at arbitrarily large values of 𝐶𝐵, we
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postulate that they must somehow draw their energy from the interaction between other more
weakly damped Alfvén modes and the background sinusoidal shear flow. For this reason we
now rescale 𝜆 with the Alfvén frequency

√
𝐶𝐵𝑘𝑧 , introducing the variable 𝜆̂ = 𝜆/(𝑘𝑧

√
𝐶𝐵).

We found in Figure 4 that the imaginary part of 𝜆̂ = 𝑂 (1) for the resistively-unstable Alfvén
waves. With this rescaling, we obtain(

𝜆̂ + 𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

) (
𝜆̂ + 𝑘𝑧

𝑅𝑒
√
𝐶𝐵

) (
𝜆̂ + 𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂ + 𝑘𝑧

𝑅𝑚
√
𝐶𝐵

)
+

(
𝜆̂ + 𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂ + 𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

)
+

(
𝜆̂ + 𝑘𝑧

𝑅𝑒
√
𝐶𝐵

) (
𝜆̂ + 𝑘𝑧

𝑅𝑚
√
𝐶𝐵

)
−2
𝜓2
𝐸

𝐶𝐵

1 − 𝑘2
𝑧

𝐾2

(
𝜆̂ + 𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂ + 𝑘𝑧

𝑅𝑚
√
𝐶𝐵

)
+2
𝜓2
𝐸

𝐶𝐵

(
𝜆̂ + 𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

) (
𝜆̂ + 𝑘𝑧

𝑅𝑒
√
𝐶𝐵

)
= −1 + 4

𝜓2
𝐸

𝐶𝐵

𝑘2
𝑧

𝐾2 + 4
𝜓4
𝐸

𝐶2
𝐵

1 − 𝑘2
𝑧

𝐾2 . (4.10)

This demonstrates the emergence of two types of constant terms: those in 𝜓2
𝐸
/𝐶𝐵, which are

proportional to the square of the Alvénic Mach number associated with the background flow
and field, and those in 𝐾2/𝑅𝑒

√
𝐶𝐵𝑘𝑧 , 𝐾2/𝑅𝑚

√
𝐶𝐵𝑘𝑧 , 𝑘𝑧/𝑅𝑒

√
𝐶𝐵 or 𝑘𝑧/𝑅𝑚

√
𝐶𝐵, which are

the ratio of a viscous or magnetic diffusion rate to the Alfvén oscillation rate. At a fixed mean
flow amplitude (as is necessarily implied in the non-dimensionalization selected here) and a
fixed mode structure (i.e. fixed 𝑘𝑧), all of these terms go to zero as the magnetic field strength
(𝐶𝐵) increases. However, had we selected a different non-dimensionalization, it would be
possible to let the term in 𝜓2

𝐸
go to zero independently of the diffusive terms. It is this second

route that we now take here, as it leads to the correct model for the resistively-unstable Alfvén
waves.

For this reason, we now introduce the small parameter 𝜖 = 2 𝜓
2
𝐸

𝐶𝐵
, which we take to be small,

without necessarily requiring that the diffusive terms be small. This apparent inconsistency
would be resolved in a different non-dimensionalization, but at the cost of introducing a new
system of units and new notations, which we prefer to avoid. In addition, the diffusive terms
all contain the quantity 𝑘𝑧 , whose size relative to 𝜖 can vary. As such, we cannot a priori
neglect them.

We then assume an asymptotic expansion of the kind 𝜆̂ = 𝜆̂0+ 𝜖𝜆̂1 (which will be verified a
posteriori to be correct). To study what happens in the absence of a mean flow, we artificially
set 𝜓𝐸 = 0, or equivalently, 𝜖 = 0. In this limit, the equation reduces to two possible quadratic
equations in 𝜆̂0, namely the equations for the decay rates of diffusive Alfvén waves:(

𝜆̂0 +
𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂0 +

𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

)
+ 1 = 0,(

𝜆̂0 +
𝑘𝑧

𝑅𝑒
√
𝐶𝐵

) (
𝜆̂0 +

𝑘𝑧

𝑅𝑚
√
𝐶𝐵

)
+ 1 = 0. (4.11)

The first one is identical to (4.6), and was discarded on the basis that the corresponding
modes decay too rapidly. We continue to discard it here, as it would lead to modes that do
not grow. The second one has solutions that decay on the timescale𝑂 (𝑅𝑒/𝑘2

𝑧), which can be
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very long provided 𝑘𝑧 is sufficiently small:

𝜆̂0 = − 𝑘𝑧

2
√
𝐶𝐵

(
1
𝑅𝑒

+ 1
𝑅𝑚

)
± 𝑖

√︄
1 − 𝑘2

𝑧

4𝐶𝐵

(
1
𝑅𝑒

− 1
𝑅𝑚

)2
. (4.12)

These modes are pure "shearing" Alfvén modes in the terminology introduced earlier, i.e,
at lowest order their corresponding velocity field is invariant in the 𝑥-direction. As we shall
demonstrate, it is the interaction of these modes with the background shear that drives the
growth of resistively-unstable Alfvén waves.

Expanding (4.10) to first order in 𝜖 (but keeping the diffusive terms whose size is unknown
without specifying 𝑘𝑧), and using (4.11) and (4.12), we find that the first-order correction 𝜆̂1
satisfies the linear equation

𝜆̂1

[(
𝜆̂0 +

𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂0 +

𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

)
+ 1

] [
2𝜆̂0 +

𝑘𝑧√
𝐶𝐵

(
1
𝑅𝑒

+ 1
𝑅𝑚

)]
= 2

𝑘2
𝑧

𝐾2 +
1 − 𝑘2

𝑧

𝐾2

(
𝜆̂0 +

𝐾2

𝑅𝑚
√
𝐶𝐵𝑘𝑧

) (
𝜆̂0 +

𝑘𝑧

𝑅𝑚
√
𝐶𝐵

)
−

(
𝜆̂0 +

𝑘𝑧

𝑅𝑒
√
𝐶𝐵

) (
𝜆̂0 +

𝐾2

𝑅𝑒
√
𝐶𝐵𝑘𝑧

)
. (4.13)

Figure 7 shows the real part of the asymptotic solution 𝜆 = 𝑘𝑧
√
𝐶𝐵 (𝜆̂0 + 𝜖𝜆̂1), with 𝜆̂0

given by (4.12) and 𝜆̂1 given by the solution of (4.13), and compares it with the growth
rate obtained from the numerical solution of (2.9) computed using the 𝑁 = 1 truncation, for
𝑘𝑦 = 0. Several values of the input parameters 𝑅𝑒, 𝑅𝑚 and 𝐶𝐵 are tested.

First and foremost, we confirm that there are indeed solutions with a positive real part for
small enough 𝑘𝑧 in this particular subspace of the highly reduced model, demonstrating that
the resistive instability does occur through the interaction of the weakly decaying "shearing"
Alvén mode with the mean sinusoidal flow, as suspected. We see that the asymptotic
expression is always appropriate for sufficiently large 𝐶𝐵, again as expected, but we also
see that the expansion is not uniform in 𝑅𝑒 and 𝑘𝑧 . In particular, the approximation seems
to always be valid for sufficiently small 𝑘𝑧 even when 𝐶𝐵 is not very large, but begins to fail
at larger 𝑘𝑧 , and does so earlier for larger Reynolds numbers 𝑅𝑒 and 𝑅𝑚. The reason for the
non-uniformity of the asymptotic expansion will be clarified later.

In what follows, we now aim to obtain a fully analytical solution to the problem, at least
in some region of parameter space, that will allow us to gain a better understanding of the
nature of the instability. To do so, we first limit the analysis to the range of parameters for
which the asymptotic approximation to first order in 𝜖 , namely equation (4.13), is valid.
We also capitalize on the fact that the resistively-unstable Alfvén waves have a very small
wavenumber (see Section 3), and further expand the solution in the limit of 𝑘𝑧 → 0. In what
follows we assume (and later justify) that 𝑘𝑧 is 𝑜(𝑅𝑒−1).

When this is the case, and keeping only terms of lowest order in 𝑘𝑧 , we have

𝜆̂0 ' − 𝑘𝑧

2
√
𝐶𝐵

(
1
𝑅𝑒

+ 1
𝑅𝑚

)
± 𝑖, (4.14)

and after some cumbersome but otherwise straightforward algebra, again keeping only low-
order terms in 𝑘𝑧 and/or 𝑅𝑒−1, we obtain the expression

𝜆̂1 ' (𝑅𝑒 − 𝑅𝑚)
√
𝐶𝐵𝑘𝑧

2𝐾2
[
1 + 𝐶𝐵𝑘

2
𝑧

𝐾 4 (𝑅𝑒 + 𝑅𝑚)2
] [

1 ∓ 𝑖
√
𝐶𝐵𝑘𝑧

𝐾2 (𝑅𝑒 + 𝑅𝑚)
]
. (4.15)
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Figure 7: Growth rate Re(𝜆) as a function of 𝑘𝑧 in the reduced model (𝑁 = 1 truncation),
for 𝑅𝑒 = 100 and 𝑅𝑚 = 10 (left) and 𝑅𝑒 = 1000 and 𝑅𝑚 = 100 (right). In both cases, two
values of 𝐶𝐵 are shown: 𝐶𝐵 = 10 (red) and 𝐶𝐵 = 1000 (blue). The exact solution (solid

line) is obtained numerically, the asymptotic solution (dotted line) is obtained using
equations (4.12) and (4.13).

For the Taylor expansion of 𝜆̂ in the small parameter 𝜖 to be meaningful, one needs both
𝜖 |Re(𝜆̂1) | � |𝜆̂0 | and 𝜖Im(𝜆̂1) � |𝜆̂0 |. With |𝜆̂0 | ∼ 𝑂 (1), and noting that the second
constraint is more stringent than the first, we obtain the condition

𝑘2
𝑧 �

2𝐾2

(𝑅𝑒2 − 𝑅𝑚2)
→ 𝑘𝑧 = 𝑜(𝑅𝑒−1), (4.16)

as discussed above (assuming 𝑅𝑚 is not too close to 𝑅𝑒, and noting that 𝐾2 = 𝑂 (1)).
For values of 𝑘𝑧 approaching 𝑂 (𝑅𝑒−1) the expansion is no longer strictly valid, but remains
adequate, which explains the trends seen in Figure 7. Finally, we can substitute this expression
and the one for 𝜆̂0 into 𝜆 = 𝑘𝑧

√
𝐶𝐵 (𝜆̂0 + 𝜖𝜆̂1) to obtain the real part of 𝜆:

Re(𝜆) ' −
𝑘2
𝑧

2

(
1
𝑅𝑒

+ 1
𝑅𝑚

)
+
𝑘2
𝑧𝜓

2
𝐸

𝐾2
𝑅𝑒 − 𝑅𝑚

1 + 𝐶𝐵𝑘
2
𝑧

𝐾 4 (𝑅𝑚 + 𝑅𝑒)2
· (4.17)

This expression reveals that Re(𝜆) can only be positive when 𝑅𝑒 > 𝑅𝑚, or in other words,
when 𝑃𝑚 < 1, a result that is consistent with our findings from Section 3. We can also see
in Figure 8 that equation (4.17) is a good asymptotic approximation to Re(𝜆) for all 𝑘𝑧 in
the limit of large 𝐶𝐵 and moderate 𝑅𝑒 and 𝑅𝑚 (e.g. the case 𝑅𝑒 = 100, 𝑅𝑚 = 10, and
𝐶𝐵 = 1000), and a reasonable approximation even for smaller 𝐶𝐵.

This analytical expression can be used to deduce some of the salient properties of the
instability. For example, a criterion for instability can be obtained by requiring that Re(𝜆) > 0
as 𝑘𝑧 → 0, and noting that 𝜓𝐸 = 1/2 and 𝐾2 ' 1, we find that unstable modes exist provided:

𝑅𝑒𝑅𝑚
𝑅𝑒 − 𝑅𝑚
𝑅𝑒 + 𝑅𝑚 > 2, (4.18)

or equivalently,

𝑅𝑒 >

√︂
2
𝑃𝑚

1 + 𝑃𝑚
1 − 𝑃𝑚 (for 𝑃𝑚 < 1). (4.19)

This shows that the instability is suppressed as 𝑃𝑚 → 1 from below.
Finally, we can also use (4.17) to find the fastest-growing mode for fixed input parameters
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Figure 8: Growth rate as a function of 𝑘𝑧 in the reduced model, for 𝑅𝑒 = 100 and
𝑅𝑚 = 10. The exact solution (solid line) is obtained numerically, the asymptotic solution

(dotted line) is obtained using equations (4.12) and (4.13), and the dashed line is the
analytical expression (4.17).

𝑅𝑒, 𝑅𝑚 and 𝐶𝐵, by maximizing Re(𝜆) with respect to 𝑘𝑧 . We obtain

𝑘max
𝑧 ' ± 1

√
𝐶𝐵 (𝑅𝑚 + 𝑅𝑒)

(√︂
𝑅𝑒𝑅𝑚

2
𝑅𝑒 − 𝑅𝑚
𝑅𝑒 + 𝑅𝑚 − 1

)1/2

. (4.20)

after assuming that 𝐾2 ' 1. We see that for moderate 𝑅𝑒, 𝑘max
𝑧 = 𝑂 (𝐶−1/2

𝐵
𝑅𝑒−1/2). Since

(4.17) is valid for any 𝑘𝑧 � 1/𝑅𝑒, (4.20) is then expected to be valid whenever 𝐶𝐵 � 𝑅𝑒.
When 𝐶𝐵 is of order 𝑅𝑒 or less, (4.20) is not valid, and we must instead rely on numerical
tools to find 𝑘max

𝑧 . Figure 9 compares the wavenumber of the fastest-growing mode obtained
from (4.20) with 𝑅𝑒 = 100 and 𝑅𝑚 = 10, with the one found by maximizing the growth rate
obtained numerically over all possible values of 𝑘𝑧 . We see that the approximation is quite
good as long as 𝐶𝐵 > 𝑅𝑒, as expected from the analysis above.

5. Interpretation of the results
In the previous section, we demonstrated that a dramatic truncation of the full system of
equations (2.9) still retains enough physics to capture the essence of the instability studied,
and that the growth rates computed from the reduced model are an excellent approximation
to the true growth rate of the resistively-unstable Alfvén waves. Moreover, we were able
in some limits to obtain an analytical expression for the mode growth rate as a function of
wavenumber (equation 4.17), which we now argue helps elucidate the mechanism responsible
for the instability.

Indeed, when written non-dimensionally, equation (4.17) obfuscates the physics that drive
the instability. Dimensionally, however, and using the fact that 𝜓𝐸 = 1/2,

Re(𝜆)∗ ' −
(𝑘∗𝑧)2

2
(𝜈∗ + 𝜂∗) +

(𝑘∗𝑧)2(Ψ∗)2

4𝜈∗
(1 − 𝑃𝑚)

1 + (𝐵∗)2 (𝑘∗𝑧 )2

𝜌∗0𝜇
∗
0 (𝐾 ∗)4 ( 1

𝜈∗ +
1
𝜂∗ )2

(5.1)

where Ψ∗ = 𝑈∗/𝑘∗𝑥 is the amplitude of the streamfunction associated with the background
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Figure 9: Fastest-growing mode wavenumber (in the reduced model) at 𝑅𝑒 = 100,
𝑅𝑚 = 10. The solid line shows the numerically-determined maximum, while the dashed
line shows the solution from equation (4.20). The latter is a good approximation to the

former for 𝐶𝐵 > 𝑅𝑒, as discussed in the main text.

sinusoidal flow, and the star here denotes dimensional quantities. When 𝐵∗ is not too large,
or when 𝑘∗𝑧 is small (i.e. when the denominator in the second term of equation 5.1 is
approximately equal to one), then Re(𝜆)∗ ' −𝐷∗

eff𝑘
2
𝑧 , with an effective diffusivity given by:

𝐷∗
eff =

1
2
(𝜈∗ + 𝜂∗) − (Ψ∗)2

4𝜈∗
(1 − 𝑃𝑚). (5.2)

This expression is strongly reminiscent of the results obtained by Dubrulle & Frisch (1991)
who demonstrated that a purely hydrodynamic sinusoidal flow has an effective viscosity of
amplitude

𝜈∗eff = 𝜈∗ − (Ψ∗)2

2𝜈∗
, (5.3)

when it acts on a cross-stream flow, which is exactly the situation we have here, albeit
in the magnetized case. Note how 𝜈∗eff is negative when Ψ∗ >

√
2𝜈∗, or equivalently, when

𝑅𝑒 >
√

2. In other words, a purely sinusoidal flows has anti-diffusive properties that can serve
to amplify a cross-stream flow. The obvious similarities between (5.2) and (5.3) therefore
show that the resistive instability is simply caused by the well-known anti-diffusive properties
of the background sinusoidal flow, acting on the slowly decaying Alfvén mode.

It is interesting to note that the 𝐵∗ → 0 limit of (5.2) does not recover the hydrodynamic
limit of Dubrulle & Frisch (1991). This discrepancy has a simple physical explanation. First,
note that the first term in 𝐷∗

eff is the algebraic mean of 𝜈∗ and 𝜂∗, rather than 𝜈∗ alone,
because the cross-flow that is being amplified is an Alfvén wave at the lowest order in
𝜖 , whose energy is therefore equally partitioned into a kinetic component, that dissipates
viscously, and a magnetic component, that dissipates resistively. Second, we also see that the
second term in 𝐷∗

eff does not recover (Ψ∗)2/2𝜈∗ when 𝐵∗ → 0, even when 𝑃𝑚 → 0 (i.e.
when 𝜂 � 𝜈, where the field and the flow merely slip with respect to one another). To see why
this is the case, note that the term (Ψ∗)2/2𝜈∗ comes from the Reynolds stresses associated
with the perturbations in the purely hydrodynamic limit, while in the MHD case, Maxwell
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stresses also participate in the momentum balance and partially (but not completely) cancel
out the Reynolds stress.

6. Numerical simulations
While linear stability analyses can predict the initial response of a fluid in equilibrium to
infinitesimal perturbations, they provide no immediate insight into its nonlinear evolution. In
this section, we present results from a direct numerical simulation of this system for one set
of physical parameters. It is not our intention to perform a comprehensive scan of parameter
space, but instead, to provide some validation of the linear stability analysis of Sec. 3, and
to find out, at least qualitatively, how the resistively-unstable Alfvén waves saturate. For this
reason, we use the physical parameters 𝐶𝐵 = 1, Re = 100, and Pm = 0.1, ensuring that they
are the only unstable modes present in the system (see Figure 1).

We use the pseudospectral code Dedalus (Burns et al. 2020) to evolve a two-dimensional
version of Eqs. (2.4) (expressed in terms of a streamfunction 𝜓 and flux function 𝐴) in
time. The simulation is initialized with a unit-amplitude sinusoidal shear flow u = u𝐸 and
a uniform magnetic field b = b𝐸 = e𝑧 , i.e., Eqs. (2.1) and (2.2). We note that this is
an equilibrium solution, as the forcing term −Re−1∇2u𝐸 in Eq. (2.4) balances the viscous
dissipation of u𝐸 . We perturb this equilibrium by adding small-amplitude white noise to the
streamfunction, which seeds the instability. The simulation uses a domain size of (𝐿𝑥 , 𝐿𝑧) =
(4𝜋, 170𝜋), where the dimensions are chosen to accommodate two wavelengths of the
sinusoidal equilibrium in the 𝑥 direction and approximately two wavelengths of the fastest-
growing mode, according to the linear stability analysis, in the 𝑧 direction. The domain is
doubly-periodic, with a resolution of 64 Fourier modes in the 𝑥 direction and 256 modes
in the 𝑧 direction. Nonlinear terms are dealiased using the standard 3/2-rule, and we use
a four-stage, third-order, implicit-explicit Runge-Kutta timestepping scheme to evolve the
solution in time (Ascher et al. 1997, Sec. 2.8).

The results are summarized in Fig. 10. We decompose the flow according to u = 〈u〉𝑧 +u′,
where 〈·〉𝑧 denotes an average in 𝑧, and refer to 〈u〉𝑧 as the mean flow and u′ as the fluctuating
flow, with analogous definitions for the mean and fluctuating magnetic field. Note that the
mean flow remains purely vertical, i.e., 〈u〉𝑧 = 〈𝑢𝑧〉𝑧e𝑧 . The kinetic and magnetic energies
of the fluctuations are shown alongside the kinetic energy of the mean flow in Fig. 10a. As
expected, the fluctuations grow early in the simulation at a rate that is consistent with the
linear stability results of Sec. 3, shown by the dashed green line. Also consistent with Sec. 3
is the dominance of kinetic energy over magnetic energy of fluctuations in the linear growth
phase, see Fig. 2. Finally, snapshots of the flow and field perturbations at this stage (not
shown) are also consistent with those of the unstable modes shown in Fig. 5.

The exponential growth phase of the resistive Alfvén modes ends around 𝑡 = 10000, when
their amplitudes become commensurate with that of the mean flow. Nonlinear interactions
then cause a rapid decrease in the amplitude of the mean sinusoidal flow, from an original
value of one down to an average of about𝑈 = 0.181 (see Fig. 10b). The shape remains almost
exactly sinusoidal, however. One may therefore wonder whether, by reducing the mean flow
amplitude, the system has simply adjusted itself in such a way as to become marginally stable
to all modes of instability, which is a common route towards saturation. To test this idea, we
use the new flow amplitude 𝑈 to compute effective Reynolds numbers 𝑅𝑒eff = 𝑈𝑅𝑒 ' 18.1
and 𝑅𝑚eff = 𝑈𝑅𝑚 ' 1.81, and an effective magnetic parameter 𝐶eff = 𝐶𝐵/𝑈2 = 30.7.
Using these effective parameters, we can compute the growth rate of unstable modes on the
new background flow, and the results are shown in Fig. 10c (green curve), together with
a dashed vertical line indicating the wavenumber of a mode whose wavelength equals the
domain height. We clearly see that the system remains unstable to domain-size resistive
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Figure 10: Panel a): kinetic and magnetic energies of perturbations about the mean are
shown alongside the kinetic energy of the mean flow for a simulation with 𝐶𝐵 = 1,
Re = 100, and Pm = 0.1, with the green dashed line showing the growth rate of the

most-unstable mode that fits into this domain size according to Sec. 3, demonstrating
consistency with the results of that section. Panel b): the vertical mean flow, averaged in
both 𝑧 and 𝑡 (where the time-average is taken over the second half of the simulation), is

shown with a sine wave overplotted to demonstrate how nearly sinusoidal the flow
remains. Panel c): the dispersion relation based on the initial values of Re and 𝐶𝐵 (orange)
is shown alongside the dispersion relation based on the values of Reeff and 𝐶eff achieved

in saturation (green, see text), with the black vertical line showing the wavenumber
corresponding to a wavelength that equals the domain height, demonstrating that even in
saturation, the mean flow profile remains linearly unstable. Panel d): a snapshot of the

vertical (left) and horizontal (right) flow is shown at 𝑡 ≈ 87000 (indicated by the vertical
dashed line in panel a). At this time, the system is dominated by two counter-propagating

solitons.
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Alvén modes, showing that the path to saturation suggested above is not relevant for this
simulation.

Furthermore, inspection of the shape and relative amplitude of the flow and field
perturbations in the nonlinear state reveals that they are profoundly different from those
of linear modes computed in Section 3. Indeed, Fig. 10d shows 𝑢𝑧 and 𝑢𝑥 , the vertical
and horizontal components of the flow (including mean and fluctuations), at 𝑡 ≈ 86480,
as indicated by the dashed vertical line in the top-left panel. While the unstable modes
calculated in Sec. 3 are sinusoidal in 𝑧, the saturated state is dominated by fluctuations that
are localized to narrow structures in the 𝑧 direction. These structures appear to be two pairs
of counter-propagating solitons, most easily seen in terms of the localized horizontal flows
shown in the 𝑢𝑥 snapshot. The positive-𝑢𝑥 fluctuations propagate in the +𝑧 direction, while
the negative-𝑢𝑥 fluctuations propagate in the−𝑧 direction at the same speed, with each soliton
unperturbed as it travels through a counter-propagating soliton.

Finally, note that we have run many other nonlinear simulations of the resistively-unstable
Alfvén modes for a variety of input parameters (not shown here). Similar solitons appeared in
all cases. The simplicity of these dynamics suggests they may be well-described by a weakly
nonlinear analytical model. Such a model, as well as an exploration of how these solitons
vary for different physical parameters, domain sizes, and three-dimensional systems, is left
to future work.

7. Discussion and conclusion
We have investigated the linear stability of a sinusoidal shear flow with an initially uniform,
streamwise magnetic field in two-dimensional, incompressible MHD with finite viscosity
and resistivity. We found three modes of instability, unlike the single KH mode present for
this flow in ideal MHD or in the absence of a magnetic field. One of these modes corresponds
to the usual KH mode, while the other two modes, to our knowledge, have not been identified
elsewhere in the literature. This paper focused on understanding the dynamics of one of these
new modes, which we refer to as resistively-unstable Alfvén waves. These modes appear as
pairs of counter-propagating unstable waves and exist for all magnetic field strengths, but only
when the magnetic Prandtl number Pm < 1. By deriving a reduced model for this particular
mode of instability, we were able to show that it is amplified by the negative eddy viscosity
of periodic shear flows identified by Dubrulle & Frisch (1991). Finally, we presented a direct
numerical simulation of the nonlinear evolution of these waves, demonstrating that they
saturate in a quasi-stationary state dominated by counter-propagating solitons.

The physical parameters for which this new mode of instability exists leads to two
significant consequences worth stressing. First, while the resistively-unstable Alfvén waves
require finite dissipation (with Re and Rm above a certain threshold), we found that they
remain unstable no matter how large Re and Rm become, provided Pm < 1. As a consequence,
even when modeling astrophysical plasmas with extreme Reynolds numbers, calculations that
employ ideal MHD may erroneously neglect this instability. Second, unlike the ordinary KH
mode found in ideal MHD (or its counterpart in this system) which becomes stable for
sufficiently strong magnetic fields, the resistively-unstable Alfvén waves are unstable for
all nonzero magnetic field strengths. Thus, counter to common intuition that shear-flow
instabilities are stabilized by parallel magnetic fields of sufficient strength (Chandrasekhar
1961), our results demonstrate that, at least for the flow profile considered here, instability
can persist for arbitrarily large magnetic field strengths.

As shown in Sec. 5, the underlying mechanism for this instability stems from the negative
eddy viscosity of periodic shear flows described by Dubrulle & Frisch (1991), which amplifies
the shear Alfvén waves present in this system in the absence of the background shear flow. The
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simplicity of this mechanism suggests it might be quite general, and exist in other scenarios
where a sinusoidal shear flow is added to a system that naturally supports waves transverse
to the mean flow. Indeed, Garaud et al. (2015) similarly found low-wavenumber oscillatory
modes when studying sinusoidal shear flow in a stratified fluid, that only exist when viscosity
is taken into account. While a detailed investigation of these modes was beyond the scope
of that work, they appear similar to the ones reported here, with internal gravity waves in
that system playing the role of Alfvén waves in the MHD system. We speculate that similar
modes might exist in reduced plasma models that permit zonal flows and drift waves (e.g.,
Zhu et al. 2018).

We envision two primary directions for future work based on these results. The first is a
thorough investigation of the nonlinear evolution of this instability. We have demonstrated
for one set of parameters that this system saturates in a quasi-stationary state that supports
counter-propagating solitons. Additional simulations performed over a broad range of
physical parameters will be needed to characterize how the speed, number, and shape of these
solitons vary with input parameters. Furthermore, the simple nature of this saturated state
invites efforts to develop reduced nonlinear models that can be compared against simulations.
Finally, even though we demonstrated that 2D modes of instability are the fastest-growing
ones in the linear regime, it is likely that the saturation of the instability will be profoundly
different in 2D and 3D, and it is unclear whether these solitons will persist.

The second direction for future work is to explore the physical implications of these
resistively-unstable Alfvén waves. As described in Sec. 1, the double-diffusive fingering
instability drives “elevator" modes that flow in the vertical direction and vary sinusoidally
in the horizontal directions. Their saturation is traditionally modeled by requiring a balance
between the finger growth rate, and the growth rate of parasitic shear instabilities (Radko
& Smith 2012; Brown et al. 2013). Harrington & Garaud (2019) (hereafter HG19) recently
studied the effect of an added vertical magnetic field, demonstrating both numerically and
theoretically that the latter decreases the shear instability growth rate and therefore strongly
affects the saturation of the fingering instability. However, all of their simulations were
performed with Pm = 1, and their shear-flow stability analysis assumed ideal MHD; thus,
the effects of resistively-unstable Alfvén waves were not present in their simulations or in
their reduced model. Since the stellar interiors where fingering convection occurs generally
satisfy Pm < 1, it is possible that the newly discovered modes have an effect on the saturation
of magnetized fingering convection that is not accounted for by HG19.

Finally, note that all of the results presented in this paper were obtained for a sinusoidal
flow that varies in only one of the two horizontal directions – a planar shear flow – which is
the geometry for which the Dubrulle & Frisch (1991) mechanism was originally discussed.
However, in many of the instabilities discussed above, the primary elevator modes vary
sinusoidally along both horizontal axes, as seen in Fig. 1 of Harrington & Garaud (2019) or
discussed in Sec. 3.2 of Radko & Smith (2012). It will therefore be important to establish in
future work whether the instability mechanism discovered here remains active for MHD shear
flows where the shear varies along two axes, e.g. for flows with structure u𝐸 = sin(𝑥) sin(𝑦)e𝑧 .
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