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A B S T R A C T   

This study aims to take the advantage of ambient noise recordings rich in low-frequency components for deep site 
characterization. We investigate the capabilities of a recently developed ambient noise tomography (ANT) 
method for imaging deep buried voids via both synthetic and field experiments. A challenging synthetic model 
with two deep voids was used to demonstrate the practicality of this ANT approach. To further test the method’s 
capability, we conducted a field experiment at a bridge construction site in Miami, Florida, which contained a 
large and deep void (28 m to 44 m depth). The cross-correlation functions (CCFs) of the traffic noise recordings 
were directly inverted to provide subsurface S-wave velocity profiles. The results demonstrate that the method is 
capable of imaging deep voids. The in-situ standard penetration test (SPT) data was then compared to the 
inverted S-wave velocity obtained by the ANT approach. It shows that the trend of Vs and SPT values are 
generally in agreement, including the identification of the void and its depth. The field results suggest that the 
ANT is a useful geophysical tool for roadway imaging, particularly for detection of deep voids that are difficult to 
be imaged by active-seismic methods.   

1. Introduction 

Sinkholes or buried voids pose significant risks to the health of 
people and the safety of infrastructures such as public transportation and 
residential buildings. These voids need to be detected and monitored 
consistently, particularly in areas that are suffering from numerous 
sinkholes (Gutiérrez et al., 2016; Youssef et al., 2020). During the past 
decades, many researchers have worked on the improvement of nonin
vasive methods to identify and characterize voids/sinkholes (Mirzane
jad et al., 2021). Detection of buried voids often begins with a 
noninvasive geophysical testing over a large volume of materials as it is 
lower costs than the invasive testing. And then, at locations with 
anomalies, invasive methods may be conducted to obtain detailed in
formation of the underground media. 

Seismic methods such as 2D/3D full-waveform inversion (FWI) of 
active-source data (Mirzanejad et al., 2020; Tran et al., 2013) have been 
developed for this application and showed excellent capabilities in im
aging shallow voids (<15 m depth). While these methods can provide 
accurate subsurface profiles, they require low-frequency energy (<10 
Hz) for imaging deeper voids. As large, powerful active sources capable 

of generating such low-frequency energy are expensive and generally 
not available for use on most projects, we seek to take advantage of the 
low-frequency ambient noise already present in the environment for 
deep void detection in this study. 

Many ambient noise methods have been developed for subsurface 
site characterization. They can be categorized into three groups. The 
first group uses dispersion characteristics of noise fields or Green’s 
functions (GFs), (e.g., ReMi™; Louie, 2001; Tokimatsu, 1997; Di Giulio 
et al., 2006; Rosenblad and Li, 2009; Endrun et al., 2010; Moschetti 
et al., 2010; Yang et al., 2011; Behm et al., 2016).) The dispersion curves 
(phase velocity versus frequency) represent the dispersion characteris
tics of the site, which can be inverted for 1D Vs of the subsurface. While 
these methods have been used successfully to develop deep 1D Vs pro
files from ambient noise recordings, they average Vs over the volume of 
material beneath the receiver array or the receiver pair within a depth of 
approximately one wavelength for each frequency. 

The second group uses travel time of Green’s functions (GFs), which 
are calculated by cross-correlating long noise records between pairs of 
receivers located within either linear or 2D arrays. Methods using the 
travel time of the GFs, such as tomographic methods (Barmin et al., 
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2001) and eikonal tomography (Lin et al., 2009), have been used to 
obtain frequency-dependent group or phase velocity maps at regional 
and continental scales (e.g., Schippkus et al., 2018; Das and Rai, 2016). 
While these methods produce large-scale 2D velocity models, the ve
locities are averaged over large spatial distances. 

The third group uses full-waveform inversion (FWI) of cross- 
correlation functions (CCF) of noise fields. Toward the FWI of CCFs, 
structural and source kernels were first derived by Tromp et al. (2010). 
The field applications have been conducted at global and local scales (De 
Ridder and Maddison, 2018; Sager et al., 2018). At engineering scales 
(tens of meters), the 2D ambient noise tomography (2D ANT; Wang 
et al., 2021) has recently been developed. This 2D ANT directly invert 
CCFs of ambient noises to extract subsurface 2D Vs profiles. The main 
advantage of inverting CCFs is that it does not rely on Green’s function 
retrieval. Therefore, it doesn’t require the energy balance at both sides 
of each receiver pair to retrieve the true GFs. The power spectrum 
density is estimated and included in the analysis to account for the en
ergy source distribution. The method has been successfully used for 

detection of shallow voids (10 m depth) under roadway (Wang et al., 
2021). In this study, we investigate the 2D ANT method’s capability in 
detecting deep voids (>20 m depth) via both synthetic and field 
experiments. 

2. Methodology 

The 2D ANT approach (Wang et al., 2021) is used in this study. For 
completeness, it is briefly presented here. For the extraction of subsur
face material properties, this approach involves a forward simulation of 
the cross-correlation function (CCF) and an adjoint-state inversion. The 
finite-difference solution of 2D wave equations (Tran and Hiltunen, 
2012) is utilized to simulate noise and Green’s functions. 

2.1. Forward simulation 

The CCF (Cαβ) of two signals named sα and sβ is explicitly shown in 
Eq. (1): 
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Fig. 1. The true and initial models of two-void example. a) True Vs, b) Initial Vs. The black dots in (a) denote the receiver locations.  
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Cαβ(t) =

∫

sα(τ)sβ(t + τ)dτ. (1) 

To generate seismograms sαand sβ, this explicit formula necessitates 

performing the forward simulation for every source location. Due to a 
large number of sources with unknown positions of noise fields, using 
the explicit method is not possible for inversion of the CCF. The ANT 
technique utilizes the implicit simulation method (Sager et al., 2018) to 
compute Cαβ with a given source distribution function S(x,ω) employing 

reciprocity of Green’s functions at receiver and source locations. The 
Fourier transform yields the following equivalent form of Eq. (1): 

Cαβ(t) =
1

2π

∫

sα(ω)sβ*(ω)exp(iωt)dω, (2) 

Conjugation is indicated by the asterisk. Using the Green’s function, 
Eq. (2) can be written as:  

where x′ and x′ ′ are two spatial positions in domain Ω. The 
∫

Ω′dΩ′ and 
∫

Ω′ ′dΩ′ ′ express the integration twice over the space domain. The cross- 
correlation function Cαβ(t) is then averaged over a large number of re
alizations as:   

Cαβ is calculated by stacking CCFs calculated over multiple time in
tervals (Bensen et al., 2007). 

This method estimated f(x′
, ω) f*(x′ ′, ω) by assuming that the noise is 

Fig. 2. Synthetic experiment: a) 5-min record of simulated traffic noise. The reference station (station #1) is highlighted with red. b) ten-second close-up of the 
synthetic traffic noise record. c) Cross-correlation functions at the reference station. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Cαβ(t) =
1

2π

∫ ∫

Ω′ ′

∫

Ω′
G(xα, x′

, ω) f (x′
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xβ, x′ ′, ω

)
f *(x′ ′, ω)exp(iωt)dΩ

′
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′ ′dω. (3)   

Cαβ(t) =
1

2π

∫ ∫

Ω′ ′

∫
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spatially uncorrelated: 

f (x′
, ω) f *(x′ ′, ω) = S(x′

, ω)δ(x′

− x′ ′), (5)  

with the source power-spectrum density (PSD) S(x,ω). For the noise 
sources that are not correlated, the CCF can be computed as: 

Cαβ(t) =
1

2π

∫ ∫

Ω
G(xα, x, ω)G*(

xβ, x, ω
)

S(x, ω)exp(iωt)dxdω, (6) 

The calculation of the CCF between xα and xβ begins with two for
ward simulations to compute Green’s functions. The frequency-domain 
CCF is converted to the time domain and the PSD is calculated from the 
reverse-time migration of filtered CCF, as detailed in Wang et al. (2021). 

2.2. Inversion 

Inverting the cross-correlation function Cαβ can obtain subsurface 
material properties, since the function caries the information of Green’s 
functions with the source at xα and xβ, as shown in Eq. (6). Taking into 

account the mismatch between observed and synthetic CCFs, 

δCαβ = Cαβ
obs − Cαβ

syn (7) 

The objective function is the L2-norm of misfit δCαβ, 

E =
1
2

δCT δC =
1
2

∑

α

∫

dt
∑

β
δC2 (8) 

To compute the gradient of E with respect to Vs and Vp, the adjoint- 
state algorithm (Tromp et al., 2010; Sager et al., 2018) is adopted in this 
method. For a particular location xα, we can backward propagate the 
difference between the observed and synthetic CCFS from all locations 
xβ (Tromp et al., 2010). The modified gradient for Lamé parameters λ 
and μ were produced using stresses of backward-propagated cross-cor
relation wavefield (Shipp and Singh, 2002): 

a)

b)

Vs (m/s)

10 20 30 40 50 60 70

x (m)

10

20

30

40

de
pt

h 
(m

)

100

200

300

400

500

Vs (m/s)

10 20 30 40 50 60 70

x (m)

10

20

30

40

de
pt

h 
(m

)

100

200

300

400

500

Fig. 3. Synthetic experiment: a) inverted result of the first run at 5–15 Hz and b) inverted result of the second run at 5–25 Hz.  
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Fig. 4. Synthetic experiment: a) CCF comparison for reference station #1. b) CCF residual comparison for reference station #1. Both initial and final residuals are 
scaled 5 times for better visibility, c) CCF comparison at reference station #1, trace #24. 
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Fig. 5. Curve of normalized error versus iteration number for all two runs. Error of each iteration is normalized by dividing the initial error.  
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(9) 

In Eq. (9), σ represents the stresses of forward-propagated wavefield 
while φ represents the stresses of backward-propagated cross-correla
tion wavefield. Cαβ(t) has two lags, one positive (t > 0) and one negative 
(t < 0), which must be calculated independently. The stresses of the 
backward-propagated cross-correlation wavefield for the positive lag 
and the negative lag, respectively, are represented by the parameters 
φ+and φ−. The gradients can be derived as Eq. (10) considering the 
relationship between Vp, Vs, λ, μ, and ρ (density): 
{

δVp = 2ρVpδλ,

δVs = −4ρVsδλ + 2ρVsδμ.
(10) 

Eq. (11) gives the steepest descent direction of the L2 misfit with 
respect to elastic velocities, and the model can be updated by: 
{

Vn+1
p = Vn

p + θn
pδVn

p ,

Vn+1
s = Vn

s + θn
s δVn

s .
(11)  

where in Eq. (11), step lengths θp and θs are determined utilizing a 
parabolic line search approach (Nocedal and Wright, 2006; Sourbier 
et al., 2009a, 2009b). 

In first iteration, the model is updated along the steepest descent 

direction, and then the conjugate gradient approach is used to boost the 
convergence rate. The Polak-Ribière method is used to determine the 
search direction (Klessig and Polak, 1972). This ANT method is not 
capable to invert the density due to its limited sensitivity to the cross- 
correlation dominated by Rayleigh wave energy (Wang et al., 2021). 
Thus, the density is just assumed based on the available in-situ 
geotechnical data from the site and kept constant during the inversion 
process. 

3. Implementation, results and discussion 

In order to investigate the capabilities of the ANT method in 
detecting deep voids, we considered both synthetic and field 
experiments. 

3.1. Synthetic experiment on two-void model 

The synthetic model (Fig. 1a) is a realistic soil profile with variable 
layers and two voids of 8 m diameter embedded in deeper layers at 20 m 
and 30 m depths. The Vs consists of three layers of 350 m/s, 300 m/s, 
and 400 m/s from the top to bottom. Vp is computed from Vs using a 
Poisson’s ratio of 0.33. Vs and Vp of voids are 0 m/s and 340 m/s (air- 
filled void), respectively. For wave simulation and inversion, the 75 ×
45-m medium is discretized into a 100 × 60 grid of 0.75 m spacing in the 
x- and z-directions, respectively. 

For the noise data simulation, 24 receivers at 3-m spacing are used on 
the free surface, shown as black dots in Fig. 1a. Synthetic traffic noise 
data (Fig. 2a) are simulated by the solution of 2D wave equations (Tran 
and Hiltunen, 2012) with multiple vehicles passing randomly in time 
and space in both directions (left to right and right to left). Fig. 2b is a 
blow-up of the synthetic data for 10 s, showing a few seismic events. 

Fig. 6. Miami test site.  
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CCFs are computed via Eq. (1) as shown in Fig. 2c for reference station 
#1. These CCFs are then assumed as those from the field data and 
inverted to extract the subsurface velocity structures. 

For inversion, the initial Vs model is set to be laterally homogeneous. 
In other words, from the top to bottom, Vs increases linearly from 350 
m/s to 400 m/s (Fig. 1b). The initial Vp model is twice of Vs. The 
inversion analysis follows the methodology described in the previous 
section. Both Vs and Vp are updated during the analysis as per Eq. 11. 
Two inversion runs were conducted with data of 5–15 Hz and 5–25 Hz, 
beginning at lower frequencies (5–15 Hz) on the initial model. The 
second run at 5–25 Hz continued on the result of the first run at 5–15 Hz. 
Both runs stopped after 15 iterations, for a total of 30 iterations. This 
multi-scale strategy (Bunks et al., 1995) helps to maintain inversion 
stability and avoid the cycle skipping. 

Fig. 3 shows the inverted Vs profiles for both inversion runs. After the 
first run (Fig. 3a), the background model of the three layers is generally 
retrieved. Locations of the two voids are identified even with data at the 
low frequencies of <15 Hz. Interestingly, as the number of iterations 
increases, the shallow void at 20-m depth is detected earlier than the 
deep void at 30-m depth. Due to the spherical spreading and the decay of 
the wavefield, the scattered information from the shallow void is higher 
in magnitude and accounts for a larger contribution to the waveform 
misfit than the deep void. After the second run (Fig. 3b), the two voids 
are well imaged at the correct locations and depths. The layer interfaces 

are characterized, except at the region close to the two voids. This is 
caused by the model complexity from the scattered wavefield bouncing 
between the two voids. With the help of the multi-scale strategy, the 
inversion has successfully detected the two voids. These results 
demonstrate that the 2D ANT method is able to image the deep voids in 
complex subsurface structures. 

Regarding the inverted Vp, its values only changed <10% from the 
initial model during inversion, the voids are not detected and thus it is 
not shown. While the CCFs are computed for both surface (Rayleigh) and 
body waves and directly inverted, the CCFs represent the similarity 
between pairs of channels, and thus are dominated by surface waves 
(propagating horizontally from one channel to another). Comparing to 
surface waves, reflected and refracted body waves are less correlated, 
and make less contribution in CCFs and inverted results. Due to the 
insensitivity of Rayleigh-wave dominated CCFs to Vp, it cannot be 
inverted with accuracy. Nevertheless, the 2D ANT method is able to 
image the 2 deep voids in the Vs profile. 

To further assess the inversion performance, the CCF waveforms and 
residuals are compared in Fig. 4a and Fig. 4b, respectively. The misfit in 
the waveforms has been optimized and the residual is trivial after 30 
iterations. A detailed waveform comparison of a single trace is shown by 
Fig. 4c, in which the observation and simulation are compared for the 
pair of receivers 1 and 24. For this pair, the two receivers are 69 m apart. 
The comparison evidently shows the improvement of the waveform 

Fig. 7. Field experiment: a) Noise record after low-pass filtering (<25 Hz). b) One-second segment of the noise data. c) The retrieved CCF at the reference station 
(station #1). The highlighted red data is the record on the reference station. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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misfit during inversion. The observed and simulated data have 
approximately the same waveform shape and arrival time. Change of the 
normalized error (dividing by the initial error at the first iteration) is 
shown in Fig. 5. The normalized error at the final iteration (30) is 
approximately 22% of the initial error, indicating that the misfit in the 
waveform has been drastically minimized. 

3.2. Field experiment on a deep void 

To further investigate the capability of the 2D ANT method, it was 
applied on field experimental data. The seismic experiment was con
ducted at site in Miami, Florida (Fig. 6), containing a deep and large 
void. The site was located in an urban area, and next to Highway I-395 
and many other local roads. Traffic noise data were recorded using a 
linear array of 48 vertical 4.5-Hz geophones at 2.0-m intervals for a 
spread length of 94 m. Twelve noise records were collected and each one 
lasted for 120 s (24 min in total). During the recording time, vehicles 
were frequently passing on two roadways parallel and next to the 
geophone line, providing good signal strength of the traffic-induced 
surface waves. 

The seismogram of one traffic noise record is displayed in Fig. 7. The 
traffic noise recording is filtered to maintain low frequencies (<25 Hz) 
as shown in Fig. 7a. The data contain abundant traffic-induced surface 
waves because of the high traffic volume around the site area. A sample 
surface wave event (Fig. 7b) can be found at the time 12.4 s, where two 
blue dash lines highlight this event. The filtered data of the entire 24- 
min recording were then divided into 0.3 s segments, and CCFs were 
computed for each segment and summed over all segments. It is noted 
that 0.3 s was selected as it is long enough for wave propagating the 
entire test length of 94 m. A longer segment can be used for computing 
the CCFs, but it may correlate wavefields from different sources and 
violate the assumption of uncorrelated sources used in Eq. (6). 

The sample CCFs calculated for the first reference station (receiver 
#1) is displayed in Fig. 7c, where the dashed line highlights the surface 
wave components. In the CCFs, the signals with positive lag (signal delay 
>0) are dominant. This means the dominant direction of in-coming 
surface wave signals is the direction with decreasing station numbers 
(from station 48 to 1). There is an evident phase shift in the surface wave 
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Fig. 8. Normalized estimated source power spectrum distribution (PSD) function of the field traffic noise cross-correlation function. The first station (station #1) and 
the last station (station #48) are located at 0 m and 94 m, respectively. 
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Fig. 9. Field experiment: a) Inverted Vs of the first run at 5–15 Hz. b) Inverted 
Vs of the second run at 5–25 Hz. 
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Fig. 10. a) The observed CCF, first simulation, and simulation after 30 iterations. b) Residual of the CCF. The initial residual and the residual after 30 iterations. c) 
Waveform comparison at reference station showing a good agreement. 
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Fig. 11. Normalized misfit error vs. iteration number.  
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events. The surface waves recorded by stations number 26 to 48 appear 
to be dragged up to the direction of positive time lag (greater time 
delay). This is a sign of the surface waves traveling through a low- 
velocity anomaly. 

For this application of traffic noises, the source spatial distribution is 
on the road surface and next to the receiver line. We simply computed 
the source power spectrum density (PSD) using the reverse-time 
migration of the field CCF (Wang et al., 2021) at the beginning of 
each inversion run, and kept it constant for all iterations during each 
run. The computed PSD (Fig. 8) shows the source energy distribution 
along the test line with the largest energy at the end of the line (x = 94 
m). 

For inversion, the model was discretized into a 94 × 60 grid of 1 m 
spacing in the x- and z-directions, respectively. The grid spacing was 
selected as a half of the receiver spacing to conveniently assign receivers 
to numerical nodes. The receiver spread of 94 m was assigned on the free 
surface, with the first receiver at x = 0.0 m and the last receiver at x = 94 
m. 

The initial model was established based on the average velocity of 
the site. As the slope of the dashed line (Fig. 7c) is about 630 m/s (e.g., 
0.15 s over a distance of 94 m), suggesting that the average Rayleigh 
wave velocity (VR) of the site is about 630 m/s. As Vs is about 10% 
higher than VR, a homogenous Vs model of 700 m/s was used. Vp of 
1400 m/s was computed from Vs and a typical Poisson ratio of 1/3 for 
soil/rock, and density was assumed as 1800 kg/m3. 

The dominant frequency range of the recorded traffic noise is 5–25 
Hz with consistent wave propagation pattern. Therefore, 5–25 Hz data 
were used for analysis. Higher frequencies (>25 Hz) are not required for 
deep void imaging since these short-wavelength surface wave compo
nents mostly propagate at shallow depths and do not pass by the deep 
void. Two inversion runs were performed with frequency bandwidths of 
5–15 Hz and 5–25 Hz, respectively, beginning with the lower fre
quencies on the initial model. The inverted result from the first run at 
5–15 Hz was used as the initial model for the second run at 5–25 Hz. 
Each run stopped after 15 iterations. 

The inverted Vs models of both runs are displayed in Fig. 9. The first 

run result (Fig. 9a) shows a large low-velocity zone from about 30 m to 
42 m depth, which is similar with the actual depth of the void at 28 m to 
44 m. The void is successfully identified due to the low-frequency data 
(5–15 Hz). While the two results do not differ significantly, the second 
run result (Fig. 9b) shows a bit larger low-velocity zone at the void depth 
of 28 m to 44 m. The second run also updated the high-velocity zone 
above the void (consistent with the Standard Penetration Test (SPT) 
outputs, discussed later). Again, the void is not imaged in the inverted 
Vp profile, which is not shown. 

The waveform comparison of the observed and simulated CCFs is 
shown in Fig. 10, where the red curves represent the observed CCF of 
traffic noise at 5–25 Hz, and the blue and black dashed curves, respec
tively, represent the initial and final simulated CCFs. The overall fitting 
of the waveforms improved during the inversion. At the large-offset 
stations (25 to 48) the misfit was substantially reduced. At station 
#48 with the largest offset from reference station #1, the optimization 
of surface wave arrival time is evident (Fig. 10c). Based on the time 
arrival, the initial simulation arrives before the observation, indicating 
that the starting model is stiffer than the true subsurface profile (due to 
the large void). After thirty iterations, the simulation and the observa
tion have similar arrival times and match well. 

The normalized misfit error is shown in Fig. 11 for all iterations. The 
error decreases from 1 to 0.7 in the first run and does not change much 
during the second run. As observed in the inverted results (Fig. 9), the 
first run at low-frequency data (5–15 Hz) characterized most of sub
surface structure including the void. The second run mostly updated the 
velocity near the void boundary and the stiff rock above the void leading 
to a small change in the error at the second run. 

For verification, Fig. 12 compares the inverted Vs and the in-situ 
SPT-N values. The location of both Vs and SPT is at x = 50 m, which 
is at the center of the void. The Vs and SPT-N profiles are generally in 
agreement with each other, including the identification of the void at 
28–40 m depth. Albeit the lack of high frequencies has prevented the 
inversion algorithm from obtaining an accurate velocity profile at 
shallow depths, the inverted Vs is generally consistent with the trend of 
the SPT-N profile, which shows a high-velocity zone around 24 m depth 
and a low-velocity zone below 28 m. This comparison indicates that the 
Vs profile retrieved by the ANT method generally reflects the subsurface 
conditions of this site. 

4. Conclusion 

In this research, we investigated the capabilities of a recently 
developed ambient noise tomography (ANT) method for characteriza
tion of deep buried voids (sinkholes). The feasibility of the ANT method 
was first demonstrated on a model of variable layers with two voids of 8- 
m diameter, embedded at 20-m and 30-m depths. The synthetic results 
reveal that the 2D ANT method is capable of imaging the deep voids. 
Interestingly, the two voids can be identified even with data at relatively 
low frequencies (<15 Hz), which often exist in field traffic noises. The 
method was then demonstrated on a field experiment at a site in Miami, 
Florida, containing a deep and large void (28 m to 44 m depth). A linear 
array of 48 receivers were used to record traffic noises, from which CCFs 
were extracted and directly inverted to obtain the 2D Vs model. With the 
recorded traffic noise rich in low frequencies (5–15 Hz), the ANT 
method successfully imaged the void. The inverted Vs values generally 
agree with the invasive SPT-N values, including the identification of the 
void and its depth. Based on the field experiment, the ANT method re
quires less field-testing effort and reduces the risk of ground collapse due 
to wave excitation, comparing to active-source seismic methods. Passing 
vehicles of various weights and speeds can generate noise data at a wide 
frequency range of 5 Hz to 25 Hz required for subsurface imaging at 
meter-pixels to large depths (up to 50 m). Thus, the ANT method is a 
useful and effective geophysical tool for detecting deep voids under or 
near roadways. 

Fig. 12. Comparsion of S-wave velocity and SPT-N values at the void location.  
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