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Video-based Social Distancing:

Evaluation in the COSMOS Testbed
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Zussman

AbstractÐSocial distancing is an effective public health tool to
reduce the spread of respiratory pandemics such as COVID-19.
To analyze compliance with social distancing policies, we design
two video-based pipelines for social distancing analysis, namely,
Auto-SDA and B-SDA. Auto-SDA (Automated video-based Social
Distancing Analyzer) is designed to measure social distancing
using street-level cameras. To avoid privacy concerns of using
street-level cameras, we further develop B-SDA (Bird’s eye view
Social Distancing Analyzer), which uses bird’s eye view cameras,
thereby preserving pedestrian’s privacy. We used the COSMOS
testbed deployed in West Harlem, New York City, to evaluate
both pipelines. In particular, Auto-SDA and B-SDA are applied
on videos recorded by two of COSMOS cameras deployed on the
2nd floor (street-level) and 12th floor (bird’s eye view) of Columbia
University’s Mudd building, looking at 120th St. and Amsterdam
Ave. intersection, New York City. Videos are recorded before and
during the peak of the pandemic, as well as after the vaccines
became broadly available. The results represent the impact of
social distancing policies on pedestrians’ social behavior. For
example, the analysis shows that after the lockdown, less than
55% of the pedestrians failed to adhere to the social distancing
policies, whereas this percentage increased to 65% after the
vaccines’ availability. Moreover, after the lockdown, 0-20% of
the pedestrians were affiliated with a social group, compared to
10-45% once the vaccines became available. The results also show
that the percentage of face-to-face failures has decreased from
42.3% (pre-pandemic) to 20.7%(after the lockdown).

Index TermsÐSocial distancing, COVID-19, object detection,
tracking, smart city, testbeds.

I. INTRODUCTION

Social distancing has been proven to be an effective tool in

reducing the spread of respiratory pandemics such as COVID-

19. Traditionally, compliance with preventive measures such as

social distancing policies has been evaluated through survey-

based methods [4], [5]. Such approaches necessitate the en-

gagement and cooperation of individuals, making the process

potentially inefficient and time-consuming. Alternatively, man-

ual observation of video footage has been utilized to assess
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individuals’ adherence to these policies [6]. However, these

methods may introduce bias and inaccuracies due to observers’

subjectivity and fatigue. With the growing prevalence of traffic

cameras and advances in artificial intelligence (AI) technolo-

gies, the opportunity for automation emerges, promising both

enhanced efficiency and accuracy. By leveraging these tech-

nologies, it is possible to automate compliance measurement,

reducing human bias and error and to offer a more timely

analysis.

Therefore, in this work, we present two pipelines for

social distancing analysis based on video cameras, namely,

Automated video-based Social Distancing Analyzer (Auto-

SDA) and Bird’s eye view Social Distancing Analyzer (B-

SDA), which are designed to measure pedestrians’ compliance

with social distancing policies using street-level and bird’s eye

view cameras, respectively. Auto-SDA offers high accuracy,

which is not sensitive to the dynamics of the scene and

the camera’s tilt angle. On the other hand, B-SDA provides

comparable accuracy while preserving pedestrians’ privacy.

Challenges. Our video-based social-distancing pipelines use

off-the-shelf models for pedestrian detection and tracking.

However, achieving highly accurate social-distancing analysis

requires overcoming several challenges, as outlined below:

• Distance measurement: To accurately measure the distance

between pedestrians, it is necessary to convert 2D pixel

distances into real-world 3D distances on the ground (this

process is called calibration). Calibration is more chal-

lenging for street-level cameras due to their oblique view

compared to bird’s eye cameras that have a top-level view.

• Pedestrian tracking: Due to the moving vehicles and static

obstacles on the road, such as traffic lights, the tracker model

might miss pedestrians or assign multiple IDs to a single

pedestrian. Rectifying the output of tracker models is par-

ticularly important for street-level cameras since their lower

viewpoint increases the likelihood of occlusion. Conversely,

for bird’s eye cameras, with their high view that minimizes

occlusion, rectifying tracker outputs is less crucial.

• Group detection: Identifying and distinguishing affiliated

pedestrians (i.e., pedestrians who walk together as a social

group) is very important. These groups need to be recog-

nized and excluded from social distancing failures.

• Camera perspective: Handling different camera perspec-

tives, such as bird’s eye view, brings its own set of chal-

lenges. For instance, from such perspectives, the smaller

appearance of pedestrians can make detection more diffi-

cult. These complexities can be mitigated during the pre-

processing phase.

Contributions. To cope with the above challenges and achieve
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Fig. 1: (a) The NSF PAWR COSMOS site at 120th St. and Amsterdam Ave. intersection, NYC; Social distancing evaluation using (b)
Auto-SDA and (c) B-SDA (Green: distance > 6 ft; Blue: social group; Red: distance < 6 ft).

the necessary accuracy, both systems require the addition of

specifically designed modules to the off-the-shelf pedestrian

detection and tracking models. Accordingly, the key contribu-

tions of our work are summarized below:

• We designed and incorporated three modules into Auto-

SDA: (i) a calibration module that converts 2D pixel dis-

tances into 3D on-ground distances with less than 10 cm

error, (ii) a correction module that identifies pedestrians who

were missed or assigned duplicate IDs by the tracker and

rectifies their trajectories, and (iii) a group detection module

that identifies affiliated pedestrians and excludes them from

social distancing failure analysis.

• In the B-SDA system, we incorporated pre-processing mod-

ules that enable social distancing analysis from a bird’s

eye view camera perspective. B-SDA also includes the

same group detection module as Auto-SDA. Similarly to

Auto-SDA, B-SDA is also equipped with a group detection

module.

• We fine-tuned and evaluated the two pipelines using real-

world data recorded by two cameras as part of the COS-

MOS testbed deployed in West Harlem, New York City

(NYC) [7]±[9]. The cameras are installed on the 2nd floor

(street-level) and 12th floor (bird’s eye view) of Columbia’s

Mudd building, looking at 120th St. and Amsterdam Ave.

intersection, NYC (see Fig. 1(a)). Fig. 1(b) demonstrates

social distancing analysis using Auto-SDA, and Fig. 1(c)

demonstrates B-SDA’s evaluation of social distancing fail-

ures.1

• To assess the impact of social distancing policies on pedes-

trians’ social behavior, we applied Auto-SDA and B-SDA

on videos recorded by these cameras, before the COVID-

19 outbreak, soon after the lockdown and after the vaccines

became broadly available.

i) Auto-SDA’s dataset consists of 180 sec videos recorded

at different times of the day (9 AM, 2 PM, 5:30 PM,

7:30 PM, and 10 PM) in about one month periods, soon

after the lockdown (June 17 to July 20, 2020), and after

the vaccines became broadly available (May 2021). In

addition, the dataset includes 16 videos collected (less

methodically) before the pandemic (June 2019), which

are used as a reference point.

ii) B-SDA’s dataset consists of 300 sec videos recorded mul-

tiple times per day (9 AM, 2 PM, 5:30 PM, and 10 PM)

from June 2020 to February 2021. It also includes spo-

1Sample videos of Auto-SDA and B-SDA evaluation appear in https://bit.
ly/3ZqznGb and https://bit.ly/3yGD0Mw, respectively.

radically collected videos between June and July 2019

(prior to the pandemic).

The results of applying Auto-SDA/B-SDA on recorded

videos show that after the lockdown, less than 55% of the

pedestrians failed to comply with the social distancing pro-

tocols compared to 65% post-vaccine. The results also show

that the fraction of pedestrians walking as a social group has

grown from 0-20% (after the lockdown) to 10-45% (post-

vaccine). We also compared the duration of social distancing

failures during the pandemic and post-vaccine periods, with

results indicating a statistical increase in the duration of social

distancing failures in the post-vaccine period. Furthermore,

the results suggest a significant decrease in pedestrian density

after the lockdown (compared to pre-pandemic), while the

density has slightly increased after the availability of vaccines.

Moreover, the percentage of face-to-face failures has decreased

from 42.3% (pre-pandemic) to 20.7%(after the lockdown).

The observed trend in social distancing compliance, from

before the pandemic via during the pandemic to the post-

vaccine availability period, is consistent with the findings

reported in various U.S. surveys [5], [10], [11] conducted

during the same time frame. To the best of our knowledge, this

is the first work to provide statistics regarding the evolution

of social distancing compliance using automated video-based

social distancing analyzers.

Organization. The rest of the paper is organized as follows.

In Sec. II, we present the research background and related

work on using computer vision to monitor social distancing.

Sections III and IV describe the implementation of Auto-SDA

and B-SDA pipelines. In Sec. V, we present the results of

applying Auto-SDA and B-SDA on our dataset. Conclusion

and future plans are discussed in Sec. VI and VII, respectively.

II. BACKGROUND AND RELATED WORK

Object detection is a computer-vision technique for locat-

ing instances of objects in images or videos. Most state-of-

the-art object detectors are deep learning-based. Among the

prominent approaches, R-CNN [12], Fast R-CNN [13], Faster

R-CNN [14], and Mask R-CNN [15] use a two-stage structure

for object detection, which consists of region proposal stage

and classification stage. In contrast, SSD [16] and YOLO

methods [17]±[20] have a single-stage structure, achieving

higher inference speeds. Improvements of YOLO [18]±[20]

lead to a detection accuracy comparable to R-CNN without

sacrificing YOLO’s inference speed in our scenario. Consider-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3305587

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 25,2023 at 00:37:13 UTC from IEEE Xplore.  Restrictions apply. 



3

ing the speed-accuracy trade-off, both Auto-SDA and B-SDA

use YOLOv4 [20] object detection model to detect pedestrians.

In addition to an object detector, a tracker is required to

extract the trajectory of each pedestrian and measure the

duration in which it has been in close proximity to an unaffil-

iated pedestrian. Auto-SDA uses the NVIDIA DCF tracker,

which leverages a Discriminative Correlation Filter (DCF)

based approach for visual object tracking and the Hungarian

algorithm for data association. Based on our experiments,

DCF provides higher accuracy than other trackers, such as

DeepSORT [21] (an extension to the Simple Online and Real-

time Tracking SORT algorithm) and DAN (Deep Affinity

Network) that jointly learns target object appearances and

their affinities in a pair of video frames in an end-to-end

fashion [22].

Table I summarizes the main features of Auto-SDA and B-

SDA compared to the prior work focusing on monitoring the

COVID-19 pandemic. Surveys on technologies for monitoring

social distancing and pandemic management appear in [23]±

[25]. The social distancing framework proposed in [26] uses

MobileNet Single Shot Multibox Detector (SSD) model for

human detection. It then compares the pixel distances between

individuals with a fixed value to distinguish social distancing

failures. However, if the camera is not perpendicular to the

ground, assuming a fixed threshold on pixel distances leads to

inaccurate failure detection.

The study [27] proposes the use of monocular cameras

and deep learning-based object detectors to monitor social

distancing and emit warnings. However, since it does not use

a tracker, it can only provide instantaneous warnings. In [28],

a deep learning detection technique based on YOLOv2 is

proposed. It uses thermal images to detect people and verify

their compliance with social distancing. The platforms [27],

[28] use homography transformation to convert 2D on-image

coordinates to their 3D counterparts, which can only be used

to estimate the camera pose for planar objects and are not

accurate enough for street-level views. Thus, a more advanced

method is required to calibrate the cameras and compute the

on-ground distances from the pixel distances on an image.

The framework in [29] uses YOLOv3 for object detection and

DeepSORT for tracking. The obtained bounding boxes are

utilized to obtain depth information of the pedestrians (i.e.,

their distance from the camera lens) and identify clusters of

pedestrians neglecting social distancing. However, the depth

information-based method is not sufficiently accurate for mea-

suring the distance between pedestrians, and a more precise

camera calibration along with group detection is needed.

The platform proposed in [30] performs human head de-

tection on UAV (unmanned aerial vehicles) images to locate

pedestrians. It then calculates the distance between detected

pedestrians to verify social distancing compliance. The frame-

works in [30]±[35] employ an object detector but do not use

a tracker to derive trajectories. Moreover, they perform planar

camera perspective transformation for calibration, which yields

an inaccurate estimation of the on-ground coordinates, thereby

limiting the social distancing measurements’ accuracy.

The platforms discussed above only use street-level cameras

and do not provide evaluations on real-world data recorded

Fig. 2: Different stages in the Auto-SDA pipeline.

during the COVID-19 pandemic. In this work, we study

the usage of bird’s-eye view cameras as well as street-level

cameras to measure social distancing compliance. Moreover,

we applied Auto-SDA and B-SDA on videos recorded during

the COVID-19 pandemic and measured the impacts of the

outbreak on pedestrians’ social behavior.

III. AUTO-SDA PIPELINE

Auto-SDA is designed to be a highly accurate social dis-

tancing analyzer pipeline whose performance is not sensitive

to the camera’s tilt-angle and scene dynamics. The pipeline

consists of multiple modules (see Fig. 2), including an object

detection module (YOLOv4 [36]) and a tracking module

(Nvidia DCF-based tracker). While these are off-the-shelf

components, achieving high accuracy calls for the design

of tailored components. Specifically, we incorporated three

modules in Auto-SDA, as outlined below.

• Camera calibration module: Our measurements show that

using a single set of photogrammetry parameters for the

whole scene leads to imprecise on-ground distance com-

putation. Therefore, this module breaks the view of the

camera into multiple areas and computes the correspond-

ing photogrammetry parameters for each area individually.

These parameters are then used to convert the 2D on-image

distances into 3D on-ground distances with less than 10 cm

error.

• ID correction module: This module compensates for the

inaccuracies of the object detector and tracking model

caused by the camera’s tilt angle and the obstacles on

the road. For instance, if multiple IDs are assigned to a

single pedestrian, this module removes the redundant IDs

and derives the entire trajectory of that pedestrian.

• Group detection module: This module detects the pedes-

trians affiliated with a single social group (e.g., members of

a family) and excludes them from social distancing failure.

In the following, we describe each module in detail.

A. Camera Calibration

Camera calibration is a necessary step for extracting on-

ground distances between pedestrians. The goal is to determine

the intrinsic and extrinsic parameters of the camera to convert

the 2D on-image coordinates viewed by the camera to the 3D

on-ground coordinates. Intrinsic parameters are (i) principal

point (cx, cy), (ii) focal length in pixel units (fx, fy), (iii)

radial distortion coefficients (k1, k2, ..., k6), and (iv) tangential

distortion coefficients (p1, p2). Extrinsic parameters are (i)

rotation matrix R, and (ii) translation vector t.2

Since the COSMOS cameras are fixed, we needed to

calibrate them only once. To do so, we captured multiple

2The effects of higher order coefficients are negligible, see [37].
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TABLE I: A comparison of prior work on social distancing analysis using street-level cameras to Auto-SDA

Framework Object Detection Tracking Calibration Method
On-Ground Distance
Computation Error

Correction Group Detection
Real-World COVID-19

Pandemic Impact Analysis

[27] ✓ X Homography trans. ≫ 10 cm X X X

[29] ✓ ✓ Depth information ≫ 10 cm X X X

[30]±[35] ✓ X
Planar camera persp.

trans.
≫ 10 cm X X X

[26] ✓ X Fixed scaling ≫ 10 cm X X X

Auto-SDA ✓ ✓ Multi-area calibration < 10 cm ✓ ✓ ✓

B-SDA ✓ ✓
Planar camera persp.

trans.
< 10 cm

N/A due to
bird’s eye

view
✓ ✓

TABLE II: A comparison of calibration methods used in the prior work to Auto-SDA’s multi-area calibration

Pixel Coordinates of a Pair
of Points on a 4 K Frame

On-Ground
Distance

(cm)

Distance Calculated by
Multi-area Calibration

(cm)

Distance Calculated
by Homography
Trans. [27] (cm)

Distance Calculated
by Planar Camera

Persp.
Trans. [30]±[35] (cm)

[1093, 715], [1065, 685] 320 325 209 339

[1785, 572], [1862, 566] 183 178 140 128

[1680, 582], [1588, 552] 503 508 368 457

[2153, 598], [2077, 582] 259 256 201 146

[1121, 746], [1093, 714] 320 314 201 229

photos of a checkerboard with known square sizes, posed in

different tilt and rotation angles (see Fig. 3). To calculate the

intrinsic parameters, we fed the 2D on-image pixel coordinates

of the checkerboard corners and their corresponding 3D coor-

dinates into OpenCV [38], which runs the global Levenberg-

Marquardt optimization algorithm [39].

We split the view of the intersection into 10 areas (as shown

in Fig. 4) and we determined the extrinsic parameters for each

area. This can further mitigate the impact of camera distortion

and obtain the on-ground distances with less than 10 cm error

(ground truth is obtained from actual distance measurements

in the intersection). Accuracy improves with the number of

areas, but for our use case, 10 areas proved to be adequate.

For each area, we selected a few points on the ground with

known 3D coordinates and found their corresponding 2D pixel

coordinates in the camera’s view. These sample points, along

with the intrinsic parameters of the camera, are then used to

determine the extrinsic parameters (using OpenCV).

Auto-SDA plugs these parameters into the photogrammetry

equations [38], [40], [41], given below, and completes the 2D-

3D coordinates conversion:

[

x y z
]T

= R
[

X Y Z
]T

+ t, x
′ =

x

z
, y

′ =
y

z

x
′′ = x

′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′

y
′ + p2(r

2 + 2x′2)

y
′′ = y

′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y′2) + 2p2x
′

y
′

r
2 = x

′2 + y
′2
, u = fxx

′′ + cx, v = fyy
′′ + cy.

In the equations above, [u, v] are the 2D pixel coordinates,

and [X,Y, Z] are the 3D on-ground coordinates. Since there

are no closed-form equations to map the 2D points to 3D

points, Auto-SDA uses Newton’s method to solve the above

system of equations (it sets the ground level to Z = 0 and

solves for X and Y ).

In Table II, we compare the accuracy of on-ground distance

calculation of the multi-area calibration method used in Auto-

SDA with the calibration methods used in [27], [31]±[34]. As

Fig. 3: Calibration of the COSMOS cameras using a checkerboard:
more than 20 images of the checkerboard in different poses were
provided to the OpenCV library to obtain the intrinsic parameters of
the camera.

the results show, there could be more than 1 m error in cal-

culating the on-ground distances when using the homography

and planar camera perspective transformation method used in

the prior work. While such accuracy may be sufficient for

other applications, it is clearly inadequate for social distancing

monitoring. Moreover, in [29], the distance between pedestri-

ans is determined by using a method proposed in [42], which

results in poor accuracy. In this method, first, the distance

of a pedestrian from the camera lens is obtained using the

coordinates, width, and height of its bounding box provided

by an object detector. Then, the distance between every two

pedestrians is calculated. In Fig. 5, we represent the results

of calculating the pedestrians’ distances from the camera lens

using the calibration method proposed in [42]. The camera’s

(vertical and horizontal) distance from the pedestrians is more

than 10 m. However, due to the oblique view of the camera,

the calculated distances (displayed near the bounding boxes)

are far from their true values, and one cannot simply fix them

(e.g., using a scaling factor).

B. Pedestrian Detection and Tracking

Auto-SDA uses the YOLOv4 object detector [36] to detect

pedestrians. It is also equipped with a tracker (NvDCF) that

extracts the trajectory of each pedestrian and uses that to trace

the number of pedestrians with whom he/she is in contact

(within a radius of 6 ft) and the duration of each contact.

Both models are set as building blocks inside the Deepstream
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Fig. 4: Division of the camera scene into 10 areas. The extrinsic
parameters of the camera were calculated for each area individually.

Fig. 5: Computed distances of pedestrians from the camera using
objects’ depth information proposed in [42]. The real distances (both
vertically and horizontally) of the pedestrians from the camera are
each greater than 10 m. However, due to the oblique view of the
camera, the obtained distances deviate from their real values and it
is not straightforward to rectify them (e.g., using a scaling factor.)

pipeline which is an optimized architecture built using the

Gstreamer framework [43].

C. ID Correction

The COSMOS street-level camera is located at a corner of

the intersection and has an oblique view of the area. Therefore,

the pedestrians are small and might be blocked by obstacles

such as vehicles, traffic lights, and other pedestrians. As a

result, the tracker may lose a pedestrian along the way or

assign multiple IDs to a single person, leading to degraded

performance.

The ID Correction module is designed to mitigate this. It

detects the IDs that belong to a single pedestrian and extracts

their entire trajectory. Algorithm 1 describes our ID Correction

algorithm. It receives the results of the object detector and

tracking module as its input, and, for each ID, it creates a

structure in which it keeps the trajectory (id.T rj), the first

and last time it was detected by the tracker (id.T imeStamp),

and the parameters of the Linear Regression approximation of

the tail and head of the trajectory. The algorithm then uses

this information to predict the pedestrian’s location before it

was detected and after it was lost.

For each ID pair (id1, id2), the ID Correction algorithm

then verifies three conditions to determine whether they are

associated with a single pedestrian or not. First, the gap

between id1 lost time, t1, and id2 detected time, t2, must be

small enough (less than a predefined threshold e1). Second, the

distance between the predicted location of id1 at time t2 (based

on the Linear Regression approximation for the tail of id1
trajectory) and the location of id2 at time t2 has to be less than

a specified threshold (e2). Third, it measures the angle between

id1’s tail direction and id2’s head direction. This angle must

be less than 90◦ to ensure that the algorithm does not mistake

two pedestrians crossing each other in opposite directions for

a single pedestrian. If all three conditions hold, then id1 and

Algorithm 1 ID Correction

1: Input:IDvec, e1, e2, n ▷ IDvec is the output of NvDCF tracker

2: Output: corrected IDvec

3: for id ∈ IDvec do

4: Compute id.Trj ▷ vector of points on id’s path

5: Compute id.T imeStamp.StartT ime ▷ detection time

6: Compute id.T imeStamp.StopT ime ▷ lost time

7: Compute (id.TailEst, id.TailDir) ▷ Linear Regression of

id.Trj.tail(n)
8: Compute (id.HeadEst, id.HeadDir) ▷ Linear Regression of

id.Trj.head(n)
9: end for

10: for (id1, id2) ∈ IDvec do

11: t1← id1.T imeStamp.StopT ime

12: t2← id2.T imeStamp.StartT ime

13: p1 ← id1.TailEst.at(t = t2), p2 ← id1.Trj.at(t2)
14: v1 ← id1.TailDir, v2 ← id2.HeadDir

15: if t2 − t1 < e1 && |p1 − p2| < e2 && ∠(v1, v2) < 90 then

16: id1 and id2 belongs to same person

17: end if

18: end for

5

Fig. 6: Demonstration of detection and removal of redundant IDs
by the ID Correction algorithm when the tracker assigns 3 IDs to a
single pedestrian.

id2 belong to a single person. An example is shown in Fig. 6,

where the tracker has assigned three IDs to a single pedestrian.

The ID correction module detects the segments that belong to a

single trajectory by using the Linear Regression approximation

corresponding to the tail of each segment and comparing the

estimated start point and the real start point of the subsequent

segment.

D. Group Detection

We enhance the social distancing analysis by distinguishing

the pedestrians walking together as a social group (e.g.,

friends/family) and excluding them from social distancing

failures. There are several methods proposed for group de-

tection, e.g., see [44]±[47]. All these group detection methods

require details such as velocity, body and head orientation, and

exact trajectory. However, in our setting (and in many realistic

deployments), the cameras are mounted at a relatively high

altitude, viewing the intersection from a corner with a large tilt

angle. Moreover, various obstacles on the road might block the

view of pedestrians for some periods. Therefore, such detailed

information cannot be obtained from these cameras.

We designed a group detection algorithm that can detect

pedestrians belonging to a single social group with the limited

data we can derive from cameras such as the ones in the

COSMOS testbed. The Group Detection algorithm is given

in Algorithm 2. It uses the IDs of the pedestrians rectified

in the ID Correction module to derive an approximation of

each pedestrian trajectory. Then, it calculates the correlation

between these trajectories to check if two pedestrians belong

to a single social group. Specifically, the algorithm calculates

the distance between each pair of pedestrians (id1, id2) on

all the frames and then calculates the average distance (d̄) and
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Algorithm 2 Group Detection

1: Input: IDvec, dmax, dmax, σmax

2: Output: IDvec Pedestrians belong to a group

3: for id ∈ IDvec do

4: id.T imeTrj = map(id.T imeStepV ec, id.Trj)
5: end for

6: for (id1, id2) ∈ IDvec do

7: n = 0

8: for t = 1 : T do

9: pos1 = id1.T imeTrj(t), pos2 = id2.T imeTrj(t)
10: d = ||pos1 − pos2||2
11: if d > dmax then

12: n + +, continue

13: end if

14: Corrvec(id1, id2).append(d)
15: end for

16: if n > Nmax then

17: continue

18: end if

19: d̄ = mean(Corrvec(id1, id2)) ▷ calculate the mean distance between two

pedestrians

20: σ = std(Corrvec(id1, id2)) ▷ calculate the standard deviation of

instantaneous distances between two pedestrians

21: if d̄ < ∆max && σ < σmax then

22: id1 and id2 belongs to the same group

23: end if

24: end for

empirical standard deviation (σ). In line with previous research

on investigating various metrics for group identification by

studying the social nature of human behavior [48], [49], a

pair of pedestrians is labeled as one social group under two

main conditions:

• Their instantaneous distance (d) does not exceed the max-

imum distance (dmax) in more than the maximum allowed

frames (Nmax).

• The mean and standard deviation of their distance fall below

the maximum average distance (∆max) and the maximum

standard deviation (σmax), respectively.

The algorithm’s parameters (i.e., dmax, Nmax, ∆max, and σmax)

were fine-tuned using recorded sample videos from the COS-

MOS street-level camera. It was then evaluated on three

10-minute sample videos from the same camera, achieving

over 85% accuracy in group detection compared to visually

detected social groups.

IV. B-SDA PIPELINE

Although Auto-SDA can detect social distancing failures

with high accuracy, using street-level cameras has several

challenges. For example, the surveillance area of street-level

cameras is limited, tracking of pedestrians is challenging

due to occlusions, and face/license plate recognition can

raise privacy concerns. In B-SDA, we have addressed these

challenges by using bird’s eye view cameras. To facilitate

successful measurement of social distancing using bird’s-eye

camera recordings, two preliminary steps are required: (i) per-

frame detection of pedestrians within the scene [12]±[20], and

(ii) reliable tracking of pedestrian trajectories across video

frames [21], [50]±[52]. The size of pedestrians in bird’s-eye

view videos is a function of video resolution and can be

smaller than 30× 30 pixels for 1080p recordings. Processing

such small objects is a challenge for conventional object

detection and tracking algorithms. To mitigate these issues,

as illustrated in Fig. 7, B-SDA incorporates the following

modules.

• Data pre-processing module: Contains three components:

Weighted-Mask Background Subtraction, Video Calibration,

TABLE III: Quantitative Comparison on the B-SDA Dataset

WMBS CC AP mIoU Precision Recall

44.9 71.7 74.2 49.9
✓ 55.1 69.8 70.9 62.9

✓ 58.0 68.75 84.1 62.8
✓ ✓ 63.0 68.77 73.3 73.0

and Center Cropping. This module aims to improve the

detection of moving objects and enlarge per-pixel size of

extracted features.

• Object detection module: Consists of a modified version

of YOLOv4 detector [36], [53], customized to better detect

small pedestrians recorded by a bird’s eye view camera.

• Multiple object tracking module: Unlike street-level view,

in bird’s eye view, object occlusion barely occurs. Therefore,

we can use a simpler tracker, SORT [54], which achieves

sufficient accuracy and fast inference speed.

• Group detection module: Determines social groups and

social distancing failures based on trajectory stability and

pedestrians velocity similarities.

A. Data Pre-Processing

The use of highly elevated cameras results in small and

potentially blurry pedestrians. Videos with various lighting and

weather conditions additionally impact the accuracy of object

detection and tracking. To tackle these, we apply data pre-

processing methods: Weighted-Mask Background Subtraction

(WMBS) and Video Calibration (VC). WMBS constructs the

background image from videos acquired by static cameras,

computed as the mean of all N frames [55]. The background

image with a weighted parameter α is subtracted from the

original frames, to calculate the enhanced image. Formally,

Fb(I
(t)
r ) = I(t)r −

α

N

N∑

k=1

I(k)r , (1)

where I
(t)
b = Fb(I

(t)
r ) represents the output image, I

(t)
r is t-th

frame in the original video, and α is the weight coefficient.

VC transforms bird’s-eye view videos into calibrated bird’s-

eye videos perpendicular to the ground. It maps a trapezoidally

distorted traffic intersection scene into a rectangular one with

a uniform scale. Calibration is achieved by calculating the

homography matrix Mca that maps I
(t)
b in image coordinates

to Fc(I
(t)
b ) in real world coordinates. Center cropping is the

final stage in calibration, which removes unnecessary parts of

the original image to increase the per-pixel size of features.

The cropped image I(t) is the input for procedures that follow.

Table III shows how data pre-processing methods affect

our customized YOLOv4 model. We select Weighted-Mask

Background Subtraction (WMBS) and Center Cropping (CC).

With these two methods, YOLOv4 achieves the highest AP

and recall compared to other combinations (for crowd/traffic

surveillance applications, recall is more important than pre-

cision). The MOT accuracy is evaluated by the CLEAR

metrics [56], where MOTA is the key evaluation score. The

tracking performance is evaluated on the B-SDA test dataset.

The detection is generated by YOLOv4 with WMBS and

Center Cropping. For the YOLOv4-SORT pipeline, we obtain
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Fig. 7: Pipeline for the B-SDA system: (i) collect raw videos from a bird’s-eye view camera; (ii) apply calibration and background subtraction
to alleviate the effect of sub-optimal sensor quality; (iii) perform pedestrian detection; (iv) execute pedestrian tracking; (v) analyze the behavior
of pedestrian movement using social distancing analysis algorithm.

TABLE IV: Annotation Statistics

Dataset Number of Frames Number of Objects

B-SDA train 7.4k 49.7k
B-SDA test 8.1k 203.2k

MOTA = 47.65%, MOTP = 71.4%, MT = 60.9%, and ML =

5.8%.

B. Object Detection and Tracking

To reach the detection accuracy appropriate for the proposed

social distancing analysis system, we altered the feature map

topology in YOLOv4 to adopt a shallower feature map and

to detect small pedestrians. The anchor sizes were determined

based on the clustering results of the B-SDA dataset. In the

training process of YOLOv4, the customized YOLOv4 started

with the backbone pre-trained on the Imagenet dataset [57].

Next, it was trained with (a) VisDrone2019 dataset [58] in

832 × 832 resolution for 6,000 epochs, followed by (b) B-

SDA dataset that consists of annotated videos recorded from

the COSMOS camera (the annotation statistics are shown in

Table IV) for another 6,000 epochs. We used a batch size of 64
and the learning rate of 10−3 with a weight decay of 5×10−4.

For real-time tracking, we use the SORT algorithm [59] which

balances accuracy and processing speed.

C. Group Detection and Social Distancing Failure Detection

Similar to Auto-SDA, the social distancing analysis system

in B-SDA continually receives the tracking information for

each frame. The system keeps updating the tracking state

and extracts useful information to obtain the pedestrians’

trajectories.

Unlike Auto-SDA, the estimation of real-world distances

between objects is simplified by the bird’s-eye video calibra-

tion. The distance of six feet in our videos is represented by

approximately 35 pixels based on the ground measurement.

Next, we create a Euclidean distance matrix for all detected

pedestrians to find potential social distancing failure pairs. To

TABLE V: Group Validation Performance

Trajectory

Compare

Velocity

Compare
Precision Recall F1

0.92 0.57 0.66
✓ 0.90 0.99 0.92

✓ ✓ 0.86 0.96 0.88

avoid overcounting the number of failures, we use the group

detection module described in Sec. III-D.

To evaluate the precision of the group detection module,

we annotated groups of pedestrians with bounding boxes that

cover all pedestrians within the same group, for 10, 000 video

frames. In each group bounding box, pedestrians who are

within the social distancing threshold are the true positives

in the group validation evaluation. We use precision, recall,

and F1 score for the evaluation.

Table V shows that the algorithm can capture accurate

grouping information and filter out failure pairs belonging

to the same group. We observe that trajectory Comparison

significantly improves the Recall and F1 score, while velocity

comparison has a negative impact on performance. As a result,

we have decided to remove the velocity estimation function

and rely solely on the trajectory comparison function for

further analysis of social distancing.

V. MEASUREMENTS AND EVALUATION

We applied Auto-SDA and B-SDA to videos recorded from

the COSMOS cameras, which are deployed on the 2nd and 12th

floor of Columbia’s Mudd building looking at the COSMOS

site (see Fig. 1).3 Auto-SDA’s dataset consists of 180 sec

(two times the signal timing cycle of the traffic lights at

the intersection) videos, recorded five times a day at 9 AM,

2 PM, 5:30 PM, 7:30 PM, and 10 PM, between June 17 and

3The use of the videos by Columbia researchers is IRB-exempt. The videos
are solely used for research-related purposes. A data set of anonymized videos
recorded by COSMOS cameras deployed on Columbia’s Mudd building is
available for researchers in [60]. The details of anonymization process are
presented in [61].

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3305587

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 25,2023 at 00:37:13 UTC from IEEE Xplore.  Restrictions apply. 



8

July 2020 (after the lockdown), during May 2021 (after the

vaccines became broadly available). It also includes 16 videos

that were opportunistically recorded before the COVID-19

outbreak (in July 2019). B-SDA’s dataset consists of 300 sec

videos recorded at 9 AM, 2 PM, 5:30 PM, and 10 PM, from

June 2020 to February 2021. It also includes sporadically

collected videos between June and July 2019 (prior to the

pandemic). We used the results to evaluate the impacts of the

pandemic on pedestrians’ social behavior.

Figures 8 to 13 present the results obtained by applying

Auto-SDA on the recorded videos from the 2nd floor camera.

Fig. 8 shows the fraction of recorded videos in which a certain

percentage of pedestrians are walking as a group. One can

see that the fraction of pedestrians walking as a social group

has grown from 0-20% (during the lockdown) to 10-45%
(post-vaccine). For each video, we calculated the percentage

of pedestrians who neglect social distancing and plotted a

normalized histogram of the results in Fig. 9. It can be seen

that after the lockdown, less than 55% of the pedestrians

neglected social distancing rules, compared to 65% post-

vaccine. Fig. 10 compares the duration of social distancing

failure incidents during the pandemic and post-vaccine. The

results demonstrate a statistical increase of around 3 s in

the duration of social distancing failures in the post-vaccine

period. Fig. 11 displays the increase in the maximum duration

of post-vaccine social distancing failure incidents. Fig. 12

illustrates the normalized histogram of the number of social

distancing failures at different times of the day. We compare

the pre-pandemic, lockdown, and post-vaccine density of the

pedestrians at the intersection in Fig. 13. One can observe

that density of the pedestrians has decreased by almost 50%
after the lockdown (compared to pre-pandemic), while it has

slightly increased after the availability of the vaccines.

Fig. 8: Auto-SDA: Normalized histogram of the percentage of pedes-
trians affiliated with a social group.

Fig. 9: Auto-SDA: Normalized histogram of the percentage of pedes-
trians who failed to comply with social distancing guidelines.

Fig. 10: Auto-SDA: Normalized histogram of the duration of the
detected social distancing failure incidents.

Fig. 11: Auto-SDA: Normalized histogram of the maximum duration
of social distancing failure observed.

Fig. 12: Auto-SDA: Normalized histogram of the number of pedes-
trians neglecting social distancing protocols at different times of the
day.
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Fig. 13: Auto-SDA: Comparison between the density of pedestrians
walking at the COSMOS site in different periods.

The results obtained by applying B-SDA on the videos

recorded by the 12th floor camera are summarized in Fig-

ures 14 and 15. Specifically, Fig. 14 shows the probability

distribution of the angle between the moving directions of two

pedestrians in a failure pair before and during the pandemic,

interpolated using Gaussian kernel density estimation. We

declare that a face-to-face failure occurs when the difference

in velocity direction is larger than 150 degrees. Before the

pandemic, 42.3% of failures are face-to-face. During the

pandemic, the distribution indicates that pedestrians are aware

of higher chances of getting infected when neglecting social

distancing. They are thus more cautious when walking towards

each other, which decreases the percentage of face-to-face

failures from 42.3% to 20.7%. We use a histogram to visualize

the statistics of average per-minute failures at different times

of day in Fig. 15. Considering that people are more likely to

come into contact with each other when crowd density is high,

it makes sense that the average number of failures is higher

during the daytime.

Finally, we note that several surveys have been conducted

across the U.S. e.g., [5], [10], [11], to measure individu-

als’ compliance with social distancing guidelines during the

peak of the COVID-19 pandemic in 2020 and following

the widespread availability of vaccines in 2021. The results

of these surveys indicate very similar trends in terms of

adherence to social distancing policies and engagement in

social interactions from the early stage of the outbreak to after

the availability of the vaccines.

Fig. 14: B-SDA: Distribution of the angle between moving directions
of two pedestrians in a failure pair.

Fig. 15: B-SDA: Number of pedestrians who failed to comply with
social distancing at different times of the day.

VI. CONCLUSION

We developed two approaches to measure compliance with

social distancing: Auto-SDA and B-SDA. Auto-SDA uses

street-level cameras and has high accuracy in calculating

distances between pedestrians. B-SDA uses bird’s eye view

cameras to maintain privacy while still offering comparable

accuracy. We applied Auto-SDA and B-SDA on videos from

COSMOS cameras recorded before the pandemic, during the

peak of the pandemic, and after the availability of the vaccines.

The results represent the impacts of the social distancing

rules on pedestrians’ social behavior. The obtained results are

consistent with the findings of conducted surveys in the U.S.,

showing fewer failures during the pandemic than before. After

the vaccine was available, there was a slight increase in failures

compared to the beginning of the outbreak.

VII. FUTURE WORK

Future research includes extending the proposed systems to

integrate data from multiple cameras and other sensors such

as LiDARs. Real-time operation of the systems is also an

important aspect that must be considered, as this capability

could facilitate immediate intervention and policy adjustments

as necessary. These improvements will fully automate the

evaluation of compliance with preventive measures such as

social distancing policies and increase preparedness for future

pandemics. The ultimate goal of these enhancements is to

significantly boost the accuracy and speed of public health

measures’ effectiveness evaluations, thereby contributing to

improved public safety and health outcomes.
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