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Abstract. Phase-field models are widely used in studying multiphase flow dynam-
ics. Given the complexity and strong nonlinearity, designing accurate, efficient, and
stable numerical algorithms to solve these models has been an active research field
for decades. This paper proposes a novel numerical scheme to solve a highly cited
and used phase field hydrodynamic model for simulating ternary phase fluid flows.
The main novelty is the introduction of a supplementary variable to reformulate the
original problem into a constrained optimization problem. This reformulation leads
to several advantages for our proposed numerical algorithms compared with many
existing numerical techniques for solving this model. First, the developed schemes
allow more straightforward calculations for the hydrodynamic phase-field models
by solving a few decoupled Helmholtz or Poisson-type systems with a constant pre-
computable coefficient matrix, remarkably reducing the computational cost. Sec-
ondly, the numerical schemes can maintain mass conservation and energy dissipa-
tion at the discrete level. Additionally, the developed scheme based on the second-
order backward difference formula respects the original energy dissipation law that
differs from many existing schemes, such as the IEQ, SAV, and Lagrange multiplier
approaches for which a modified energy dissipation law is respected. Furthermore,
rigorous proof of energy stability and practical implementation strategies are pro-
vided. We conduct adequate 2D and 3D numerical tests to demonstrate the proposed
schemes’ accuracy and effectiveness.
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1. Introduction

Multiphase flows exist ubiquitously in nature and arise in many scientific and en-
gineering settings, such as biomedical, chemical, and industrial processes involving
three or more liquid components. As one of the most popular approaches for modeling
interfacial dynamics, the phase-field method provides a state-of-the-art alternative in-
terface capturing approach for multiphase flow problems (see [4,13,16,18,21,27,28]
and references therein). Some reasons include its simplicity of formulation and trans-
parent relations of its model parameters to the physical properties. Additionally, the
phase-field models and their hydrodynamic extensions are usually derived by follow-
ing thermodynamic laws, i.e., thermodynamically consistent, making them physically
sound. A typical example extensively studied is the Cahn-Hilliard-Navier-Stokes system
for simulating the dynamics of multiphase fluid mixtures. This paper mainly focuses on
the ternary-component Cahn-Hilliard-Navier-Stokes (ternary-NSCH) system to better
illustrate ideas. Notably, our idea also applies to many other hydrodynamic phase-field
models.

The three-component Cahn-Hilliard-Navier-Stokes model is generalized from the
two-phase scenario [3] by introducing three independent phase-field variables (¢1, ¢2,
¢3) while these unknowns are linked through the hyperplane relation ¢y + ¢2 + ¢35 = 1.
Please refer to related papers [2, 3, 10, 19, 22] for more details. Traditionally, a La-
grangian multiplier was adopted into the system that introduced the first coupled non-
linear term among the three-phase variables [20,38]. However, such a simple system is
not well-posed for the total spreading case, and some nonphysical instabilities at inter-
faces may occur [2,3]. To remedy this defect, a sixth-order polynomial-type coupling
potential is added to the free energy to ensure the system is well-posed. Develop-
ing efficient numerical approximations for solving the three-component Cahn-Hilliard-
Navier-Stokes model remains challenging due to the coupling of multi-physical fields
with hydrodynamics and their natural nonlinearity.

The phase-field models and their hydrodynamic extensions are usually derived from
an energy variational approach, so they naturally admit a free energy dissipation law.
This is also known as thermodynamically consistent. When the numerical schemes ex-
ploit the variational structure and preserve the dissipation law numerically, they are
called energy stable [9]. Suppose such numerical structure-preserving property does
not depend on the time step sizes. In that case, the numerical schemes are called ly
energy stable. In the past few decades, significant progress in developing structure-
preserving algorithms to solve thermodynamical and hydrodynamical phase-field mod-
els have been made, for instance, the fully-implicit structure-preserving schemes [3,
33], the convex splitting schemes [5, 8,41], stabilizer technique [23,26,32]. In the
past few years, the invariant energy quadratization (IEQ) method and the scalar aux-
iliary variable (SAV) method, even in combination with stabilization terms, also have
fueled the development of energy stable schemes for solving the ternary-component
phase-field models [34,36-38,42,43]. However, when some of these methods are ap-
plied to solving thermodynamically consistent models, the resulting schemes warrant
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a modified energy dissipation law instead of the original energy dissipative law. Trunca-
tion errors are introduced during numerical calculations so that the numerical solutions
of the auxiliary variables are no longer equivalent to their original continuous defini-
tions. Recently, a Lagrange multiplier method based on the SAV approach presented
by Cheng et al. [7] and a generalized SAV method proposed by Yang and Dong [40]
aimed at further extending the scope of searching strategies for energy stable numer-
ical schemes. The methods have been applied to some fields [12,39]. More recently,
Zhao et al. [17,44] propose one essential relaxation technique to overcome this issue,
which highly improves the accuracy and consistency of the IEQ/SAV method. Mean-
while, recent advances include the supplementary variable (SVM) method [11,15].

Although the ternary-component phase-fluid flow model has been investigated for
over a decade, most existing numerical algorithms focus on “dry” phase-field models
without flow fields. This is insufficient for many applications for which hydrodynamics
is essential. Once performing the coupling between the ternary Cahn-Hilliard and the
Navier-Stokes equation for an incompressible flow, it will lead to some highly nonlin-
ear problems. Undoubtedly, this will also pose a noticeable challenge for numerical
approximations. To our knowledge, only a few second-order numerical schemes on en-
ergy stable for solving the ternary-NSCH model [35, 36] are available in the literature.
However, their schemes inherit a modified energy law with auxiliary variables rather
than the original energy law. This motivates us to develop efficient numerical approxi-
mations that warrant the original physical structure, which we name physics-informed.

We present two efficient numerical methods for solving the ternary-component
Cahn-Hilliard-Navier-Stokes model to address these issues. They inherit mass conserva-
tion and original energy stability, achieving second-order accuracy. First, we transform
the three-variable system into a two-variable one by utilizing the incompressibility con-
dition ¢ +¢2+¢3 = 1. This transformation allows us to solve a problem with two-phase
variables, which leads to a notable reduction in computational effort. Second, we re-
formulate the system using constrained optimization SVM fashion to devise numerical
schemes that inherit the original physical structure. Note that the new SVM formula-
tion is equivalent to the original system. This provides a paradigm for developing al-
gorithms that preserve thermodynamically consistent properties. Third, by combining
the second-order differentiation formula (BDF2) and implicit-explicit Crank-Nicolson
type scheme, we develop two efficient schemes that can possess mass conservation law
and original energy stability. We highlight that our proposed BDF2 scheme can be rig-
orously proven to warrant the original energy law. The proposed schemes involve only
constant and time-independent coefficient matrices that can be pre-computed, with
a negligible additional cost of solving a scalar nonlinear equation. In the end, several
numerical experiments in 2D and 3D space are presented to validate the effectiveness
of the current methods.

The outline of this paper is the following. In Section 2, we briefly introduce
the three-component Cahn-Hilliard-Navier-Stokes model, revisit its properties of mass
conservation and energy dissipation law and reformulate this model into the SVM
form with constrained optimization. Then we construct two types of physics-informed
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structure-preserving numerical schemes that maintain mass conservation and original
energy stability. The structure-preserving properties are proved rigorously in Section 3.
Fast implementation for the proposed schemes is provided in Section 4. Section 5
presents a series of numerical experiments in 2D and 3D space to show the newly de-
veloped schemes’ accuracy, efficiency, and usefulness. Finally, some concluding remarks
are drawn in Section 6.

2. Thermodynamical consistent hydrodynamic phase field models for
ternary incompressible viscous fluid flows

2.1. Model formulation

A general thermodynamically consistent hydrodynamical phase-field model for
a three-component fluid flow system was proposed in [3]. Here, we briefly recall the
essential ingredients in the multiphase fluid model and discuss its energy dissipation
property. Assume that the domain 2 € R? is smooth, rectangular, open-bounded, and
connected, with d = 2,3. We define the L? inner product of any two functions f(x)
and g(x) as follows:

(f.9) = /Q F(x)g(x)dx,

and the corresponding L? norm of f(x) is denoted by || f|| = (f, f)'/2.

Consider a three-component fluid flows system in an incompressible viscous fluid
matrix governed by the Navier-Stokes equation. The governing system of equations for
fluid flow is given by

1
p<ut+§(u-Vu+V-(uu))>:—Vp+V-T+F, 2.1
V-u=0, (2.2)

where p is the density of the fluid mixture, u is the mass-average velocity, 7 is the
viscous stress tensor and F is the external force.

We set ¢; as the volume fraction of i-th component in the fluid mixture. The three
volume fractions ¢1, ¢o, ¢3 are linked though the consistency constraint as

O1+ P2+ ¢p3 = 1. (2.3)

This is the link condition ¢ = (¢1, ¢2, ¢3), where it belongs to be the hyperplane of

S={p=(¢1,02.93) | o1+ P2+ d3=1, ¢ € [0,1]}. (2.4

For the three-phase model, the free energy of the mixture [2, 3] is given by

2 3
Ft?“iph[¢] — 3% Z/&;EZIV(ﬁZFdX‘F 12/QF(¢17¢27¢3)C]‘X7 (25)
=1
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where ¥; is called the spreading coefficient [1,2] of the phase i at the interface between
phase j and phase k. When X; > 0, it represents the partial case; if ¥; < 0, it is called
the total case. To be algebraically consistent with the two-phase system, the three
surface tension parameters o1, 013 and o93 should verify the following conditions:

Y1 =012+ 013 — 023, Yo =012+ 0923 —013, X3=013+ 023 —012. (2.6)
The nonlinear potential F'(¢1, ¢2, ¢3) reads as

F(¢1, 92, 03) = 0120705 + 0230503 + 0130703
+ 10203(S101 + oago + Dabs) + 3AIH303, (2.7)

where A is a non-negative constant. Note that the A term is artificial. Some other
choices are possible. It is introduced to ensure the free energy has a lower bound in the
total spread case. Some detailed discussions can be found in [2]. Due to ¢;,7 = 1,2, 3,
satisfying the constraint condition (2.3), it implies

F(91,62,65) = 2630~ 01)° + 22631 — 0)° + 231~ 6)” + MGG, (2.8)
Lemma 2.1 ([2]). There exists a constant ¥ > 0, such that
Silz[? + Saly® + Ta|z* > Z(|=* + y[* + |27), 2.9)
where for any x + y + z = 0, if and only if the following condition holds:
1Yo+ X035+ 3183 >0, X,+%;,>0, Vi#j. (2.10)

Define the total energy of the three phase fluid-mixture system & include the kinetic
energy I, and the free energy F*"?" namely,

£l = Bu(w) + FUPl0l, By = [ Djuax 211

For simplicity, we assume the density and viscosity of each component are constant
in this study. We will consider the case where they are different in subsequent stud-
ies. The hydrodynamically coupled three-component Cahn-Hilliard phase field model
is formulated as

3
1
P <ut + §(u -Vu+ V- (uu))) = —Vp+nAu — Z ®iV g, (2.12a)
i=1
V-u=0, (2.12b)
Oupi + V - (psu) = MA%, i=1,2,3, (2.120)
2
[ = —3iEiA¢i + 12%_ (2.12d)

4 0p;
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The boundary conditions are not unique. On the domain boundary 02, the periodic
boundary condition for all variables or the following physical boundary conditions are
used:

u(x,t) =0, n-Vyi(x,t)=0, n-Vei(x,t)=0, (x,t)€dx(0,T], (2.13)

where n denotes the unit outward normal vector along the boundary. The three-
component Cahn-Hilliard-Navier-Stokes system in (2.12a)-(2.12d) with (2.13) follows
the second law of thermodynamics in the isothermal case, namely,

d€é v,uz v:uz
u ]—wWW-MZ< ><mw2 RNCRP)
where the last inequality is obtained by using Lemma 2.1.
With the aid of the constraint (2.3), the energy (2.11) can be recasted as
3e2
Elusor,n] = Bulul + 2 [ [V + Sl Vonl? + DalV(0n + )] ax

12 | F d
+ /Q (¢1, p3)dx
where F(¢1, ¢3) is given by
hM hM
F(¢1,¢3) = %@%(1 — 1)’ + 72(1 — 61— ¢3)* (1 + ¢3)°
+ 23631~ 03)? + 3AGGR(1 — 61— 6)”

Using the generalized Onsager principle [29], one can rewrite system (2.12a)-(2.12d)
as the following equivalent two phase-field variables system:

P <ut + %(u -Vu+V- (uu))> = —Vp+nAu — (¢1 Vs + ¢3Vusz), (2.15a)

V-u=0, (2.15b)
Ohi + V - (diu) = MAﬁ, i=1,3, (2.15¢)
3 3¢
m=-2ma0 - Lm0 + a6y + 12000 (2.15d)
p3 = —3%23A¢3 - %EQ(Aﬁbl + Ag3) + 12%- (2.15€)
®3

By taking the L? inner product of (2.15a) with u, (2.15¢) with s, (2.15d) and (2.15e)
with —0,¢1 and —0,¢3, respectively, and using the integration by parts, then putting
the results together, it yields

defu, é1, é3] _ —nflul* — M <El T

Vs
X1 b

3

+ 33

2
T ) <0. (2.16)
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Note that the above inequality also holds for the total spreading scenario under the
condition (2.10) since there can be one negative coefficient ¥; among > = (X1, X3, ¥3),
that is, ¥9 < 0. Therefore, one can replace the order parameter with respect to the
negative coefficient with two others. In this sense, we only need to solve ¢; and ¢3 at
each time step, and the computation is remarkably simplified.

Remark 2.1. One principle in developing numerical schemes for solving the ternary
CHNS system in (2.12a)-(2.12d) or (2.15a)-(2.15d) is to warrant that the numerical
solutions also inherit the energy law in (2.14) or (2.16).

2.2. Model reformulation using the supplementary variable method (SVM)

In this subsection, we consider the following extended incompressible equivalent
ternary CHNS model, including the deduced energy dissipation equation:

1
p <ut + §(u -Vu+V- (uu))) = —Vp+nAu - (¢1Vur + ¢3Vpus), (2.17a)
V-u=0, (2.17b)
b +V - () = MALL, =13, (2.170)
3¢ 3¢ OF (¢1,
p1 = —%&A(Zﬁl - %22(&751 + Ads) + 12%@’) + S%1(d1 — ¢1), (2.17d)
3¢ 3€? OF (¢1,
g = _%Egmg . %EQ(A@ + Ads) + 12% +S%3(d3 — ¢3), (2.17€)
e 9 Vi ||? Vs |]?
7 = Vul® =M (El s || T, | ) (2.179)

where S > 0 is a stabilizing constant, which is crucial to improving energy stability
using relatively large time steps. See the effect of stabilizer in numerical tests.

To aid in devising algorithms that preserve the original energy dissipation law, we
first reformulate this model using a novel supplementary variable method. Assuming
that we have already obtained the solution of the original system up ¢t = ¢, > 0, we
would like to find the solution up to ¢,+1 > t,. To do this, we introduce a time-
independent supplementary variable « in ¢ € (¢,,,¢,+1), and then reformulate the orig-
inal model into the following constrained optimization problem:

min |a|? (2.18a)
1
s.t. p <ut + i(u -Vu+ V- (uu))) = —Vp+nAu— (p1 Vi + $3Vus)

+ ag[u, ¢17 ¢3]7 (218b)
V-ou =0, (2.18¢)
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atgbi + V- (qbZU) = MA% + a(t)hz [ua ley ¢3]a 1= 1’ 35 (218d)
2 2 Ja
= =280 - 2080+ a0a) 12 LB 53 (0160, 2180
3 2 3 2 BF
L3 = _%Egmpg—%22(A¢1+A¢3)+12%+523(¢3—¢3)7 (2.18f)
e 9 Vi ||? Vs ||?
9 vl - (zl S| | ) , (2,189

where g[u, ¢1, ¢3] and h;[u, ¢1, ¢3] are user-supplied functions and may depend on
themselves and their low order spatial derivatives. This seems to be a trivial math-
ematical statement, given that & = 0 is a trivial solution to this problem. However,
developing numerical schemes for solving this model provides a paradigm for design-
ing algorithms that preserve the original structure.

Remark 2.2. In the SVM, there are many possibilities for choosing g and h;. However,
to eliminate the pressure p by using V - u so that our developed algorithm in the paper
can be solved efficiently, we choose g = pu. In addition, to ensure the volume conser-
vation of each phase and the incompressibility condition ¢, + ¢ + ¢35 = 1, we need to
pick h; = Ap;/%; in this study.

3. Physics-informed structure-preserving schemes with original-energy
stability

In the following, we will detail two efficient numerical approximations: using the
second-order backward differentiation formula (BDF2) and the implicit-explicit Crank-
Nicolson scheme. For ease of presentation, we apply the temporal discretization di-
rectly to the constrained optimization problem in (2.18a)-(2.18g).

Let n > 0 be the time step index, and (e)" represents the variable (e) at time
step t,, corresponding to the time ¢t = n7, where 7 is the time step size. If a real-
valued parameter 6 is involved, ()" denotes the variable (e) at time step n + 0,
corresponding to the time ¢ = (n + #)7. We also introduce the notations

Tn+l n n— —n+3 3 n 1 n— n+l 1 n n
(o) " =2(e)" (o), (o) P=g(e)" 59" (9" E=5((0)"+(e)" ). B.D)
The first second-order scheme we developed is based on the BDF2 strategy for this
system in (2.18a)-(2.18g). Given (u"! ¢" 1) and (u", ¢"), we update (u"*! ¢"+!)
by the following scheme.
Scheme 3.1 (SVM-BDF2). We update (u™*!, qﬁ?*l) via the following two steps:
Step 1. Calculate the predictive solution (u”*!, (b?,jl)

—n+1 —n+1]

i o0 85
DIF ’

3o — g+
2T

+V - (6 Tt =mA i=1,3, (3.2a)
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i |08 ¢§“}

_ _3%2 A 412 (%;;; %) sy, (o' =3, (3.2b)
) <311f+1 - 1;171" ot + B(ﬁ”Jrl’ﬁ"Jrl))
_vpt 4 pAutt! — (¢n+1 n+1 n QSQLHV n+1), (3.20)
V.utt =0, (3.2d)

where B(u,v) = (u- Vv + V- (uv))/2 and gt = ulgl'F, o7+, 6511)

Step 2. Update (u"*!, QS?-H) via solving the following constrained optimization prob-
lem:

min a”+1)2, (3.3a)
an+1
1
st oo (3¢rtt —dgl +¢r7Y) + V- (¢ ul )
[¢n+1 n+1 n+1]
= MA ) El‘* ’ anJrlh?Jrl,*’ (ng)
o o 3:1]
36 (¢?+1 n+1)
:_TE A€Z5n+1+12 5(;51- +9Y; (¢n+1 ¢n+1) (3.30)
0 <3un+1 _ iun + u?! n B(uZ—H, uiz-i—l))
T
= —Vpn-i-l + nAun-H (¢n+1vun+1 + ¢n+1 n+1) + Ocn+1gn+17*7 (3.3d)
V-ut=0, (3.3¢)
1
2—(35"+1 —4En4£n7
-
2 2
nt1)i2 [ Pl
= —n|[VuiT T =M | 2y + X3 . (3.3
1 3

Remark 3.1. The SVM-BDF2 scheme needs the information at (n — 1)-th and n-th time
steps. To initiate the second-order schemes in the numerical experiments, we need the
values of (u!,¢!) that can be computed by the following first-order accurate scheme
with two steps:

Step 1. Calculate the predictive solution (ul, gb}’*)

T30 T4l 40 40
— %y, (p9u°) _ paliloe 4o s 1’¢3], i=1,3,
i
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3 2 aF 0, 0
i[9 00, 08] = == Tilgl, + 12% + S%i(¢i — 87),
ui —u’ 0 ..0 1 1 1 1 1 1
p T + B(ll , ) = _vp + UAU* - (¢17*VM17* + ¢3,*v1u37*)a
V- ui =0,

where :u'zl,* = M[ zl,*v (ﬁ,*? (b%,*]
Step 2. Update (u!, ¢}) via solving the following constrained optimization problem:

min  (a')?,

ol
L_ 40 [, p! . 0L,
S.t. u +V- (gbzl*ui) — MAMZ[ i (bl,* ¢3, ] —|—a1h}’*,
T ) Ez
362 aF((?% *7¢§*)
pilohs ot = ~2omiel + 12700 o (),
1 9,
ul —u° 1.1 1 1 1 1 1 1 1.1
p(———+B(ulul) ) = -Vp' +nAu' — (61, Vul. +6}.Vul.) +a'g",
V-ul =0,
2 2
£ -8 Vi, Vi,
= —n||[Vuy|? = M | 5 LILAT TS )% 3,
E1 23

It is worth noting that the efficient implementation skill in the next section can be
straightforwardly adopted for the above first-order accurate scheme.

The time marching scheme SVM-BDF2 has the following properties.

Theorem 3.1. Scheme 3.1 is mass conservative for each phase, i.e.,

(prt11) = (¢1,1), i=1,2,3, VYn>0. (3.6)

7

Proof. Integrating Eq. (3.3b) over (2, thanks to ¢ = 1 — ¢} — ¢4, for any n,
(h?*1,1) = 0 and the integration by parts, it yields the mass conservation for each
phase. O

Theorem 3.2. Assume £' < £°. Scheme 3.1 is energy stable in the sense that
gt <gn, (3.7)
where the original energy E" is given by

3e2

£" = Ll + 2 (Si VTP + Do VaLP + Dol Vet + V5 P)
L 12(F (67, 60),1). (3.8)
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Proof. By Lemma 2.1 and (3.3f), one can easily obtain

1
—(3&™H g 4 g7 Y
2T
v, v, |2
— VP - M 3y | || ) <o, (3.9)
¥ Y3
Thus, one can get
1 1
5(35”+1 —4EM M = 5(3(5”+1 —EM — (" —-¢&" ) <o, (3.10)
which implies
1
gntl _gn < §<5" —&enhy, (3.11)
By the mathematical recursion and £ < &9, it yields
gt <en v (3.12)
The proof is complete. O

Remark 3.2. Recently, [7] proposed a new Lagrange multiplier approach to design
original energy stable for gradient flows in which its strategy based on BDF2 also only
preserves modified energy rather than the original energy. However, our proposed
scheme based on BDF2 can maintain the original energy law.

Remark 3.3. For the developed second-order time-marching scheme, the explicit treat-
ments for the nonlinear term and high-order spatial derivatives generally break the
stability of the numerical solution. So far, there is no theoretical analysis method to
determine it, and the value of the stabilization parameter is generally empirical. Mean-
while, we carefully choose the value of S to avoid introducing large numerical errors
to balance the stability and accuracy.

Then if we use the implicit-explicit Crank-Nicolson time-marching scheme, it yields
another second-order scheme.

Scheme 3.2 (SVM-CN). Given (u" ', ¢! ') and (u”, ¢}, we compute (u"*!, ¢?!)
via the following two steps:

Step 1. We solve (u”*!, (ijl) via the following system:

n+ 1 —nyl
ntl _ pn 4L ¢Z* ,¢ a¢ ?
G O G @t = a -~ ] (3.132)
T Ez
—n+i —ptd
il il el ! OF (¢ .93 °
i ¢i:27¢1+27¢3+2] = —3i2 A¢ nta + 12 ( ! i >
’ 0¢;
gl
csm(ar 7, 131
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576
n+l _ .n
p <7u* v B(ﬁ"+%,ﬁ"+%)>
-
1 1 1 1 1
AR TN A RS T (3.13¢)
1
Voul 2 =0, (3.13d)
where
1 11
B(u,v):i(u-VV—i—V.(uv)), ﬂgjjlzu [¢;§jl,¢r;:17 g:l], (.)Z+2:§((.)Q+1+(.)").
Step 2. Update (u"*!, ¢/'*1) via
min (o/”r%)z, (3.14a)
ot
n+l  ntl n+ i
ntl_ gn 14l Mz‘[¢‘ %0, 2,¢3,*2] 1,
T ’ 4

n+:  n+i  n4l
Hi [@ 2 P1 2, ¢3,* 2}

7 )

n+% n+%
3e2 1 8F<¢1,* ) P35 ) 1 1
= AT 12 o + 8% (¢?+2 - ¢Zj2>, (3.140)
(]

4
n+l _ .n 1 1
p<u u —|—B<u:+2,u:+2)>
T

1 1 1 1
= — VPR b nAuE = (9] 2Vl 4 0 PV ) +antEgmE, (3.14d)
V-ute =0, (3.14¢)
+2 12 n+i 2
gntl _gen 12 \V. n*g *2
— = —UHVu;HQ -M |3 e |y 23 /;j)’ (3.14f)
1 3

Theorem 3.3. The Scheme 3.2 preserves the mass conservation for each phase, namely
(3.15)

70

(¢7h1) = (¢},1), i=1,2,3, Vn>0.

Proof. The proof is similar to Theorem 3.1. Thus we leave the details to the inter-
U

ested readers.

Theorem 3.4. The Scheme 3.2 is energy stable.

Proof. The statement is obvious by (3.14f) and completes the proof.
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Remark 3.4. Notably, the current schemes in this study based on the SVM approach
with constrained optimization are accurate and efficient, and the idea can be read-
ily extended to a broader class of multiphase hydrodynamic models for developing
structure-preserving numerical schemes. Although only the time discretization on the
semi-discrete schemes is presented in this paper, the fully discrete scheme can be easily
derived by combining the proposed semi-discrete scheme in time and finite difference
discretization that satisfies summation by parts formulae [6,25,30,31].

4. Efficient implementation strategy

This section will discuss the efficient numerical implementation of our newly pro-
posed schemes. For convenience, we take Scheme 3.1 under the periodic boundary
condition and in 2D space as an example to elaborate a fast solver. It follows from
(3.2a)-(3.2d) that

—n+1 —n+1

Andi it + Angytt = Gi(o o1, 61 L¢3 LT, (4.1)
n+1 —n+1 "
A 7+ Agp gt = Gy (o8t 05, 0y gy Lty 4.2)
Buff“ — 4u” ; u! _ pB( n+1 n+1) _ vpn-l—l
T
— vttt — es vt (4.3)
where B = 3p/2 — TpA and
n— n+1 —n+1 "
Gi(op ™l ot oy aH)
—n+1 —n+1 1
4 — ot 12rMA | o1 .0 —n+1 —nt1_p,
= 2¢1 * 1 ( 1(‘)¢1 : ) — 501 —TV: (¢1 u +1)’
-—n+1 —n+1 _—n ]
( 7¢37¢1 7¢3 7 +1)
n n+1 —n+1 T
4¢3 1 . 127’MA (@1 ,@3 ) S¢n+1 _ V. (¢”+1—n+1)
2 Y3 093 s 7
3 37e2Y% 4+ 9 37’6 Yo 9
=—+4+ ———"MA*—-7S5MA = — MA~,
A1 5t 1 5 T , A= 1y,
3 372 Yo+ X5 9 3re2 ¥y 9
A22—§—|— 1 T?)MA —TSMA, ./421— 4 E3MA

Although ¢, . and ¢3 . are coupled in (4.1) and (4.2), this system can be transformed
into a 2 x 2 algebraic equation with respect to ¢; , and ¢3 . for a fixed spatial point
(xj,yx) by using the diagonalization of a matrix and fast Fourier transform strategies,
which can be solved efficiently. For more details on the efficient solution of the coupled
system, please refer to [14]. It is a remarkable fact that p"*! can be firstly computed
by V - u?*! and then update u”*! via the Eq. (4.3).
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Denote
o+l = C11G1(¢?_1,¢?¢?;:17 Z{tl, W) £C1o G () 7%7%117 gﬁil,uil“)a 4.4)
By = oG (o7 o, o BT ) G (0 ,¢3,¢?il,¢§:1, wr), (4.5)
Ut =t <p4112;7_n_1—p3(uf+1, ) —vpt - (b —¢3 1V,U > , (4.6)
= Cirh! ™ 4 Coohy ™, G = CahTH +622h§+1’*, =B lg"* (4.7)

where B~! and A~! denote the inverse of the operator B and A, respectively, which
are given by

1 |C1 Ci2 A A
A= {021 (322] ’ B L‘lm A2’ (4.8)
From (3.3b)-(3.3e), it is easily to derive that
¢ + 8" i 4.9)

u” — Un+1 _’_IBn-l—lwn’

in which g"*! = 7a"*! will be determined below. Then plugging (4.9) into (3.3f)
yields the following scalar nonlinear algebraic equation:

N(ﬂn—H) .— 3€ [Un-i-l +/8n+1 n cI)nJrl +/8n+1 n] —4ET +€n—1 + 27_77 Hvuf-f—lHQ

v‘un—i— ,un+
+orM | 3 i Y, i (4.10)
o Y5

Consequently, the original optimization problem (3.3a)-(3.3f) can be equivalently
transform into v
min ("),
g (4.11)
st. N =o0.

A standard approach is to introduce Lagrange multiplier A and consider the Lagrange
function as follows:

LB = (B2 = AN(B"H). (4.12)
The KKT condition of the constrained optimization problem (4.11) is given by
OL i ON(B™Y)
oL n

To determine (51, \), we have to solve the scalar nonlinear equation above by ap-
plying certain efficient optimization methods and leave this for future study. We point
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out that here we employ Newton’s method to solve it with (0,0) as an initial value,
where the evaluations of N /9 and 9> N /03? are also needed. Since the scalar non-
linear algebraic equation N(5"*1) only depends on the unary polynomial of "' and
the coefficients of the polynomial can be pre-computed at each time step, which im-
plies the coefficients of 9N /0 and 9> N /93 can also be pre-computed. Thus, the cost
of this computation is minimal compared to the total cost within a time step because
this equation (4.13)-(4.14) is about a scalar number but not a field function. Once
B"*1 is known, then u"*! and ¢/ i = 1,2,3, can be updated respectively via using
(4.9). Following the work of [11], the existence of the solution § is guaranteed by the
conditions of the following theorem.

Theorem 4.1. Assume that
o0& o0& o0&
(E[un],g[uno + <E[¢ﬂ’hl [@5?]) + (@[ﬁbg],h:s [@5?}) # 0,

there exist a 7" > 0, such that (4.13) and (4.14) define a unique function 5 = (3(r) for
all T € [0, 7%].

Proof. For 7, 3, and X in a neighborhood of (0,0,0), we define the two following
real functions:

P(7,5,0) =28 - Ao, Q(r8.A) = —N(5). 4.15)

Combining (4.4)-(4.7) and (4.9), it yields

P(0,0,0) =0, (0,0,0)=0, (4.16)
(8. M l0oo) <5u[“ J, glu ]) + <5¢1 [¢1],h1[¢1]>
o0&

Therefore, by using the implicit function theorem for multivariate functions, there ex-
ists a 7* > 0 such that the following system:

P(r,8,A) =0,
Q(7,8,A) =0

define a set of unique smooth functions 5 := 3(7) and A := A(7) satisfy

P(7,8(r).\(1)) =0, Q(7.B8(r),A(1)) =0

for all 7 € [0, 7*]. The conclusion follows, and the proof is complete. O
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5. Numerical results and discussion

In this section, we first conduct time-step refinement to test the temporal accuracy
of our newly developed schemes. Then we present several numerical simulations to
demonstrate the schemes’ efficiency and structure-preserving properties. Here, if not
explicitly stated, we mainly consider the ternary phase-field hydrodynamic model with
periodic boundary conditions. Also, due to the BDF2 and Crank-Nicolson schemes
being both second-order accurate, we specifically present the numerical performances
of SVM-BDF2 in most scenarios.

Example 5.1 (Accuracy tests). As a first numerical test, we conduct a mesh-refinement
study to verify that the developed schemes are second-order in time. The initial condi-
tions are given by

u’ = (0,07,
2 = %<1 + tanh (0.15 —/(z =052+ (y — 0.5)2>>7
1 0 56 G
=5 ) (14 amn (L22)).
¢9=1-¢f - ¢3.

Consider the computational domain Q2 = [0, 1] x [0, 1] with 128 x 128 spatial meshes and
we choose the model parameters M =107, ¢=0.025, p=n=1, A=7 and S=1/¢. Since the
exact solutions are unknown, we compute the errors by adjacent time steps. In Fig. 1,
we list the discrete L? and L errors for variables u = (u,v) and ¢ = (¢, ¢2, ¢3) at the
end time T=0.1 by taking a linear refinement path 7=0.001/2%, k=0,1,2,3,4,5,6. The
numerical results in Fig. 1 indicate that the developed schemes indeed have second-
order temporal accuracy in time for all variables, where SVM-BDF2 and SVM-CN are
performed. Moreover, one can find that the SVM-CN scheme is slightly more accu-
rate than SVM-BDF2, although both of them are second-order accurate. This may be
because the former is an energy-dissipation-rate preserving scheme.

In addition, Fig. 2 shows that the second-order accuracy of the supplementary vari-
able « is reached for the corresponding SVM-BDF2 and SVM-CN schemes. Therefore,
these numerical performances from Example 5.1 validate the correctness of our pro-
posed schemes.

Example 5.2 (Numerical comparisons). To show the advantages of our proposed sche-
me, we conduct some numerical comparisons with the IEQ-BDF2 and fully implicit
BDF2 schemes. The initial conditions for phase variables are specified as
1 1 0.25 — —1.27)2 —1.0)2
¢} = = + - tanh Vi )? +(y — 1.0) ,
2 2 €
1 1 0.25 — —0.73)2 —1.0)2
¢g:§+§tanh Vi P+ ) ,
€

and ¢ = 1 — ¢ — #9. The initial velocity is set as zero.
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Figure 1: Mesh refinement test of time accuracy for the variables u = (u,v)” and ¢ = (¢1, ¢2, #3)”, where

the surface tension parameters (a): (o12,013,023) = (1,1,1) and (b):

(o12,013,023) = (3,1,1). This

illustrates the SVM-BDF2 and SVM-CN schemes can reach their expected second-order accuracy.
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Figure 2: The error plots of supplementary variable, where the surface tension parameters (a): (012, 013, 023)
= (1,1,1) and (b): (012,013,023) = (3,1,1). The slopes of the supplementary variable o error curves for
the SVM-BDF2 and SVM-CN schemes are asymptotically close to 2.
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We pick the uniform meshes N, = N, = 256 in 2D domain = [0,2]?, M = 1073,
e =0.025,n =p=1,5 =1/e and A = 7. We conduct these simulations with two sets
of surface tension parameters, where one is the partial spreading case (012,013, 023) =
(1,1,1) and the other is the total spreading case (o012, 013, 023) = (1,3, 1).

The time evolution curves of the energy with various time step sizes by EQ-BDF2
with (S=1/e) / without (S=0) stabilizer and SVM-BDF2 with (S=1/¢) / without (S=0)
stabilizer are displayed in Figs. 3 and 4. By comparisons, the curve of energy for the
pure un-stabilized EQ-BDF2 blows up for large time step sizes and only decays for
T = 4.8828125 x 10~* in Fig. 3(a). In Fig. 3(c), all the energy curves of SVM-BDF2
without stabilization term monotonically decay except for the ones with time step sizes
T > 3.90625 x 1073, Further, we apply the two schemes with stabilization terms to per-
form the same test. One can observe that SVM-BDF2 and IEQ-BDF2 with stabilization
parameters monotonically decay to the equilibrium state even for the largest time step
size 7 = 3.90625 x 10~3. This shows that both the IEQ-BDF2 scheme and the SVM-
BDF2 scheme can provide “stabilize” at relatively large time step sizes. Furthermore,
the energy curves at ¢t = 7.8125 x 1072 for the IEQ-BDF2 and SVM-BDF2 schemes are

1 EQ-BDF2 EQ-BDF2
0.095 :
- l —— dt=7.8125¢-03 - —— dt=7.8125¢-03
&0 | dt=3.90625¢-03 &0 dt=3.90625¢-03
2 0.090 | O dt=1.953125¢-03 g O dt=1.953125¢-03
= | Y d=9.765625e-04 = Y d=9.765625e-04
5, b 0] dt=4.8828125¢-04 5 0] dt=4.8828125¢-04
& 0.085 g
g e =
3 3
= =
0.080 2
4 WE)ﬁwQEEEEGWuQEDDEDDDDDDDDDDDDD L e 2 .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time
(@ s=0 Md)S=1/e
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= = i
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(©S=0 dS=1/e

Figure 3: The comparisons of the modified energy for EQ-BDF2 and the original energy for SVM-BDF2
evolution in time with various time steps, where the surface tension parameters (012,013, 023) = (1,1, 1).
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Figure 4: The comparisons of the modified energy for EQ-BDF2 and the original energy for SVM-BDF2
evolution in time with various time steps, where the surface tension parameters (012,013, 023) = (1, 3, 1).

away from others, even though they are dissipation. This implies that the stabilization
term can improve the numerical stability of the two schemes when the large time step
is adopted. As a result, we will select a fixed stabilization parameter S = 1/¢ to better
capture dynamics and accuracy in the subsequent numerical simulations. It is worth
noting that our proposed SVM-BDF2 scheme preserves the original energy instead of
the modified energy. Meanwhile, we also test the property of mass conservation. From
Fig. 5, one can observe that both SVM-BDF2 and SVM-CN warrant the mass of each
phase.

Next, we continue to compare the results of the different calculations at ¢ = 1
with a fixed step size 7 = 1.0 x 1073 in which EQ-BDF2 and SVM-BDF2 equipped
with the stabilization parameter S = 1/e. Here, we only select the partial spreading
case as an example to show the numerical performances. Since the analytic solution is
unknown, we choose the solution obtained with time step size 7 = 1.0 x 10~7 computed
by the fully implicit BDF2 scheme as the approximate solution for computing errors.
The L errors of all schemes are summarized in Table 1. Some observed results are
listed from these data. The L error of SVM-BDF2 is smaller than the EQ-BDF2 for all
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Figure 5: The evolution of mass for each phase by using the SVM-BDF2 and SVM-CN schemes with S = 1/¢

and the time step 7 = 3.90625 x 10™2. The curves of the mass derivation show that our proposed schemes
preserve mass conservation.

variables. Although we cannot theoretically prove the energy dissipation law for the
fully implicit BDF2 scheme, its accuracy performs the best among the three schemes.
Finally, to further illustrate the effectiveness of our proposed scheme, we compare
the number of iterations between SVM-BDF2 and fully implicit BDF2. The numerical
results are depicted in Fig. 6, where the maximum iterative step is fixed to M = 100

Table 1: Numerical comparisons of L errors for the velocity field and phase field variables at ¢ = 1
calculated by the EQ-BDF2, SVM-BDF2 and fully implicit BDF2 schemes by using the fixed time step size
T=1x10"%.
The partial spreading case
Scheme
L% error for u | L* error for ¢

EQ-BDF2 3.65e-06 3.23e-03

SVM-BDF2 1.36e-08 1.04e-05

Fully implicit BDF2 3.97e-09 2.32e-06
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Figure 6: Comparisons of the number of iterations calculated by the fully implicit BDF2 and SVM-BDF2
schemes.

in this simulation. It is discovered that fully implicit BDF2 does not converge at 7 =
3.90625 x 1073 even when it reaches our predetermined maximum iteration step. In
contrast, our developed scheme is predictably stable and performs more efficiently than
the fully implicit BDF2. In a word, the above numerical results strongly suggest that
the SVM-BDF2 scheme possesses some advantages.

Example 5.3 (Coarsening dynamics in 2D and 3D). Next, we investigate how the sur-
face tension parameters affect the coarsening dynamics under hydrodynamical environ-
ments. We use the domain Q = [0, 1] x [0, 2] with the uniform spatial meshes 128 x 256.
We take the parameters as p = n = 1, ¢ = 0.025, S = 40, A = 7and M = 1073,
The initial velocity is set as zero, and we set a random initial condition for the phase
variable, which is given by

1 (,y,0) = 0.5 (% + 0.25) +0.001rand (z, ), (5.2)
d3(,y,0) = 0.5 (% + 0.25) +0.001rand (z, ), (5.3)
¢2(:Uay50) = 1_¢1(:Uay50) —¢3(:Uay50)a (54)

where rand generates the random numbers uniformly distributed in [—1,1]. The se-
cond-order SVM scheme is adopted to perform these simulations, including the partial
spreading case (012,013,023) = (1,1,1) and the total spreading case (012,013, 0923) =
(1,3,1). For better resolution for all cases, we choose the time step 7 = 2.5 x 1073 to
conduct this simulation respectively.

The 2D simulation results of the phase variables ¢;(z,y,t), i = 1,2, 3, at a sequence
of time instants, ¢ = 1,50, 100, 300, 500, are displayed in Fig. 7. Fig. 7(a) shows block-
shaped patterns for the partial spreading case. However, for the total spreading case,
one can observe that no junction points are formed, and they become several circles in
Fig. 7(b). These results agree with those obtained in [35, 36].

Finally, the evolution curves of the original energy and the supplementary variable
a(t) as functions of time with 7 = 2.5 x 107 up to time T = 500 for both cases are
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‘

)=(1,1,1)

(b) The snapshots of ¢;, i=1, 2, 3, at t=1, 10, 100, 300, 500 for the total spreading case (c12, 013, 023)=(1,3,1)

Figure 7: The 2D time evolution of phase variables ¢; (i = 1,2, 3) with different surface tension, where red,
green, and blue represent ¢1, ¢2 and ¢3, respectively.
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Figure 8: Time evolution of total energy and supplementary variable for 2D coarsening dynamics of the
ternary system with the partial spreading and total spreading cases.

graphed in Fig. 8, which verifies that the proposed scheme preserves the original en-
ergy dissipation law. Moreover, it indicates that the supplementary variables remain
near zero except at a few initial time spots. Fig. 9 plots the corresponding evolution
of the mass, which implies the mass is still conserved and validates our theory in The-



A Numerical Scheme for the Phase-Field Hydrodynamic Model of Ternary Fluid Flows 587

1.0 10

0.9 0.9
2 — » — $
£ 0.8 208
E ¢2 E 92
%] ¢3 ] ¢3
=07 g 07

=

=)
=
:
=)

S
n

(a) The partial spreading case (b) The total spreading case

Figure 9: The evolution of the mass for 2D coarsening dynamics of the ternary system with the partial
spreading case and total case. This figures show the proposed SVM-BDF2 scheme preserves the mass
conservation.

orem 3.1. This numerical experiment demonstrates that among the overall numerical
performance of the schemes, the SVM schemes tend to be more efficient, allowing
larger time steps.

For 3D phase separation, we use the newly proposed SVM-BDF2 scheme with the
same parameters as that used in 3D, except now the computational domain Q =
[0, L] x [0,L,] x [0,L,] with L, =1,L, =1 and L, = 2. The initial condition reads

1(x,0) = 0.5 (22 + 0.25> +0.001rand(x), (5.5)
$3(x,0) = 0.5 <22 + 0.25) +0.001rand(x), (5.6)
$2(x,0) =1 — ¢1(x,0) — ¢3(x,0). (5.7)

In the implementation we use 64 x64x 128 spatial meshes and time step size 7=2.5 X
10~3. The evolutions of the phase-field variable ¢;, i=1,2,3, in 3D are displayed in
Fig. 10. It is interesting to note that our three-dimensional numerical simulations can
capture some of the similar configuration shapes observed in the experiments and two-
dimensional simulations.

In Fig. 11, we plot the evolution of the original energy. It has been observed that
the original energy is decreasing in time, and the supplementary variables are accurate.

Example 5.4 (The effect of surface tension). In this example, we conduct several nu-
merical simulations on the evolutional dynamics of two closed circles driven by surface
tension and shear flow. The velocity field is set as u(x, y,0) = 0 and the initial condi-
tions for phase variables are provides as

0.22 — /(z —0.8)2 + (y — 05)2) , (5.8)

€

¢1(x,7,0) = 0.5 + 0.5 tanh (
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(a) The snapshots of ¢;,7 = 1,2, 3, at t = 10, 100, 200, 300, 500 for the partial spreading case
(012,013,023) = (1,1, 1)

(b) The snapshots of ¢;,i = 1,2, 3, at ¢t = 10, 100, 200, 300, 500 for the partial spreading case
(012,013, 023) = (1,3,1)

Figure 10: The 3D time evolution of phase variables ¢; (i = 1,2,3) with different surface tension, where
the color red, green, and blue represents ¢1, ¢2 and ¢3, respectively.
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Figure 11: Time evolution of total energy and supplementary variable for 3D coarsening dynamics of the
ternary system with the partial spreading and total spreading cases.
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where the initial profiles of the phase variables are plotted in Fig. 12. The domain
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Figure 12: The 2D initial profiles of the surface tension example where the color in red, green, and blue
represents ¢1, ¢2, and ¢3, respectively.
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Figure 13: The snapshots of the 2D dynamical evolution for the partial spreading case (o12,013,023) =
(1,1,1) (top) and the total spreading case (012, 013,023) = (1,3, 1) (bottom).

is taken as =0, L,;]x[0, L,| with L,=2 and L,=1. Some parameters are given by
p=1, n=1, e=0.025, M=10"3, A=7,S = 0.25/c. We use uniform grids with N, = 256
and N, = 128 and time step 7 = 1073 to solve this problem. The numerical results
for different surface tension are reported in Fig. 13, where the partial spreading case is
(012,013,093) = (1,1,1) and the total spreading case is (c12,013,023) = (1,3,1). Two
circles of the first case join together in the same shapes due to the equal surface tension,
while we can observe that the red circle enters into the green circle for the other one.

To further verify the energy stability of the proposed scheme, we also display the
original energy evolution dynamics in Fig. 14(a) and the time evolution of the supple-
mentary variable «(t) in Fig. 14(b). We can observe that the energy dissipates in time
for both cases and the numerical results of «(t) are accurate.

In the following, we will study how the two kiss-spheres are driven under the shear
flow, where the shear is equipped at the bottom and top. This is related to the pe-
riodic boundary condition for the velocity at the boundary except at y=0 and y=L,
for which we propose ul,—o=(—0.1,0)" and ul,—z,=(0.1,0)”. The initial conditions
for phase variables are set up as in the previous scenario. The numerical results with
different surface tension are summarized in Fig. 15, where the profiles of the phase
variable ¢; (i=1,2,3) at a sequence of time instants are shown. We observe that the
two circles are deformed to form ellipsoids due to the induction of the shear flow. The
results demonstrate that our proposed scheme can accurately predict the complicated
dynamics of the three-component Cahn-Hilliard-Navier-Stokes system.
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Figure 14: Time evolution of original energy and supplementary variable for the simulations in Fig. 13.
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Figure 15: The snapshots of the 2D dynamical evolution that is driven by the shear flow for the partial
spreading case (012,013,023) = (1,1,1) (top) and the total spreading case (o12,013,023) = (1,3,1)
(bottom).

Example 5.5 (Liquid lens under hydrodynamics). In this example, we study fluid lens
dynamics driven by the ternary CHNS system, where the lens is located at the interface
between two other immiscible fluids [35, 36]. The initial conditions for the phase
variables that are shown in Fig. 16 read as

min(/(z — )2+ (y — 0.5)% — 0.15,y — 0.5)) 511

2 €

1 1
o1(x,y,0) = = + §tanh (

2 €

o0 = L %tanh <—max(0.15 — /@ =12+ (y—05)2,y— 0.5)) 512

¢2(.%'7y70) = 1_¢1(x7y70) —¢3($,y,0), (513)

and u(z,y,0) = 0. The domain is set up as Q = [0, L,]x[0, L, | with L,=2 and L,=1.
The periodic boundary conditions are set along the x-direction, the homogeneous Neu-
mann boundary conditions are set for ¢;, i = 1,2,3, and u = (u,v)” along the y-
direction except u|,—q = —o, u|y—r, = o, Where i represents the magnitude of
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I+

Figure 16: The 2D initial profiles of the Liquid lens example where the color in red, green, and blue represent
é1, ¢2, and @3, respectively.
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Figure 17: The snapshots of the 2D dynamical evolution that is driven by the shear flow %o = 0 with different
surface tension, i.e., the partial spreading case (012,013,023) = (1,1,1) (top) and the total spreading case
(012,013,023) = (1,3,1) (bottom).
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Figure 18: The snapshots of the 2D dynamical evolution that is driven by the shear flow 4o = 0.1 with
different surface tension, i.e., the partial spreading case (o12,013,023) = (1,1,1) (top) and the total
spreading case (012,013,023) = (1,3,1) (bottom).

the shear flow. The parameters are chosen as M=2.5x1073, =0.025, n=p=1, $=0.25/¢
and A = 7. To solve this problem, we use uniform spatial meshes with N, = 256 and
N, = 128, and the time step size is chosen as 7 = 1.0 x 10~2. Moreover, different
surface tension coefficients are picked. Fig. 17 reports the numerical results with par-
tial and total cases. For the no-shear case, we observe that the numerical results agree
well with the theoretical predictions for the contact angles under no shear flow and are
qualitatively consistent with the reported literature [2, 35, 36]. However, introducing
the shear flow scenario, the shape of the liquid lens is deformed in Fig. 18.

<
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Example 5.6 (Dynamics of rising drops). In this example, we simulate buoyancy-driven
dynamics using the Boussinesq approximation, which means the difference in density
between different fluid components is small. Interested readers can refer to [24]. The
extra buoyancy term —(p1$1+ p2g2 + p3ds — p)go to the momentum balance equation to
approximate the upward force of buoyancy due to the density difference, where p is the
background density, p; is the density of each phase ¢;, i = 1,2,3, and g is the gravity
acceleration. We set p = py for brevity in this study. The 3D computation domain
Q= 10,L,] x[0,Ly] x[0,L,] with L, =1, L, = 1 and L, = 2 is divided uniformly
with step size h, = hy, = h, = 1/128. The initial velocity is set as zero, and the initial
conditions for each phase read

é1(z,y,2,0) = 0.5+ 0.5 tanh <O'15_\/(x_0'5)2+(€y_0'5)2 il (2_0'3)2> , (5.14)

¢ﬁxﬂh&0)=4l5+05tmﬂ1<Ol5_V“x_05y+fy_05ﬁ+%z_gﬁp)7 (5.15)

(bg(.%',y,()) = 1—¢1($7y70) —¢3($,y70), (516)
u(z,y,0) = 0. (5.17)
The model parameters are chosen below

p1 = 0.9, p3 = 1.0, p=10.9,

(5.18)
go = (0,0,4.98), M =10"3, e=0018, n=1.

This performs a lighter fluid drop immersed in a heavier fluid. Two sets of surface ten-
sion parameters are tested, where one is the partial spreading case with (012,013, 0923) =
(1,1,1), and the other is the total spreading case with (¢12,013,093) = (1,3, 1). For the
former shown in Fig. 19, the two spheres are finally bound together with identical
shapes and rise. In contrast, the other scenario displayed in Fig. 20 presents a different
pattern in which the two drops gradually are kept from each other as they ascend.

6. Conclusions

This paper introduces a supplementary variable method with constrained optimiza-
tion to devise efficient and thermodynamically consistent numerical approximations to
solve the hydrodynamically coupled ternary-component Cahn-Hilliard-Navier-Stokes
model, which combines the stabilization skill and implicit-explicit treatments for the
nonlinear terms. Our approach naturally leads to second-order, efficient, and original
energy stable numerical schemes. The resultant schemes only require solving constant
and time-independent coefficient matrices that can be pre-computed in addition to
a small price for solving a scalar nonlinear equation. Most importantly, the proposed
SVM-BDF2 scheme warrants the original energy law, which differs from some popular
schemes based on IEQ, SAV, and Lagrange multiplier. In simulating several 2D and 3D
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@t=0 M) t=5 (©t=10 dt=15

Figure 19: The 3D dynamical evolution of rising bubbles by a buoyancy force with go = (0,0, 4.98)” and
the partial spreading case (012, 013,023) = (1,1, 1), at a sequence of time instants ¢ = 0, 5, 10, 15.

(@t=0 Md)t=5 (@©t=10 dt=15

Figure 20: The 3D dynamical evolution of rising bubbles by a buoyancy force with go = (0,0, 4.98)” and
the total spreading case (o12,013,023) = (1,3, 1), at a sequence of time instants ¢t = 0, 5, 10, 15.

numerical examples and benchmark problems, we demonstrate the stability and accu-
racy of the developed schemes. The proposed SVM optimization idea is not limited
to the ternary CHNS system and its extensions to other coupled thermodynamic and
hydrodynamic models will be pursued in our later research.
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