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Abstract. Advanced mathematics is seen as an integral component of secondary teacher preparation, and thus most 
secondary teacher preparation programs require their students to complete an array of advanced mathematics 
courses. In recent years, though, researchers have questioned the utility of proposed connections between advanced 
and secondary mathematics. It is simply not clear in many cases–to researchers, teacher educators, and teachers 
themselves–exactly how advanced mathematics content is related to secondary content. In this paper, we propose 
using a conceptual analysis–a form of theory in which one explicitly describes ways of reasoning about a particular 
mathematical idea–to address this issue. Specifically, we use conceptual analyses for the foundational notions of 
equivalence and inverse to illustrate how the ways of reasoning needed to support productive engagement with tasks 
in advanced mathematics can mirror and reinforce those that are similarly productive in school mathematics. To do 
so, we propose conceptual analyses for the key concepts of equivalence and inverse and show how researchers can 
use these conceptual analyses to identify connections to school mathematics in advanced mathematical tasks that 
might otherwise be obscured and overlooked. We conclude by suggesting ways in which conceptual analyses might 
be productively used by both teacher educators and future teachers. 
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1: Introduction 

 
Developing knowledge of advanced mathematics is seen as an integral component of the preparation of future 
secondary mathematics teachers. This idea relies on the premise that future mathematics teachers benefit from 
viewing the secondary content they will soon be teaching through the lens of advanced mathematics. However, 
while this premise might seem imminently reasonable in theory, it has proved considerably difficult to implement in 
practice (e.g., Bukova-Guzel et al., 2010; Even, 2011; Kondratieva & Winsløw, 2018). As Wasserman (2017) noted, 
“a school teacher’s knowledge of advanced mathematics, such as abstract algebra, [should] translate to their 
instructional practice in some way. And yet school mathematics teachers should not, in fact, end up teaching their 
students abstract algebra. This is a difficult tension to resolve” (p. 81, emphasis added). Similarly, some researchers 
have called into question the very utility of certain proposed connections between the two domains. Larsen et al. 
(2018), for example, argued that: 

The CBMS (2012) recommendations for the mathematical preparation of teachers [include] statements like, 
“it would be quite useful for prospective teachers to see how C can be built as a quotient of R[x]” (CBMS, 
2012, p. 59). A very reasonable question to ask in response to such a statement is “Why?” Abstract algebra 
certainly provides a highly sophisticated perspective on a variety of secondary mathematics topics, but it 
simply does not follow that a teacher’s pedagogical practice would (or even could) benefit from studying 
abstract algebra. Or perhaps, rather, we should say it does not follow simply. (p. 74) 

As it pertains to this debate, we recognize that the current state of affairs is perhaps not ideal, but we also recognize 
that it is unlikely to change: future secondary teachers will continue to be required to take advanced mathematics 
courses. Operating within these constraints, we believe that researchers and teacher educators should focus less on 
the question of whether such courses are the most useful way to prepare teachers and focus more on how these 
courses might be made as useful as possible. Zazkis and Marmur (2018) succinctly characterized this pragmatic 
view as follows: “basic knowledge of group theory is in fact neither necessary nor obligatory for addressing the 
(more elementary) mathematics. Nevertheless, […] it can be helpful” (p. 379). But currently, research that 
specifically addresses how advanced mathematics might be made more helpful and useful remains relatively scarce. 
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That is, it is still “a central question as to how the gap between these two kinds of mathematics can be bridged” 
(Dreher et al., 2016, p. 220). 
 
Our central argument here is that one possible way advanced mathematics can be made more useful and helpful for 
school mathematics lies not in the surface-level differences in content but in the common ways of reasoning that 
underlie these differences. We center our argument on an empirical analysis of the ways in which students in 
advanced mathematics reason about the foundational, cross-domain ideas of equivalence and inverse. We use this 
empirical analysis to propose that the ways of reasoning that support successful completion of tasks in advanced 
mathematics mirror those needed to productively engage with school mathematics. (These objectives are reflected in 
the research questions we present in 2.4.) Essential to these efforts was our use of conceptual analyses (Thompson, 
2002) for the topics of equivalence and inverse. Broadly, a conceptual analysis is a theoretical tool that provides 
explicit descriptions of the ways in which one might reason about a particular mathematical idea. Specifically, we 
use conceptual analyses for equivalence and inverse to analyze task-based clinical interviews in abstract algebra; we 
then use the results of this empirical analysis to highlight commonalities in the ways of reasoning that are productive 
in both advanced mathematics and school mathematics. To conclude the paper, we argue that the empirically-
grounded analyses we present here support a more general, theoretical hypothesis: that a conceptual analysis for a 
key topic can serve as a tool by which researchers and teacher educators can potentially make advanced 
mathematical study more useful for future teachers and, in doing so, address the ‘difficult tension’ between the two. 
 
 
2: Literature and Theory 

 
2.1: Types of connections between advanced mathematics and school mathematics 

 
Wasserman (2018) identified several ways in which advanced mathematics might be relevant for school 
mathematics, three of which we focus on here: 
 

§ Content-based connections are connections between the content of advanced mathematics and school 
mathematics. 
 

§ Classroom teaching connections involve content-based connections that are related in some way to a 
specific classroom situation. 
 

§ Modeled instruction connections focus on the idea that instructors of advanced mathematics can 
demonstrate effective instructional practices. 

 

We agree that if connections of any kind are to be realized, then we must be explicit about them. We therefore see a 
need for theoretical tools that researchers and instructional designers can use to explicate connections (as well as 
illustrations of how these tools might be productively used). The primary connections we explore in this paper are 
content-based connections. Specifically, we aim to showcase how that a conceptual analysis is a potentially valuable 
theoretical tool because it can “establish meaningful connections between seemingly disjoint areas of mathematical 
study” (Wasserman, 2018, p. 8). Kaiser and colleagues (2017) indicated that researchers have typically approached 
these kinds of issues in teacher education from two perspectives: cognitive and situated. Our work here aligns with 
the cognitive perspective. Cognitive approaches to content-based connections can be categorized as follows: (1) 
identifying ways of reasoning that are essential to both advanced mathematics and school mathematics (and thus are 
potentially valuable connections that future teachers might make), and (2) identifying fundamental ideas in school 
mathematics that establish a basis for learning more advanced mathematics. Our efforts in this paper fall into the 
first category. These kinds of connections are viewed as beneficial because they have the potential to reinforce pre-
service teachers’ understandings of mathematical ideas and to increase the coherence in their mathematical 
reasoning. In Section 5, we discuss the potential for extending the content-based connections in this paper to support 
the realization of classroom teaching connections and modeled instruction connections. 
 
2.2: Using a conceptual analysis to identify potentially valuable connections 

 
Consistent with our cognitive perspective, a conceptual analysis is form of theory that explicitly describes students’ 
ways of reasoning about a particular mathematical idea (Thompson, 2002). Conceptual analyses, which are 
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underpinned by a radical constructivist epistemology (von Glasersfeld, 1995), play an important theoretical role in 
cognitive studies because they are frameworks that researchers can use to generate explanations about what 
students’ reasoning about a particular mathematical idea might entail. Thompson (2002) argued that conceptual 
analyses are essential in this respect because these kinds of explanations “[come] from theories specific to what is 

being explained or described” (p. 193, emphasis added). We interpret this to mean that investigating students’ 
reasoning about an idea necessarily involves a theory that is specific to the idea being reasoned about. Put another 
way, examining content-based connections involving equivalence and inverse require conceptual analyses that are 
specific to equivalence and inverse. 
 
Thompson (2002) explicated several different uses for a conceptual analysis. We use the conceptual analyses that we 
set forth for equivalence (in 2.3.1) and inverse (in 2.3.2) in two ways. First, a conceptual analysis can be used to 
describe (build models of) students’ ways of reasoning. An implicit aspect of this use is that a conceptual analysis is 
necessarily grounded in students’ reasoning (instead of, for example, being grounded solely in the reasoning of 
experts). We see this as a key point that might help explain why many proposed connections between advanced and 
school mathematics remain unrealized by future teachers: such connections might account only for the experiences 
and reasoning of experts without also account for those of students. Second, a conceptual analysis frames issues of 
coherence in terms of consistency amongst the ways of reasoning that are relevant across curricula. From this 
perspective, then, the question of content-based connections (i.e., coherence between advanced mathematics and 
school mathematics) becomes: What ways of reasoning in advanced mathematics are also relevant in school 

mathematics? We are therefore using conceptual analyses of equivalence and inverse to shed light on the issue of 
connections between advanced mathematics and school mathematics because (a) as content-specific theories, they 
are precisely the right grain-size for identifying content-based connections, (b) they involve clear articulations of 
specific ways of reasoning (thus addressing researchers’ calls for connections to be made more explicitly), and (c) 
they center on students’ conceptual experiences (helping to prevent the positing of spurious connections more likely 
to be made only by experts). 
 
There are analogous notions to this approach stemming from other theoretical perspectives, including didactic 
analysis (e.g., Breda et al., 2017) and genetic decomposition (e.g., Dubinsky, 2002)–see also Sfard’s (1991) analysis 
of concepts via the operational-structural duality. Generally, we believe that these other approaches can be used to 
achieve similar ends, and therefore our uses of the conceptual analyses in this paper are intended to showcase more 
broadly the utility of these kinds of theoretical tools (that focus on the common reasoning that might underlie 
surface-level differences) for teacher education. In fact, two key insights from this larger body of research inform 
our efforts in this paper: (1) explicating mathematical meanings and ways of reasoning is essential for the 
mathematical education of teachers, and (2) having teachers develop a conscious awareness of these meanings and 
ways of reasoning enables them to “identify and organize the multiple meanings of the concept they wish to teach 
and […] to select those meanings to be studied in the instruction processes” (Breda et al., 2017, p. 1897). Here we 
are primarily concerned with the first of these themes, though we do consider the second to be of commensurate 
importance (and therefore return to it in Section 5.3). 
 
Jeschke and colleagues (2019) observed that “research on teachers’ subject-specific professional knowledge usually 
has been conducted within one subject” (p. 4, emphasis added). Accordingly, we observe that conceptual analyses 
and their theoretical correlates have typically been used to investigate or strengthen pre- and in-service teachers’ 
understandings of topics in either school mathematics or advanced mathematics. Research utilizing such approaches 
across both of these domains is less common (there has, however, been some recent progress in this regard–see, for 
example, Wasserman, 2018). Though we provide two content-specific conceptual analyses for illustrative purposes, 
our overarching goal in this paper is to illustrate a much more general (and far less emphasized) point: conceptual 
analysis is a theoretical tool that can help researchers and teacher educators to resolve the tension between advanced 
mathematics and school mathematics by identifying ways of reasoning that are productive in both domains. 
 
2.3: Conceptual analyses for the topics of equivalence and inverse 

 
2.3.1: A conceptual analysis of equivalence 

 
Equivalence is one of the most fundamental notions in mathematics and, as such, is pervasive across the K-16 
curriculum (e.g., Asghari & Tall, 2005; Baiduri, 2015; Berman et al., 2013; Godfrey & Thomas, 2008). Much of the 
research on equivalence has concentrated on notions of equality and the equal sign in K-12 arithmetic and algebra, a 
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key theme of which is that it is advantageous for students to interpret the equal sign as an expression of sameness 
(e.g., Knuth et al., 2006; Molina et al., 2009; Zwetzschler & Prediger, 2013). In our previous work (Cook et al., 
2022a), we built upon this idea by asking: In what ways can two objects be considered ‘the same’? Our answer to 
this question included explicating two ways of reasoning. 
 
A common characteristic way of reasoning1 involves interpreting or determining the sameness of objects in terms of 
a feature that the objects share. Consider, for example, the algebraic expressions2 2(# + 2) + 1 and 2# + 5. 
Referring to the former as ( and the latter as ), we can say that “( and ) are equivalent [because] ((#) = )(#) for 
all # in the common domain” (Solares & Kieran, 2013, p. 122). This is an example of a common characteristic way 
of reasoning because it attributes sameness to the shared numerical value of the two expressions. Consistent with the 
premise that ways of reasoning are based in students’ conceptual experiences, though, we note that a ‘common 
characteristic’ is not necessarily fixed and is instead based upon a characteristic that the student attends to or infers. 
The key aspects of this way of reasoning are: 
 

§ Characteristic E1: uses descriptors like same, common, similar, invariant, identical, duplicate, or shared 
(or a reasonable synonym), and 

§ Characteristic E2: explains the sameness of the objects in question by identifying an attribute that the 
objects themselves share. 

 
A transformational way of reasoning involves interpreting or determining equivalence on the basis that one object 
can be manipulated into the other pursuant to an established procedure or set of actions, rules, or properties. For 
instance, one might interpret that 2(# + 2) + 1 and 2# + 5 are equivalent because “one expression can be 
transformed into the other following certain syntactic rules” (Solares & Kieran, 2013, p. 122). This demonstrates a 
transformational way of reasoning because the equivalence of 2(# + 2) + 1 and 2# + 5 is framed in terms of 
manipulating the former into the latter using, for example, distributivity and associativity. We characterize this way 
of reasoning as follows: 
 

§ Characteristic E1: uses descriptors like same, common, similar, invariant, identical, duplicate, or shared 
(or a reasonable synonym), and 

§ Characteristic E3: explains the sameness of the objects in question by enacting or describing a sequence of 
actions by which one object might be changed into another. 

 
We observe that the common characteristic and transformational ways of reasoning are complementary and 
essential in school mathematics–see Table 1. For example, in the domain of algebraic expressions in the real 
numbers, a transformational way of reasoning is an essential complement to common characteristic on account of 
“[t]he impossibility of testing all possible numerical replacements [for a variable] in order to determine equivalence” 
(Kieran & Saldanha, 2005, p. 196). Though an overemphasis on transformational activity has been rightly identified 
as a source of students’ difficulties (e.g., Pomerantsev & Korosteleva, 2013), it is nevertheless essential because it 
enables students to generate additional, perhaps more desirable representations of a given object. The key is that 
students should know that transformations preserve the equivalence relation in question (Knuth et al., 2006)–in the 
language of our conceptual analysis, it is advantageous for students in school mathematics to know that one’s 
transformations preserve the common characteristic. 
 
Table 1. Ways of reasoning about equivalence in school mathematics. 

Way of reasoning 
Prevalent examples in school mathematics 

Algebraic expressions Algebraic equations 

Common characteristic 
Expressions “( and ) are equivalent 

[because] ((#) = )(#) for all # in the 

Equations are equivalent when they 
share the same solution set (e.g., Alibali 

et al., 2007). 

 
1 We first encountered the term common characteristic in a study by Hamdan (2006) about the nature of elements that have been grouped 

together in an equivalence class. 
2 For simplicity, in this paper the algebraic expressions we refer to are polynomial expressions in one variable over the real numbers. 
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common domain” (Solares & Kieran, 
2013, p. 122). 

Transformational 

Expressions are equivalent if one can be 
transformed into the other by using 

certain algebraic rules (e.g., Zwetzschler 
& Prediger, 2013). 

Equations are considered equivalent 
when one can be manipulated into the 

other according to certain algebraic rules 
(e.g., Baiduri, 2015). 

 
2.3.2: A conceptual analysis of inverse 

 
Similar to equivalence, inverse is a significant idea in mathematics and is ubiquitous in the K-16 curriculum. 
Students first encounter it at the primary level as a way to reason about the relationships between addition and 
subtraction (e.g., Baroody & Lai, 2007), as well as multiplication and division (e.g., Vergnaud, 2012); the focus then 
shifts to notions of inverse elements, first in the integers and real numbers, and then to more advanced algebraic 
contexts like functions and complex numbers (e.g., McGowen & Tall, 2013). The fact that inverse appears in so 
many different algebraic contexts spurred us to identify and describe three ways of reasoning that can support 
productive engagement with inverses across algebraic contexts (Cook et al., 2022b). 
 
Inverse as an undoing involves viewing inverse in terms of “sequences of commands which undo the action of other 
sequences of commands” (Pinto & Schubring, 2018, p. 898). As this characterization suggests, the focus of inverse 

as an undoing is on the interplay between operations. For example, many students first encounter inverse in the form 
of inversion, which involves “viewing addition and subtraction as interrelated operations (e.g., for 3 + 1 − 1, 
immediately recognizing that adding 1 is undone by subtracting 1” (Baroody & Lai, 2007, p. 133). We 
operationalize this way of reasoning via the following characteristics: 
 

§ Characteristic U1: inverse is viewed as a relationship between operations. 
 

§ Characteristic U2: the purpose of the operation (or sequence of operations) in question is to undo the effect 
of the original operation(s). 

 
Inverse as a manipulated element involves viewing inverse in terms of a procedure by which an element is changed 
into its inverse element. Inverse as a manipulated element is immediately distinct from inverse as an undoing 

because its focus is on inverse elements. The procedure by which inverse elements are obtained can be viewed as a 
unary operation (Vlassis, 2008) that is applied to a single element. In the real numbers, for example, one can find the 
additive inverse by multiplying the original element by -1 and the multiplicative inverse (of a nonzero number) by 
taking the reciprocal. Inverse as a manipulated element has two definitive characteristics: 
 

§ Characteristic M1: inverse is viewed as an element. 
 

§ Characteristic M2: the inverse element is associated with a procedure by which a given element is 
manipulated into its inverse element. 

 
Inverse as a coordination of the binary operation, identity, and set involves conceiving of inverse as a relationship 
between two elements such that the combination of those two elements via the relevant binary operation yields the 
identity element. There are three core characteristics of inverse as a coordination: 
 

§ Characteristic C1: inverse is viewed as a relationship between a pair of elements and their interaction via 
the relevant binary operation. 
 

§ Characteristic C2: involves an awareness that the two elements in question combine via the binary 
operation to produce the relevant identity element. 
 

§ Characteristic C3: attends in some way to the fact that an element an its inverse must both be elements of 
the set in question. 
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Wasserman (2016) argued that “[u]nderstanding the general notion of inverse, where additive, multiplicative, 
functional, etc., inverse become examples of the same concept, unified within some algebraic structure, can help 
provide a sense of consistency for teachers in developing and discussing these ideas” (p. 36). We propose that the 
‘general notion’ of inverse involves being able to move flexibly between each of the aforementioned ways of 
reasoning as needed. We caution, however, that an overreliance on any particular way of reasoning can be 
problematic. For example, an overreliance on inverse as an undoing can lead to the belief that inverses always exist, 
and an overreliance on inverse as a manipulated element (and procedures such as ‘switch-and-solve’) can lead to 
compartmentalized and incoherent ways of reasoning about inverse (e.g., Kontorovich & Zazkis, 2017). It is the 
flexible interchange between all three that supports productive reasoning with inverses in school algebra contexts 
(Table 2). 
 
Table 2. Ways of reasoning about inverse in school mathematics. 

Way of reasoning 

Examples from school mathematics 

Multiplicative inverses in the real 
numbers 

Compositional inverse of a function 

Inverse as an undoing 

An inverse “will return you to the 
starting point. Let’s say I pushed the 
wrong button on the calculator and 

multiplied by 5. For correcting this, I 
need to divide by 5” (Kontorovich & 

Zazkis, 2017, p. 31). 

An inverse function is “the operation 
needed to go in the reverse direction, 
from the final state to the initial state” 

(Vergnaud, 2012, p. 441). 

Inverse as a manipulated 

element 

The multiplicative inverse of any 
nonzero real number can be found by 
taking its reciprocal (e.g., Clay et al., 

2012). 

An inverse function can also be viewed 
in terms of “switching the # and - 

variables and solving for -” (Pinto & 
Schubring, 2018, p. 900). 

Inverse as a coordination 

“We remember multiplication if we 
take a number and multiply it by its 

multiplicative inverse you will get the 
multiplicative identity 1” (Clay et al., 

2012, p. 769). 

The composition of a function with its 
inverse function yields the identity 
function (e.g., Vidakovic, 1996). 

 
2.4: Research Questions 

 

The conceptual analyses of equivalence and inverse set forth above provide a theoretical framing for the empirical 
analysis on which we base our arguments in this paper. We advance our argument by answering the following 
research questions: 
 

§ RQ1: What ways of reasoning about the foundational topics of equivalence and inverse support the 
successful completion of tasks in advanced mathematics? 

§ RQ2: How do these ways of reasoning about equivalence and inverse in advanced mathematics relate to 
those that support productive engagement with the same topics in school mathematics? 

 
 
3: Methods 

 
The episodes in this paper occur in the context of task-based clinical interviews (Clement, 2000), a methodology 
that, in accordance with one of the uses of a conceptual analysis, aims to develop models of students’ intuitive 
mathematical reasoning. Researchers construct these models by observing students’ mathematical behaviors and 
then proposing descriptions of students’ ways of reasoning that might plausibly underlie and explain these 
behaviors. We observe that the uses of a conceptual analysis (as a theoretical framework) and task-based clinical 
interviews (as a methodology) align well with each other because they provide complementary tools (one theoretical 
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and one empirical) by which researchers can develop clearer images (models) of students’ ways of reasoning. For 
example, the conceptual analyses for equivalence and inverse that we proposed above–in addition to describing key 
ways of reasoning in school mathematics–provided the primary analytical framework that guided the development 
of these models. 
 
3.1: Data collection and task design 

 
The participants in these episodes–referred to by the pseudonyms Isaac (Episode 1) and Meagan and Josh (Episode 
2)–were enrolled at a large research university in the United States. At this university, abstract algebra is a required 
course for pre-service mathematics teachers. All were selected for participation because (a) their mathematical 
experience indicated to us that they would be able to engage productively with tasks in abstract algebra, and (b) we 
anticipated that they would be able to articulate their thinking clearly and without reservation as they engaged with 
potentially challenging mathematical tasks. A typical session lasted approximately 90 minutes and involved a 
researcher (the second author for Episode 1, the first author for Episode 2) administering a series of tasks (here we 
focus on the tasks listed in Table 3). Upon the students’ completion of a task, the researcher would (1) ask the 
student to explain and justify their general approach, and then (2) ask follow-up questions to clarify some aspect of 
the students’ mathematical activity or test an emerging conjecture the researcher had developed about the students’ 
underlying ways of reasoning. Isaac’s activity in Episode 1 spans one session; Episode 2 includes excerpts from 3 
sessions. Each session was recorded with an iPad application that created videos of students’ writing with 
synchronized audio. 
 
Table 3. Tasks used to elicit reasoning about equivalence and inverse. 

Episode 1 Episode 2 

Task 1.1: Is .:ℚ → ℤ given by . 3!
"
4 = 5 + 6 a 

function? Explain. 
 

Task 1.2: Is ):ℚ → ℚ given by ) 3!
"
4 = !#"

"
 a 

function? Explain. 
 
Task 1.3: Is (: ℤ$ → ℤ given by (([5]$) = 5 a 
function? Explain.3 
 

Task 2.1: Prove: for all 5, 6 ∈ ℤ%[;], all equations of 
the form 5 + # = 6 have a unique solution in ℤ%[;]. 
 
Task 2.2: Prove: for all 5 ∈ ℤ%[;]\{0} and 6 ∈ ℤ%[;], 
all equations of the form 5# = 6 have a unique 
solution in ℤ%[;]. 

 
We designed the tasks featured in these episodes–which involve attending to multiple, equivalent representations in 
the domain of a proposed correspondence (Episode 1) and proving results about the structure of a finite field 
(Episode 2)–to reflect fundamental considerations in abstract algebra and elicit reasoning about the topics of 
equivalence and inverse. The tasks in Episode 1 were drawn from an analysis of examples and non-examples of 
functions given in abstract algebra textbooks (Uscanga & Cook, 2022). The tasks in Episode 2 were informed by 
researchers’ observations that inverses can emerge in students’ activity as they prove basic conjectures about a finite 
algebraic structure (Larsen, 2013). These tasks are particularly useful for our purposes here because they involve 
notions–multiple representations in the domain and finite fields–that have little (if any) relevance in school algebra, 
thus embodying the ‘difficult tension’ between abstract algebra and school algebra. 
 
3.2: Data analysis 

 
Our primary goal of data analysis was consistent with the first use of conceptual analyses given in Section 2.3: to 
create viable models of students’ reasoning; we considered a model ‘viable’ insofar as it offered a plausible frame of 
reference for our observations of students’ mathematical behaviors. To prepare for data analysis, all sessions were 
transcribed in full. We then created enhanced transcripts that incorporated images of students’ written work. We 
then used our conceptual analyses in conjunction with Clement’s (2000) stages for developing models of students’ 
reasoning–see Table 4 for an illustration of the prominent role that our conceptual analyses played in this process. 

 
3 Here, ["]! represents the congruence class (modulo 4) that contains the integer ". It can be represented in multiple ways (e.g., [0]!, [4]!,	and 
[8]! are all different representations of the same congruence class). 
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This process typically resulted in modifying the emerging model of the students’ reasoning (e.g., by revising a 
hypothesis); it was iterated until stable, viable models of the students’ ways of reasoning emerged. 
 
Table 4: Example of our data analysis procedures. 

Stages of analysis 
(Clement, 2000) 

Data excerpt Analysis 

Stage 1: Making 
observations of the 
students’ mathematical 
behaviors 

Isaac: I would probably pick an element that 
that is, quote unquote, equivalent. So I 
could probably pick like 1/3 or something. I 
guess I would maybe do it like )(1/3) 
would have me map to 

&#%

%
, which is 4/3. 

And then see if I can find something that's 
like kind of equivalent to 1/3. So maybe like 

)(2/6). […] So then I would get 
'#(

(
, which 

would be 8/6. […] 4/3 is the same thing as 
8/6. […] They represent the same numerical 
value. 

Observations: 
§ Isaac describes 1/3 and 2/6 as 

“quote unquote equivalent.” 
Similarly, “four over three is the 

same thing as eight over six.” 
§ Isaac explains that these elements 

are the same because they 
“represent the same numerical 
value.” 

Stage 2: Using the 
conceptual analysis to 
formulate hypotheses 
about the ways of 
reasoning that underlie 
these behaviors 

(same as above) Our two observations above align with 
characteristics E1 and E2 (respectively) 
in our conceptual analysis of 
equivalence. We therefore propose that 
Isaac’s behaviors demonstrate a 
common characteristic way of 
reasoning. 

Stage 3: Returning to 
the transcripts to 
identify additional 
observations of 
students’ reasoning that 
affirm or contradict our 
initial hypothesis 

Isaac: If you divide whatever integer you're 
looking at, and the remainder is so on and 
so forth. With four, then they're all the same 
thing. So like 0, and 4, and 8, you know, 
they're all evenly divided by 4. […] We 
would just write that [0]$ is the same thing 
as [4]$. 
 

We again observe characteristics E1 
and E2 in Isaac’s activity in this 
excerpt: he describes the integers 0, 4, 
and 8 as “the same thing” 
(characteristic E1) in this context 
because “they’re all evenly divided by 
4”–that is, they all have the same 
remainder upon division by 4 
(characteristic E2). 

 
 
4: Results 

 
In this section, we analyze students’ reasoning in response to abstract algebra tasks, which included, for example, 
examining a proposed correspondence with domain ℤ) (Episode 1), and proving results about the structure of ℤ%[;], 
the finite field of order 9 (Episode 2). Our objective is to identify the students’ ways of reasoning about equivalence 
and inverse (informing RQ1) in order to examine their potential relevance to the ways of reasoning that are 
productive in school mathematics, such as those in Table 1 (informing RQ2). 
 
4.1: Episode 1–reasoning about correspondences in abstract algebra 

 
In this episode, we focus on the mathematical activity of Isaac as he engaged with function-based tasks in abstract 
algebra (Tasks 1.1-1.3). In response to Task 1.1, Isaac argued at first that . is a function, explaining that “there’s not 
an element when we input it into the function that maps to two different outputs.” He based this claim on specific 
input-output pairs he computed. For example, he stated that “1/3 would map to 4” and “. of 2/3 would go to 2+3, 
and you have 5. […] That works out, you have one element and it goes to another element.” Eventually the 
interviewer, noting that all of the rational numbers Isaac was using were in reduced form, prompted him to consider 
unreduced rational numbers (for which gcd(5, 6) > 1). He noted that “2/3, well, that’s the same thing as 4/6, but 
they would map to a different element. […] And so now you no longer have a function […] because 2/3 and 4/6 are 
equivalent.” In response to Task 1.2, Isaac, who correctly identified this proposed correspondence as a function, 
described his approach as follows (see Figure 1): 
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Isaac: I would maybe see if, like, some sort of element would map to two different  

elements, right? And in this case, I would probably pick an element that is, quote unquote, 
equivalent. So I could probably pick like 1/3 or something. I guess I would maybe do it like 
)(1/3) […] which is 4/3. And then see if I can find something that’s like kind of equivalent to 
1/3. So maybe like )(2/6) […] which would be 8/6. […] 4/3 is the same thing as 8/6. And you 
would ultimately get some sort of function. 

 

 
Figure 1: Isaac uses equivalence to conclude that ) is a function. 
 
We note that Isaac’s (correct) identification of the proposed correspondences in Tasks 1.1 and 1.2 as a nonfunction 
and function (respectively) hinged on his attention to equivalence in the domain. Isaac even pointed this out himself: 
“in my first example, I didn’t even consider 2/3 and 4/6, you know, and stuff like that. And so, and then the second 
example, I was a little bit more careful. I was like, OK, well, there’s some elements that are equivalent to each 
other.” 
 
Isaac explained that he approached Task 1.3 in a similar way to Tasks 1.1-1.2: “in example 1 and example 2 how I 
was, you know, picking fractions that ultimately looked different but represented the same thing, or the same 
property or sameness, or whatever. I wanted to do the exact same thing in this case.” That is, attending to the fact 
that elements in ℤ$ (the domain) could be represented in different, equivalent ways, he set out to identify such 
equivalent representations in the domain and see if their image in the codomain was the same. He observed, for 
example, that even though [0]$ = [4]$, the images of [0]$ and [4]$ with respect to the correspondence ( are not the 
same (the integers 0 and 4, respectively–see Figure 2): 
 

Isaac: You have 0, 4, 8 or whatever. They’re all the exact same thing in ℤ$. But in my outputs, 
I’m getting different values, you know, and that is a no-no, in this case. 

 Interviewer: OK. 
 Isaac:   So that would be my reasoning to say like, oh, like, bam, no, not a  

function. 
 



 10 

 
Figure 2: Isaac attends to issues caused by multiple representations in ℤ$. 
 
Accordingly, we propose that Isaac’s activity with these functions tasks in abstract algebra was supported by two 
distinct (yet complementary) ways of reasoning about equivalence. When first asked what it meant for elements of 
ℚ to be equivalent, Isaac framed his response in terms of a question: “do they have some sort of property in 
common?” He elaborated that, with respect to “equivalence, we’re just looking at this sort of the same property 
between whatever we’re looking at, you know, they might not look the same but they have the same property.” For 
Isaac, the “same property” in Tasks 1-2 was the numerical value of the quotient obtained by dividing the numerator 
by denominator. In Task 3, he framed equivalence in a similar way, suggesting a coherent, cross-cutting view of 
equivalence: “I’m just seeing if there’s one property that they share in common. And if they have that property in 
common, then I would say that they’re equivalent.” For instance, referring to his written work (see Figure 2), Isaac 
explained: “so like 0, and 4, and 8, they’re all evenly divided by four.” Put another way, each of these integers has 
the same remainder–zero–upon division by 4. These excerpts of Isaac’s activity indicate a common characteristic 

way of reasoning about equivalence because Isaac identified collections of elements as the same (rational numbers 
in Tasks 1.1-1.2 and integers in Task 1.3; characteristic E1) and attributed this sameness to a common property 
shared by the rational numbers in each of these collections (the quotient in Tasks 1.1-1.2 and the remainder upon 
division by 4 in Task 1.3; characteristic E2). 
 
Isaac also demonstrated strong notions of equivalence in terms of “simplifying” or “reducing” elements. For 
example, when explaining how to identify other elements that are equivalent to a particular element (i.e., populate an 
equivalence class), he said, “take a fraction and you see if you can simplify all the way down.” He noted, for 
example, that 4/3, 8/6, and 12/9 are equivalent because “they can all reduce to 4/3.” Additionally, he explained that, 
with respect to 1/3 and 2/6, “ultimately I could reduce one or think of them as the same thing.” Isaac reduced these 
fractions using the canonical procedure of multiplying both the numerator and denominator by the same nonzero 
factor. The fractions that resulted, he noted, “all have this sameness property that I can reduce all of them to one of 
those fractions.” Isaac exhibited a similar strategy when engaging with integers that are equivalent modulo 4: 0 in ℤ$ 
is the same as 4 in ℤ$, right? […] You know, I’m just, it’s kind of like those fractions. We kind of reduce them 
down.” The reduction procedure that Isaac employed in ℤ$ involved repeated subtraction (or addition) of the 
modulus 4. We therefore claim that Isaac is also demonstrating a transformational way of reasoning about 
equivalence because he was interpreting the sameness of elements (rational numbers in Tasks 1.1-1.2 and integers in 
Task 1.3; characteristic E1) in terms of a procedure by which one element might be manipulated into another 
(dividing the numerator and denominator by the same factor in Tasks 1.1-1.2 and repeatedly subtracting/adding the 
modulus in Task 1.3; characteristic E3). 
 
We therefore propose that the common characteristic and transformational ways of reasoning about equivalence 
were central to his successful completion of Tasks 1.1-1.3, thus informing RQ 1. Additionally, on the surface, 
function-related tasks that hinge on issues of multiple representations in the domain appear to have very little to do 
with school mathematics. Our analysis, however, highlights that the underlying ways of reasoning that support 
productive engagement with such tasks in abstract algebra (in this case, common characteristic and 
transformational) are exactly the ways of reasoning needed to reason productively about equivalence in school 
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mathematics (see Table 1), thus informing RQ 2. Importantly, our use of the conceptual analysis of equivalence (in 
2.3.1) is what enabled us to identify this relationship between advanced mathematics and school mathematics. We 
discuss this point in greater depth in Section 5. 
 

4.2: Episode 2–proving conjectures about a finite field in abstract algebra 

 
In this episode, we discuss the reasoning of Josh and Meagan as they explored the algebraic structure of ℤ%[;], the 
finite field of order 9. We focus here4 on their mathematical activity as they attempted to prove that, for all 5, 6 ∈
ℤ%[;], all equations of the form # + 5 = 6 have a unique solution in ℤ%[;]. As in Episode 1, we note that this task–
exploring and proving conjectures about the algebraic structure of the finite field of order 9–is one whose 
connections to secondary algebra are initially neither obvious nor guaranteed. 
 
When attempting to identify a solution candidate (the ‘existence’ part of the proof), Josh manipulated # +
(G + H;) = (5 + 6;) to obtain # = (5 − G) + (6; − H;). Meagan explained that they subtracted G + H; from both 
sides of the equation because “we want to get # by itself.” We interpret that the students were demonstrating inverse 

as an undoing because they used operations (subtraction, characteristic U1) to undo the effects of addition (as 
evidenced by their desire to “get x by itself,” characteristic U2). Hoping to encourage Josh and Meagan to focus on 
the binary operation of addition, the researcher asked how they might reformulate their use of subtraction in terms of 
addition. Josh amended his initial solution # = (5 + 6;) − (G + H;) to # = (5 + 6;) + (−G − H;). When asked how 
they could be sure that such an element −G − H; existed for each element G + H; in ℤ%[;], Josh responded that “you 
multiply it by negative one” and then “simplify it from there.” For example, Meagan used her knowledge of modular 
arithmetic (specifically that −2 and 1 are congruent modulo 3) to reason that the additive inverse “of 2; is −2;, 
which is just ;.” They were able to use this procedure to identify an additive inverse element for each of the 9 
elements in ℤ%[;] (see Figure 3 for two additional examples). We interpret that Josh and Meagan were 
demonstrating an inverse as a manipulated element way of reasoning because they were viewing the inverse 
relationships in this task in terms of inverse elements (characteristic M1) that were obtained by manipulating the 
original element via a procedure (multiplying by -1 and then using modular congruence, characteristic M2). 
 

  
 

Figure 3. Meagan (left) and Josh (right) demonstrate their procedure to manipulate an element of ℤ%[;] into its 
additive inverse. 

 
Later, after attempting to prove the analogous result for multiplicative linear equations in ℤ%[;], they experienced 
some difficulties justifying that each nonzero element has a multiplicative inverse. They employed a reciprocal-
based procedure (which we interpreted as another demonstration of inverse as a manipulated element), but they 
were unable to adapt it so that it clearly identified which element of ℤ%[;] was the multiplicative inverse of the given 
element. For example, when attempting to find the multiplicative inverse of 2, Josh and Meagan took the reciprocal 
to obtain ½ but were initially unable to identify an element of ℤ%[;] to which this corresponded. Eventually, 
however, Meagan, using the multiplication table for ℤ%[;] as a guide, realized that multiplying an element by its 
multiplicative inverse yields 1, enabling her to resolve the issue of the multiplicative inverse of 2, concluding that 2 
is its own inverse because “2 and 2 equal 1.” She went on to identify several more inverse pairs: “; times 2;, and 
then, um, 2; times ; again, obviously, and then, like, 2 + ; and 1 + ; also equal 1.” Josh, also referencing the 
multiplication table, reasoning similarly, referred to 2 + ; and 1 + ; as “inverse pairs” and explicitly identified in the 
multiplication table that their product is 1 (see Figure 4). 
 
Josh and Meagan were able to reason in this way to identify a multiplicative inverse for all 8 nonzero elements of 
ℤ%[;]. We claim that they were demonstrating an inverse as a coordination of the binary operation, identity, and set 

 
4 Other aspects of and episodes from these sessions are discussed in Cook and Uscanga (2017). 
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way of reasoning here. We first observe that their attention has shifted from manipulating one element into another 
(as they did when enacting inverse as a manipulated element) to focusing simultaneously on pairs of elements and 
their image under the binary operation of multiplication. As evidence, consider that Josh and Meagan make repeated 
reference to (1) pairs of elements–both implicitly (e.g., Meagan’s references to “2 and 2,” “; times 2;,” and “2 + ; 
and 1 + ;”) and explicitly (e.g., Josh’s reference to “inverse pairs”)–and (2) their image under multiplication (e.g., 
several mentions of “times” and “multiplying”); this satisfied characteristic C1. For characteristic C2, we note that 
Josh and Meagan identify that the image of these pairs of elements under multiplication is 1, the multiplicative 
identity (e.g., “2 and 2 equal 1”). Lastly, we observe that Josh and Meagan have attended to the fact that an element 
and its inverse must be in the same set (characteristic C3) both explicitly (in their work above with additive inverses, 
they adapted their manipulation procedure so that they could identify which element of ℤ%[;]–the relevant set from 
which the original element was taken–was the additive inverse) and implicitly (when identifying inverse elements 
with a multiplication table, the only elements in question are the elements of ℤ%[;] that are arranged across the top 
row and leftmost column) (Figure 4). 
 

 

 
 

Figure 4. Meagan used this multiplication table to identify a multiplicative inverse for each nonzero element in 
ℤ%[;]. 

 
Our analysis here highlights that Meagan and Josh’s efforts were supported by their demonstration of three ways of 
reasoning about inverse: inverse as an undoing, inverse as a manipulated element, and inverse as a coordination 

(informing RQ1). Furthermore, even though the relevance of this abstract algebra task–which required reasoning 
about the algebraic structure of a modular ring with a complex component–to school algebra is initially unclear, the 
underlying ways of reasoning mirror those needed to engage productively with inverse in school algebra contexts 
(see Table 2), affording insight into RQ2. As in Episode 1, the empirical analysis in this episode supports our more 
general, theoretical argument: that a conceptual analysis is a tool that can be used to highlight potentially valuable 
connections for future teachers to make between advanced mathematics and school mathematics. 
 
 
5: Discussion 

 
5.1: Revisiting the research questions 

 
In this paper, we have considered the persistent and well-documented tension that pervades discussions of 
productive connections between advanced mathematics and secondary mathematics instruction; this tension is 
compounded by proposed connections that are vague and underspecified. In response, we adopted the pragmatic 
stance that advanced mathematics should be made as useful as possible for future teachers, and posed two research 
questions that aimed to illustrate a particular way in which advanced mathematics can be made useful for future 
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teachers. Answering our first research question involved an empirical analysis of the ways of reasoning 
demonstrated by abstract algebra students in task-based interviews. In the case of equivalence, these ways of 
reasoning included common characteristic and transformational; in the case of inverse, inverse as an undoing, 
inverse as a manipulated element, and inverse as a coordination. In response to our second research question, we 
have also illustrated that these ways of reasoning about equivalence and inverse in advanced mathematics mirror 
those that support productive reasoning in secondary mathematics (observe, for example, how the ways of reasoning 
that emerged in 4.1 and 4.2 mirror those in Tables 1 and 2, respectively). Our capacity for answering these questions 
hinged on our use of two conceptual analyses (Thompson, 2002), which focused our attention on the ways of 
reasoning that underlie the surface-level differences in content that are in large part responsible for the ‘difficult 
tension’ between advanced mathematics and school mathematics. In this way, the specific ways of reasoning that 
form the foundation of our answers to our research questions illustrate a more general, theoretical point: that 
researchers and teacher educators can potentially use conceptual analyses to overcome the difficult tension between 
advanced mathematics and school mathematics and highlight coherent ways of reasoning that might otherwise be 
obscured. 
 

5.2: Contributions 

 
This paper’s primary contribution to the literature stems from addressing an important need: though many 
researchers agree that advanced mathematics should be made as useful as possible for pre-service teachers, there are 
relatively few explicit theoretical tools and illustrations available to assist in achieving this goal. In this respect, the 
episodes featured here highlight a new insight: a conceptual analysis can help identify coherence that might 
otherwise be obscured by some of the obvious differences between advanced and secondary mathematics. This 
contribution addresses two notable gaps in the literature. First, as Larsen and colleagues’ (2018) quotation in the 
introduction underscores, many attempts to identify connections between advanced and secondary mathematics have 
focused on researchers’ and educators’ views of connections (in our view, a necessary but insufficient initial step). 
Our work here extends one step further by grounding the associated ways of reasoning in the conceptual experiences 
of students. Second, we observe that, while this general approach is not altogether novel, such studies have typically 
constrained their focus to either advanced mathematics or secondary mathematics. Our efforts here contribute to a 
small (but growing) body of literature that has used such approaches–which, at their core, examine the ways of 
reasoning that underlie topics and tasks–across both domains. 
 
5.3: Limitations and future directions 

 
We have focused most of our efforts on illustrating potential benefits of this approach for researchers and teacher 
educators, as researchers and teacher educators must first develop clear images of connections between advanced 
mathematics and school mathematics for themselves before they can support future teachers in doing so. We view 
this as a critical initial–though by no means final–step toward our pragmatic objective to make advanced 
mathematics as useful for teachers as possible. A notable limitation of this work, in fact, is that it addresses only 
mathematical–and not pedagogical–knowledge. Thus, it remains to be seen how the ideas we have discussed here 
might influence teachers’ practice in various classroom situations and environments (Hoth et al., 2018). Another 
limitation is that this general insight emerged retrospectively, after our analysis of specific empirical episodes. 
Ideally, we would like for instructional designers at the postsecondary level to use this general insight prescriptively 
as a means of instructional design. In this section, we address how these points inform and might be realized in 
future research and in teacher education more extensively. 
 
Broadly, we believe that conceptual analyses can address the tension between advanced and secondary mathematics 
in (at least) three ways, which we relate to the types of connections emphasized by Wasserman (2018) and discussed 
in 2.1. The first is to use conceptual analyses retrospectively (as we have here) to identify content-based connections 
that otherwise might have been obscured within advanced content. The second use involves the potential for 
supporting the development of classroom teaching connections. This could involve using a conceptual analysis 
prescriptively as a means of instructional design. That is, researchers and teacher educators might identify and 
support classroom teaching connections by starting with an idea in school mathematics and using a conceptual 
analysis of that idea to identify potential ideas in advanced mathematics that might reinforce ways of reasoning that 
are productive in that classroom situation (indeed, this is a limitation of our retrospective, empirically-driven 
approach in this paper). In order to partially address this limitation and position future research efforts that align 
with this objective, we provide an example of how we envision such a process unfolding for the key topic of 
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identity–see Table 5. We further note that our analysis here is entirely cognitive (and not situated), and–as “both 
perspectives provide powerful insights into teacher professional knowledge” (Kaiser et al., 2017, p. 165)–there is 
still much work to be done to identify how the tools we have presented here might influence teachers’ pedagogical 
knowledge and the factors that condition its implementation in various classroom situations and environments. 
 
Table 5: Stages for identifying potential connections to school mathematics. 

Stage Specific example 

1. Identify a key idea in secondary 
mathematics. 

The notion of identity appears in school algebra in many 
different forms, including the real numbers (addition and 
multiplication), functions (composition), and matrices 
(addition and multiplication). 

2. Develop/use a conceptual analysis to 
describe ways in which students might 
reason about this idea. 

Reasoning about the identity as the element that ‘does 
nothing’ can support attention to a more coherent concept 
of identity across various contexts (e.g., Clay et al., 2012). 

3. Identify various situations in advanced 
mathematics in which these ways of 
reasoning are useful. 

The notion of ‘doing nothing’ is also productive in 
advanced mathematical settings in which the connections 
to school mathematics are not immediately clear, 
including (a) the dihedral groups I) in abstract algebra 
(e.g., Larsen, 2013) and (b) the invertibility of matrix 
transformations in linear algebra (Bagley et al., 2015). 

4. Promote reflection on the similarity of the 
ways of reasoning across domains. 

Reflecting upon the similarities highlighted by notions of 
the ‘do nothing’ function across matrix transformations in 
linear algebra and polynomial functions in school algebra, 
a student commented, “essentially this [the vector (x,y)] is 
the vector x, so essentially I did end up with […] x as in 
the, whatever I had here. Yeah, it is identical [to the 
function case]. That’s cool! I’m glad I did that, that’s 
interesting” (Bagley et al., 2015, p. 44). 

 
The third use involves a modeled instruction connection. Related to the point we raised in the previous paragraph, 
another way for the kinds of connections we propose in this paper to positively influence teachers’ instruction is to 
make them explicit to teachers. Though we have primarily focused on how researchers and teacher educators can 
use conceptual analyses, we note that others have suggested that it might also be beneficial for teachers themselves 
to become explicitly aware of their own ways of reasoning so that they can draw upon more intentionally and 
strategically in their instruction (e.g., Breda et al., 2017). As a conceptual analysis is an explicit description of ways 
of reasoning, we suggest that teacher educators can make progress toward accomplishing this goal by (1) modeling 
their own use of conceptual analyses in their advanced mathematics instruction, and (2) promoting conversations in 
which future teachers reflect on and attend to a conceptual analysis and how it was (or might be) used. We thus also 
call for researchers to examine ways in which pre-service teachers might be encouraged to reflect upon their own 
mathematical reasoning in order to develop their capacity for identifying and leveraging such connections in the 
future. 
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