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ABSTRACT: The ability to predict polymer solution viscosity is essential for polymer characterization and processing. Here, we use
a synergistic approach combining the scaling theory of polymer solutions and convolutional neural network (CNN) models to
obtain system-specific parameters and describe semidilute solution viscosity in the unentangled and entangled solution regimes. The
scaling approach relies on the existence of a characteristic microscopic length scale—the solution correlation length (correlation blob
size) é—which uniquely defines macroscopic solution properties. It is based on a relationship between the solution correlation
length £ = Ig"/B and the number of monomers g per correlation volume for polymers with the monomer projection length [. The
system-specific set of parameters B,, By, and 1 in the corresponding solution regime with the scaling exponent v = 0.588, 0.5, and 1,
respectively. Applying two CNN models, we obtained the sets B, and By, from the solution specific viscosity, 7y, as a function of
concentration, ¢, and weight-average degree of polymerization, N,. The CNN was trained on theoretically generated datasets
converted to sparse images representing the normalized specific viscosity 7,,/N,, (PG in the unentangled Rouse regime. The
trained CNN was utilized in automated data analysis of the solution viscosity of polystyrene, poly(ethylene oxide), poly(methyl
methacrylate), poly(acrylonitrile-co-itaconic acid), cellulose, sodium hyaluronate, hydroxypropyl methyl cellulose, methyl cellulose,
hydroxypropyl cellulose, cellulose tris(phenyl carbamate), xanthan gum, galactomannan, and sodium k-carrageenan in water, organic
solvents, and ionic liquids. This approach produced values of the B-parameters with mean absolute percentage differences of less
than 6% from the corresponding values determined by the manual data analysis. The B-parameters are then used to obtain the
packing number P, defining the onset of entanglements in polymer solutions and to describe semidilute solution viscosity as a
function of concentration and N,

KEYWORDS: AI approach, scaling, solution viscosity, polymers, polymer solutions

H INTRODUCTION correlations with a chemical structure. In particular, the
Over the past decade, the discovery of new polymeric materials chemical specificity of solution constituents manifests itself in
with desired properties has been transformed by advancements coarse-grained parameters such as the chain’s Kuhn length,

in machine learning techniques and algorithms,'™* polymer
property databases,” " and automated polymer synthesis and
characterization.””"" This has resulted in a generation of data
banks composed of comprehensive molecular parameters,
including constituting atoms, chemical bonds, bond angles, Received: June 14, 2023
interatomic interactions, and electronic structures. However, Accepted: August 8, 2023
the application of this approach faces challenges in describing
the properties of polymer solutions due to their hierarchical
organization, conformational complexity, and inherent poly-
dispersity, where properties do not always have direct

excluded volume, and packing density required for formation

of entanglements.
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The application of artificial intelligence (AI) in establishing
structure—property correlations opened a new direction in
polymer research.'”””'> The majority of research in this
direction is focused on predicting polymer properties from a
monomer chemical structure or their distribution along the
polymer backbone.'”'” In particular, data-driven approaches
have utilized unsupervised learning'® and reverse engineering
analysis methods'””° to expand the analysis of simulation and
experimental data.*'>* However, leveraging artificial intelli-
gence to accelerate data analysis remains largely unex-
plored.”>*® To address these challenges and the big data
requirements needed for neural network training, we
developed an approach that utilizes a scaling theory of
semidilute polymer solutions’’ > in conjunction with a
convolutional neural network (CNN).**~* By generating
large theoretical datasets using the confirmed scaling relation-
ships, we eliminated the reliance on extensive experimental
datasets. The CNN viability was tested on experimental
datasets for the concentration dependence of specific viscosity
in solutions of polymers with different molecular weights. By
determining the sets of polymer/solvent-specific parameters
defining chain statistics on different length scales, the onset of
entanglements, and crossover concentrations between different
solution regimes, the CNN was able to reconstruct a universal
viscosity representation across the Rouse and entangled
solution regimes. This data-driven approach to the determi-
nation of polymer solution properties holds the potential to
enable the rapid automated analysis of the solution viscosity
and can be used in polymer characterization and processing.

The rest of the article is organized as follows. First, we
briefly overview the scaling model of semidilute polymer
solutions. After that, we discuss the CNN design and training
on the theoretically generated datasets of specific viscosity in
semidilute polymer solutions in a broad range of polymer
concentrations and molecular weights. A trained CNN is then
utilized for automated analysis of 37 polymer solutions®*~>* to
obtain polymer/solvent-specific parameters defining chain
statistics on the different length scales and onset of
entanglements. The CNN-generated system parameters are
compared with those determined from manual analysis of the
viscosity data to establish the accuracy of the developed CNN.

B SCALING MODEL OF SEMIDILUTE POLYMER
SOLUTIONS

We begin the discussion with a brief overview of the scaling
theory of semidilute polymer solutions.”’~*’ In the framework
of the scaling approach, solution properties are defined by the
solution correlation length (blob), &, the largest length scale
within which there is a hierarchical blob structure reflecting a
scale-dependent polymer/solvent affinity (Figure la). In a
good solvent, the correlation blobs are made of thermal blobs
with size Dy, and each containing gy, monomers, within which
chain statistics are similar to a random walk on the length
scales larger than the Kuhn length b. On the length scales
shorter than a chain Kuhn length but larger than the monomer
(repeat unit) projection length in an all-trans conformation, ,
the root-mean-square end-to-end distance r of the section of a
polymer chain scales linearly with the number of monomers g,
in it

r=1Ig, fori<r<b (1)

B=B; B=BhBy B=1
(a) / D:>4 (b) 5 v = 0.588

v=0.5 v=1

Figure 1. (a) Schematic representation of different length scales of
semidilute polymer solutions in a good solvent. £ is the solution
correlation length, Dy, is the thermal blob size, and b is the Kuhn
length. (b) Concentration dependence of the number of repeat units
per correlation blob,.g, in semidilute polymer solutions ¢ > ¢** with
crossover concentrations ¢y, —thermal blob overlap concentration and
c**—crossover concentration to concentrated solution regime. gy, is
the number of repeat units per thermal blob. Insets show chain
conformations at the correlation length scale in different concen-
tration regimes. Logarithmic scales.

with the corresponding scaling exponent v = 1 and coeflicient
B=1.

Within a thermal blob, a section of a chain follows ideal
chain statistics described by a scaling exponent v = 0.5, such
that

l 0.5
r=(lbg )™ = g;’ forb <r < Dy
' By, (2)
where we introduced
By, = (1/b)* (3)

characterizing the chain flexibility.

On the length scales Dy, < r < &, the effective excluded
volume interactions between monomers in the presence of the
solvent result in swelling. The statistics of the chain section on
these length scales can be described by a self-avoiding walk of
thermal blobs with scaling exponent v = 0.588, resulting in
Ig¥
r=Dy(g/8,) = — forDy <r<¢

B, (4)

The value of the B, parameter is determined by the chain
flexibility and the excluded volume v*°

— 3v=2_ 1-2v
B, = 1(Ib)™* v (s)

Finally, on the length scale larger than solution correlation
length, & < 7, all interactions are screened, and a chain with the
weight-average degree of polymerization N,, behaves as an
ideal chain of N,/g correlation blobs (Figure la), each
containing g repeat units. The size of such a chain is estimated
as

R = &(N,/g)”* (6)

The concentration dependence of the correlation blob £ and
the number of monomers in it g are derived by imposing the
space filling condition on the correlation blobs, ¢ = g/&. After
some algebra, we arrive at the following expression for the
correlation blob size

&= lBl/(3v—l)(Cl3)D/(1—3u) 7)
and the number of monomers per correlation volume
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Figure 2. Workflow of obtaining the system-specific parameters By, By, and P.. Generation of sparse images representing surfaces of normalized
specific viscosity for determination of the B, and By, in the Rouse regime (1— 4) Input of sparse images into CNNs to obtain B, and By, (5-6).
Calculation of 7, vs N,,/g for determlnatlon of P, (7), where the blue circles represent values of N,,/g calculated using the obtamed B, and By,
parameters and the solid line represents the least-squares fit to the equation in step 7. The scaling parameters 4, and 4 are calculated from the
crossover concentrations cy, and ¢**. Multiplication factor 4, = 1 for ¢ < ¢** and 4, = (c/c¥%) ™S for c¥* < c. Multlphcatlon factor 4 = 4, “forc <

c** and 2 = A" (¢/c**) 7" for ¢ ** < c. See the Supportmg Information for details.

g= B3/(3u—1)(613)1/(1—3u) (8)

Figure 1b shows the concentration dependence of the number
of monomers per correlation blob in different solution regimes.

The chain overlap concentration, ¢*, corresponding to a
crossover to the semidilute solution regime, is derived by
setting the number of monomers per correlation volume (eq
8) to the weight-average chain degree of polymerization, g =
N,

#13 _ p3agl-3v
¢'l” = BN, (9)

The crossover concentrations ¢y, and ¢** between different
solution regimes (Figure 1b) are determined by comparing the
number of monomers per correlation blob g with the number
of monomers per thermal blob gy and the number of
monomers per chain Kuhn length b/l In particular, thermal

blobs start to overlap at monomer concentrations ¢ = ¢y, such
that g(cg) = gu This results in the following expression

Cth13 — B&(Bth/Bg)l/(zu—l) (10)

At monomer concentration ¢ = ¢**, the number of monomers
per correlation blob becomes comparable to the number of
monomers per chain Kuhn length g(c**) = b/I. Rewriting this
condition in terms of By, we have

&P = B} (11)

In the monomer concentration range such that ¢ > ¢**, chain
sections within the correlation length are rod-like, which is
reflected in the concentration dependence of g = ()™
(Figure 1b).

The scaling approach to the chain dynamics is built on the
assumption of screening the hydrodynamic interactions on
length scales on the order of the solution correlation length &.
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This allows the derivation of a crossover expression for the
solution specific viscosity 7, of polymer chains with the
weight-average degree of polymerization N,, and covering both
the Rouse and entangled solution regimes

N, : g_lyforc < FF
Ny = N, |1+ |—
N, cbl*,for ¢** < ¢ (12)

where N, is the number of repeat units per entanglement
strand. For a polymer solution in a good solvent (B, < By,*"*),
the concentration dependence of N, is calculated according to

the Kavassalis—Noolandi conjecture®®™**
ok
N = P g forc<c¢
CHI) 3, for *F < ¢ (13a)

For marginally good solvents with B, > By*®, the
concentration dependence of N, is calculated according to
the Rubinstein—Colby conjecture™ ™"

3y2/3
g(cthb )77, < Cth
- BX(cPY 3, ¢ <c<b
e Te
g bl <c< ™™
2 %%, N2k
By (c"F/e)Y, "< (13b)

The numerical constant P, appearing in eqs 13a and 13b
represents the packing number, describing the required
number of overlapping strands per entanglement.”” >’
The scaling approach for neutral polymer solutions has been
successfully a&plied to solutions of poly(ethylene oxide),""*°
34,51,52 41
polystyrene, poly(methyl methacrylate),”" poly-
o . : N 4 . 35-37
(acrylonitrile-co-itaconic acid),” sodium hyaluronate,
47,48,53 42 .
galactomannan, xanthan gum,”” sodium k-carra-
38,54 43—45,49 . .
geenan, cellulose, and various cellulose derivatives
such as hydroxypropyl methyl cellulose,”® methyl cellulose,*
hydrm%propyl cellulose,” and cellulose tris(phenyl carba-
mate).”” The method takes advantage of the concentration
dependence of the solution specific viscosity in the Rouse
(unentangled) solution regime (N,, < N,) in extracting the set
of B-parameters from plots of normalized specific viscosity,
1151,/Nw(cl3)1/(3”—1).27_29 From this set, one can replot the
solution specific viscosity in the universal form by using eqs 12
and 13a and obtain the packing number P, through a simple
least-squares fit.””*°~®" However, this manual method of data
analysis is tedious (several hours can be spent analyzing
experimental data by hand to determine if entanglements are
present in a system), complex (understanding the calculation
of different concentration regimes is important as this
determines how to look at a particular system), and subject
to human bias. In the next section, we show how we use the
scaling method to procedurally generate input data for a CNN
to streamline the automated analysis of solution viscosity and
extract the polymer/solvent-specific By, B, and P, parameters.

Bl CNN APPLICATION TO ANALYSIS OF SOLUTION
VISCOSITY

Building on the successful implementation of the CNN in
analyzing images,”””** we applied the CNN to the analysis of
semidilute solution viscosity. Figure 2 outlines the workflow of
the CNN implementation in determining the polymer/solvent-

specific parameters {B,, By, P.} from the solution viscosity
represented as a surface in the 3D space of (c/’, N,, ’75p) (step
1). The concentration and weight-average degree of polymer-
ization data are logarithmically distributed within a fixed range.
For example, row i of the data represents a reduced
concentration of min(cP®) ¢, where A is determined by the
maximum value and the desired number of rows. Thus, the
viscosity as a function of ¢* and N, is represented as a matrix
of fixed size. The analysis begins with the representation of the
concentration dependence of the viscosity surface in the Rouse
regime (7, < 20)

rlsp — Nw/g — NWB3/(1—3D)(C13)1/(3L/—1) (14)

in terms of the ratios 17SP/NW(¢:13)1'31 (where v = 0.588 and B =
B, for good solvent) and 7,,/N,,(cI’)* (where v = 0.5 and B =
By, for O solvent) as functions of c* and N,, (step 2). This is
required for the determination of the values of the B-
parameters in the corresponding solution regimes (Figure
1b). The obtained ratios and the values of cl* and N,, are
transformed into the interval [0,1] through a log-normalization

In x — In(min x)

- In(max x) — In(min x) (15)

anl’l’n

such that the minimum and maximum values of each axis of
the 3D surfaces are mapped to 0 and 1, respectively (step 3).
At this stage, the data are converted to images that are
composed of 224 X 224 pixels. The location of each pixel is
determined by the value of the normalized concentration cl®
and weight-average degree of polymerization N,, and each
pixel has a value of the log-normalized specific viscosity. All
values that lie outside the ranges of (c’, N,,, 715},) are set to zero
and are shown in black on the images in Figure 2. Each image
is transformed into a sparse image (step 4) by randomly
selecting between 1 and 13 different columns representing
weight-average degrees of polymerization and between S and
13 different rows representing concentrations. All values of 7,
that are not located in the selected rows and columns are set to
zero. This transformation is performed to represent the
measured specific viscosity of a polymer solution with one or
more molecular weights at discrete concentrations.

The prepared images are fed into CNNs (steps 5—6). We
implement two separate networks with the input of 7/
N,(cP)!?! to predict B, and the input of #,/N,(cF’)* to
predict By, The calculated values of B, and By, parameters are
used for the representation of the solution-specific viscosity in
terms of a number of correlation blobs per chain (eqs 8, 11, 12,
and 13b) to collapse datasets with different N,, values and to
obtain the packing number P, (step 7).

For training and optimization of the CNN, the data for the
concentration dependence of specific viscosity were generated
by using the scaling theory for known values of By, By, and P,
in the following parameter space: 3 X 10° <P <2 X% 1073
10> < N, <10% and 1 < Ny < 10° This range of;)olymer
solution parameters covers experimental datasets.”” > Specif-
ically, we generated three different types of systems: (1)
systems that show only a value of By, (2) systems that show
only a value of By, and (3) systems that show both values of B,
and By,. The ranges of By, By, and P, utilized to generate these
systems are found in Table S4 of the Supporting Information.

We compare two different architectures of CNN: Visual-
ization Geometry Group (in particular, the VGG13 model)*’
and Inception (also known as GoogLeNet).”” The VGG
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architecture series uses sequential steps to extract information
from images, while the Inception architecture utilizes several
different elements in parallel and combines them together in an
effort to learn more complex patterns. The layers along with
the number of parameters learned in each layer of the two
architectures are found in the Supporting Information.

Each CNN architecture model used to predict either B; or
By, is optimized and trained three separate times to
demonstrate reproducibility. PyTorch® is utilized, and the
two models used in this work are adapted from previously
developed models from refs 30 and 31. The Adaptive Moment
Estimation (Adam) optimization algorithm67 with the hyper-
parameters of learning rate (step size of an optimization
through a parameter space), #; and f3, (decay rates of the
moving average of the gradient and gradient squared,
respectively), and € (parameter for numerical stability in
each optimization step) are tuned using Optuna.®® This tuning
process is described in the Supporting Information. The trial
with the hyperparameters showing the lowest average training
error for the last epoch is used. The training, validation, and
testing of the architectures are run for 300 epochs. For each
epoch, we use 51,200 images generated through steps 1-5
shown in Figure 2 to train the models to predict B, and By,
After the training, 21,952 images, also generated through steps
1-35, are used to validate the models that are trained to predict
Bg and By, After the validation step, we tested the models on
37 images that represent the experimental data we manually
analyzed and obtained the B, and By, parameters.”’ >’ The loss
function utilized for training the models is the mean-squared
error

MSE = iz (h, — y)
mic1 (16)

where m represents the number of datasets, h; is the predicted
value of a parameter, and y; is the true value of the parameter.
To establish how close the predictions of the B-parameters are
to our previous calculations of the system-specific B-
parameters, we quantify the accuracy of the B-parameter
predictions as the mean absolute percentage difference
(MAPD)

m i ), (17)

where m represents the number of datasets, h; is the predicted
value of a parameter, and y, is the hand-determined value of the
parameter.

B CNN RESULTS

Table 1 displays the results of three separate trials of
optimization and training of both VGG and Inception-based

Table 1. Mean Absolute Percentage Differences of B, and
By, in Validation Step of Theoretically Generated Data

architecture MAPD, B, MAPD, By,
VGG, trial 1 2.29 747
VGG, trial 2 2.45 7.13
VGG, trial 3 2.03 4.46
Inception, trial 1 S.01 5.88
Inception, trial 2 5.70 5.29
Inception, trial 3 5.28 S.10

models, all performing with MAPD less than 10%. The VGG
model performs well in predicting the B.-parameter values with
what we have found previously with values less than 3% of the
MAPD. However, this model does not perform as well at
predicting By, parameters from the sparse images. This is not
surprising due to the possibility of entanglements covering the
thermal blob regime with polymer solutions that have a higher
molecular weight.

To visualize how close the VGG and Inception models
perform in agreement with our previous analyses of the same
systems (which we will term “manual” analysis), we use parity
plots to track the predicted values of B-parameters versus the
manually obtained B-parameters. The parity models of
predicted values of B, versus observed values of B, are
shown in Figure 3, where points along the dashed line reflect
predictions of B-parameters in perfect agreement with manual
analysis. The results of the VGG model in Figure 3a and the
Inception model in Figure 3b highlight two types of systems:
(1) systems with only B, parameters (black circles) and (2)
systems with both B, and By, parameters (red squares). Both
models predicted B, well in agreement for systems in which we
only determined a B, parameter previously, with the VGG
model producing a MAPD of 1.61% and the Inception model
generating a MAPD of 3.06%.

Regarding systems that have both B, and By, the VGG
model’s accuracy was reflected by a MAPD of 2.74%, while the
Inception model’s accuracy resulted in a MAPD of 8.25%. The
B,-parameter is extracted by the plateau of #,/N,(c*)"!
versus concentration; this plateau can be found at lower
concentrations for all molecular weights in the semidilute
Rouse regime. The VGG network is more adept at interpreting
this data than the Inception network, as it may be too simple a
trend to pick up for such a complex architecture. Overall, both
models have higher performance in predicting B, parameters
for systems that are shown to only have a B; parameter. One
example highlighting the behavior of these predictions is for
aqueous poly(ethylene oxide). For the system with the
manually obtained B, value of 1.111, the VGG model predicted
a B, of 1.10S, and the Inception model predicted a B of 1.089.
However, if we take a system with more molecular weights
such that we highlight a thermal regime (having both B, and
By, values), the models both overestimate B, (VGG model and
Inception model predictions of 1.245 and 1.345, respectively,
vs the manually obtained value of 1.119).

The results of the predictions of the By parameters are
shown in Figure 4a for the VGG model and Figure 4b for the
Inception-based model. For systems with only By, parameters,
the VGG model obtained a MAPD of 2.05% compared to the
Inception model’s MAPD from the hand-determined By, value
of 2.75%. Overall, these results show that both models may be
used to determine the B-parameters, which is well in
agreement with the results that one can obtain manually.

With systems containing both B, and By, parameters, the
VGG model showed a MAPD of 5.46%, while the Inception
model had a MAPD of 6.08%. Determining whether a system
has a By, parameter has always been a tedious task. Here, we
know that a system would probably have only a By-parameter
if the specific viscosity scales with the square of the
concentration in the Rouse regime at lower concentrations.
For systems that have both a B, and By, parameter, the specific
viscosity should scale with a concentration power law of 1.31 =
1/(3v — 1) with v = 0.588 in the Rouse regime. However, one
must determine if the minimum of 77,/N,,(c*)* is the result of
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Figure 3. Parity plots for VGG (a) and Inception (b) model training best runs for the B,-parameter prediction. Symbol notations: systems with
only manually obtained B, parameters (black circles) and systems with both manually obtained B, and By, parameters (red squares).
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Figure 4. Parity plots for VGG (a) and Inception (b) model training best runs for By-parameter prediction. Symbol notations: systems with only
manually obtained By, parameters (blue triangles) and systems with both manually obtained B, and By, parameters (red squares).

a thermal plateau or entanglements from the good solvent
Rouse regime. For lower molecular weights, it can be seen that
the plateau is indeed the real thermal plateau (see the N/
N, (cP)* surface example in Figure 2), while for higher
molecular weights, the minimum is disguised by entanglements
before it reaches the absolute minimum of the surface.

Table 2 shows the predicted values of the B-parameters and
P, together with corresponding values obtained by manual
analysis”’ =’ of the specific viscosity data.**~>* In particular,
we present the B, and By, parameters for the VGG model of
trial 3, which had the lowest MAPD. For each predicted value
of B, and By, we recalculate the number of blobs per chain,
N, /g and use this information for the representation of the
solution viscosity and determination of the packing number,
P,, from curve fitting

2
A Nl ) + Ny
'75 = 2
P gxlg P, gig (18)
where both 4, and 4 are multiplication factors that are given in

the Supporting Information. The deviations of the predicted
packing numbers from the manually obtained packing numbers
are due to differences in the B; and By, parameters. For most
systems, we observe that systems with a higher B-parameter
predicted by the CNN than the manually determined values
result in higher values of g (eq 8) and, in turn, lower N, /g
values and smaller values of P,. The main reason behind this is
the sensitivity of packing number P, to the value of the
crossover concentrations determined by Bg. Using the

predicted values of packing numbers, in Figure 5, we
reconstruct a universal representation of crossover between
the Rouse and entangled regimes described by

2
My N, N,
R P
P> N, N

e e

(19)

where the slope of 1 represents the Rouse regime transforming
to a slope of 3 in the entangled regime. The good collapse of
the data provides further justification for the use of the CNN-
based approach in the analysis of the solution viscosity.

B CONCLUSIONS

We demonstrate the successful application of the CNN,
trained and optimized on the datasets generated by the scaling
theory of semidilute polymer solutions, to the automated
analysis of experimental viscosity data. The developed
framework provides a polymer/solvent-specific set of B-
parameters (Figures 3 and 4) together with crossover
concentrations into different solution regimes (Figure 1b).
This information is used to calculate the packing parameter P..
The obtained set of system-specific parameters {By, B, P.}is
validated by comparing it with the manually determined set
and by confirming a universal representation of the solution
viscosity in the entire concentration range, covering both the
Rouse and entangled semidilute solution regimes in terms of
the reduced variables (Figure 5).

The developed approach could be extended to analyze
experimental data on osmotic pressure®”’® and diffusion”' "
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Table 2. Summary of B-Parameter and P, Predictions from the VGG Model

Ref | Polymer | Solvent | Symbol |Bgmanual  Bgpred |Bth,manual Bihpred | Pemanual P fit
34  Polystyrene Tetrahydrofuran (] 0.615 0.622 6.3 5.9
35 Sodium hyaluronate Water w 0.605 0.609 3.7 3.1
0.597 0.597
. 0.985 0.954
36,37 Sodium hyaluronate Water, PBS ® 0.535 0.527 3.2 2.9
0.626 0.624
38  Hydroxypropyl methyl cellulose Water u 0.429 0.446 3.0 2.6
38  Methyl cellulose Water u 0.433 0.445 3.4 3.1
39  Hydroxypropyl cellulose Water A 0.502 0.497 34 3.6
39  Hydroxypropyl cellulose Water A 0.487 0.488 2.9 2.9
39  Hydroxypropyl cellulose Water A 0.507 0.519 2.7 2.5
40  Cellulose tris(phenyl carbamate) Tetrahydrofuran o 0.460 0.463 3.4 3.4
. 1.187 1.197
41  Polyethylene oxide [BMIm][TFSI] (¢] 1120 1130 35 3.6
42 Xanthan gum Water v 0.413 0.390 2.6 3.0
41  Polyethylene oxide Water [©] 1.111 1.105 3.9 3.9
43 Cellulose [AMIm][CI] u 0.404 0.407 3.0 2.6
44 Cellulose [EMIm][P(OCH,)(H)O,] v 0.450 0.457 3.6 3.0
45  Cellulose [BMIm][CI] ® 0.585 0.566 3.6 34
46 Poly(acrylonitrile-co-itaconic-acid) [BMIm][CI] L 4 0.706 0.700 3.7 3.6
47  Galactomannan - guar gum Water L 0.275 0.268 6.5 8.0
48  Galactomannan - Cassia nodosa Water n 0.243 0.244 7.2 6.8
0.346 0.339
49  Cellulose [BMIm][Ac] * 0.352 0.344 83 11.9
0.365 0.353
50  Polyethylene oxide Water (] 1.119 1.245 0.620 0.526 7.2 9.2
51, 52 Polystyrene Toluene (] 0.739 0.707 0.425 0.427 44 4.6
53 Galactomannan - M. flocculosa Water * 0.487 0.503 0.284 0.291 33 3.0
53 Galactomannan - M. bimucronata  Water * 0.494 0.499 0.266 0.244 7.2 11.4
53 Galactomannan - M. aspericarpa  Water * 0.490 0.493 0.281 0.270 5.8 6.6
53 Galactomannan - M. taimbensis Water * 0.497 0.497 0.283 0.277 7.6 8.4
38, 54 Sodium kappa-carrageenan Water A 0.632 0.623 0.391 0.418 10.8 7.2
41  Polyethylene oxide [BMIm][PF] ® i:ig 13(2): 82;51 g;gg 11.5 9.3
49  Cellulose [BMIm][Ac] * 82;2 gz;i 8;:2 g;gé 8.2 8.8
41  Polymethyl methacrylate [BMIm][TFSI] A 0.860 0.918 0.442 0.443 9.9 9.9
LT ! : : correlations between a specific chemical structure of polymers
10* 4 Entangled 4 and solvents with their coarse-grained properties exemplified
] 3 |_ ! by B sets.
A 102
= 1 / ] B ASSOCIATED CONTENT
& 1 r © Supporting Information
,% 100 4 [ The Supporting Information is available free of charge at
lRouse https://pubs.acs.org/doi/10.1021/acsapm.3c01282.
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107 : : _r model training, and Inception model results (PDF)
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Figure S. Dependence of normalized specific viscosity /111SP/P62 vs
number of entanglements per chain N,,/N, for all systems using the
VGG model. Symbol notations are listed in Table 2.

in semidilute solutions. The determination of the {By, B, P.}
set from other experimental techniques should provide further
justification for the approach validity as well as present a
complete toolset for solution characterization.

Future research should also focus on connecting the set of B-
parameters with polymer/solvent molecular identifiers such as
BigSMILES3 or Morgan ﬁngerprinting.74 By generating a
comprehensive library combining specific viscosity, diffusion,
and osmotic pressure data for various polymer/solvent
systems, one will be able to use Al to elucidate hidden
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