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Harmonically confined n-electron systems coupled to light in a cavity: Time-dependent case
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An analytically solvable time-dependent coupled light-matter problem is presented. An n-electron system

is confined by a harmonic-oscillator potential and interacts with photons in a cavity. Both the electrons and

the photons can interact with a time-dependent external field. The light-matter coupling is described by the

Pauli-Fierz Hamiltonian. By separating the relative and center-of-mass motion, the Hamiltonian of the system

can be simplified to a sum of a Hamiltonian of the relative and the center-of-mass motion. The Hamiltonian of

the relative motion is time-independent, not coupled to light, and it can be solved by conventional approaches.

The Hamiltonian of the center-of-mass motion reduces to that of a time-dependent harmonic oscillator and can

be solved analytically. The analytical solution will be used to study excitations, the high-harmonic-generation

spectrum, and nonlinear optical properties in a cavity.
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I. INTRODUCTION

The interaction of light and matter in cavities is very suc-

cessfully described by the Jaynes-Cummings (JC) model [1].

The predictions of the JC model have been experimentally

tested [2–4], and new physical effects, e.g., Rabi oscillations

[5], Fock states [6–8], squeezed states [9], entanglement of

atoms and photons [10], Schrödinger cat states [11], and anti-

bunching [12,13], are predicted.

The JC model was also extended to explicitly time-

dependent Hamiltonians, e.g., a classical laser field is added to

drive the system [14–20]. The coupling [21] or the frequency

[22] can also be time-dependent. Time-dependent JC Hamil-

tonians where the driving field can couple either to the atom or

to the cavity mode were also studied [23]. These approaches

were used to model the dynamic Stark effect [23,24], synchro-

nization of qubits [20], photon blockade [25], entanglement

generation [24,26], highly excited Fock states [27], coherent

states [28], induced atomic resonance fluorescence [29], or

control of the quantum electromagnetic field [30] in cavities

or superconducting circuits.

With the advance of experimental approaches, the study of

systems with strong and ultrastrong light-matter coupling be-

came the center of interest [31–42]. In the ultrastrong regime,

the approximations of the JC model are not valid, and a new

level of theoretical description is needed. The most popular

and practical approach is based on the Pauli-Fierz (PF) Hamil-

tonian. The PF Hamiltonian describes the interaction between

quantum matter (electrons) and a massless quantized radiation

field (photons) in the low-energy nonrelativistic limit of quan-

tum electrodynamics (QED) [43]. The PF approach has often

been used in describing the modification of material properties

in optical cavities [44–53]. In Ref. [54], we have shown that

*kalman.varga@vanderbilt.edu

the PF Hamiltonian is analytically solvable for a harmonically

confined two-electron system. Later, we extended the analyti-

cal solution to harmonically confined n-electron systems [55].

In this work, we will investigate a harmonically confined n-

electron system in time-dependent driving fields. Two driving

fields will be considered: an external laser pulse interacting

with the electrons, and an external current interacting with

the photons. As the electrons and the photons are coupled,

the external field acting on the electrons excites the photons

and vice versa. Coupled electrons and photons in external

fields haven been studied using perturbation theory [56,57]

or with numerical approaches [58]. The effect of light-matter

coupling on electron-electron interaction and correlation in

laser-driven cavities has been investigated [59–62].

The wave function of the harmonically confined electron

systems can be factorized into a relative motion and a center-

of-mass motion part. The wave function of the relative motion

is time-independent and it can be solved analytically for

N = 2 electrons [54] or numerically for N > 2 electrons [55].

The center-of-mass Hamiltonian is coupled to light and it is

time-dependent. This Hamiltonian can be separated into a sum

of laser-driven time-dependent one-dimensional harmonic-

oscillator Hamiltonians. These Hamiltonians have analytic so-

lutions, or alternatively they can be solved by exact diagonal-

ization and time-propagation, as will be shown in this paper.

Numerical calculations will be presented to show how

the time-dependent external fields can be used to excite

photons and electrons. We will show that by a suitable chosen

external field, the system can be excited to a desired photon

number state. One-photon states have been experimentally

generated for quantum computer applications using entangled

atoms [7,8]. Our calculations show that states with a fixed

number of photons can also be created using quantum dots

with harmonic confinement. The external fields can also

change the high-harmonic-generation (HHG) spectra and

the nonlinear properties of the system. The tunability of
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the nonlinear properties of molecules has been studied in

Ref. [63] using the QED time-dependent density functional

theory [58,64,65]. In this work, we study these effects in an

analytically solvable model system. The numerical examples

highlight several interesting possibilities. In the case of HHG,

the coupling to the cavity can remove inversion symmetry and

even harmonics can appear in the spectrum. The coupling also

introduces new polaritonic excitation peaks that appear in the

HHG spectrum. The position of these peaks is independent

of the frequency of the exciting laser field, but it depends

on the confining potential and the cavity parameters. Thus,

the HHG spectrum can be altered by the cavity and it is not

only determined by the driving field. It will also be shown

that the nonlinear susceptibility can be tuned by the coupling

strength and the cavity frequency. We have found that the

susceptibility strongly depends on the occupation of the

excited states. The occupation of the excited states can be

tuned by the cavity frequency and the light-matter coupling.

The occupation increases with stronger coupling, but it has a

maximum value as a function of the frequency. The nonlinear

susceptibilities follow a similar tendency.

The outline of the paper is as follows. In Sec. II the

formalism is introduced, and the separation of the Hamilto-

nian into exactly solvable terms is presented. In Sec. III the

diagonalization of the coupled light center-of mass Hamilto-

nian is discussed. In Sec. IV numerical calculations for the

laser-driven Hamiltonian are considered. This is followed by

a short summary. Appendixes are included to make the paper

self-contained.

II. FORMALISM

We assume that the system is nonrelativistic and the cou-

pling to the light can be described by the dipole approximation

(the wavelength of light is much larger than the size of the

system). The nonrelativistic PF QED Hamiltonian provides a

consistent quantum description at this level. The PF Hamilto-

nian in the Coulomb gauge [44–48] is

H = He + Hep, (1)

He =
N
∑

i=1

(

− h̄2

2me

�∇2
i + vext(ri, t )

)

+ e2

4πε0

N
∑

i> j

1

|ri − r j |
,

Hep =
Np
∑

α=1

{

1

2

[

p̂2
α + ω2

α

(

q̂α − λα

ωα

· D

)2
]

+ j
(α)
ext (t )

ωα

q̂α

}

,

(2)

where ri are the positions, me is the mass, and e is the charge

of the electrons. In Eq. (2) the photon fields are described by

quantized oscillators using raising and lowering operators âα

and â+
α . D is the dipole operator,

D =
N
∑

i=1

ri, (3)

where N is the number of electrons and

qα =
√

h̄

2ωα

(â+
α + âα ) (4)

is the displacement field. pα is the canonical conjugate mo-

mentum to qα , which can be written as

pα = i

√

h̄ωα

2
(â+

α − âα ). (5)

In addition to the static terms, a time-dependent external

potential, vext(ri, t ), interacts with the electrons, and a time-

dependent external current, j
(α)
ext (t ), interacts with the photons.

The Hamiltonian in Eq. (2) describes Np photon modes with

photon frequency ωα and coupling λα . The coupling term is

usually written as [66] λα =
√

4π Sα (r)eα , where Sα (r) is the

cavity mode function at position r, and eα is the transversal

polarization vector of the photon modes.

The external potential will be taken in the form

vext(ri, t ) = 1

2
m2

eω
2
0

N
∑

i=1

r2
i + Eext(t )D

= 1

2
m2

e

ω2
0

N

⎡

⎣

N
∑

i< j

(ri − r j )
2 +

(

N
∑

i=1

ri

)2
⎤

⎦

+ Eext(t )D, (6)

which is a sum of harmonic-oscillator confinements and an

external electric pulse described as a classical field. In the

second line, we have used an identity that will be useful later

in this section.

Atomic units are used; h̄, e, me, and 4πε0 are all equal to

unity and may be dropped from the equations.

One can define N − 1 relative coordinates (see Appendix A

for more details)

xi = ri − R (i = 1, . . . , N − 1), R = 1

N

N
∑

j=1

r j . (7)

Many different relative coordinate systems can be defined

(two are presented, and the relation between them is discussed

in Appendix A). The above choice is particularly simple be-

cause the single-particle coordinates can be expressed as

ri = xi + R (i = 1, . . . , N − 1), rN = −
N−1
∑

j=1

x j + R. (8)

The Hamiltonian for the electrons can be written as

He = Hx + HR, (9)

with

Hx = 1

2

N−1
∑

i=1

π
2
i + 1

2

ω2
0

N

N
∑

i< j

(ri − r j )
2 + 1

2

N
∑

i< j

1

|ri − r j |
(10)

and

HR = 1

2N
P2 + 1

2
Nω2

0R2 + NEext(t )R, (11)

where P is the canonically conjugate momentum to R, and

πi are canonically conjugate momenta to xi. Note that Hx

depends on ri − r j , but using Eq. (8), ri − r j can be expressed

using the N − 1 relative coordinates xk and there is no depen-

dence on R.
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Assuming that we have only one photon mode with fre-

quency ω and defining the coupling term as λ = λ(1, 1, 0),

the electron-photon coupling term becomes

Hep = ω

(

â+â + 1

2

)

− Nωq̂λR + 1

2
N2(λR)2 + jext(t )

ω
q̂.

(12)

The generalization to many-photon modes and different forms

of λ is simple and can be found in Ref. [55]. To simplify the

notation and make the paper more readable, we will restrict to

a single mode and the above-defined λ.

Now the total Hamiltonian can be written as

H = Hx +
[

ω

(

â+â + 1

2

)

+ jext(t )

ω
q̂

]

− NωqλR +
(

HR + 1

2
N2(λR)2

)

. (13)

The first term is the Hamiltonian of the relative motion. It

is not coupled to the center-of-mass motion or to the photon

space, and it is time-independent. For N = 2 electrons, Hx can

be solved analytically [54]; for more than two electrons, it can

be treated numerically [55].

The terms in the square brackets represent the Hamiltonian

of the photons coupled to the center-of-mass through the third

term (NωqλR). The terms in the large parentheses represent

the Hamiltonian acting on the center-of-mass motion.

As is shown in Appendix B, the Hamiltonian can be decou-

pled into the following form:

H = Hx + Hv + Hz + Hc, (14)

where

Hc = ω

(

â+â + 1

2

)

− ωq
√

2Nλu + jext(t )

ω
q̂ + Hu. (15)

Here Hu, Hv , and Hz are one-dimensional time-dependent

harmonic-oscillator functions. These are analytically solvable

[67,68] (see Appendix C), and the time-dependent eigen-

functions φv (v, t ) and φz(z, t ) are known. We note that as

is discussed in Appendix B, one can simplify the model

further by assuming an external field defined as Eext(t ) =
(E (t ), E (t ), 0). In that case, φv and φz are time-independent

harmonic-oscillator functions.

The ansatz

� = 	(x)e−iExtφv (v, t )φz(z, t )	c(u, t ) (16)

satisfies the time-dependent Schrödinger equation

i
∂

∂t
� = H�. (17)

The wave functions 	x, φv , and φz are already known, and

we only need to deal with Hc, as will be discussed in the next

section.

III. DIAGONALIZATION OF THE LIGHT-MATTER

COUPLED HAMILTONIAN

The Hamiltonian Hc can be diagonalized in two different

ways. In the first approach, new variables are introduced to

decouple the CM and photon harmonic oscillators. In the

second one, a product basis of the CM and photon harmonic

oscillators φk (u)|n〉 is used, where φk (u) satisfies the time-

independent equation

Huφk (u) =
(

k + 1
2

)

ωuφk (u), ω2
u = ω2

0 + 2Nλ2 (18)

(see Appendix B). The advantage of the first approach is that

it is exact, while numerical diagonalization is needed in the

second approach. The advantage of the second approach is

that the solution is directly obtained as a product of spatial

and photon spaces.

A. Shifted Fock states

The coupling Hamiltonian can be rewritten as

Hc = −1

2

∂2

∂q2
+ 1

2
ω2q2 − 1

2

∂2

∂u2

+ 1

2
ω2

uu2 + κuq + εqq + εuu, (19)

with

κ = −ω
√

2Nλ, εq = jext(t )

ω
. (20)

This is a Hamiltonian of two coupled time-dependent har-

monic oscillators. The Hamiltonian can be decoupled by

introducing the following coordinate rotations:

r = q cos θ − u sin θ, s = q sin θ + u cos θ, (21)

with tan 2θ = 2κ
ω2

u−ω2 . The Hamiltonian is decoupled into two

uncoupled time-dependent harmonic oscillators

Hc = Hr + Hs, (22)

Hr = −1

2

∂2

∂r2
+ 1

2
ω2

r r2 + cr (t )r,

Hs = −1

2

∂2

∂s2
+ 1

2
ω2

s s2 + cs(t )s, (23)

where

ω2
r = ω2 cos2 θ + ω2

u sin2 θ − κ sin 2θ,

ω2
s = ω2 sin2 θ + ω2

u cos2 θ + κ sin 2θ,
(24)

and

cr (t ) = εq cos θ − εu sin θ,

cs(t ) = εq sin θ + εu cos θ.
(25)

Now the analytical solution can be written as a product of

the eigenfunctions of Hr and Hs in Eq. (23) as outlined in

Appendix C.

B. Exact diagonalization

The Hamiltonian in Eq. (15) can also be solved by exact

diagonalization using the product of center-of-mass eigen-

functions and photon Fock states as basis states,

|nu, nq〉 = φnu
(u)|nq〉. (26)

To diagonalize Hc, one needs the matrix elements of the

Hamiltonian which are readily available. The operators Hu and

u act on the real space, and â + â+ acts on the photon space.
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The matrix elements of q and u are

〈m|q|n〉 = 1√
2ω

Dmn, (27)

〈i|u| j〉 = 1√
2ωu

Di j, (28)

where

Dmn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
√

1 0 0 0 · · ·√
1 0

√
2 0 0 · · ·

0
√

2 0
√

3 0 · · ·
0 0

√
3 0

√
4 · · ·

0 0 0
√

4 0 · · ·
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (29)

Thus, the matrix elements of Hc are

〈i, m|Hc| j, n〉 = δmnδi j

(

j + 1

2

)

ωu + δmnδi j

(

n + 1

2

)

ω

+ k

2
√

ωωu

DmnDi j + εu(t )√
2ωu

Di jδnm

+ εq(t )√
2ω

Dnmδi j . (30)

After the diagonalization, we have the eigenenergies and

the eigenfunctions. The eigenfunction has the following form:

	c =
∑

nu,nq

cnu,nq
φnu

(u)|nq〉, (31)

where cnu,nq
are the components of the eigenvector.

In the large-N limit, we have ωu ≈
√

2Nλ, and the cou-

pling strength in the last term of Eq. (30) will be
√

ω(N/8)1/4, (32)

which is independent of λ. In this case, ωu is very large, and

the lowest u harmonic-oscillator state dominates,

	c =
∑

nq

c0,nq
φ0(u)|nq〉. (33)

IV. RESULTS

In this section, we present numerical examples using the

exact diagonalization approach. The advantage of this method

is that the matter and photon coordinates are factorized, and

one can analyze the weight of the matter and light components

in the wave function easily.

First one has to construct a product basis

φnu
(u)|nq〉, (34)

where the highest nu and nq values depend on the coupling

strength, on the frequency of light, and on the confining

harmonic-oscillator potential. One can easily find the appro-

priate values by testing the convergence of the lowest energies

as a function of the basis dimension.

The converged ground or excited state,

	c(t = 0) =
∑

nu,nq

cnu,nq
φnu

(u)|nq〉, (35)

will be time-propagated to solve the time-dependent problem.

In the time propagation, the basis is time-independent but the

linear coefficients change in time, and the wave function is

	c(t ) =
∑

nu,nq

cnu,nq
(t )φnu

(u)|nq〉. (36)

We will use the Crank-Nicolson [69] time-propagator to solve

the time-dependent Schrödinger-equation:

	c(t + �t ) = exp

(

− i

h̄
H�t

)

	c(t ) (37)

≈ 1 − i
2
H�t

1 + i
2
H�t

	c(t ), (38)

where H is the Hamiltonian matrix defined in Eq. (30). The

Crank-Nicolson method is unconditionally stable, and with

an appropriately small time step, it converges to the exact

solution [70]. In our case, the dimension of H is low so

the calculation of the inverse in the Crank-Nicolson step is

computationally cheap, but H is very sparse and one could

use iterative inversion even for H of large dimensions. Atomic

units will be used in the calculations.

We will calculate the following quantities:

(i) Norm of the wave function as a function of time,

|	c(t )|2 =
∑

nu,nq

∣

∣cnu,nq
(t )
∣

∣

2
. (39)

This is a good measure of the accuracy of the time propaga-

tion. The norm remains 1 if the time step is suitably chosen,

and it will diverge if the time step is too large.

(ii) The occupation probability of a given CM harmonic-

oscillator wave function as a function of time,

	cm(nu, t ) =
∑

nq

∣

∣cnu,nq
(t )
∣

∣

2
. (40)

This function shows how the oscillator states are excited dur-

ing the external time-dependent pulse.

(iii) The occupation probability of a given photon state as

a function of time,

	ph(nq, t ) =
∑

nu

∣

∣cnu,nq
(t )
∣

∣

2
. (41)

This shows the excitation of the photon states.

(iv) The time-dependent expectation value of the Hamilto-

nian,

E = 〈	c(t )|Hc|	c(t )〉
=
∑

nu,nq

∑

n′
u,n

′
q

cnu,nq
(t )∗cn′

u,n
′
q
(t )〈nu, nq|Hc|n′

u, n′
q〉. (42)

Note that this quantity is not constant because the energy of

the electromagnetic field is not added. This quantity shows the

change of the energy of a time-propagated state compared to

the initial state.
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(v) The time-dependent dipole moment for the center-of-

mass,

u(t ) = 〈	c(t )|u|	c(t )〉

= 1√
2ωu

∑

nu,n′
u,nq

cnu,nq
(t )∗cn′

u,nq
(t )Dnun′

u
, (43)

where Dnn′ is defined in Eq. (29).

(vi) The high harmonic spectrum is calculated using the

dipole acceleration,

I (ωh) =
∣

∣

∣

∣

∫ T

0

∂2u(t )

∂t2
e−iωht dt

∣

∣

∣

∣

2

. (44)

To calculate the high harmonic spectrum, we time-propagate

a system in a laser pulse, calculate u(t ), and then I (ω).

(vii) The nonlinear susceptibilities. Using an electric field

Ei f (t ) that is sufficiently weak, the induced dipole moment

ui(t ) can be expressed in power series [71,72],

ui(t ) =
∑

n

p(n)(t )(Ei )
n, (45)

where p(n)(t ) is the nth-order component of the polarization.

The polarization, p(n), can be expressed using the nth-order

susceptibility χ (n) as

p(n)(t ) =
∫

χ (n)(t − t1, t − t2, . . . , t − tn)

× f (t1) f (t2) · · · f (tn)dt1dt2 · · · dtn, (46)

and this describes the nonlinear optical properties of the sys-

tem. To calculate χ (n), one time-propagates the system subject

to Ei f (t ) for several values of Ei and inverts Eq. (45) to get

p(n)(t ). Then χ (n) can be extracted from (46) [71,72].

A. Excitation by an external field

In this case, the system is subject to a time-dependent

external field of the form

εq(t ) = Ee f (t ), f (t ) = g

(

20π

ωe

,
32π

ωe

, t

)

sin(ωet ), (47)

where Ee is the strength of the excitation, ωe is the excitation

frequency, and the envelope function is defined as a trape-

zoidal,

g(a, b, t ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2t
b−a

, t < 1
2
(b − a),

1, 1
2
(b − a) � t < 1

2
(a + b),

1 − 2
t− a+b

2

(b−a)
, t > 1

2
(a + b),

0, t > b.

(48)

As Eq. (19) shows, the coupling Hamiltonian is symmetric

in εq and εu. The former excites the photons through the

coupling to the photon displacement q, and the latter excites

the electrons through coupling to the dipole moment.

Figure 1 shows the excitation caused by the external field.

We will investigate the cavity frequency and the coupling

strength dependence of the wave functions using the first ex-

cited state. The ground state only shows oscillation following

the oscillation of the external excitation, but the order of states

does not change for physically realistic parameter sets. In

-0.2

0.0

0.2

ε
q

0.9

1.0

E

0.5P
cm

0 500 1000 1500 2000
t

0.0
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P
p
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p
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ε
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E

0.0
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P
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p
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(c)

FIG. 1. Time propagation of the light-matter coupled system.

(a) External pulse, energy, center-of-mass, and photon number oc-

cupation probability as a function of time for N = 2 electrons with

ω0 = 0.5, ω = 0.5, and λ = 0.025. The starting state is the first

excited state, 	c = 0.69φ1(u)|0〉 + 0.72φ0(u)|1〉. (b) External pulse,

energy, center-of-mass, and photon number occupation probability as

a function of time for N = 2 electrons with ω0 = 0.5, ω = 0.25, and

λ = 0.025. The starting state is the first excited state, 	c = φ0(u)|1〉.
(c) External pulse, energy, center-of-mass, and photon number oc-

cupation probability as a function of time for N = 2 electrons with

ω0 = 0.25, ω = 0.25, and λ = 0.075. The starting state is the first ex-

cited state, 	c = 0.58φ1(u)|0〉 + 0.78φ0(u)|1〉 + 0.13φ2(u)|1〉. ωe =
0.057 is used in the calculations. In the occupation number figures,

the black curve corresponds to quantum number 0, the red to 1, the

green to 2, and the blue to 3. The green and blue are not shown in

(c) because they would overlap the other curves.
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the case of the first excited state, there are changes in level

order depending on the parameters of the cavity. By appro-

priate choice of parameters, one can drive the system into a

desired photon number state as experimentally described in

Refs. [7,8].

In Fig. 1(a), the first excited state and an entangled state

of the photon states |0〉 and |1〉 are time-propagated. The

oscillation of the energy and occupation numbers follows

the oscillation of the laser field. The highest occupied CM

harmonic-oscillator occupation state oscillates between the

nu = 0 and 1 states. The order of the higher occupied pho-

ton states changes at the beginning and the end of the laser

pulse. The occupation of the |2〉 photon states also increases

significantly.

In the second case [Fig. 1(b)], λ is kept the same but ω is

decreased. As Eq. (30) shows, this decreases the coupling be-

tween the CM motion and photons but increases the strength

of the external field. As a consequence, the starting first-

excited state is almost purely a 	c = φ0(u)|1〉 state and the

occupations of the harmonic-oscillator states barely change.

The occupations of the photon states and the order of the

states, however, change rapidly.

In the third case, we increase λ. In this case, the cou-

pling is stronger and the starting wave function [	c =
0.58φ1(u)|0〉 + 0.78φ0(u)|1〉 + 0.13φ2(u)|1〉] contains higher

harmonic-oscillator components. The oscillation of the energy

and occupation numbers become irregular because the higher

harmonic oscillator and photon states get excited. Moreover,

the oscillations of the occupation numbers continue after the

laser pulse in a Rabi-oscillation-like manner. These exam-

ples show that changing the coupling, cavity frequency, and

harmonic confinement can generate a variety of coupled light-

matter states with an external field.

B. High harmonic generation

Figure 2 shows the high harmonic spectrum of the system

calculated using Eq. (44). The system is subject to a Gaussian

envelope laser pulse

εu(t ) = Ee f (t ), f (t ) = exp

(

− (t − τ )2

σ 2

)

sin(ωet ), (49)

and time propagated for 100 000 time units. Note that in this

case, the CM motion dipole is excited by εu [see Eq. (30)].

Figure 2(a) shows the HHG for the noncoupled, λ = 0, ω = 0

case. Due to the inversion symmetry of the CM harmonic-

oscillator Hamiltonian, only the odd harmonics appear in the

spectrum at nωe for n = 1, 3, 5, . . . . Once the light and matter

degrees of freedom are coupled [Figs. 2(b), 2(c), and 2(d)],

the inversion symmetry is lost and even harmonics can appear

depending on the coupling and the cavity frequency.

Figure 2 shows (blue arrows) the position of the excita-

tion energies of the lowest eigenstates of the time-dependent

Hamiltonian [defined by the first three terms in Eq. (30)]. If

the coupling is weak, then the first two terms of Eq. (30) de-

termine the eigenenergies. The dipole operator couples states

φi|n〉 and φ j |m〉 if n = m and j = i ± 1 [see Eq. (30)].

In the case of no coupling, the lowest states are φ0|0〉,
φ1|0〉, φ2|0〉 and the excitation energies shown in Fig. 2(a) are

ωu and 2ωu (the excitation energy is defined by subtracting the

(a)

(b)

(c)

(d)

FIG. 2. High harmonic spectra. (a) No coupling; (b) ω = 0.2,

λ = 0.025; (c) ω = 0.1, λ = 0.025; (d) ω = 0.1, λ = 0.05. The

exciting laser is defined by Eq. (49) with Ee = 0.2, ωe = 0.057,

τ = 5067 σ = 2067, and T = 100 000. The red and blue bars show

the positions of the excitation energy of the lowest states of the

time-independent system. The excitation energy is defined as the

difference between the energy of the excited state minus the energy

of the ground state.

ground-state energy from the energy of the given state). One

can see that a peak appears at the position of the excitation

energies corresponding to the transitions from the ground state

to the excited states due to the laser.

The same trend can be observed for the ω > 0 and λ >

0 cases [see, e.g., Fig. 2(b)] but now the spectrum is more

complex due to the coupling to light. The lowest states are

	c0 ≈ 0.99φ0|0〉 + 0.06φ1|1〉,
	c1 ≈ 0.66φ1|0〉 − 0.74φ0|1〉,
	c2 ≈ 0.74φ1|0〉 + 0.66φ0|1〉,
	c3 ≈ 0.05φ0|0〉 − 0.46φ2|0〉 + 0.71φ1|1〉,
	c4 ≈ −0.69φ2|0〉 + 0.08φ1|1〉 + 0.71φ0|2〉. (50)

The transition from 	c0 to 	c1 and 	c2 is strong because 	c1

and 	c2 have large φ1|0〉 components. These two transition

peaks are visible, although the first partly overlaps with the

peaks at the laser frequency. The excitation energies cor-

responding to 	c3 and 	c4 do not appear in the spectrum

because the wave-function components are much smaller.

Transitions from and to other states are also possible but less

significant. The excitation energy peaks in Figs. 2(c) and 2(d)

can be explained similarly. Compared to Figs. 2(b), 2(c) is

calculated for a smaller cavity frequency. The main effect is

that the excitation energies are different and the corresponding

peaks are shifted. A similar effect can be observed in Fig. 2(d),

but in this case the peaks are moved by increasing λ.

This example shows that the HHG of the system changed

in the cavity due to two main effects. The first is that the

coupling removed the inversion symmetry restriction, allow-

ing the possible appearance of even harmonics. Secondly, the

energy levels of the harmonically confined electrons in the

cavity show up in the HHG spectrum. As the energy levels
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t
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-0.01
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ε
u
(t)

u(t)

FIG. 3. Polarization and electric field. The laser is defined by

Eq. (49) with parameters ωe = 0.043, τ = 413, and σ = 206. Laser

strength Ee = 0.0078 was used to calculate u(t ).

depend on ω0, ω, and λ, one can add HHG peaks at desired

positions and can modulate the HHG spectrum with the cavity.

C. Nonlinear susceptibilities

In this section, we calculate the nonlinear susceptibilities

for certain cavity parameters. The nonlinear susceptibilities

of molecules in cavities have been studied in Ref. [63]. It

was found that the polaritonic resonances can enhance the

susceptibilities, and the nonlinear conversion efficiency can

be tuned by the coupling strength.

Using Eq. (46) we have calculated the polarizations up

to the third order. The exciting electric field is typically a

few-cycle laser pulse, and the pulse used in this calculation

[Eq. (49)] is similar to the choice of Refs. [71,72]. The

frequency of the confining harmonic-oscillator potential is

chosen to be ω0 = 0.5. The cavity frequency ω and the cou-

pling λ are selected in such a way that the occupation of the

excited state is small. In these cases, the susceptibilities can

be extracted using a simple fit. If the excited states are more

dominant, then the calculation of the frequency-dependent

susceptibilities will be more tedious.

Figure 3 shows the external field and the polarization

for a weak laser field. The time-dependent dipole moment

smoothly follows the oscillation of the laser. By calculat-

ing the dipole moments ui(t ) for three different laser field

strengths, Eei [see Eq. (49)], we can calculate p(n) using

Eq. (45). The values of p(n) are not sensitive to the values of

Eei provided that the field is sufficiently weak. Figure 4 shows

that p(n) can be very well approximated by χ (n) f (t )n, which

is a simple time- (or frequency-) independent susceptibility.

Figure 4(a) shows that the linear component, χ (1) = 4, gives

an excellent fit to p(1)(t ). Figures 4(b), 4(c), and 4(d) show

the dependence of p(3) on ω and λ. These figures show that a

simple p(3) = χ (3) f (t )3 gives a good fit for the third-order po-

larization, although the fit is not as perfect as for the first-order

one. Note that while the calculation of the time-dependent

dipole is very accurate, the extraction of χ (1) has to be av-

eraged over time, which introduces an error bar of about ±5%

due to the fluctuation of the polarization.

-4

0

4 p
(1)
(t)

χ
(1)
f(t)

-0.002

0.000

0.002 p
(3)
(t)

χ
(3)
f(t)

3

-0.0005

0.0000

0.0005

0 100 200 300 400 500 600 700
t

-0.05

0.00

0.05

(a)

(b)

(c)

(d)

FIG. 4. First- and third-order susceptibilities. (a) p(1)(t ) (dashed

black) and χ (1) f (t ) (red) (χ (1) = 4). (b) p(3)(t ) (dashed black) and

χ (3) f (t )3 (red) (χ (3) = 0.0017) for ω0 = 0.5, ω = 0.5, and λ = 0.1.

(c) p(3)(t ) (dashed black) and χ (3) f (t )3 (red) (χ (3) = 0.000 88) for

ω0 = 0.5, ω = 0.25, and λ = 0.1. (d) p(3)(t ) (dashed black) and

χ (3) f (t )3 (red) (χ (3) = 0.008) for ω0 = 0.5, ω = 0.5, and λ = 0.2.

The legend of (b) is also a legend of (c) and (d). The laser is defined

by Eq. (49) with parameters ωe = 0.043, τ = 413, and σ = 206.

Three laser strengths, Eei = 0.001 95, 0.0039, 0.0078, were used to

calculate p(n).

Figure 5 shows the dependence of second- and third-order

susceptibility on λ and ω. The calculations show that the

dependence of χ on ω and λ is closely related to the oc-

cupation probability. The value of χ (n) increases when the

occupation of excited states is higher because more states will

be connected with dipole transitions. We have investigated

the dependence of the occupation probability on the cavity

frequency and coupling in Ref. [55], and now we apply those

finding for this case. Figure 5(a) shows the occupation of

the excited states as a function of ω. For a fixed λ, two

terms in Eq. (30) influence the occupation of the excited

states. By increasing ω, the second term shifts the energy of

the excited states higher, and that decreases the occupation

probability of the excited states. The third term couples the

center-of-mass and the photon spaces, and the coupling is

proportional to
√

ω. By increasing ω, the coupling increases,

and that leads to higher excited-state occupation probability.

As a result of these two competing processes, the occupation

of the excited states first increases with ω and then reaches

a maximum and starts to decrease, as is shown in Fig. 5(a).

The behavior of χ (n) is very similar [Fig. 5(b)], increasing

and reaching a maximum before starting to decrease. The

curve is not as smooth as the occupation probability due to

the error related to the extraction. A similar behavior can be

found for the λ dependence of the occupation number and

χ (2) [see Figs. 5(c) and 5(d)]. In this case, the occupation

number increases monotonically with λ because λ is larger

than the coupling [third term in Eq. (30)]. The second-order

polarization χ (2) is much smaller than the third-order one.

The small value of χ (2) is due to the fact that the second-

order process is not allowed without coupling to the cavity,

and it remains hindered for the parameter region of this

study.
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(a)

(b)

(c)

(d)

FIG. 5. Dependence of occupation probability of the excited

states and the nonlinear susceptibilities χ (n) on the cavity frequency

and the coupling strength. χ (2) is multiplied by 800 to fit in the same

figure as χ (2). λ = 0.1 and ω0 = 0.5 are used for the ω dependence,

and ω = 0.5 and ω0 = 0.5 are used for the λ dependence.

V. SUMMARY

We have presented an analytically solvable time-dependent

model of the interaction of harmonically confined electrons

and light in a cavity. In the framework of the Pauli-Fierz

Hamiltonian, the relative motion and center-of-mass motion

can be factorized. The Hamiltonian of the relative motion

is time-independent and it is not coupled to light. It can

be solved by various approaches as we have described in

Refs. [54,55]. The Hamiltonian of the center-of-mass motion

can be written as the sum of three Hamiltonians, each of them

depending on a single variable only. This separation allows

the factorization of the center-of-mass wave function into a

product form so that the three Hamiltonians can be solved

independently. Two of these Hamiltonians are not coupled

to the light, and these are simple time-dependent harmonic-

oscillator Hamiltonians that can be solved analytically (see

Appendix C). The third Hamiltonian is a coupled light-matter

harmonic-oscillator Hamiltonian. This Hamiltonian can be

decoupled by using shifted Fock states, and it can be solved

analytically.

The disadvantage of the analytical solution is that in the

wave functions, the light and matter coordinates are mixed

and it is cumbersome to calculate physical properties in terms

of light or matter degrees only. As an alternative, we use a

product of harmonic oscillators and Fock states as a basis that

allows an exact diagonalization approach. The convergence

can be controlled by increasing the number of orthogonal

basis states. This product basis can also be used to solve the

time-dependent problem with time propagation of the wave

function.

Three different time-dependent problems are studied. In

the first, we have shown how external fields acting on either

the light or the matter degrees of freedom can excite the other

degrees of freedom. In the second, the effect of the cavity

on the HHG spectrum was investigated. We have shown that

with the cavity, one can introduce intensity peaks in the HHG

spectrum at desired locations which may have applications

in ultrafast (attosecond) spectroscopies. In the third example,

we have shown how the third-order nonlinear susceptibility

(which is an important quantity controlling nonlinear optical

mixing processes) of the system changes and can be tuned in

the cavity.
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APPENDIX A: RELATIVE COORDINATES

In a system of N particles with coordinates ri, one can

introduce N − 1 independent relative coordinates xi and a

center-of-mass coordinate R = xN by a linear transformation

[73]

xi =
N
∑

j=1

Ui jr j . (A1)

Many different choices of definitions of the relative coordinate

set are used, for example

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0 0 · · · 0
1
2

1
2

−1 0 · · · 0
...

...
...

. . .
... 0

1
N−1

1
N−1

1
N−1

1
N−1

... −1
1
N

1
N

1
N

1
N

1
N

1
N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

or

U ′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − 1
N

− 1
N

− 1
N

· · · − 1
N

− 1
N

1 − 1
N

− 1
N

· · · − 1
N

...
...

. . .
...

...

− 1
N

− 1
N

... 1 − 1
N

− 1
N

1
N

1
N

1
N

1
N

1
N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and the generalization for unequal masses is straightforward

[73]. The U matrices can be inverted and the different relative

coordinates can be transformed into each other. The inverse of
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the transformation matrices is

U −1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2

1
3

1
4

· · · 1
N−1

1

− 1
2

1
3

1
4

· · · 1
N−1

1

0 − 1
3

1
4

· · · 1
N−1

1
...

...
...

. . .
...

...

0 0 0 · · · −N−1
N

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

U ′−1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 · · · 0 1

0 1 0 · · · 0 1

0 0 1 · · · 0 1
...

...
...

. . .
...

...

−1 −1 −1 · · · −1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

As all elements of the last row of U are 1/N , the inverse

matrix has a special structure: all elements of its last column

are 1 [73]. That means that we can express the single-particle

coordinates as

ri =
N−1
∑

j=1

U −1
i j x j + R. (A2)

The relative and center-of-mass momenta πi = −ih̄ ∂
∂xi

are

related to the single-particle momenta pi = −ih̄ ∂
∂ri

as

πi =
N
∑

j=1

U −1
ji p j (i = 1, . . . , N ). (A3)

This equation defines the total momentum as πi =∑N
j=1 p j ,

and the center-of-mass kinetic energy is Tcm = π
2
N/2N . Now

we can subtract the center-of-mass kinetic energy from the

total kinetic energy

N
∑

i=1

p2
i

2
− Tcm = 1

2

N−1
∑

i=1

N−1
∑

j=1

�i jπiπ j, (A4)

where

�i j =
N
∑

k=1

UikU jk . (A5)

This completes the separation of the relative and center-of-

mass system, and it works in any system defined by U .

As an example, let us consider N = 3. Using U , one can

define

x1 = r1 − r2,

x2 = r1 + r2

2
− r3,

R = r1 + r2 + r3

3
, (A6)

and the single-particle coordinates are expressed as

r1 = 1
2
x1 + 1

3
x2 + R,

r2 = − 1
2
x1 + 1

3
x2 + R,

r3 = − 2
3
x2 + R. (A7)

Similarly, using U ′ we can define

x′
1 = 2

3
r1 − 1

3
r2 − 1

3
r3,

x′
2 = −1

3
r1 + 2

3
r2 − 1

3
r3,

R = r1 + r2 + r3

3
, (A8)

and now the single-particle coordinates are

r1 = x′
1 + R, r2 = x′

2 + R,

r3 = −x′
1 − x′

2 + R. (A9)

APPENDIX B: DECOUPLING THE CENTER-OF-MASS

HAMILTONIAN

The center-of-mass part can be simplified further by intro-

ducing

u =
√

N
X + Y√

2
, v =

√
N

Y − X√
2

, z =
√

NZ, (B1)

where R = (X,Y, Z ), and

εu(t ) =
√

N
Ex(t ) + Ey(t )√

2
, (B2)

εv (t ) =
√

N
Ex(t ) − Ey(t )√

2
,

εz(t ) =
√

NEz(t ), (B3)

where Eext(t ) = (Ex(t ), Ey(t ), Ez(t )). Using this notation, the

light-matter coupling term becomes

ωqλR = ωq
√

2Nλu, (B4)

and only the u coordinate is coupled to light. By defining

Hu = −1

2

∂2

∂u2
+ 1

2
ω2

uu2 + εu(t )u, (B5)

Hv = −1

2

∂2

∂v
2

+ 1

2
ω2

v
v

2 + εv (t )v,

Hz = −1

2

∂2

∂z2
+ 1

2
ω2

z z2 + εz(t )z, (B6)

with frequencies

ω2
u = ω2

0 + 2Nλ2, ω2
v

= ω2
z = ω2

0, (B7)

we can write the CM part as

HR + 1
2
N2(λR)2 = Hu + Hv + Hz. (B8)

Now the CM Hamiltonian is a sum of three independent time-

dependent harmonic oscillators, and only Hu is coupled with

light. This derivation can be easily generalized to any form

of λ [54], and it is not limited to the present λ = λ(1, 1, 0)

choice as we have mentioned before. These time-dependent

Hamiltonians have known analytical solutions [67,68], which

have been reviewed in Appendix C. If one chooses Ex = Ey

and Ez = 0, then Hv and Hz are time-independent and the

solution is even simpler.
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Now we can define a simplified coupling Hamiltonian in

the following form:

Hc = ω

(

â+â + 1

2

)

− ωq
√

2Nλu + jext(t )

ω
q̂ + Hu. (B9)

The total Hamiltonian now becomes

H = Hx + Hv + Hz + Hc. (B10)

By solving the Schrödinger equation for the time-independent

part,

Hx	(x) = Ex	(x), (B11)

and solving the time-dependent Schrödinger equations for the

time-dependent parts,

i
∂

∂t
φv (v, t ) = Hvφv (v, t ), (B12)

i
∂

∂t
φz(z, t ) = Hzφz(z, t ), (B13)

i
∂

∂t
	c(u, t ) = Hc	c(u, t ). (B14)

The ansatz

� = 	(x)e−iExtφv (v, t )φz(z, t )	c(u, t ) (B15)

satisfies the time-dependent Schrödinger equation

i
∂

∂t
� = H�. (B16)

APPENDIX C: SOLUTION OF THE TIME-DEPENDENT

HARMONIC-OSCILLATOR HAMILTONIAN

The time-dependent Schrödinger equation for a harmonic

oscillator driven by a laser field is analytically solvable

[67,68]. We include the key ingredients in this Appendix for

completeness. The starting equation is

− h̄2

2m

∂2

∂x2
+
[

1

2
kx2 − xF (t )

]

ψ = ih̄
∂ψ

∂t
, (C1)

where F (t ) is a time-dependent driving field.

Rewrite ψ into the form

ψ (x, t ) = χ (x, t )eg(t )x, χ (x, t ) = φ(x − u(t ), t ), (C2)

where u(t ) and g(t ) are auxiliary functions to be determined.

By substituting this ansatz into Eq. (C1), one has

− h̄2

2m

∂2φ

∂ξ 2
+
(

ih̄u̇ − h̄2

m
g

)

∂φ

∂ξ
+ 1

2
kξ 2φ

+ (ku − F − ih̄ġ)ξφ

+
(

1

2
ku2 − Fu − ih̄uġ − h̄2

2m
g2

)

φ = ih̄
∂φ

∂t
, (C3)

where ξ = x − u(t ). Now we can choose g and u to eliminate

the coefficients of ∂φ/∂ξ and ξφ,

ih̄u̇ − h̄2

m
g = 0, ku − F − ih̄ġ = 0 (C4)

and Eq. (C3) simplifies to

− h̄2

2m

∂2φ

∂ξ 2
+ 1

2
kξ 2φ = ih̄

∂φ

∂t
− δ(t )φ, (C5)

where we have defined

δ(t ) = 1

2
ku2 − Fu − ih̄uġ − h̄2

2m
g2 = 1

2
mu̇2 − 1

2
ku2, (C6)

where the second equality is obtained by using Eqs. (C4).

In Eq. (C5), the ξ and t variables are separable, and

the left-hand side represents the time-independent harmonic

oscillators, with eigenenergies En = (n + 1
2

)h̄ω and wave

functions

Nn exp
(

− 1
2
α2ξ 2

)

Hn(αξ ), (C7)

where Hn is the nth Hermite polynomial,

α4 = mk/h̄2, ω = [k/m]
1
2 , (C8)

Nn2 = α

π
1
2 2nn!

. (C9)

The right-hand side can be integrated over time, and the total

solution is

φ = Nn exp

{

− i

h̄

∫

[δ(t ) + En]dt

}

exp

(

−1

2
α2ξ 2

)

Hn(αξ ).

(C10)

Note that Eq. (C4) is equivalent to a driven classical harmonic-

oscillator equation

mü + ku = F (t ), (C11)

and g is also uniquely determined by solving for u in this

equation.

As a simple example, we consider a sinusoidal driving

field of the electrons: εq = 0, εu = CF cos(ωF t ) in (18). The

transformed driving fields cr (t ), cs(t ), corresponding to F (t )

above, are still of the form CF cos(ωF t ). The solution to (C11)

is well known,

u = A1 exp(iωt ) + A2 exp(−iωt ) + CF
∣

∣ω2 − ω2
F

∣

∣

cos(ωF t ),

(C12)

where A1, A2 are given by the initial conditions, and ω is the

oscillator frequency. Note that the complex parts of u should

not be dropped, as they affect the time-dependency of the

wave functions. One can easily evaluate the integral:
∫

δ(t )dt = iω

2

(

A2
1e2iωt − A2

2e−2iωt
)

− C2
F t

4
(

ω2 − ω2
F

) − C2
F

(

ω2 + ω2
F

)

8ωF

(

ω2 − ω2
F

)2
sin(2ωF t )

+ iωCF

(

A1eiωt − A2e−iωt
)

∣

∣ω2 − ω2
F

∣

∣

cos(ωF t ). (C13)

Thus, the time-dependent wave function is determined.

In our case, the analytical solution for Hc [Eq. (23)] can be

written as a product of the eigenfunctions of Hr and Hs,

	c = χrχsφr,nφs,m, (C14)
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where

φr,n = Nr,n exp

{

−i

∫

[δr (t ) + En] dt − 1

2
ωrξ

2
r

}

Hn(
√

ωrξr ),

(C15)

Nr,n =
(ωr

π

)
1
4 1√

2n n!
, En =

(

n + 1

2

)

ωr,

(C16)

δr (t ) = 1

2
ẇ

2 − 1

2
ω2

r w
2, ξr (t ) = r − w(t ),

χr = exp(irẇ). (C17)

Hn is the nth Hermite polynomials, and w(t ) is the solution

to ẅ + ω2
r w = −cr (t ), which has exact particular solutions in

integral form for any reasonable cr (t ). Appendix C shows an

analytical example. The χs and φs,m are obtained analogously.

In principle, any starting wave function can be decomposed

through a basis formed by φr,n at t = 0 and time-propagated

by evolving each φr,n.

APPENDIX D: DECOUPLING

Suppose the following Hamiltonian:

H = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ 1

2
ω2

x x2

+ 1

2
ω2

y y2 + kxy + a(t )x + b(t )y. (D1)

Assume the following transformations:

u = x cos θ − y sin θ, v = x sin θ + y cos θ. (D2)

Then we decouple the Hamiltonian

H = Hu + Hv, (D3)

where

Hu = −1

2

∂2

∂u2
+ 1

2
ω2

uu2 + c(t )u,

Hv = −1

2

∂2

∂v
2

+ 1

2
ω2

v
v

2 + d (t )v, (D4)

and

c = a cos θ − b sin θ, d = a sin θ + b cos θ. (D5)

The rotational angle is given by

tan 2θ = − 2k

ω2
x − ω2

y

(D6)

and the frequencies

ω2
u = ω2

x cos2 θ + ω2
y sin2 θ − k sin 2θ, (D7)

ω2
v

= ω2
x sin2 θ + ω2

y cos2 θ + k sin 2θ. (D8)

Hu and Hv can be solved by Appendix C.
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