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Highlights

• This paper proposes a novel computational modeling approach to investigate fluid-structure interactions with moving contact lines.
• By embracing the generalized Onsager principle and phase field method, the proposed PDE models are thermodynamically consistent

and robust in investigating physical-relevant phenomena for fluid-structure interactions with moving contact lines.
• By introducing a novel supplementary variable, we transform the numerical scheme design problem into an optimization problem to

which effective numerical techniques can be applied.
• Unlike many other schemes in the literature that respect a modified energy dissipation law, our proposed numerical method can indeed

respect the original energy dissipation law.
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Abstract. This paper proposes a novel computational modeling approach to investigate the
fluid-structure interactions with moving contact lines. By embracing the generalized On-
sager principle, a coupled hydrodynamics and phase field system is introduced that can
describe the fluid-structure interactions with moving contact lines in a thermodynamically
consistent manner. The resulting partial differential equation (PDE) model consists of the
Navier-Stokes equation and a nonlinear Allen-Cahn type equation. Volume conservation is
enforced through an additional penalty term. A fully-discrete structure-preserving numeri-
cal scheme is proposed by combining several techniques to solve this coupled PDE system
effectively and accurately. For the temporal discretization, we utilize the supplementary
variable method for preserving the thermodynamic structure and the projection approach
for reducing the problem size. Then, we use the finite difference method on the staggered
grid for spatial discretization. Furthermore, we have rigorously proved that the proposed
numerical scheme based on the second-order backward difference formula respects the orig-
inal energy stability, i.e., the scheme is energy stable. Additionally, with the aid of the sup-
plementary variable method, the resultant scheme can be transformed into a constrained op-
timization problem, where the solutions of the supplementary variables are the arguments of
the objective function that reaches the optimality. Then the augmented Lagrangian method
is introduced in part to bring robustness and efficiency to solving such a constrained opti-
mization problem. Finally, various numerical simulations verify the model’s capability and
demonstrate the scheme’s effectiveness, accuracy, and stability.

Key words: Phase-field, conserved Allen-Cahn, energy-stable, structure-preserving algorithm, supple-
mentary Variable Method

1 Introduction

Many dynamical processes in scientific and engineering settings involve mixtures of multiple
phases, for which the phase field method provides a state-of-the-art interface capturing ap-
proach [5, 17, 33, 34, 37, 58, 60]. Its primary advantage is that the evolving interface is retrieved
intrinsically as a smooth solution of continuous PDEs instead of tracking it explicitly as other
interface tracking methods. Moreover, the phase field method provides a practical and efficient
approach in an Eulerian framework to simulate physical problems with interfaces.

The classical phase field models are the Cahn-Hilliard (CH) equation [5] and the Allen-
Cahn (AC) equation [3]. The CH equation is usually used to model binary-fluid phase sepa-
rations because it inherits the volume conservation, but it is relatively harder to solve numer-
ically. The AC equation is more broadly used to describe the solidification and order-disorder
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transitions of alloy systems. To describe the dynamics of the CH system in an arbitrarily com-
plex domain, Kim et al. develop a modified CH system and further investigate its applica-
tions [25, 30, 42, 50]. The Allen-Cahn equation is a second-order equation, which is easier to
compute numerically but does not conserve the volume of each phase. To circumvent this,
Rubinstein et al. [36] introduced a nonlocal Allen-Cahn model with a nonlocal constraint to
enforce volume conservation. After that, Brassel et al. proposed another strategy to preserve
the conservation of volume [2]. By comparison, authors in [36] also suggested that the Allen-
Cahn model with a volume constraint can serve as an alternative to the Cahn-Hilliard model
for simulating interfacial dynamics of immiscible multi-component material systems.

When the hydrodynamic is considered, the velocity field shall be introduced, and its dy-
namics shall be properly coupled with the phase field variables. Meanwhile, the coupled sys-
tem shall meet the thermodynamically consistent requirement to reflect the physics properly.
Such hydrodynamic phase field models for multiphase fluids flows are usually derived by
an energy variational approach [7, 27, 31, 41, 45, 61]. The governing hydrodynamic phase field
system naturally satisfies thermodynamics-consistent energy dissipation laws and is mathe-
matically well-posed. The variational structure and thermodynamic property of the modeling
approach have been exploited to develop structure-preserving numerical algorithms [22].

In the past few years, devising accurate, efficient, and structure-preserving numerical ap-
proximations for this type of this model has been an active field. There are many existing
results in the literature on developing structure-preserving algorithms for solving thermo-
dynamical and hydrodynamical phase-field models, including the convex splitting schemes
[11, 14, 56], the stabilizer approach [29, 39, 47], exponential time differencing methods [15, 16],
the fully-implicit structure-preserving schemes [1,48]. However, these popular approaches are
not trivial to extend to hydrodynamic phase field systems for devising high-order schemes.
Mainly, there are several difficulties: dealing with the nonlinear terms in the chemical po-
tential, dealing with the coupling between the phase field and velocity field, and handling
the nonlinear advection term in the Navier-Stokes equation. To decouple the incompressible
Navier-Stokes equation and Cahn-Hilliard equation, one can use the operator splitting tech-
nique [20, 40, 59]. However, we emphasize that such decoupling is restricted to first-order ac-
curacy in time due to the splitting error. How to design a second-order decoupling scheme for
the hydrodynamic phase field model is still an open question. Recently, the energy quadratiza-
tion approaches (such as IEQ, SAV, and their variants) provided a novel idea to develop some
second-order accurate linear energy stable schemes [13,19,23,32,38,53]. And this idea has been
further populated to investigate various hydrodynamic phase field models [32, 50–52, 54, 55].
Some work of the convergence analysis and error estimate for the phase-field-fluid coupled
system can be found in [8–10, 18].

Although the phase field models for multiphase fluid problems, i.e., fluid-fluid interac-
tions, and their numerical approximations are well studied, the extension for investigating
fluid-structure problems, particularly fluid-solid interactions with moving contact lines, re-
main unresolved for a long time. Several major difficulties include describing the solid struc-
ture with a phase variable while respecting the variational structure, i.e., making sure the PDE
model is thermodynamically consistent. Additionally, it is non-trivial to embed the moving
contact line dynamics at the fluid-solid interface into the PDE model.

To address these issues, we introduce several techniques to develop a novel hydrody-
namic phase-field computational model for fluid-structure interaction in complex domains
with moving contact lines. A complex domain is modeled by a fixed phase field, which only
depends on spatial variables. This system’s total energy includes the kinetic and free ener-
gies of the fluid-fluid and fluid-solid interactions. On account of the contact angle, we add
the contribution of the moving contact line energy at the fluid-solid boundary into the total
free energy. To decrease the difficulties of solving the multiple coupled nonlinear fourth-order
Cahn-Hilliard equations, we consider second-order Allen-Cahn dynamics, where the volume
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conservation for each phase is realized by introducing an additional penalty term. A thermo-
dynamically consistent hydrodynamic phase-field model is then derived by the generalized
Onsager principle in the presence of a two-phase incompressible Navier-Stokes flow. Subse-
quently, to develop an efficient numerical approximation that warrants the original physical
structure, we first reformulate the system using constrained optimization supplementary vari-
able method (SVM) fashion to construct a numerical scheme that warrants the original energy
stable. We emphasize that the new SVM formulation is equivalent to the original system.
And then, a fully discrete and decoupled energy stable numerical scheme is proposed to solve
the newly developed hydrodynamical phase-field model in the irregular region, where the
implicit-explicit BDF2 scheme and the staggered-grid finite difference method are utilized to
discretize the governing system of equations in time and space, respectively. It is worth noting
that the fully discrete BDF2 scheme is proven to warrant the original energy dissipation struc-
ture. To improve the computation of the supplementary variables at each time step, we adopt
in this paper an augmented Lagrangian approach to develop an efficient algorithm for solv-
ing it. Their numerical results perform very well. In the end, some numerical examples and
benchmark problems are calculated to verify the developed model’s validity and effectiveness
of the proposed numerical scheme.

The rest of the paper is organized as follows. In Section 2, we present a detailed derivation
of the thermodynamically consistent hydrodynamical phase field model for fluid-structure in-
teraction with moving contact lines. In Section 3, we introduce time-dependent supplementary
variables to reformulate the original model into a constrained optimization problem. Then we
propose a fully discrete and decoupled energy-stable scheme. The original energy dissipa-
tion is proved rigorously. Additionally, we use an augmented Lagrangian approach to solving
the constrained optimization problem for supplementary variables. In Section 4, we present
numerical results for various problems to validate the developed model’s capability and our
scheme’s effectiveness. Some conclusions are given in Section 5.

2 Thermodynamically consistent phase-field model for fluid-structure
interaction with moving contacting lines

Consider the computational domain W2Rd, d=2,3 smooth, open, rectangular, bounded, and
connected. For any two matrix functions or 2nd order tensor functions F, G2 L2(W), the inner
product on W is denoted by (F, G)=Âm Ân

R
W Fm,nGm,ndx, and the induced L2 norm is given

by kFk=(F, F)1/2.
We briefly introduce the phase-field model for fluid-structure interaction (FSI) with a mov-

ing contact line (PF-FSI-MCL) in a viscous fluid matrix. Consider a two-fluid mixture with a
third solid structure immersed. The volume fractions for fluid 1 and fluid 2 are denoted by
f1(x,t) and f2(x,t) with the volume fraction for the solid structure denoted by f0(x), i.e., the
solid-structure is time-independent. By incompressibility constraint, we shall have

f0(x)+f1(x,t)+f2(x,t)=1, 8(x,t)2W⇥[0,T].

The volume-averaged density is r:=r1f1+r2f2 where r1 and r2 are the densities for fluid 1 and
fluid 2. The volume-averaged viscosity is h := h1f1+h2f2, where h1 and h2 are the viscosities
for fluid 1 and fluid 2. For simplicity of notation, we use f(x,t) to label the volume fraction of
fluid 1. Thus, the volume fraction of fluid 2 can be retrieved as 1�f(x,t)�f0(x).

We assume the fluids are isothermal, incompressible, and have the same density. The fluid
dynamics system is then governed by conservations of mass and momentum, i.e., the Navier-
Stokes equation and the continuity equation in the domain W, as

r(∂tu+u·ru)=�rp+r·t+F, (2.1)
r·u=0, (2.2)
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where r is the volume-averaged density, u is the volume-averaged velocity, t = 2hD is the
viscous stress tensor with the volume-averaged shear viscosity h and the strain rate tensor
D= 1

2 (ru+ruT), and F is the external force.
The total free energy of the phase-field model for FSI with moving contact lines is postu-

lated as follows

F[f,f0]=Fmix[f]+Fmcl [f,f0], (2.3)

where Fmix[f] is the well-known free energy for the binary fluid mixture in the phase-field
framework, that described as

Fmix[f]=
Z

W

⇣g1

2
(1�f0)|rf|2+ f (f)

⌘
dx, (2.4)

where g1 is a parameter measuring the strength of the conformational entropy. One choice of
the bulk energy density is the double-well potential f (f)=g2f2(1�f)2 with g2 measures the
strength of the repulsive potential. In the sharp-interface limit,

p
g1g2 is proportional to the

surface tension, and # :=
p

g1/g2 measures the interfacial thickness. And the Fmcl(f) is the
moving contact line energy at the fluid-solid boundary [49], which is given by

Fmcl [f,f0]=g3

Z

W
|rf0|g(f)cosqdx, (2.5)

where g3 controls contract angle strength, q is the contact angle and g(f) is a label function,
with the properties g(1)=1, g(0)=�1, and g0(1)= g0(0)=0. So a reasonable choice would be
g(f)=6f2�4f3�1. We again emphasize that f0(x) is the solid structure phase and indepen-
dent of time. Its profile shall be tanh r(x)p

2e
with r(x) as the distance of x to the fluid-structure

interface. By plugging in the initial profile of f0 into |rf0|, it is easy to verify that |rf0| con-
verges to a delta function at the fluid-structure interface as #!0. Thus |rf0| could be a good
approximation for a delta function at the fluid-structure interface.

We define the volume for fluid 1 in the system as follows [26]

V(f)=
Z

W
(1�f0)h(f)dx, (2.6)

where h(f) is a label function with the properties h(1)=1, h(0)=0 and h0(0)=h0(1)=0. Thus,
one could pick

h(f) :=3f2�2f3. (2.7)

Note that when h(f)=f, it becomes the classical phase field definition for the volume of fluid
1. In reality, the volume V(f) does not change during the evolution. To numerically enforce
volume conservation, we introduce a large constant s to penalize the volume derivation from
the target volume V0:=V(f(x,y,t=0)) in the free energy (2.3) so that the free energy is finalized
as

F[f,f0]=Fmix[f]+Fmcl [f,f0]+
s

2
(V(f)�V0)

2 , (2.8)

where s is the penalizing parameter and a large positive constant. The reason for choosing
h(f) in (2.7) is to guarantee the penalization for volume derivation only occurs at the interface,
but not in bulk, making it more physically meaningful.

This study assumes that the two fluid components have matching density and viscosity
for simplicity. We will consider the scenario where they are different in subsequent studies.
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Following the generalized Onsager principle [44], the PF-FSI-MCL hydrodynamics model (
[30, 50] and the references therein) reads as

r(∂tu+B(u,u))=�rp+hDu�frµ, (2.9)
r·u=0, (2.10)
∂tf+r·(fu)=�Mµ, (2.11)
µ=�g1r·((1�f0)rf)+ f 0(f)+g3g0(f)|rf0|cosq+s(1�f0)h0(f)(V(f)�V0), (2.12)

where B(u,u) = 1
2 (u·ru+r·(uu)), and M� 0 is a semi-positive definite operator known

as the mobility. In the rest of this paper, we choose M := M(1�f0) with M � 0 a constant,
which ensures the dynamics occur outside of solid phase f0. Note that we have recast the
original convection term u·ru in the momentum equation as 1

2 [u·ru+r·(uu)] thanks to
the incompressible condition r·u = 0. This reformulation will be useful later for designing
spatial structure-preserving numerical approximations. Here µ is the chemical potential that
is calculated as the variational derivative of the free energy µ := dF[f,f0]

df .
The boundary conditions are not unique. Here, we consider the following physical bound-

ary conditions

u(x,t)|∂W =0, ∂nf|∂W =0, (2.13)

where n is the unit outward normal on the boundary. Note that this model may also adopt
periodic-type boundary conditions for all variables. The initial conditions read as

u(x,t=0)=u0, f(x,t=0)=f0. (2.14)

The PF-FSI-MCL model (2.9)-(2.12) follows the law of energy dissipation, shown in the
following theorem.

Theorem 2.1. The following energy law holds for the PF-FSI-MCL system (2.9)-(2.12)

d
dt

E [u,f,f0]=�hkruk2�
����
q

M(1�f0)µ

����
2
, (2.15)

where the total energy for this system is defined as

E [u,f,f0]=
r

2
kuk2+F[f,f0]. (2.16)

Proof. Firstly, taking the L2 inner product of (2.9) with u, using the integration by parts and
applying the divergence-free condition (2.10), one can obtain

r

2
d
dt

kuk2=�hkruk2+(r·(fu),µ). (2.17)

Taking the L2 inner product of (2.11) with µ and performing integration by parts, it yields

(∂tf,µ)+(r·(fu),µ)=�
����
q

M(1�f0)µ

����
2
. (2.18)

Then one can take the L2 inner product of (2.12) with �∂tf and use the integration by parts
once again, which leads to

(µ,∂tf)=
g1

2
d
dt

Z

W
(1�f0)|rf|2dx+

d
dt

( f (f),1)+g3
d
dt

(g(f),|rf0|cosq)+
s

2
d
dt

(V(f)�V0)
2 .



6

Finally, summing up the above with (2.17) and (2.18) immediately yields

d
dt

E [u,f,f0]=�hkruk2�
����
q

M(1�f0)µ

����
2
0, (2.19)

where the total energy for this system is

E [u,f,f0]=
r

2
kuk2+Fmix[f]+Fmcl [f,f0]+

s

2
(V(f)�V0)

2 . (2.20)

The proof is complete.

3 Numerical approximation

One principle in developing numerical algorithms for solving the above PF-FSI-MCL system is
to guarantee that the numerical solutions also satisfy the energy law in Theorem 2.1. Therefore,
in the rest of this section, we will attempt to establish a second-order numerical scheme that
follows the original energy law for this model.

3.1 Time discrete and original-energy stable scheme

In this subsection, we are now ready to develop a time-marching numerical scheme for the
PF-FSI-MCL model. First of all, we introduce some notations for temporal discretization. Con-
sider the time domain t2 [0,T]. We discretize it into equally distanced intervals 0= t0 < t1 <
t2< ···<tNt =T with dt=T/Nt. Let fn be the numerical approximation to the analytic function
f(·,tn).

Given (un�1,fn�1) and (un,fn), and using a second-order implicit-explicit scheme based on
Backward Difference Formula (BDF) and Adam-Bashforth method [4] for the time derivative,
the numerical approximation for solving (2.9)-(2.12) reads as follows

afn+1�bfn+cfn�1

2dt
+r·(fn+1un+1)=�M·(1�f0)µ[f

n+1,fn+1
], (3.1a)

µ[fn+1,fn+1
]=�g1r·((1�f0)rfn+1)+ f 0(fn+1

)+g3g0(fn+1
)|rf0|cosq

+s(1�f0)h0(f
n+1

)
⇣

V(f
n+1

)�V0

⌘
+S(fn+1�f

n+1
),

(3.1b)

r

✓
aeun+1�bun+cun�1

2dt
+B(un+1,u)

◆
=�rpn+hDun+1�fn+1rµ[f

n+1,fn+1
], (3.1c)

r
a(un+1�eun+1)

2dt
=�r(pn+1�pn), (3.1d)

r·un+1=0, (3.1e)

where a=3, b=4, c=1, the variable (•)n+1
=2(•)n�(•)n�1 and S is a stabilizing constant.

For this scheme, we have the following remarks.

Remark 3.1. In the above scheme, given the initial data for variables (u0,f0) at t = t0, the
second level values for variables (u1,f1) at t1 = dt can be achieved by the scheme (3.1a)-(3.1e)
with a= b= 2, c= 0 and (•)n+1

=(•)0 in practice. This does not affect the overall accuracy of
the second-order scheme (3.1a)-(3.1d).

Remark 3.2. With each time step, the scheme (3.1a)-(3.1e) entails the computation of velocity
field and phase field by solving individual decoupled Helmholtz-type equation with a con-
stant pre-computable coefficient matrix for each of these field variables. This leads to an ef-
ficient implementation of the scheme. However, it is non-trivial to prove its unconditional
energy stable in theory.
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Remark 3.3. If we replace all (•)n+1
with (•)n+1, the pure second-order BDF2 scheme for this

system (2.9)-(2.12) can be easily constructed. However, it is fully implicit and nonlinear, requir-
ing the design of a nonlinear iteration solver to solve it. So it will yield a vast computational
cost. Furthermore, it may not be provably unconditionally energy stable for all possible time
step sizes. Therefore, developing a more convenient numerical scheme to solve this problem
is necessary.

To modify the solutions of the scheme (3.1a)-(3.1e) owing the feature that respects the orig-
inal energy dissipation law while maintaining both second-order accuracy and high efficiency,
we utilize a novel stabilized supplementary variable method based on [19, 23] to perturb the
original governing system (2.9)-(2.12). Assuming that we have already obtained the solution
of the original system up t= tn >0, we would like to find the solution up to tn+1> tn. To solve
it, we introduce time-dependent supplementary variables a=(a1(t),a2(t))T and reformulate
the original model in t2 (tn,tn+1) into the following constrained optimization problem

min
ai

w1|a1|2+w2|a2|2, (3.2a)

s.t. ft+r·(fu)=�M(1�f0)µ+a1(t)h[u,f], (3.2b)
µ=�g1r·((1�f0)rf)+ f 0(f)+g3g0(f)|rf0|cosq

+s(1�f0)h0(f)(V(f)�V0)+S(f�f),
(3.2c)

r(ut+B(u,u))=�rp+hDu�frµ+a2(t)g[u,f], (3.2d)
r·u=0, (3.2e)

dE
dt

=�hkruk2�
����
q

M(1�f0)µ

����
2
, (3.2f)

where wi, (i= 1,2) are two weighting coefficients. In this paper, to facilitate the design of an
efficient algorithm that decouples the computation of the pressure from that of the velocity,
we set g=ru in practice. Additionally, the choice of h[u,f] should include the penalty term to
avoid breaking the volume constraint numerically. The reason for performing such a pertur-
bation of the original model is that the solution a=(a1(t),a2(t))T=0, so this reformulation has
not changed the original PDE system.

In the following, we will elaborate on the implicit-explicit BDF2 scheme for this system
(3.2a)-(3.2f). Given (un�1,fn�1) and (un,fn), we compute (un+1,fn+1) via the following oper-
ation.
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Scheme 3.1 (SSVM-BDF2).

min
an+1

i

w1|an+1
1 |2+w2|an+1

2 |2, (3.3a)

s.t.
afn+1�bfn+cfn�1

2dt
+r·(fn+1

⇤ un+1
⇤ )=�M(1�f0)µ[f

n+1,fn+1
⇤ ]+an+1

1 h[un+1
⇤ ,fn+1

⇤ ],

(3.3b)

µ[fn+1,fn+1
⇤ ]=�g1r·((1�f0)rfn+1)+ f 0(fn+1

⇤ )+g3g0(fn+1
⇤ )|rf0|cosq

+s(1�f0)h0(fn+1
⇤ )

⇣
V(fn+1

⇤ )�V0

⌘
+S(fn+1�fn+1

⇤ ),
(3.3c)

r(
aeun+1�bun+cun�1

2dt
+B(un+1

⇤ ,un+1
⇤ ))=�rpn+hDeun+1

�fn+1
⇤ rµn+1

⇤ +an+1
2 g[un+1

⇤ ],
(3.3d)

r
aun+1�aeun+1

2dt
=�r(pn+1�pn), (3.3e)

r·un+1=0, (3.3f)

aEn+1�bEn+cEn�1

2dt
=�hkrun+1

⇤ k2�
����
q

M(1�f0)µ
n+1
⇤

����
2
, (3.3g)

where µn+1
⇤ =µ[fn+1

⇤ ,fn+1
⇤ ]. un+1

⇤ and fn+1
⇤ follow the solutions of the time-marching scheme

(3.1a)-(3.1e), and with the following boundary conditions

un+1|∂W =0, n·rfn+1|∂W =0. (3.4)

The following theorem shows the Scheme 3.1 satisfies the following property.

Theorem 3.1. The time-discrete SSVM-BDF2 scheme is energy stable in a sense that

En+1En, (3.5)

where the original energy E at t= tn is defined as

En =
r

2
kunk2+Fmix[f

n]+Fmcl [f
n,f0])+

s

2
(V(fn)�V0)

2 . (3.6)

Proof. It follows from (3.3g) with a=3, b=4, c=1 that

3En+1�4En+En�1

2
=

3(En+1�En)�(En�En�1)
2

0. (3.7)

Further, one can deduce

(En+1�En) 1
3
(En�En�1). (3.8)

By the mathematical recursion, it yields

(En+1�En)
✓

1
3

◆n
(E1�E0). (3.9)

On the other hand, since the first step is calculated by using the first-order scheme, we take
n=0 with a=b=2 and c=0 in (3.3g) to obtain

E1�E00. (3.10)

Thus, substituting the above into (3.9) leads to

En+1En, (3.11)

which implies the conclusion and completes the proof.
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Remark 3.4. It is noticed that another second-order numerical approximation based on the
implicit-explicit Crank-Nicolson time-marching version follows the same line for solving this
system (3.2a)-(3.2f). The details are omitted to save space. Interested readers are encouraged
to explore the scheme.

Remark 3.5. We emphasize that in addition to the Crank-Nicolson scheme based on the La-
grange multiplier approach for solving phase-field model, the BDF2 scheme based on the
Lagrange multiplier strategy still warrants a modified energy dissipation law other than the
original energy law [13]. However, our decoupled scheme (3.3a)-(3.3g) proposed in this paper
based on BDF2 can respect the original energy dissipation law, and the unconditional energy
stability of the scheme is strictly proved in theory.

Remark 3.6. How to devise an efficient and original structure-preserving algorithm with the
full decoupling structure and the second-order BDF2 scheme has always been a considerable
challenge for the thermodynamically consistent phase-field method of fluid-structure interac-
tion with moving contact lines. However, the idea of the SVM with a constrained optimization
approach provides a new paradigm to develop original structure-preserving algorithms with
great flexibility for devising solutions to this highly complex coupled nonlinear system.

3.2 Spatial discretization on staggered grids

Before developing the full-discrete scheme, we introduce some finite difference notations for
spatial discretization. Although these notations can also be found in [12, 21, 46, 57], we sum-
marize them in this part to make the paper reader-friendly.

Consider a rectangular spatial domain W=[0,Lx]⇥[0,Ly] with Lx and Ly two positive num-
bers. The domain is discretized into uniform rectangular meshes with mesh size hx = Lx/Nx
and hy =Ly/Ny, where Nx and Ny are two positive integers. Consider the following four sets

Ex ={xi+ 1
2
|i=0,1,··· ,Nx}, Ex̄ ={xi+ 1

2
|i=�1,0,··· ,Nx+1}, (3.12)

Cx ={xi|i=1,2,··· ,Nx}, Cx̄ ={xi|i=0,1,··· ,Nx+1}, (3.13)

where xi =(i� 1
2 )hx. Here Ex and Ex̄ are called the uniform partition of [0,Lx] into Nx equally-

sized intervals, and its elements are called edge-centered points. The two points belonging
to Ex̄\Ex are called ghost points. The elements of Cx and Cx̄ are called cell-centered points.
Again, the two points belonging to Cx̄\Cx are called ghost points. Analogously, the sets Ey
and Eȳ contain the edge-centered points, and Cy and Cȳ contain the cell-centered points of the
interval [0,Ly].

Define the following discrete functions spaces

Cx⇥y ={f|Cx⇥Cy !R}, Cx̄⇥y ={f|Cx̄⇥Cy !R}, Cx⇥ȳ ={f|Cx⇥Cȳ !R}, (3.14)
Cx̄⇥ȳ ={f|Cx̄⇥Cȳ !R}, E ew

x⇥y ={u|Ex⇥Cy !R}, E ew
x⇥ȳ ={u|Ex⇥Cȳ !R}, (3.15)

Ens
x⇥y ={v|Cx⇥Ey !R}, Ens

x̄⇥y ={v|Cx̄⇥Ey !R}, Vvc
x⇥y ={ f |Ex⇥Ey !R}, (3.16)

for cell-centered functions, east-west edge-centered functions, north-south edge-centered func-
tions, and vertex-centered functions, respectively. For simplicity, we introduce several average
and difference operators

edge to center average and difference operators : ax, ay, dx, dy, (3.17)
center to edge average and difference operators : Ax, Ay, Dx, Dy, (3.18)
vertex to edge average and difference operators :ax, ay, dx, dy, (3.19)
edge to vertex average and difference operators :Ax,Ay,Dx,Dy, (3.20)
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and also define an average operator A such that Af=

✓
Axf 0

0 Ayf

◆
and some discrete diver-

gence operators

rd =(dx,dy)
T, rD =(Dx,Dy)

T, r(d,D) =(dx,Dy)
T, (3.21)

r(D,d) =(Dx,dy)
T, r(D,d) =(Dx,dy), r(d,D) =(dx,Dy)

T. (3.22)

The discrete Laplacian operator Dh :E ew
x⇥ȳ[Ens

x̄⇥y !E ew
x⇥y[Ens

x⇥y for the variable u is defined as

Dhu=
�
r(D,d) ·(r(d,D)u),r(d,D) ·(r(D,d)v)

�T. (3.23)

Throughout this paper, we denote the cell-centered, edge-centered, and vertex-centered
discrete functions as follows:

cell centered functions : f, y, f0, p, µ,2Cx⇥y[Cx̄⇥y[Cx⇥ȳ[Cx̄⇥ȳ, (3.24)
east west edge centered functions : u, r2E ew

x⇥y[E ew
x⇥ȳ, (3.25)

north south edge centered functions : v, w2Ens
x⇥y[E ew

x̄⇥y, (3.26)

vertex centered functions : f ,g2Vvc
x⇥y. (3.27)

Define the edge-to-center average and difference operator as ax,dx : E ew
x⇥ȳ ! Cx⇥ȳ and ay,dy :

E ew
x̄⇥y !Cx̄⇥y in component-wise via

axui,j =
1
2
(ui+ 1

2 ,j+ui� 1
2 ,j), dxui,j =

1
hx

(ui+ 1
2 ,j�ui� 1

2 ,j), (3.28)

ayvi,j =
1
2
(vi,j+ 1

2
+vi,j� 1

2
), dyvi,j =

1
hy

(vi,j+ 1
2
�vi,j� 1

2 ,j). (3.29)

The center to edge average and difference operators as Ax,Dx :Cx̄⇥ȳ!E ew
x⇥ȳ and Ay,Dy :Cx̄⇥ȳ!

E ew
x̄⇥y in component-wise by

Axfi+ 1
2 ,j =

1
2
(fi+1,j+fi,j), Dxfi+ 1

2 ,j =
1
hx

(fi+1,j�fi,j), (3.30)

Ayfi,j+ 1
2
=

1
2
(fi,j+1+fi,j), Dyfi,j+ 1

2
=

1
hx

(fi,j+1�fi,j). (3.31)

The vertex to edge average and difference operators are defined as ax,dx : Vvc
x⇥y ! Ens

x⇥y and
ay,dy :Vvc

x⇥y !E ew
x⇥y in component-wise forms

ax fi,j+ 1
2
=

1
2
( fi+ 1

2 ,j+ 1
2
+ fi� 1

2 ,j+ 1
2
), dx fi,j+ 1

2
=

1
hx

( fi+ 1
2 ,j� fi� 1

2 ,j), (3.32)

aygi+ 1
2 ,j =

1
2
(gi+ 1

2 ,j+ 1
2
+gi+ 1

2 ,j� 1
2
), dygi+ 1

2 ,j =
1
hy

(gi+ 1
2 ,j+ 1

2
�gi+ 1

2 ,j� 1
2
). (3.33)

The edge to vertex average and difference operators Ax,Dx : Ens
x̄⇥y !Vvc

x⇥y and Ay,Dy : E ew
x⇥ȳ !

Vvc
x⇥y are defined as

Axvi+ 1
2 ,j+ 1

2
=

1
2
(vi+1,j+ 1

2
+vi,j+ 1

2
), Dxvi+ 1

2 ,j+ 1
2
=

1
hx

(vi+1,j+ 1
2
�vi,j+ 1

2
), (3.34)

Ayui+ 1
2 ,j+ 1

2
=

1
2
(ui+ 1

2 ,j+1+ui+ 1
2 ,j), Dyui+ 1

2 ,j+ 1
2
=

1
hy

(ui+ 1
2 ,j+1�ui+ 1

2 ,j). (3.35)

We define the vertex to cell-center operator as A :Vvc
x⇥!Cx⇥y

A fi,j =
1
4
( fi+ 1

2 ,j+ 1
2
+ fi� 1

2 ,j+ 1
2
+ fi+ 1

2 ,j� 1
2
+ fi� 1

2 ,j� 1
2
). (3.36)
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Based on the above definitions, we define the following discrete 2D weighted inner-products

(f,y)2=hxhy

Nx

Â
i=1

Ny

Â
j=1

fi,jyi,j, [u,r]ew =(ax(ur),1)2, (3.37)

[v,w]ns =(ay(vw),1)2, < f ,g>vc=(A( f g),1)2, (3.38)

and the corresponding discrete norms,

kfk2=
q
(f,f)2, kukew =

q
[u,u]ew, kvkns =

q
[v,v]ns, k f kvc =

p
< f , f >vc. (3.39)

For the edge-centered velocity u=(u,v)T, u2ew
x⇥ȳ, v2Ens

x̄⇥y, we defined the norms as follows

krhuk2=
q
kdxuk2

2+kDyuk2
vc+kDxvk2

vc+kdyvk2
2. (3.40)

We also define the discretized volume

Vh(f)=hxhy

Nx

Â
i=1

Ny

Â
j=1

(1�f0,ij)h(fij). (3.41)

With the notations above, the fully-discrete scheme for the SSVM-BDF2 scheme (3.3a)-
(3.3g) is achieved as follows.

Scheme 3.2 (fully-discrete SSVM-BDF2 scheme). Let dt> 0 denote the time step and the grid
function un�1=(un�1,vn�1)T2E ew

x⇥y⇥Ens
x⇥y, fn�12Cx⇥y and un=(un,vn)T2E ew

x⇥y⇥Ens
x⇥y, fn2Cx⇥y

be the solution at tn�1 and tn, respectively, we are ready to find un+1 =(un+1,vn+1)T 2 E ew
x⇥y⇥

Ens
x⇥y and fn+12Cx⇥y at tn+1, such that

min
an+1

i

w1|an+1
1 |2+w2|an+1

2 |2, (3.42a)

s.t.
afn+1�bfn+cfn�1

2dt
+rd ·

�
(Afn+1

⇤ )un+1
⇤
�
=�M(1�f0)µ[f

n+1,fn+1
⇤ ]

+an+1
1 h[un+1

⇤ ,fn+1
⇤ ],

(3.42b)

µ[fn+1,fn+1
⇤ ]=�g1rd ·

�
(A(1�f0))rDfn+1�+ f 0(fn+1

⇤ )+g3g0(fn+1
⇤ )|rd(Af0)|cosq

+s(1�f0)h0(fn+1
⇤ )

⇣
Vh(f

n+1
⇤ )�V0

⌘
+S(fn+1�fn+1

⇤ ),

(3.42c)

r

✓
aeun+1�bun+cun�1

2dt
+Bh(un+1

⇤ ,un+1
⇤ )

◆
=�rD pn+hDheun+1

�Afn+1
⇤ rDµn+1

⇤ +an+1
2 g[un+1

⇤ ],
(3.42d)

r
a(un+1�eun+1)

2dt
=�rD(pn+1�pn), (3.42e)

rd ·un+1=0, (3.42f)

aEn+1�bEn+cEn�1

2dt
=�hkrhun+1

⇤ k2
2�
����
q

M(1�f0)µ
n+1
⇤

����
2

2
, (3.42g)

where un+1
⇤ =(un+1

⇤ ,vn+1
⇤ )T and fn+1

⇤ are pre-computed by solving (3.1a)-(3.1e), and

Bh(un+1
⇤ ,un+1

⇤ )=
1
2

 
un+1
⇤ Dx(axun+1

⇤ )+Ax(dx(un+1
⇤ )2)+ay(Axvn+1

⇤ Dyun+1
⇤ )+dy(Ayun+1

⇤ Axvn+1
⇤ )

ax(Ayun+1
⇤ Dxvn+1

⇤ )+dx(Ayun+1
⇤ Axvn+1

⇤ )+vn+1
⇤ Dy(ayvn+1

⇤ )+Ay(dy(vn+1
⇤ )2)

!
.

Remark 3.7. The fully-discrete scheme (3.42a)-(3.42f) is developed by using finite difference
approximation that admits the summation-by-parts with adiabatic boundary conditions (3.4)
on a staggered grid and energy stable. Here we leave the proof details for the interested read-
ers, as the derivations are similar to the proof of the Theorem 3.1.
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3.3 Efficient Implementation processes of the fully-discrete SSVM-BDF2 scheme

We close this section by recapping a brief illustration of the practical implementation of the
proposed scheme (3.42a)-(3.42f). In the first step, we now discuss the detailed implementation
of the solutions (fn+1

⇤ ,un+1
⇤ ). By some simple calculations, the scheme (3.1a) and (3.1b) at the

fully-discrete level can be written as

Ah(f0)f
n+1
⇤ =Hh(f

n�1,fn,fn+1,un+1), (3.43)

where the coefficient matrix of Ah(f0) depends on f0, that is,

Ah(f0)(•)=
a

2dt
(•)+M(1�f0)

�
�g1rd ·(A(1�f0)rD(•))+S(•)

�
, (3.44)

and the right-hand term Hh(fn�1,fn,fn+1,un+1) is given by

Hh(f
n�1,fn,fn+1,un+1)=

bfn�cfn�1

2dt
�rd ·

�
(Af

n+1
)un+1��M(1�f0)

h
f 0(fn+1

)

+g3g0(fn+1
)|rd(Af0)|cosq+s(1�f0)h0(f

n+1
)
⇣

Vh(f
n+1

)�V0

⌘
�Sf

n+1
i
.

(3.45)

Although the coefficient matrix Ah(f0) is not constant, it is time-independent and can be cal-
culated in advance. Therefore, the system (3.43) can be efficiently solved by a preconditioned
conjugate gradient iteration with a constant coefficient problem as the preconditioner that does
not require explicitly building the matrix. Indeed, it only needs a subroutine to compute the
matrix-vector product.

It follows from (3.1c)-(3.1e) in the fully-discrete level that

Dheun+1
⇤ =Gh(un�1,un,un+1), (3.46)

r
a(un+1

⇤ �eun+1
⇤ )

2dt
=�rD(pn+1�pn), (3.47)

rd ·un+1
⇤ =0, (3.48)

where Dh(•)= ar
2dt (•)�hDh(•) and

Gh(un�1,un,un+1)=
r(bun�cun�1)

2dt
�rBh(un+1,un+1)�(Afn+1

⇤ )rDµ[µn+1,µn+1]�rD pn.

(3.49)

Since Gh(un�1,un,un+1) includes all explicit terms in (3.49), then eun+1
⇤ can be efficiently com-

puted by solving a linear algebraic system that involves a constant and time-independent co-
efficient matrix Dh. This matrix can also be pre-computed, thereby reducing the computa-
tional cost. It it noticing that pn+1 can be firstly computed by using incompressible condition
rd ·un+1

⇤ = 0 and then un+1
⇤ is updated via the equation (3.47). In a word, the velocity-field

un+1
⇤ and phase filed fn+1

⇤ are totally linear and decoupled. This means very efficient practical
calculations.

In the second step, we rewrite the scheme (3.42b)-(3.42f) in an equivalent form as follows

Ah(f0)f
n+1=Hh(f

n�1,fn,fn+1
⇤ ,un+1

⇤ )+an+1
1 h[un+1

⇤ ,fn+1
⇤ ], (3.50)

Dheun+1=Gh(un�1,un,un+1
⇤ )+an+1

2 g[un+1
⇤ ], (3.51)

r
a(un+1�eun+1)

2dt
=�rD(pn+1�pn), (3.52)

rd ·un+1=0. (3.53)
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Further, one can express the solutions fn+1 and eun+1 of the system (3.50) and (3.51) in the
following forms

fn+1= f̂n+1+an+1
1 ĥn+1, (3.54)

eun+1= ûn+1+an+1
2 ĝn+1, (3.55)

where f̂n+1, ĥn+1, ûn+1 and ĝn+1 satisfy the following four linear system

{f̂n+1,ĥn+1}=A�1
h (f0)

⇢
Hh(f

n�1,fn,fn+1
⇤ ,un+1

⇤ ),h[un+1
⇤ ,fn+1

⇤ ]

�
, (3.56)

{ûn+1,ĝn+1}=D�1
h

⇢
Gh(un�1,un,un+1

⇤ ),g[un+1
⇤ ]

�
, (3.57)

where A�1
h and D�1

h denote the inverse matrix of Ah and Dh, respectively. It is easy to solve the
above system since they are linear, decoupled, and all the right-hand terms are known. Then
plugging (3.54)-(3.55) into (3.42g) yields the following scalar nonlinear algebraic equation

N(an+1
1 ,an+1

2 )= aE [f̂n+1+an+1
1 ĥn+1,ûn+1�rD(rd ·rD)

�1rd ·ûn+1+an+1
2 ĝn+1]�bEn

+cEn�1+2dthkrhun+1
⇤ k2

2+2dt
����
q

M(1�f0)µ
n+1
⇤

����
2

2
=0.

(3.58)

It remains to determine the supplementary variables (an+1
1 ,an+1

2 ). Once these variables are
known, the field unknowns (fn+1,un+1) can be updated directly by utilizing (3.54)-(3.55).

Finally, with the aid of the SVM formulation, the proposed numerical scheme from (3.42a)-
(3.42g) can be transformed into a constrained minimization problem as follows

min
an+1

i

w1|an+1
1 |2+w2|an+1

2 |2, (3.59)

s.t. N(an+1
1 ,an+1

2 )=0. (3.60)

To solve it, we consider the augmented Lagrangian function by introducing a Lagrange multi-
plier l and a penalty parameter k, which is expressed as follows

Lk(a
n+1
1 ,an+1

2 ,l)=w1|an+1
1 |2+w2|an+1

2 |2+lN(an+1
1 ,an+1

2 )+
k

2
N2(an+1

1 ,an+1
2 ). (3.61)

Applying the augmented Lagrangian method to this problem yields

an+1,(k+1) =min
ai

Lk(a
n+1
1 ,an+1

2 ,l(k)), i=1, 2, (3.62)

l(k+1) =l(k)+kN(an+1,(k+1)
1 ,an+1,(k+1)

2 ). (3.63)

where an+1 = (an+1
1 ,an+1

2 )T and the index k = 0,1,2,··· denotes the iteration step. Here the
augmented Lagrangian is minimized jointly with respect to the two primal variables a1 and a2.
Now, combining all the above treatments for solving an+1

1 and an+1
2 , we elaborate the detailed

solution procedures as follows.

Algorithm 1 Solving problem (3.59) and (3.60) by augmented Lagrangian method.

Input: Initialize an+1,(0)
1 and an+1,(0)

2 , the multiplier l(0) and the updated constant of
penalty factor k(0). Set the iterative tolerance e.
Solve: a(k+1) =(an+1,(k+1)

1 ,an+1,(k+1)
2 )T =min

ai
Lk(a

n+1
1 ,an+1

2 ,l(k)).

if: |N(an+1,(k+1))|e then
return the approximation solution an+1,(k+1) and l(k), and then stop the iteration.
end if
Update the multiplier: l(k+1) =l(k)+k(k)N(an+1,(k+1)

1 ,an+1,(k+1)
2 ).

Update the penalty factor: k(k+1) =$k(k).
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We must avoid the constant penalty factor growing too fast or too slow. An empirical selec-
tion is $2 [2,10], such that the sequence an+1,(k) can converge quickly. Ample numerical tests
in this paper also support our claim the supplementary variables (an+1

1 ,an+1
2 ) is determined

very accurately and efficiently by the above Algorithm 1 so that the cost is negligible.

Remark 3.8. It is noticeable that for the SSVM-BDF2 scheme, two sets of field variables for each
velocity u and phase-field variable f are computed and decoupled, together with a nonlinear
scalar equation. Within each step, our proposed scheme allows for more straightforward cal-
culations for the PF-FSI-MCL model by solving a few decoupled Helmholtz or Poisson-type
systems with a constant pre-computable coefficient matrix, remarkably improving computing
efficiency. Although the scheme requires the solution of a scalar nonlinear equation, the cost
for solving the scalar nonlinear system is relatively cheap and efficient using the augmented
Lagrangian approach compared to the total computation cost.

Remark 3.9. In general, many options for artificial functions can be manually assigned to ob-
tain the perturbed system. How to choose them to make the extended system more accessible,
more efficient to solve, or the solution more accurate would be an interesting and open ques-
tion to explore further.

Remark 3.10. We emphasize that the obtained real-valued (an+1
1 ,an+1

2 ,l) may not be the exact
solution of the equation in (3.59)-(3.60), but the numerical solution approximates the exact one
very accurately. In this sense, the discrete energy dissipative relation (3.42f) can be warranted
in the round-off of the machine, which implies our proposed SSVM-BDF2 scheme satisfies the
energy stable via Theorem 3.1.

Remark 3.11. This model is highly coupled, and the numerical scheme involves a scalar non-
linearity problem. However, we never observe any problems with the existence and unique-
ness of the solution in all our extensive numerical experiments. Furthermore, although we
only study the proof of the original energy dissipation law, determining how to achieve op-
timal error estimates for this scheme also brings enormous challenges and opportunities. In
the literature, several results on the convergence analysis for the phase-field hydrodynamics
models exist [6, 8–10, 18, 43]. We plan to address the issue in our future research.

4 Numerical results

In this section, we first present the numerical convergence test of the proposed SSVM-BDF2
scheme. We then report several numerical tests in a complex region to confirm the developed
model’s capability and the proposed scheme’s efficiency. For simplicity, we choose r= 1 and
w1 =w2 = 1 in the rest of this section. Unless otherwise specified, the numerical simulations
are performed in the computational domain W = [0,Lx]⇥[0,Ly] with Lx = 1 and Ly = 1. We
use 256⇥256 spatial meshes, and the parameters are set as h = 1, S = 10, e = 0.0019, g1 = e2,
g2 = 0.25 and g3 = e/12

p
2. Additionally, for simplicity of notations, we summarized some

initial profiles in later discussions in Figure 1. The initial profiles for benchmarking contact
angles are provided in Figure 1 (a)-(b), and the initial profile for benchmarking the rounding
dynamics without or with flows are provided in Figure 1 (c)-(d). For more detailed information
about these benchmark problems, please refer to [30, 42, 50] and the references therein.
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(a) (b)

(c) (d)

Figure 1: The initial profiles. (a)-(b) the initial profiles of the contact an-
gles; (c)-(d) The initial profiles of rounding dynamics, with (c) without
inflow, and (d) with inflow.

Example 4.1 (Mesh refinement test). In this example, we conduct a convergence test by con-
sidering the Cauchy sequence to measure the proposed numerical scheme as second-order in
time and space. We compute the PF-FSI-MCL model with the initial condition for the phase
variable f(x,y,0) = 1

2 +
1
2 cos(2px)cos(2py), and the initial velocity field is set to zero. Some

model parameters are given by M=10�4, e=0.01, s=100, q=45�, and f0 =f(x,y,0). The ho-
mogeneous Neumann boundary conditions for f,µ,p,f0, and the velocity field u are applied
on the homogeneous Dirichlet boundary. We simultaneously refine the time and space meshes
with N=16,32,64,128,256 and dt=1/32,1/64,1/128,1/256,1/512. Here, we choose the num-
ber of the spatial grids as Nx = Ny = N. The errors are calculated as the difference between
the solutions on the coarse mesh and that on the adjacent finer mesh at the position of the
coarser mesh. In Table 1 and Table 2, we display the discrete L2 and L• errors for the veloc-
ity field u=(u,v)T and phase-field variable f at the final time T = 1. Recall the norm for the
vector field kuk2 =

p
kuk2

ew+kvk2
ns, and kuk• =max{|uij|,|vij|}; the norm for the scalar field

kfk2 =
p
(f,f)2 and kfk• =max|fij|. From Table 1 and Table 2, we observe the convergence

rate of the numerical errors can reach approximately second-order accuracy for all variables.
This indicates that the developed SSVM-BDF2 scheme is second-order in time and space.

Table 1: Mesh refinement test of the SSVM-BDF2 scheme for velocity
field u.

dt N Error Order

L2 L• L2 L•

1
32 & 1

64 16&32 1.465e-06 6.639e-06 – –
1

64 & 1
128 32&64 1.908e-07 1.972e-06 2.942 1.751

1
128 & 1

256 64&128 3.427e-08 2.121e-07 2.477 3.217
1

256 & 1
512 128&256 8.605e-09 5.360e-08 1.994 1.985
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Table 2: Mesh refinement test of SSVM-BDF2 for phase-field variable
f.

dt N Error Order

L2 L• L2 L•

1
32 & 1

64 16&32 1.201e-03 4.621e-03 – –
1

64 & 1
128 32&64 3.011e-04 1.192e-03 1.996 1.954

1
128 & 1

256 64&128 7.533e-05 3.004e-04 1.999 1.989
1

256 & 1
512 128&256 1.884e-05 7.525e-05 1.999 1.997

Example 4.2 (Test the influence of stabilization and spinodal decomposition). So far, there is
no theoretical way to determine the optimal value of the stabilization parameter S. There-
fore, we will perform a numerical test of phase separation behavior under hydrodynami-
cal environments in a complex domain to empirically choose appropriate values and illus-
trate the necessity of adding the stabilization term to our developed SSVM-BDF2 scheme. To
solve the problem, we set M = 10. We fix the contact angle q = 30� and choose f0 = 0.5+
0.5tanh(

p
(x�0.48)2+(y�0.5)2�0.35�0.12cos(5q)), where q = tan�1((y�0.45)/(x�0.45)).

Set the initial condition as f(x,y,t=0)=0.5+0.05·rand(�1,1), and u(x,y,t=0)=0.
Here, we study the numerical performances by setting S=0, S=10, and S=50, where S=0

denotes an absence of stabilization term. We plot the evolution curves of the original energy
using the SSVM-BDF2 scheme with various time steps and different values of S in Figure 2.
We draw the following conclusions from these tests. The proposed scheme without the stabi-
lization term blows up for dt> 1/1024, and shows the energy decays for smaller time steps.
The energy curve of SSVM-BDF2 with S= 10 decays until dt 1/512, while the scheme with
S = 50 illustrates that the energy curve provides a monotonic decrease for all selected time
steps. Compared with the absence of a stabilization term, the stabilizer ”stabilizes” the pro-
posed scheme at relatively larger time steps. However, when S=50 is added to this scheme, it
performs more satisfactorily than that with S=10 at larger time steps, demonstrating an appro-
priate stabilizer S is extremely critical to improve the stability. In short, the stabilized scheme
SSVM-BDF2 overwhelmingly defeats the non-stabilized SVM-BDF2 scheme for stability.

(a) S=0 (b) S=10 (c) S=50

Figure 2: Time evolution of the original energy for various time steps
computed by SSVM-BDF2 with different values of S.

We choose S= 50 and dt= 1/256 to conduct long simulations of coarsening dynamics on
a star-shaped domain to obtain good stability and accuracy. Figure 3 visualizes the velocity
fields for the coarsening dynamics with q=30� on a star-shaped domain. One can observe that
the velocity field has a larger magnitude at the regions that are changing rapidly, and the effect
of contact angle on the evolutional dynamics of the solid boundaries is evident.
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(a) t=0 (b) t=2 (c) t=10 (d) t=50

(e) t=100 (f) t=200 (g) t=350 (h) t=500

Figure 3: The visualization of the vector field for coarsening dynamics
on a star-shaped domain. The snapshots are taken at t = 0, 2, 10, 50,
100, 200, 350 and 500.

Finally, the evolution of original energy, volume, and supplementary variables for coars-
ening dynamics are depicted in Figure 4. These numerical performances demonstrate that our
developed model and scheme are very effective. One can observe that the energy decays with
respect to time, the Allen-Cahn model with an additional penalty term under hydrodynam-
ics environments indeed preserves volume, and the supplementary variables are close to zero
very accurately.

Figure 4: Time evolution of original energy, volume and supplemen-
tary variables for coarsening dynamics in Figure 3.

Example 4.3 (Impact of penalty parameter and equilibrium contact angles). In this example,
we mainly study an equilibrium phase interface contacting a solid with a prescribed contact
angle q and the effect of the penalty parameter. We take the parameters as M=100. The initial
velocity is set as zero, and the initial condition for the phase field variable f read as

f(x,y,0)=

(
1�f0(x,y), if f0(x,y)+y(x,y)>1,
y(x,y), otherwise,

(4.1)

where f0(x,y) and y(x,y) are given by f0(x,y)=0.5+0.5tanh
✓

R0�
p

(x�x0)2+(y�y0)2

2
p

2e

◆
with x0=

0.5, y0=�0.25 and R0=0.5, y(x,y)=0.5+0.5tanh
✓

R1�
p

(x�x1)2+(y�y1)2
p

2e

◆
with x1=0.5, y1=0.2

and R1=0.25. Figure 1 (a) shows the initial profile.
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(a) The profiles of f with respect to s=0.

(b) The profiles of f with respect to s=100.

Figure 5: The visualization of the vector field and time evolution of
phase interface contacting a solid boundary for different penalty pa-
rameter values s under hydrodynamic environment. In these figures,
the phase variable f profiles are shown at time t=1, 10, 25, 50 and 100.

We use time step size dt = 1/256 in the implementation. The numerical results with the
penalty parameter s= 0 and s= 100 are summarized in Figure 5, where the dynamics of the
phase variable f at various times are shown under a hydrodynamic environment and two dis-
tinct patterns of velocity field circulation can be observed. When s=0, the profile of the droplet
gradually shrinks and then disappears at the end of the simulation. Meanwhile, the velocity
field consistently moves in the direction of the droplet’s contraction, ultimately decreasing to
zero as the one disappears. For s=100, the final contact angle of the phase interface contacting
the solid boundary is approximately equal to q = 60�, while the initial contact angle is set to
q⇡120�. The velocity field evolves under the effect of surface tension.

Meanwhile, the evolution of original energy, volume, and the supplementary variables
a1(t) and a2(t) as functions of time with dt=1/256 up to the final time T=100 are summarized
in Figure 6. These results indicate the proposed scheme respects the energy dissipation law.
It further highlights that a large value of s is necessary to control the volume change. The
numerical results obtained for the supplementary variables are very accurate.

Figure 6: Time evolution of original energy, volume, and supplemen-
tary variables with respect to different penalty parameters for the dy-
namics of phase interface contacting a solid case in Figure 5.
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(a) Weak lid-driven cavity flow with û0 =0.01, where the snapshots are taken at t=1,10,20,30,40.

(b) Strong lid-driven cavity flow with û0 =0.1, where the snapshots are taken at t=1,10,20,30,40.

Figure 7: The 2D dynamical evolution of phase interface contacting a
solid boundary that is driven by two different magnitudes of the lid-
driven cavity flow, where (a) the weak case with û0 = 0.01 and (b) the
strong case with û0=0.1.

Next, we study how the lid-driven cavity flow affects the contact angle. The zero Dirichlet
boundary condition for the velocity at the boundary, except at u|y=Ly =(û0,0)T, where û0 is the
magnitude of the lid-driven cavity. Similar to the previous scenario, the initial and boundary
conditions for phase variable f are set up accordingly. Figure 7 visualizes the dynamics of the
phase variable and velocity fields for the lid-driven cavity problem with the weak and strong
cases. We can observe that the drop is deformed due to the lid-driven cavity flow, and strong
flow induces large deformations. Notably, the contact angle on the left of the phase interface
contacting the solid boundary remains consistent with the case when there was no lid-driven
cavity flow.

Finally, we perform a qualitative comparison with experimental results to showcase the
effectiveness of our developed model. We set the initial conditions that are defined in (4.1) to
the case of the drop impact on a solid, where x0 = 0.5, y0 =�0.24, R0 = 0.48 and x1 = 0.5, y1 =
0.26, R1 = 0.1. The initial pressure is set up as in the previous scenario, except that the initial
velocity reads u = (0,�1·f(x,y,0))T. The model parameters remain at their default settings
except for r=1.1 and h=0.01. A time step dt=10�3 and Nx = Ny =256 are employed to per-
form this test. Figure 8 (a) shows the snapshots of the droplet impact on a solid at different
times. Here, one can observe that under the action of an initial downward velocity field, the
droplet undergoes noticeable deformation. Over time, the bubble eventually spreads upwards
in a vertical direction. The dynamic topological changes are qualitatively similar to the exper-
imental results [35] and the other numerical simulations [24], which are listed for comparison
in Figure 8 (b) and Figure 8 (c). However, several subtle differences can be seen. On the one
hand, this may be due to our lack of knowledge regarding the actual initial values. On the
other hand, as highlighted in the literature [24], it is likely that the current simulation does not
take into account the contact angle hysteresis and only one equilibrium contact angle is used.
Overall, this result suggests that our proposed model can simulate the impact of droplets on
solids.
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(a) The snapshots of the drop shape during drop impact on a solid at t=0.1,
1.6, 50.

(b) Experimental results in [35].

(c) Other numerical simulations in [24].

Figure 8: (a) The 2D dynamical evolution of a droplet impact on a solid;
(b) the experimental results in [35]; (c) other numerical results in [24].

Example 4.4 (Test different contact angles). In this example, we study energy stability with
different contact angles. The initial condition for the phase-field variable f is given by

f(x,y,0)=

(
1�f0(x,y), if f0(x,y)+y(x,y)>1,
y(x,y), otherwise,

(4.2)

where f0(x,y)=0.5+0.5tanh
⇣ 6

5 x�y�0.1
2
p

2e

⌘
and y(x,y)=

(
1, if 0.7< 5

6 x+y<1.3, 6
5 x�y>�0.2,

0, otherwise.
.

We set the initial velocity as zero, and the initial profile of f is shown in Figure 1 (b).

(a) Energy evolution with q=60�. (b) Energy evolution with q=90�. (c) Energy evolution with q=135�.

Figure 9: The time evolution of the original energy for phase interface
contacting a solid boundary with q = 60�, 90�, 135�, where the profiles
of f at t=20, 40, 60, 80, 100 are shown.

In this simulation, we adopt the SSVM-BDF2 scheme with dt= 1/256, using the same pa-
rameters as in the previous example. We vary the contact angle q and report the corresponding
energy evolutions in Figure 9. The results showcase the liquid phases evolve from the initial
state to the equilibrium state, and the phase interface contacting the solid boundary closes to
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the theoretical contact angle [28]. This further confirms that our proposed model and algo-
rithm can accurately predict phase interfaces in a complex domain.

Example 4.5 (Bubble rising). In this example, we simulate the dynamics motions of one droplet
under the action of gravity field on a complicated domain, which is embedded into the rect-
angular domain W = [0,Lx]⇥[0,Ly] with Lx = 1 and Ly = 2. The left and right boundaries of
the complicated domain are given by l(x) = 0.01y2cos(5py)�0.1sin(6py)+0.3 and r(x) =
0.01y2cos(2py)�0.06sin(6py)+0.6, respectively. Here we still use the momentum equation
(2.9) that is equipped with gravity force, that is,

r(∂tu+
1
2
(u·ru+r·(uu)))=�rp+hDu�frµ+fG, (4.3)

where G=(0,9.8)T. The model parameters are set as h=0.1, s=1000 and q=135�. To conduct
this simulation, we choose Nx = 256, Ny = 512 and dt = 10�3. The initial conditions for this
problem read as

f(x,y,0)=0.5+0.5tanh

 
0.1�

p
(x�0.5)2+(y�0.22)2

p
2e

!
, (4.4)

u(x,y,0)=(0,0)T, p(x,y,0)=0. (4.5)

Figure 10 shows the dynamics of the rising droplet driven by gravity filed on a complicated
domain. One can observe that under the influences of gravity force filed and velocity field, the
initial circle droplet of the irregular domain undergoes a more considerable deformation in the
rising process. For comparison, the bubble rising case on a rectangular domain is shown in Fig-
ure 11. As the initial drop profile is symmetric around the y axis and the gravity force is along
the y axis, the drop should preserve axisymmetry, as observed in our numerical simulation.

Figure 10: The dynamics of a rising droplet on a complicated domain,
where the snapshots are taken at t=0, 3, 6.3 and 8.
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Figure 11: The dynamics of a rising droplet on a rectangular domain,
where the snapshots are taken at t=0, 3, 6.3 and 8.

In Figure 12 (a), we plot the time evolution of the energy. Under the impact of the gravity
force field, the dissipation property of this system does not hold. Thus, the system may not
be dissipative. The numerical results of Figure 12 (a) support the conclusion very well. From
Figure 12 (b), we find that although the bubble’s rising shape changes, the volume of two cases
is always conserved. In Figure 12 (c), we also show the changes of supplementary variables
very close to zero.

(a) (b) (c)

Figure 12: Time evolution of energy, volume, and supplementary vari-
ables for coarsening dynamics in Figure 10 and Figure 11.

Example 4.6 (Rounding dynamics). Lastly, we study how fluid flow affects rounding dynamics
through a channel. The initial phase conditions read as follows:

f(x,y,0)=

(
1�f0(x,y), if f0(x,y)+y(x,y)>1,
y(x,y), otherwise,

(4.6)

u(x,y,0)=(0,0)T, p(x,y,0)=0. (4.7)

where f0 and y are given by

f0(x,y)=0.5+0.5tanh
✓

0.25�y
2
p

2e

◆
, y(x,y,0)=0.5+0.5tanh

✓
0.5sech(5x�4)�yp

2e

◆
. (4.8)

The model parameters are set as M=100, g3= e2/12
p

2, s=1000. We carry out numerical
simulations in a 2D domain W=[0,3]⇥[0,1] by using 768⇥256 spatial meshes and the time step
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dt=1/256. We first consider how the absence of an inflow scenario affects the evolution of this
rounding dynamics. Figure 1 (c) displays the initial profile without inflow. We conduct a long
numerical simulation for this case by SSVM-BDF2, where the detailed evolutionary processes
are shown in Figure 13. We can see that the initial profiles gradually evolve into a semi-circle
shape without the phenomenon of rounding dynamics.

Further, we impose the inflow fluid on the wall boundary. The inflow velocities on upper
and lower boundaries are set as zero. At the inlet, a parabolic velocity profile is adapted to the
wall, i.e., u(0,y) = (0.05(1�y)(0.25�y),0)T and the corresponding initial profile is shown in
Figure 1 (d). In Figure 14, we plot the snapshots of the rounding dynamics with inflow at dif-
ferent times. One can observe that due to the influence of inflow, the triangular drop starts to
scroll from left to right in the channel. During the process, its topological shape gradually be-
comes a circle. These numerical performances strongly support our claim that our developed
model and algorithm can accurately simulate rounding dynamics.

(a) t=1 (b) t=10

(c) t=50 (d) t=100

(e) t=200 (f) t=300

Figure 13: The evolutions of rounding dynamics without inflow.. The
initial condition is summarized in Figure 1(c). The profiles at time t=
1,10,50,100,200,300 are shown.
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(a) t=1 (b) t=10

(c) t=50 (d) t=100

(e) t=200 (f) t=300

Figure 14: The evolutions of rounding dynamics with inflow. The
phase field and velocity profiles at time t = 1,10,50,100,200,300 are
shown, with the initial profile given in Figure 1 (d).

5 Conclusions

In this work, we proposed a new computational modeling approach to investigate the fluid-
structure interaction with moving contact lines in an arbitrarily complex domain. Our pro-
posed models couple the hydrodynamics and phase field variables through an energy vari-
ational procedure, leading to a thermodynamically consistent PDE system that respects the
thermodynamic laws. The fluid-structure interaction is modeled by introducing a phase vari-
able representing the volume fraction of one fluid and an extra auxiliary phase field variable
that is time-independent to label the volume fraction of the solid structure. The system’s total
energy consists of the kinetic energy of the fluid mixture and free energies of the fluid-fluid
and fluid-solid interactions. Additionally, a second-order Allen-Cahn equation can describe
the phase field dynamics, which is easier to compute numerically than the fourth-order Cahn-
Hilliard system. To circumvent a drawback of the Allen-Cahn model, we also introduce an
additional penalty term in the free energy to enforce volume conservation. The numerical
tests also demonstrate our developed model is valid.

Combining the supplementary variable method and the projection approach and by utiliz-
ing the implicit-explicit BDF2 scheme for temporal discretization and the second-order finite
difference approach on the staggered grid for spatial discretization, we came up with a totally
decoupled and efficiently fully-discrete numerical approximation for solving the thermody-
namically consistent hydrodynamically coupled phase-field model to study fluid-structure in-
teraction in an irregular domain. The newly proposed algorithm is second-order accurate both
in time and space. The numerical scheme is proved to inherit the original energy stable, which
is also further verified numerically through several examples. In addition, the computation in
each time step is significantly cheaper, and it is straightforward to program because several
linear systems require to be solved except for the calculations of the supplementary variables.
Thanks to the paradigm for the SVM, we can adopt an augmented Lagrangian approach to
solve the supplementary variables efficiently so that the calculating amount is more minimal
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than the total cost within a time step. Finally, the numerical experiments indicated that the
proposed scheme achieved desired accuracy and energy dissipation properties and performed
well in the complex fluid environment. The proposed numerical framework could be applied
to investigate other phase-field hydrodynamics models for quasi-incompressible fluids and
complex fluids.
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