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opposite Borel subalgebras, and r ∈ b−⊗b+ the corresponding 
solution of the classical Yang–Baxter equations. Let G be the 
simply–connected Poisson–Lie group corresponding to (g, r), 
H ⊂ B± ⊂ G the subgroups with Lie algebras h = b− ∩ b+

and b±, and G∗ = B+ ×H B− the Poisson–Lie group dual 
of G. G–valued Stokes phenomena were used by Boalch [3,4]
to give a canonical, analytic linearisation of the Poisson–Lie 
group structure on G∗. Ug–valued Stokes phenomena were 
used by the first author to construct a twist killing the KZ 
associator, and therefore give a transcendental construction of 
the Drinfeld–Jimbo quantum group U�g [23]. In the present 
paper, we show that the former construction can be obtained 
as semiclassical limit of the latter. Along the way, we also 
show that the R–matrix of U�g is a Stokes matrix for the 
dynamical KZ equations.
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1. Introduction

1.1. Let g be a complex semisimple Lie algebra and U�g its quantised enveloping 

algebra. The starting point of the present paper is the construction of U�g from the 

dynamical Knizhnik–Zamolodchikov (DKZ) equations obtained by the first author [23].

Let (·, ·) be an invariant inner product on g, Ω ∈ g ⊗ g the corresponding Casimir 

element, and h ⊂ g a Cartan subalgebra. Consider the DKZ on n = 2 points, that is the 

End(Ug⊗2)–valued connection on C ∋ z = z1 − z2 given by

d −

(
h

Ω

z
+ ad μ(1)

)
dz (1.1)

where μ ∈ h, μ(1) = μ ⊗ 1, and h is a formal deformation parameter. Just as its non–

dynamical counterpart which is obtained for μ = 0, the connection (1.1) has a regular 

singularity at z = 0, and admits a canonical fundamental solution Υ0 which is asymptotic 

to zhΩ as z → 0.

1.2. The dynamical term ad μ(1) gives rise to an irregular singularity at z = ∞. 

Assuming that μ is real, so that all Stokes rays lie in R, and regular, it is proved in 

[23] that (1.1) admits two canonical fundamental solutions Υ± which are asymptotic to 

ez ad μ(1)

· zhΩ0 as z → ∞ with Im z ≷ 0, where Ω0 ∈ h ⊗ h is the projection of Ω.

Consider now the regularised holonomy of (1.1) from ±ι∞ to 0 i.e., the element 

J± ∈ Ug⊗2�h� given by J± = Υ0(z)−1 · Υ±(z), where Im z ≷ 0. One of the main results 

of [23] is that J±, regarded as a twist, kills the KZ associator ΦKZ which arises from the 

(non–dynamical, reduced) KZ equations on n = 3 points

d − h

(
Ω12

z
+

Ω23

z − 1

)
dz

Let Δ± = J−1
± Δ(·)J± and R± = (J21

± )−1e�Ω/2J± be the corresponding twisted 

coproduct and R–matrix, where � = 2πιh. It follows that (Ug���, Δ±, R±) is a qua-
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sitriangular Hopf algebra, which can be shown to be isomorphic to the quantum group 

U�g.

1.3. In contrast to earlier constructions of U�g from the (non–dynamical) KZ equa-

tions [8,17,11–13], the above construction is entirely transcendental i.e., does not rely on 

cohomological arguments or the representation theory of g, and perhaps more naturally 

explains how U�g arises from such equations.

One additional feature is its compatibility with the Casimir equations of g introduced 

in [6,18,20,14]. Specifically, the twist J± is a smooth function of μ ∈ hR
reg, and satisfies 

the PDE

dJ± =
h

2

∑

α∈Φ+

dα

α

(
Δ(Kα)J± − J±(Kα

(1) + Kα
(2))
)

where Φ+ is a chosen system of positive roots, and Kα the Casimir of the sl2–subalgebra 

of g corresponding to α. This compatibility is a key ingredient in proving that the 

monodromy of the Casimir connection of g is given by Lustzig’s quantum Weyl group 

operators [21–23,1].

1.4. Let now G be the connected and simply connected complex Lie group corre-

sponding to g. Irregular singularities were exploited earlier by Boalch to linearise the 

Poisson structure on the Poisson–Lie group G∗ dual to G [3,4].

Boalch considered connections on the holomorphically trivial G–bundle over P 1 of the 

form

d −

(
A

z2
+

B

z

)
dz (1.2)

where A ∈ h is regular, and B ∈ g.

Assume that A is real, so that the Stokes rays of (1.2) lie in R,1 and set H± = {z ∈

C| Im z ≷ 0}. Then, there are unique holomorphic fundamental solutions γ± : H± → G

of (1.2), which are asymptotic to e−A/z ·z[B] as z → 0 in H±, where [B] is the projection 

of B onto h.

Define the Stokes matrices S± ∈ G by the analytic continuation identities

γ̃− = γ+ · S+ and γ̃+ = γ− · S− · e2πι[B]

where ·̃ denotes counterclockwise analytic continuation, and the identities hold in H+

and H− respectively. The elements S± ∈ G are unipotent. Specifically, A determines a 

partition Φ = Φ+ ⊔ Φ− of the root system by Φ± = {α ∈ Φ| α(A) ≷ 0}, and S± lies in 

the unipotent subgroup N± ⊂ G with Lie algebra n± =
⊕

α∈Φ±
gα.

1 Contrary to the reality assumption made in 1.2, the assumption that A ∈ hR is inessential, and is only 
made in the Introduction to simplify the exposition.
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1.5. Let B± ⊂ G be the Borel subgroups corresponding to Φ±, H = B+ ∩ B− the 

maximal torus with Lie algebra h, and consider the fibred product

B+ ×H B− = {(b+, b−) ∈ B+ × B−| π+(b+)π−(b−) = 1}

where π± : B± → H are the quotient maps. Following [4], we define the Stokes map to 

be the analytic map S : g −→ B+ ×H B− given by

B −→
(

S−1
+ · e−ιπ[B], S− · eιπ[B]

)
(1.3)

1.6. The pair (B+, B−) gives rise to a solution r ∈ b− ⊗ b+ of the classical Yang–

Baxter equations given by

r = xi ⊗ xi +
1

2
ta ⊗ ta (1.4)

where {xi}, {xi} are bases of n−, n+ which are dual with respect to (·, ·), and {ta}, {ta}

are dual bases of h. The element r gives g the structure of a quasitriangular Lie bialgebra, 

with cobracket δ : g → g ∧ g given by δ(x) = [x ⊗ 1 + 1 ⊗ x, r].

The dual Lie bialgebra (g∗, δt, [·, ·]t) may be identified, as a Lie algebra, with

b+ ×h b− = {(X+, X−) ∈ b+ ⊕ b−|π+(X+) + π−(X−) = 0}

where π± : b± → h is the quotient map. This endows G∗ = B+ ×H B− with the structure 

of a Poisson–Lie group, which is dual to G.

1.7. Endow g∗ with its standard Kirillov–Kostant–Souriau Poisson structure

{f, g}(x) = 〈[dxf, dxg], x〉

where dxh ∈ T ∗
xg

∗ = g is the differential of h at x, and [·, ·] is the Lie bracket on g.

Let ν : g∗ → g be the isomorphism induced by the bilinear form (·, ·), and identify g

and g∗ by using ν∨ = −1/(2πι)ν. The following remarkable result is due to Boalch [3,4].

Theorem. The map S : g∗ → G∗ is a Poisson map, and generically a local complex 

analytic diffeomorphism. In particular, S gives a linearisation of the Poisson structure 

on G∗.

1.8. One of goals of the present paper is to prove that Boalch’s linearisation result, 

specifically the fact that S is a Poisson map, can be obtained as a semiclassical limit of 

the transcendental construction of U�g.

Our overall strategy is the following. Since S is holomorphic, it suffices to show that 

its Taylor series Ŝ at 0 ∈ g∗ is a formal Poisson map. This in turn follows if Ŝ can 
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be quantised. We therefore seek quantisations C��g
∗� and C��G

∗� of the algebras of 

functions on the formal Poisson–Lie groups corresponding to g∗ and G∗, together with 

an algebra isomorphism Ŝ∗
�

: C��G
∗� → C��g

∗� such that the following diagram is 

commutative

C��g
∗� C��G

∗�
Ŝ∗
�

C�g∗� C�G∗�
Ŝ∗

(1.5)

where the vertical arrows are the specialisations at � = 0, and the bottom one is the 

pullback of Ŝ.

1.9. A formal quantisation of the dual P ∗ of a Poisson–Lie group P can be obtained 

from Drinfeld’s quantum duality principle as follows [7,15]. Let U be a quantised envelop-

ing algebra which deforms the Lie bialgebra p of P . Thus, U is a topologically free Hopf 

algebra over C��� such that U/�U is isomorphic to Up and, for any x ∈ p with cobracket 

δ(x) ∈ p ∧ p

δ(x) =
Δ(x̃) − Δ21(x̃)

�

∣∣∣∣
�=0

where x̃ ∈ U is an arbitrary lift of x. Then, U admits a canonical topological Hopf 

subalgebra U′ which is commutative mod �, and endowed with a canonical Poisson 

isomorphism ıU : U′/�U′ → C�P ∗�.

The simplest example of Drinfeld duality arises when P is the Lie group G endowed 

with the trivial Poisson structure. The corresponding Lie bialgebra is g with the trivial 

cobracket, and P ∗ is the additive abelian group g∗ with cobracket given by the transpose 

of the bracket on g. In this case, U can be taken to be Ug��� with undeformed product 

and coproduct. The corresponding subalgebra U′ is the (completed) Rees algebra of 

formal power series 
∑

n≥0 xn�n where the filtration order of xn is at most n, and ıU is 

the symbol map U′/�U′ →
∏

n≥0 Sng = C�g∗�.

1.10. To obtain a formal quantisation of G∗, we seek a QUE deforming the quasi-

triangular Lie bialgebra (g, r), where r ∈ b− ⊗ b+ is the canonical element (1.4). One 

such quantisation is the Drinfeld–Jimbo quantum group U�g corresponding to g. That, 

however, shifts the problem of filling in the diagram (1.5) to one of finding an algebra 

isomorphism (U�g)′ → U′, where U = Ug���, and showing that the latter quantises Ŝ∗.

Alternatively, we may resort to a preferred quantisation of g, that is a QUE which 

is equal to U as algebras. A class of such quantisations may be obtained as a twist 

quantisation, that is by using an element J ∈ 1 + �

2 j + �2U⊗2 satisfying j − j21 = r − r21, 

together with the twist equation
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Φ · J12,3 · J1,2 = J1,23 · J2,3

where Φ is a given associator. Then, UJ =
(
U, J−1Δ0(·)J, J−1

21 e�Ω/2J
)

is a QUE which 

quantises (g, r), and (UJ)′ is a formal quantisation of G∗.

1.11. A general result of Enriquez–Halbout asserts that if the twist J is admissible, 

that is such that � log(J) ∈ (U′)⊗2, the Drinfeld algebras (UJ)′ and U′ coincide [10]. In 

this case, the equality e : (UJ)′ → U′ clearly is an algebra isomorphism, and descends to 

a Poisson isomorphism ecl,J : C�G∗� → C�g∗� given by the composition

ecl,J = ıU ◦ e0 ◦ ı−1
UJ

where ıU : U′/�U′ → C�g∗� is the symbol map, ıUJ
: (UJ)′/�(UJ)′ → C�G∗� the canonical 

identification mentioned in 1.9, and e0 = id the reduction of e mod �.

One of the main results of this paper is that if J = J+ is (one of) the twist(s) arising 

from the dynamical KZ equations described in 1.2, with Φ is the KZ associator, then J is 

admissible, and the corresponding map ecl,J is equal to the Stokes map Ŝ∗. In particular, 

the latter is a Poisson map.

1.12. A key ingredient in proving the identity ecl,J = Ŝ∗ is a result of Enriquez–

Etingof–Marshall [9] which gives an explicit formula for ecl,J , under the additional 

assumptions that Φ is a Lie associator and that the admissible twist J lies in U′⊗U ∩U ⊗U′.

Consider to that end the quotient U ⊗ U′/� U ⊗ U′ ∼= Ug�g∗�, where the latter is the 

algebra of Ug–valued formal power series on g∗. Let G�g∗�+ ⊂ Ug�g∗� be the prounipo-

tent group of C�g∗�–points of G such that their value at 0 ∈ g∗ is equal to 1. Then, the 

following holds [9]

(1) The semiclassical limit j = scl (J), that is the image of J in Ug�g∗�, lies in G�g∗�+

and is therefore a formal map g∗ → G.

(2) Let

β : G∗ → G, (b+, b−) → b+ · b−1
−

be the big cell map. Then, the composition of ecl,J with β is the formal map g∗ → G

given by the twisted exponential map

ej(λ) = j(λ)−1 · eν(λ) · j(λ) (1.6)

where ν : g∗ → g is the isomorphism given by the inner product.

1.13. Since β is an isomorphism when regarded as a formal map, it suffices to prove 

that ecl,J ◦ β̂∗ = Ŝ∗ ◦ β̂∗ = β̂ ◦ S
∗

that is, by (1.6) that
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β̂ ◦ S = j(λ)−1 · eν(λ) · j(λ) (1.7)

By definition of S (1.3), the composition β ◦ S is the map B → S−1
+ · e−2πι[B] · S−1

− , 

which is the clockwise monodromy around z = 0 of (1.2) expressed in the solution γ−. 

By parallel transport to z = ∞, where (1.2) has a regular singularity with residue −B, 

β ◦ S is also equal to

B → C−1
− · e−2πιB · C− (1.8)

where C− = C−(B) ∈ G is the connection matrix, that is the element relating γ− to the 

canonical fundamental solution γ∞ which is asymptotic to z2πιB near z = ∞.

Comparing the right–hand sides of (1.7) and (1.8), and recalling that g∗ and g are 

identified by −1/2πι · ν, it therefore suffices to show that B → Ĉ− is the semiclassical 

limit of the DKZ twist J .2

1.14. The fact that J is a quantisation of the connection matrix C− follows from the 

uniqueness of canonical fundamental solutions of (1.2), when the structure group is an 

arbitrary affine algebraic group, specifically the prounipotent group G�g∗�+ [5]. It stems 

from the basic, but seemingly novel observation that the semiclassical limit of the DKZ 

equation (1.1) is equal to the ODE (1.2).3

More precisely, if Υ is a solution of

dΥ

dz
=

(
ad μ(1) + h

Ω

z

)
Υ

with values in U ⊗ U′, the semiclassical limit γ of Υ, as a formal function of λ ∈ g∗ with 

values in Ug, is readily seen to satisfy

dγ

dz
=

(
ad μ +

ν(λ)

2πιz

)
γ

where ν(λ) = id ⊗λ(Ω) which, after the change of variable z → 1/z, and the replacement 

ad μ → −A, ν(λ) → −2πιB is precisely the equation (1.2).4

1.15. Outline of paper

In Sections 2 and 3, we review the definition of the Stokes data and map for the 

connection (1.2), and the transcendental construction of U�g given in [23]. In Section 4, 

2 The problem of obtaining a quantisation of the connection matrix C− formulated in [25], together with 
our intuition that such a quantisation should be given by the DKZ twist J, were in fact the original impetus 
of this project.

3 This is related to, but different from, the fact that a different semiclassical limit of the KZ equations 
are the (non–linear) Schlesinger equations [19].

4 The appearance of the factor 2πι is due to the fact that the identification U′/�U′ ∼= Ŝg is given by 
mapping x ∈ g to �x = 2πιhx ∈ U′.
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we show that quantum R–matrix of U�g is a Stokes matrix of the dynamical KZ equation. 

Section 5 reviews Drinfeld’s duality principle. Section 6 contains the first part of our 

main results, namely the fact that the semiclassical limits of the DKZ equations and 

its canonical solutions at 0 and ∞ are equal to the connection (1.2) and its canonical 

solutions, after a change of variables. Section 7 describes the linearisation formula of 

Enriquez–Etingof–Marshall. Finally, in Section 8, we prove that the Stokes map is Poisson 

and, in Section 9 relate quantum and classical isomonodromic equations.

Acknowledgements

We would like to thank Anton Alekseev and Pavel Etingof for their helpful discussions 

and useful comments.

2. Stokes phenomena and Poisson–Lie groups

2.1. G–valued irregular connections on P 1

Let G be an affine algebraic group defined over C, H ⊂ G a maximal torus, and h ⊂ g

the Lie algebras of H and G respectively. Let Φ ⊂ h∗ be the set of roots of g relative to 

h, and hreg = h \
⋃

α∈Φ Ker α the set of regular elements in h.

Let P be the holomorphically trivial, principal G–bundle on P
1, and consider the 

meromorphic connection ∇ on P given by

∇ = d −

(
A

z2
+

B

z

)
dz, (2.1)

where A, B ∈ g. We assume henceforth that A ∈ hreg. By definition, the Stokes rays of ∇

are the rays R>0 · α(A) ⊂ C
∗, α ∈ Φ, that is the rays through the non–zero eigenvalues 

of ad(A). A ray r is called admissible if it is not a Stokes ray.

2.2. Canonical fundamental solutions

To each admissible ray r, and determination of log z, there is a canonical fundamental 

solution γr of ∇ with prescribed asymptotics in the open half–plane

Hr =
{

ueιφ| u ∈ r, φ ∈ (−π/2, π/2)
}

Specifically, the following result is proved in [2] for G = GLn(C), in [4] for G reductive, 

and in [5] for an arbitrary affine algebraic group.5 Denote by [B] the projection of B

onto h corresponding to the root space decomposition g = h 
⊕

α∈Φ gα.

5 We use the formulation of [5], which does not rely on formal power series solutions.
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Theorem. Let r = R>0 · eιθ be an admissible ray. Then, there is a unique holomorphic 

function hr : Hr → G such that

(1) hr tends to 1 as z → 0 in any closed sector of Hr of the form

| arg(z · e−ιθ)| ≤
π

2
− δ, δ > 0

(2) For any determination of log z with a cut along the ray c, the function

γr = hr · e−A/z · z[B]

where z[B] = exp([B] log z), satisfies ∇γr = 0 on Hr \ c.

2.3. Stokes phenomena

For a given determination of log z, with a cut along a ray c, the canonical solution γr

is locally constant with respect to the choice of r, so long as r does not cross a Stokes 

ray. More precisely, the following holds. For any subset Σ ⊂ C, let gΣ ⊆ g be the direct 

sum of the eigenspaces of ad(A) corresponding to the eigenvalues contained in Σ,

gΣ =
⊕

α∈Φ⊔{0}:
α(A)∈Σ

gα

where g0 = h. Note that [gΣ1
, gΣ2

] ⊆ gΣ1+Σ2
. In particular, if Σ is an open convex cone, 

gΣ is a nilpotent subalgebra of g.

Proposition. Let r, r′ be admissible rays such that r �= −r′, so that Hr ∩ Hr′ �= ∅, and 

denote by Σ(r, r′) ⊂ C
× the closed convex cone bounded by r and r′. Let

S : Hr ∩ Hr′ \ c −→ G

be the locally constant function defined by γr = γr′ · S. Then, the following holds.

(1) S takes values in the unipotent elements of G, and log S in the nilpotent subalgebra 

gΣ(r,r′).

(2) In particular, if Σ(r, r′) does not contain any Stokes rays, the solutions γr and γr′

coincide on Hr ∩ Hr′ \ c.

Proof. The asymptotic behaviour of γr and γr′ implies that

z[B] · e−A/z · S · eA/z · z−[B] =
(

γr′ · eA/z · z−[B]
)−1

· γr · eA/z · z−[B] → 1 (2.2)
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as z → 0 along any ray ρ in Hr ∩ Hr′ \ c. By [4, Lemma 6] and [5, Prop. 6.3], the 

restriction of S to ρ is unipotent, and log S lies in gHρ
.

Up to a permutation, we may assume that the counterclockwise angle from r to r′ is 

less than π, so that Hr ∩ Hr′ is the open convex cone bound by the rays r′e−iπ/2 and 

reiπ/2.

If the cut c is not contained in Hr ∩ Hr′ , S takes a single value. Since the intersection 

of the half–planes Hρ as ρ varies in Hr ∩ Hr′ is the closed convex cone bounded by r

and r′, it follows that log S ∈ gΣ(r,r′).

If, on the other hand, c disconnects Hr ∩ Hr′ into two open cones Σ<, Σ>, listed 

in counterclockwise order, then γr = γr′ · S≶ on Σ≶, for some S≶ ∈ G. The previous 

argument then shows that S≶ are unipotent, and that

log S< ∈ gΣ(e−ιπ/2c,r′) and log S> ∈ gΣ(r,eιπ/2c)

Analytic continuation across c implies that S> = e2πι[B] · S< · e−2πι[B]. Since any gΣ is 

stable under Ad(e2πι[B]), this implies that

log S≶ ∈ gΣ(e−ιπ/2c,r′) ∩ gΣ(r,eιπ/2c) = gΣ(r,r′)

2.4. Stokes data

For any two rays r, r′, let ∢(r, r′) ⊂ C
× be the (not necessarily convex) closed sector 

swept by eιθ · r, as θ ranges from 0 to the positive angle between r and r′. If r, r′ are 

admissible, and different from the log cut c, define an element Sr′r ∈ G by the identity

γ̃r|r

∣∣∣
r′

= γr′ |r′ · Sr′,r · e2πι[B]ǫc
r′r

where the left–hand side is the counterclockwise analytic continuation to r′ of the re-

striction of γr to r, and ǫc
r′r is 1 if c lies in ∢(r, r′), and 0 otherwise.

Proposition. The following holds

(1) If the positive angle formed by r and r′ is at most π, Sr′r is unipotent, and its 

logarithm lies in the nilpotent subalgebra g∢(r,r′).

(2) If the admissible ray r′ �= c lies in ∢(r, r′′), the following factorisation holds

Sr′′r = Sr′′r′ · e2πι[B]ǫc
r′′r′ · Sr′r · e−2πι[B]ǫc

r′′r′

Proof. (1) Let ℓ be a ray in Hr ∩ Hr′ \ c. Then

γ̃r|r

∣∣∣
ℓ

= γr|ℓ · e2πι[B]·ǫc
ℓr and γ̃r′ |ℓ

∣∣∣
r′

= γr′ |r′ · e2πι[B]·ǫc
r′ℓ
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By Proposition 2.3, γr|ℓ = γr′ |ℓ · S, where S ∈ G is a unipotent element whose log lies 

in gΣ(r,r′). Computing analytic continuation in stages yields

γ̃r|r

∣∣∣
r′

=
˜̃
γr|r

∣∣∣
ℓ

∣∣∣∣∣
r′

= γ̃r|ℓ

∣∣∣
r′

· e2πι[B]·ǫc
ℓr

= γ̃r′ |ℓ

∣∣∣
r′

· S · e2πι[B]·ǫc
ℓr = γr′ |r′ · e2πι[B]·ǫc

r′ℓ · S · e2πι[B]·ǫc
ℓr

= γr′ |r′ · Ad(e2πι[B]·ǫc
r′ℓ)(S) · e2πι[B]·ǫc

r′r

so that Sr′r = Ad(e2πι[B]·ǫc
r′ℓ)(S).

(2) Computing analytic continuation from r to r′′ in stages yields

γ̃r|r

∣∣∣
r′′

=
˜̃
γr|r

∣∣∣
r′

∣∣∣∣∣
r′′

= γ̃r′ |r′

∣∣∣
r′′

· Sr′r · e2πι[B]ǫc
r′r

= γr′′ |r′′ · Sr′′r′ · e2πι[B]ǫc
r′′r′ · Sr′r · e2πι[B]ǫc

r′r

Since the result is also equal to γr′′ |r′′ · Sr′′r · e2πι[B]ǫc
r′′r , the result follows.

2.5. Stokes factors

Given a Stokes ray ℓ, the Stokes factor Sℓ is the unipotent element of G defined 

by Sℓ = Sr′r, where r, r′ �= c are admissible rays such that ∢(r, r′) contains no other 

Stokes rays than ℓ, and does not contain the cut c if the latter is different from ℓ. By 

Proposition 2.4, the definition of Sℓ is independent of the choice of r, r′. The following 

is a direct consequence of Proposition 2.4.

Proposition. The following holds

(1) If c does not lie in ∢(r, r′), then

Sr′r =

�∏
ℓ

Sℓ

where ℓ ranges over the Stokes rays contained in ∢(r, r′), and Sℓ is placed to the left 

of Sℓ′ if ℓ is contained in ∢(ℓ′, r′).

(2) If c lies in ∢(r, r′), then

Sr′r =

�∏
ℓ

Sℓ · e2πι[B]·
�∏

ℓ
Sℓ · e−2πι[B]

where the leftmost product ranges over the Stokes rays contained in ∢(c, r′), and the 

rightmost one over those contained in ∢(r, c) except for c is the latter is a Stokes 

ray.
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2.6. Stokes matrices

Let r be a ray such that both ±r are admissible, and distinct from the log cut c. 

Assume further that c lies in the cone ∢(−r, r).6 By definition, the Stokes matrices Sr
±

are the unipotent elements of G defined by

Sr
+ = S−r r and Sr

− = Sr −r

The pair (A, r) determines a partition Φ = Φ+ ⊔ Φ− of the root system given by 

Φ± = {α ∈ Φ| α(A) ∈ ∢(±r, ∓r)}. By Proposition 2.4, the Stokes matrices Sr
+, Sr

− lie 

in N+, N− respectively, where N± = N±(A, r) ⊂ G is the unipotent subgroup with 

Lie algebra n± =
⊕

α∈Φ±
gα. Moreover, if A is fixed, the Stokes matrices Sr

± (and the 

subgroups N±) are locally constant in r, so long as ±r do not cross a Stokes ray or c.

2.7. Connection matrix

Recall that the connection ∇ is said to be non–resonant at z = ∞ if none of the 

eigenvalues of ad(B) are positive integers. The following is well–know (see, e.g., [24] for 

G = GLn(C)).

Lemma. If ∇ is non–resonant, there is a unique holomorphic function g∞ : P
1 \{0} → G

such that g∞(∞) = 1 and, for any determination of log z, the function γ∞ = g∞ · zB is 

a solution of ∇γ∞ = 0.

Fix a log cut c and, for any admissible ray r distinct from c, define the connection 

matrix Cr ∈ G by

γ∞ = γr · Cr

where the identity is understood to hold on r. By Proposition 2.3, Cr is locally constant 

with respect to r, so long as r does not cross a Stokes ray or c.

2.8. Monodromy relation

The connection matrix Cr is related to the Stokes matrices Sr
± by the following mon-

odromy relation.

Proposition. The following holds

Cr · e2πιB · C−1
r = Sr

− · e2πι[B] · Sr
+

6 This condition is only necessary so that the monodromy relation of Proposition 2.8 is neater.
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Proof. By definition of Sr
±, the monodromy of γr around a positive loop p0 around 0

based at a point z0 ∈ r is the right–hand side of the stated identity. On the other hand, 

the monodromy of γ∞ around p0 is e2πιB . Since γr = γ∞ · C−1
r , the former monodromy 

is conjugate to the latter by Cr.

2.9. The Stokes map

Let N± ⊂ G be the unipotent subgroups corresponding to (A, r), and B± = H⋉N± ⊂

G the solvable subgroups with Lie algebras b± = h ⋉ n±. Consider the fibred product

B+ ×H B− = {(b+, b−) ∈ B+ × B−| π+(b+)π−(b−) = 1}

where π± : B± → H are the quotient maps. Following [4], we define the Stokes map to 

be the analytic map Sr : g −→ B+ ×H B− given by

B −→
(

(Sr
+)−1 · e−ιπ[B], Sr

− · eιπ[B]
)

Note that B− ×H B+ maps to G via the map β : (b+, b−) → b+ · b−1
− .7 Moreover, by 

Proposition 2.8, the composition β ◦ Sr is the map g → G given by

B −→ (Sr
+)−1 · e−2πι[B] · (Sr

−)−1 = Cr · e−2πιB · C−1
r

2.10. Linearisation of G∗

Assume now that G is reductive, and fix a symmetric, non–degenerate, invariant 

bilinear form (·, ·) on g. The pair of opposite Borel subalgebras b± of g then gives rise 

to a solution r ∈ b− ⊗ b+ of the classical Yang–Baxter equations given by

r = xi ⊗ xi +
1

2
ta ⊗ ta (2.3)

where {xi}, {xi} are bases of n−, n+ respectively which are dual with respect to (·, ·), 

and {ta}, {ta} are dual bases of h.

The element r gives g the structure of a quasitriangular Lie bialgebra, with cobracket 

δ : g → g ∧ g given by δ(x) = [x ⊗ 1 + 1 ⊗ x, r]. The dual Lie bialgebra (g∗, δt, [·, ·]t) may 

be identified, as a Lie algebra, with

b+ ×h b− = {(X+, X−) ∈ b+ ⊕ b−|π+(X+) + π−(X−) = 0}

where π± : b± → h is the quotient map. This endows G∗ = B+ ×H B− with the structure 

of a Poisson–Lie group, which is dual to G.

7 β is a principal bundle over its image with structure group the order two elements in H.
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Endow now g∗ with its standard Kirillov–Kostant–Souriau Poisson structure given by

{f, g}(x) = 〈[dxf, dxg], x〉

where dxh ∈ T ∗
xg

∗ = g is the differential of h at x, and [·, ·] is the Lie bracket on g.

Let ν : g∗ → g be the identification induced by the bilinear form (·, ·), and set 

ν∨ = −1/(2πι)ν. The following remarkable result is due to Boalch [3,4].

Theorem. The map S ◦ ν∨ : g∗ → G∗ is a Poisson map, and generically a local analytic 

diffeomorphism.

In particular, S ◦ν∨ gives a linearisation of the Poisson–Lie structure on G∗. We shall 

give an alternative proof of the fact that S ◦ ν∨ : g∗ → G∗ is a Poisson map in Section 8.

3. Stokes phenomena and quantum groups

This section is an exposition of [23]. We explain in particular how the dynamical KZ 

equations give rise to a twist which kills the KZ associator. Sections 3.1–3.3 contain back-

ground material required to do calculus with values in infinite–dimensional filtered vector 

spaces and their endomorphisms. Throughout the paper, h, � are two formal parameters 

related by � = 2πιh.

3.1. Filtered vector spaces

Let V be a vector space over a field k endowed with a decreasing filtration

V = V0 ⊇ V1 ⊇ V2 ⊇ · · ·

and ı the map V → lim
←−

V/Vn. Recall that V is said to be separated if ı is injective, and 

complete if ı is surjective.

If k = C, and the quotients V/Vn are finite–dimensional, we shall say that a map 

F : X → V, where X is a topological space (resp. a smooth or complex manifold) is 

continuous (resp. smooth or holomorphic) if its truncations Fn : X → V/Vn are. If V is 

separated and complete, giving such an F amounts to giving continuous (resp. smooth 

or holomorphic) maps Fn : X → V/Vn such that Fn = Fm mod Vm/Vn, for any n ≥ m.

3.2. Filtered endomorphisms

Let V be as in 3.1, and E ⊂ Endk(V) the subalgebra defined by

E = {T ∈ Endk(V)| T (Vm) ⊆ Vm, m ≥ 0}
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Consider the decreasing filtration E = E0 ⊇ E1 ⊇ · · · where En ⊂ E is the two–

sided ideal given by En = {T ∈ E| Im(T ) ⊆ Vn}. Note that if the quotients V/Vn are 

finite–dimensional, the same holds for

E/En
∼= {T ∈ Endk(V/Vn)| T (Vm/Vn) ⊆ Vm/Vn, 0 ≤ m ≤ n}

In particular, if k = C, we may speak of a continuous (resp. smooth, holomorphic) map 

with values in E .

Lemma.

(1) If V is separated, so is E.

(2) If V is complete, so is E.

Proof. (1) holds because 
⋂

n≥0 En = {T ∈ E| Im(T ) ⊆
⋂

n≥0 Vn}. (2) Let Tn ∈ E/En be 

such that Tn = Tm mod E/Em for any n ≥ m. It suffices to find T ∈ Endk(V) such that 

T = Tn mod En for any n ≥ 0, for it then follows that T ∈ E . Let {vi}i∈I be a basis of 

V. For any i ∈ I, {Tnvi} is a well–defined element of limn V/Vn. By completeness of V, 

there exists ui ∈ V such that u = Tnvi mod Vn for any n. Setting Tvi = ui gives the 

required T .

3.3. Filtered algebras

Let A be a k–algebra endowed with an increasing algebra filtration k = A0 ⊆ A1 ⊆ · · · , 

and A���o the (completed Rees) algebra given by

A���o = {
∑

k≥0

ak�k ∈ A���| ak ∈ Ak}

Endow A���o with the decreasing filtration

A���o
n = A���o ∩ �nA��� (3.1)

with respect to which it is easily seen to be separated and complete. Note that each 

A���o
n is a two–sided, C���–ideal in A���o, and that the quotients

A���o/A���o
n

∼= A0 ⊕ �A1 ⊕ · · · ⊕ �n−1An−1

are finite–dimensional if A is filtered by finite–dimensional subspaces.

3.4. Example

We shall be interested in the case when A = Ug⊗m is a tensor power of an enveloping 

algebra, with filtration given by Ak = (Ug≤k)⊗m. Then,
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Ug⊗m���o = U′ ⊗ U⊗m−1 ∩ U ⊗ U′ ⊗ U⊗m−2 ∩ · · · ∩ U⊗m−1 ⊗ U′ (3.2)

where U = Ug��� and U′ = Ug���o. Note that Ug⊗m���o ∩ Ug⊗m = k. However, if 

x ∈ Ug≤k, i = 1, . . . , m, and

x(i) = 1⊗i−1 ⊗ x ⊗ 1⊗m−i ∈ Ug⊗m

then �k−1ad x(i) is a derivation of Ug⊗m���o, which preserves the filtration Ug⊗m���o
n.

3.5. The dynamical KZ equations

Let now g be a complex reductive Lie algebra, h ⊂ g a Cartan subalgebra, and (·, ·)

an invariant inner product on g. Let Φ = {α} ⊂ h∗ be the root system of g relative to h, 

choose xα ∈ gα for any α ∈ Φ such that (xα, x−α) = 1, and set

Kα = xαx−α + x−αxα

Endow A = Ug⊗2���o with the filtration An = Ug⊗2���o ∩ �nUg⊗2 as in (3.1), and 

filter E = {T ∈ EndC(A)| T (An) ⊆ An} as in 3.2. Since the quotients A/An and E/En

are finite–dimensional, we may speak of continuous, smooth or holomorphic functions 

with values in A and E .

The dynamical KZ (DKZ) connection is the E–valued connection on C given by

∇DKZ = d −

(
h

Ω

z
+ ad μ(1)

)
dz (3.3)

where μ ∈ h, Ω ∈ g ⊗ g is the invariant tensor corresponding to (·, ·) and, given an 

element a ∈ A, we abusively denote by a the corresponding left multiplication operator 

L(a) ∈ E .

3.6. Fundamental solution at z = 0

Proposition.

(1) For any μ ∈ h, there is a unique holomorphic function H0 : C → A such that 

H0(0, μ) = 1 and, for any determination of log z, the E–valued function

Υ0(z, μ) = ez ad μ(1)

· H0(z, μ) · zhΩ

satisfies ∇DKZΥ0 = 0.

(2) H0 and Υ0 are invariant under the diagonal action of h.
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(3) H0 and Υ0 are holomorphic functions of μ, and Υ0 satisfies

⎛
⎝dh −

h

2

∑

α∈Φ+

dα

α
Δ(Kα) − z ad dμ(1)

⎞
⎠Υ0 = Υ0

⎛
⎝dh −

h

2

∑

α∈Φ+

dα

α
Δ(Kα)

⎞
⎠

3.7. Fundamental solutions at z = ∞

Let H± = {z ∈ C| Im(z) ≷ 0}.

Theorem.

(1) For any μ ∈ hR
reg, there are unique holomorphic functions H± : H± → A such that 

H±(z, μ) tends to 1 as z → ∞ in any sector of the form | arg(z)| ∈ (δ, π − δ), δ > 0

and, for any determination of log z, the E–valued function

Υ±(z, μ) = H±(z, μ) · zhΩ0 · ez ad μ(1)

satisfies ∇DKZΥ± = 0.

(2) H± and Υ± are invariant under the diagonal action of h.

(3) H± and Υ± are smooth functions of μ, and Υ± satisfies

⎛
⎝dh −

h

2

∑

α∈Φ+

dα

α
Δ(Kα) − z ad dμ(1)

⎞
⎠Υ± = Υ±

⎛
⎝dh −

h

2

∑

α∈Φ+

dα

α
(Kα

(1) + Kα
(2))

⎞
⎠

3.8. Remark

The PDEs (3) in Proposition 3.6 and Theorem 3.7 do not take values in E , since 

left multiplication by hΔ(Kα), hK
(1)
α and hK

(2)
α does not preserve A. Let, however, 

A � Ã ⊂ Ug⊗2��� be the Rees algebra with respect to the laxer filtration (Ug⊗2)k =∑
a+b=2k Ug≤a ⊗ Ug≤b, and Ẽ the corresponding algebra of endomorphisms. Then, 

Υ0, Υ±, and left multiplication by hΔ(Kα), hK
(1)
α and hK

(2)
α all lie in Ẽ , and these PDEs 

should be understood as holding in Ẽ .

3.9. Z2–equivariance

Let U ⊂ C be an open subset. For any functions F : U → A and G : U → E , define 

F ∨ : − U → A and G∨ : − U → E by

F ∨(z) = ez ad(μ(1)+μ(2))(F (−z)21) and G∨(z) = ez ad(μ(1)+μ(2)) · G(−z)21

where G(−z)21 = (1 2) · G(−z) · (1 2). If F, G are local solutions of the dynamical KZ 

equations with values in A and E respectively, then so are F ∨, G∨.
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Lemma. The following holds

(1) For z ∈ H±,

Υ∨
0 (z) = Υ0(z) · e∓πιhΩ

(2) For z ∈ H∓,

Υ∨
±(z) = Υ∓(z) · e±πιhΩ0

Proof. (1) The uniqueness of the holomorphic part H0 of Υ0 implies that (ez ad μ(1)

·

H0)∨ = ez ad μ(1)

· H0. It follows that Υ∨
0 (z) = H0(z) · (−z)hΩ = Υ0(z) · e∓ιπhΩ0 since 

log(−z) = log z ∓ ιπ, depending on whether Im z ≷ 0.

(2) Similarly, for z ∈ H∓,

Υ∨
±(z) = ez ad(μ(1)+μ(2)) · (1 2) · H±(−z) · e−z ad μ(1)

· (−z)hΩ0 · (1 2)

= H∨
±(z) · ez ad μ(1)

· (−z)hΩ0

The uniqueness of H± implies that H∨
± = H∓, from which the result follows.

3.10. Another Z2–equivariance

Let U ⊂ C be an open subset. For any functions F : U → A and G : U → E , define 

F̃ : U → A and G̃ : U → E by

F̃ (z) = e−z ad(μ(1)+μ(2))(F (z)21) and G̃(z) = e−z ad(μ(1)+μ(2)) · (1 2) · G(z) · (1 2)

If F, G are local solutions of the dynamical KZ equations with parameter μ ∈ h, then 

F̃ , G̃ are solutions of the DKZ equations with parameter −μ.

Lemma. The following holds

Υ̃0(z; μ) = Υ0(z; −μ) and Υ̃±(z; μ) = Υ±(z; −μ)

Proof. By definition,

Υ̃0(z; μ) = e−z ad(μ(1)+μ(2)) · ez ad μ(2)

· H21
0 (z; μ) · z�Ω = e−z ad μ(1)

· H21
0 (z; μ) · z�Ω

which coincides with Υ0(z; −μ) by uniqueness. Similarly,

Υ̃±(z; μ) = e−z ad(μ(1)+μ(2)) · H21
± (z; μ) · ez ad μ(2)

· z�Ω0

= H21
± (z; μ) · e−z ad μ(1)

· z�Ω0 = Υ±(z; −μ)
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where the second equality uses the fact that H± is of weight zero, and the third follows 

by uniqueness.

3.11. Differential twist

Fix henceforth the standard determination of log z with a cut along the negative real 

axis, and let Υ0, Υ± be the corresponding fundamental solutions of the dynamical KZ 

equations given in 3.6 and 3.7 respectively. We shall consider Υ0 and Υ± as (single–

valued) holomorphic functions on C \ R≤0.

Definition. The differential twist is the smooth function J± : hR
reg → Ug⊗2���o defined 

by

J± = Υ0(z)−1 · Υ±(z)

where z ∈ C \ R≤0.

Remark. J± takes in fact values in E . However, the form of Υ0 and Υ± shows that

J± = z−hΩ · H0(z)−1 · exp(−z ad μ(1)) (H±) · zhΩ0

so that it is a left multiplication operator. We therefore abusively identify J± and 

J±(1⊗2).

Proposition. The following holds

J− = eπιhΩ · J21
+ · e−πιhΩ0

Proof. Let G∨(z) = ez ad(μ(1)+μ(2)) · G(−z)(1 2) be the involution defined in 3.9. By def-

inition, J21
+ = (Υ∨

0 )−1 · Υ∨
+, where the right–hand side is evaluated for Im z < 0. By 

Lemma 3.9, this is equal to e−πιhΩ · Υ−1
0 · Υ− · eπιhΩ0 .

3.12. For any μ ∈ hR
reg, set Φ+(μ) = {α ∈ Φ|α(μ) > 0}.

Theorem.

(1) J± kills the KZ associator ΦKZ ∈ Ug⊗3���o, that is

ΦKZ · Δ ⊗ id(J±) · J± ⊗ 1 = id ⊗Δ(J±) · 1 ⊗ J±

(2) J± = 1⊗2 + �

2 j± mod �2, where

j± = ∓Ω− +
1

πι

∑

α∈Φ+(μ)

(log α + γ) (Ωα + Ω−α)
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with Ωα = xα ⊗ x−α, Ω± =
∑

α∈Φ+(μ) Ω±α, and γ = limn(
∑n

k=1
1
k − log(n)) the 

Euler–Mascheroni constant. In particular,

j± − j21
± = Ω± − Ω∓ (3.4)

(3) As a function of μ ∈ hR
reg, J± satisfies

dhJ± =
h

2

∑

α∈Φ+(μ)

dα

α

(
Δ(Kα)J± − J±(Kα

(1) + Kα
(2))
)

Remark. Note that the PDE satisfied by J± is independent of the chamber which μ

lies in since d log α = d log(−α) and Kα = K−α. Note also that this PDE takes values 

in A. Indeed, although neither the left multiplication operator L(hΔ(Kα)) nor the right 

multiplication R(hK
(1)
α +hK

(2)
α ) leaves A inavariant, the fact that Δ(Kα) = K

(1)
α +K

(2)
α +

2(Ωα + Ω−α) implies that

L(hΔ(Kα)) − R(hK(1)
α + hK(2)

α ) = 2L(hΩα + hΩ−α) + ad(hK(1)
α + hK(2)

α )

which preserves A since hΩα ∈ A, and ad(hK
(i)
α ) leave A invariant by 3.3.

3.13. Quantisation of (g, r)

Fix a chamber C ⊂ hR
reg, and set Φ+ = Φ+(μ), μ ∈ C. Let

r = Ω+ +
1

2
Ω0 =

∑

α∈Φ+

xα ⊗ x−α +
1

2
Ω0

be the Drinfeld–Sklyanin r–matrix corresponding to C, and (g, r) the corresponding qu-

asitriangular Lie bialgebra.8

Set RKZ = e�Ω/2, and let

(Ug���, Δ0, RKZ, ΦKZ)

be the quasitriangular quasi–Hopf algebra structure on Ug��� underlying the monodromy 

of the KZ equations [8], where Δ0 is the standard cocommutative coproduct on Ug. If 

μ ∈ C, the differential twist J± = J±(μ) allows to twist this structure, and yields a 

quasitriangular Hopf algebra (Ug���, Δ±, R±), where9

Δ±(x) = J−1
± · Δ0(x) · J± and R± = (J−1

± )21 · RKZ · J±

8 Note that the r considered in 2.10 corresponds to the antifundamental chamber.
9 Note that ∆± and R± depend on the additional choice of μ ∈ C. Specifically, if μ0, μ1 ∈ C, p : [0, 1] → C

is a path with p(0) = μ0, p(1) = μ1, and ap ∈ Ug���0 is the holonomy of the Casimir connection along p, 
then
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Theorem.

(1) (Ug���, Δ+, R+) is a quantisation of (g, r).

(2) (Ug���, Δ−, R−) is a quantisation of (g, r21).

(3) (Ug���, Δ±, R±) is isomorphic, as a quasitriangular Hopf algebra, to the Drinfeld–

Jimbo quantum group corresponding to g.

Proof. (1)–(2) By (3.4), the coefficient of � in R± is 1
2(Ω ± Ω+ ∓ Ω−), which is equal to 

r for R+ and r21 for R−.

(3) This follows, for example, from Drinfeld’s uniqueness of the quantisation of (g, r)

[7] given that the Chevalley involution of g clearly lifts to (Ug���, Δ±, R±).

Remark. It follows from (4) of Theorem 3.12 that

R− = R0
KZ · R21

+ · (R0
KZ)−1 (3.5)

4. The R–matrix as a quantum Stokes matrix

4.1. Quantum Stokes matrices

Recall that H± = {z ∈ C| Im(z) ≷ 0}. Define the quantum Stokes matrices S± ∈

Ug⊗2���o by

Υ+ = Υ− · S+ and Υ− · e�Ω0 = Υ+ · S−

where the first identity is understood to hold in H− after Υ+ has been continued across 

the ray R≥0, and the second in H+ after Υ− has been continued across R≤0.

Proposition. The following holds

(1) S− = e−ιπhΩ0 · S21
+ · eιπhΩ0 .

(2) J−1
+ · e2πιhΩ · J+ = S−1

+ · e2πιhΩ0 · S−1
− .

(3) As functions of μ ∈ C, the quantum Stokes matrices S± satisfy

dhS± =
h

2

∑

α∈Φ+

dα

α

[
Kα

(1) + Kα
(2), S±

]

∆±(x)(μ1) = a
⊗2
p · ∆±(a

−1
p xap)(μ0) · (a

⊗2
p )

−1
and R±(μ1) = a

⊗2
p · R±(μ0) · (a

⊗2
p )

−1

In particular, the quasitriangular Hopf algebras corresponding to different values of μ ∈ C are all isomorphic.
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Proof. (1) Let f be a holomorphic function on H±, and denote by P±(f) the analytic 

continuation of f to H∓ across the half–axis R≷0. By Lemma 3.9, and the definition of 

S−,

P−(Υ∨
+) = P−(Υ−) · eιπhΩ0 = Υ+ · S− · e−ιπhΩ0

On the other hand, if ı : C → C is the inversion z → −z,

P−(Υ∨
+) = ez ad(μ(1)+μ(2)) · (1 2) · P−(Υ+ ◦ ı) · (1 2)

= ez ad(μ(1)+μ(2)) · (1 2) · P+(Υ+) ◦ ı · (1 2)

= ez ad(μ(1)+μ(2)) · (1 2) · Υ− ◦ ı · S+ · (1 2)

= Υ∨
− · S21

+

= Υ+ · e−ιπhΩ0 · S21
+

where the last identity uses Lemma 3.9.

(2) By construction, the monodromy of the fundamental solution Υ0 around a pos-

itively oriented loop γ0 around 0 is e2πιhΩ. Let now γ∞ be a clockwise loop around ∞

based at x0 ∈ H+. Since such a loop crosses the negative real axis before the positive 

one, the monodromy of Υ+ around γ+ is S−1
+ · e2πιhΩ0 · S−1

− . The result now follows from 

the fact that γ∞ is homotopic to γ0, and Υ+ = Υ0 · J+.

(3) follows from the PDE satisfies by Υ0 and Υ±.

4.2. The R–matrix as a quantum Stokes matrix

Theorem. The following holds

R+ = eπιhΩ0 · S−1
− and R− = eπιhΩ0 · S−1

+

Proof. By definition of S+, Υ+ = Υ− ·S+, when both Υ± are considered as single–valued 

functions on C \ R≤0. On the other hand, by definition of J±,

Υ+ = Υ0 · J+ = Υ− · J−1
− · J+

Using Proposition 3.11 therefore yields

S+ = eιπhΩ0 · (J−1
+ )21 · e−ιπhΩ · J+ = eιπhΩ0 · (R−1

+ )21

where the last equality uses the fact that RKZ = exp(πιhΩ) = R21
KZ. The first stated 

identity now follows from (1) of Proposition 4.1. The second one follows from the first 

and (3.5).
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5. Quantum duality principle and semiclassical limits

5.1. Quantised universal enveloping algebras

Let k be a field of characteristic zero, and U a quantised universal enveloping algebra 

(QUE) over k, that is a topologically free Hopf algebra over k[[�]] such that U/�U is 

isomorphic to the enveloping algebra Ug of a Lie algebra g over k. Then, U induces a Lie 

bialgebra structure on g, with cobracket δ : g → g ⊗ g given by

δ(x) =
Δ(x̃) − Δ21(x̃)

�

∣∣∣∣
�=0

where x̃ ∈ U is an arbitrary lift of x.

5.2. The algebra U′

Let η : C��� → U and ǫ : U → C��� be the unit and counit, respectively. U splits as 

Ker(ǫ) ⊕ C��� · 1, with projection onto the first summand given by π = id −η ◦ ǫ. Let 

Δ(n) : U → U⊗n be the iterated coproduct recursively defined by Δ(0) = ǫ, Δ(1) = id, 

and Δ(n) = Δ ⊗ id⊗(n−2) ◦Δ(n−1) for n ≥ 2.

Following Drinfeld, define the subspace U′ ⊂ U by [7,15]

U′ =
{

x ∈ U

∣∣∣π⊗n ◦ Δ(n)(x) ∈ �nU⊗n, n ≥ 1
}

The definition of U′ extends that of the completed Rees algebra of Ug to an arbitrary 

QUE. Specifically, the following holds.

Lemma. If U = Ug[[�]] with undeformed coproduct, then x =
∑

n≥0 xn�n lies in U′ if, 

and only if the filtration order of xn in Ug is less than or equal to n.

Proof. It is easy to see that, for any x1, . . . , xk ∈ g

π⊗n ◦ Δ(n)(x1 · · · xk) =
∑

I1⊔···⊔In={1,...,k}
|Ii|�=0

xI1
⊗ · · · ⊗ xIn

where, for any I = {i1, . . . , im}, with i1 < · · · < im, we set xI = xi1
· · · xim

. In particular, 

π⊗n ◦ Δ(n)(x1 · · · xk) = 0 if n ≥ k + 1. This implies that �ℓx1 · · · xk ∈ U′ if, and only if 

k ≤ ℓ.

5.3. Quantum duality principle

Assume now that g is finite–dimensional, let (g∗, δt, [·, ·]t) be the dual bialgebra, and 

G∗ the formal Poisson–Lie group with Lie algebra g. By definition, the algebra of func-
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tions on G∗ is the topological Poisson Hopf algebra given by k[[G∗]] = (Ug∗)∗. The 

following result is due to Drinfeld.

Theorem ([7,15]). U′ is a topologically free k[[�]]–module, and a topological sub Hopf 

algebra of U. Its multiplication is commutative mod �, and U′/�U′ is isomorphic, as a 

local, complete Poisson Hopf algebra to k[[G∗]].

5.4. The isomorphism U′/�U′ ∼= k[[G∗]]

If U = Ug[[�]] with undeformed coproduct, then δ = 0 and g∗ has trivial bracket. In 

this case G∗ is the (germ at 0 of the) abelian group g∗ and, by Lemma 5.2, U′/�U′ =

ĝr Ug = k[[g∗]], where ̂· is the graded completion.

More generally, the isomorphism U/�U ∼= Ug induces a canonical isomorphism

i∆ : U′/�U′ −→ k[[G∗]]

as follows [10, Rem. 3.7]. Identify Ug∗ as the quotient of the tensor algebra Tg∗ endowed 

with the standard concatenation product and (cocommutative) shuffle coproduct, and 

(Ug∗)∗ with a sub Hopf algebra of its dual (Tg∗)∗ = T̂g =
∏

n≥0 g
⊗n, where the latter is 

endowed with the (commutative) shuffle product and deconcatenation coproduct. Then, 

the isomorphism i∆ : U′/�U′ → k[[G∗]] = (Ug∗)∗ ⊂ T̂g is given by noticing that if x ∈ U′, (
1
�n π⊗n ◦ Δ(n)(x)

)∣∣
�=0

lies in g⊗n ⊂ (Ug)⊗n for any n, and setting

i∆(x) =

{
π⊗n ◦ Δ(n)(x)

�n

∣∣∣∣
�=0

}

n≥0

∈
∏

n≥0

g⊗n (5.1)

5.5. Semiclassical limit

If U is a QUE which deforms Ug, and A ∈ U ⊗ U′, we denote by scl (A) the semi–

classical limit of A, that is its class in U ⊗ U′/(�U ⊗ U′). By Theorem 5.3, scl (A) lies in 

Ug⊗̂k[[G∗]], and is therefore a (formal) function on G∗ with values in Ug.

6. Semiclassical limit of the dynamical KZ equation

The goal of this section is to prove that the Stokes data of the ODE (2.1) are the 

semiclassical limits of the Stokes data of the dynamical KZ equations (3.3). Technicalities 

aside, this stems from the observation that if Υ is a solution of

dΥ

dz
=

(
ad μ(1) + h

Ω

z

)
Υ

with values in U ⊗ U′, the semiclassical limit γ of Υ, as a formal function of λ ∈ g∗ with 

values in Ug, satisfies
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dγ

dz
=

(
ad μ +

ν(λ)

2πιz

)
γ

where ν(λ) = id ⊗λ(Ω) which, after the change of variable z → 1/z, and the replacement 

ad μ → −A, ν(λ) → −2πιB is precisely the equation (2.1).10

6.1. Formal Taylor series groups

Let G be an affine algebraic group over C. The ring of regular functions C[G] is a 

Hopf algebra, with coproduct Δf(g1, g2) = f(g1g2), counit ǫ(f) = f(1), and antipode 

Sf(g) = f(g−1).

If (R, mR, 1R) is a commutative, unital C–algebra, the R–points of G are, by defi-

nition, the set of C–algebra morphisms G(R) = AlgC(C[G], R). G(R) is a group, with 

multiplication φ · ψ = mR ◦ φ ⊗ ψ ◦ Δ, unit 1R ◦ ǫ, and inverse φ−1 = φ ◦ S. Let m ⊂ R

be a maximal ideal, and denote by G(R)m ⊂ G(R) the normal subgroup consisting of 

maps γ : Spec R → G(C) such that γ(m) = 1, that is

G(R)m = {ϕ ∈ AlgC(C[G], R)| ϕ(I) ⊂ m}

where I = Ker ǫ is the augmentation ideal. We shall need the following elementary

Lemma. If R is a complete local ring with unique maximal ideal m, then G(R)m may be 

identified with the set of grouplike elements of the topological Hopf algebra

Ug⊗̂R = lim
p

Ug ⊗ R/mp

Proof. Let C[[G]] = lim C[G]/In be the completion of C[G] at the identity, and identify 

Ug, as a Hopf algebra, with the continuous dual

C[[G]]∗ = {ϕ ∈ HomC(C[G], C)| ϕ(In) = 0, n ≫ 0}

If mp = 0 for some p, and φ ∈ G(R)m, φ vanishes on Ip and therefore lies in (C[G]/Ip)
∗ ⊗

R ⊂ C[[G]]∗ ⊗ R. In general, m is of finite order in R/mp for any p ≥ 1, so that 

G(R)m = limp G(R/mp)m embeds into limp Ug ⊗ R/mp.

We shall be interested below in the case when R = C[[V ]] is the completion of the 

algebra of regular functions on the vector space V = g or V = g∗ at 0. We denote in this 

case G(R), G(R)m and Ug⊗̂R by G[[V ]], G[[V ]]+ and Ug[[V ]] respectively. As algebraic 

groups over C, G[[V ]] and G[[V ]]+ are the inverse limits

G[[V ]] = lim
←−

G[[V ]](m) and G[[V ]]+ = lim
←−

G[[V ]]
(m)
+

10 The appearance of the factor 2πι is due to the fact that the identification U′/�U′ ∼= Ŝg is given by 
mapping x ∈ g to �x = 2πιhx ∈ U′.
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where G[[V ]](m) = G(C[[V ]]/Im), respectively, and G[[V ]]+ is prounipotent.

6.2. Semiclassical limit of canonical solutions of the DKZ equations

Consider the ODE

dγ

dz
=

(
A

z2
+

B

z

)
γ (6.1)

and the dynamical KZ equation

dΥ

dz
=

(
ad μ(1) + h

Ω

z

)
Υ (6.2)

where A, μ ∈ hreg, and B ∈ g.

Fix throughout the standard determination of the logarithm, with a cut along R<0. 

The following result shows that the semiclassical limits of the canonical fundamental 

solutions of (6.2) at z = 0, ∞ are the canonical fundamental solutions of (6.1) at z = ∞, 0, 

after the change of variable z → 1/z.

Proposition. Let ν : g∗ → g be the isomorphism given by λ → λ ⊗ id(Ω), and set 

ν∨ = −ν/2πι.

(1) Let γ∞ be the canonical solution of (6.1) near z = ∞, and write

γ∞ = e−A/z · h∞ · zB

where h∞ : P
1 \ 0 → G is such that h∞(∞) = 1. Regard h∞ as a holomorphic 

function of B ∈ gnr such that h∞(z)|B=0 ≡ 1, and let

ĥ∞ : P
1 \ 0 −→ G[[g]]+

be its formal Taylor series at B = 0.

Let Υ0 = ez ad μ(1)

· H0 · zhΩ be the canonical solution of (6.2) near z = 0. Then, the 

semiclassical limit of H0 takes values in G[[g∗]]+ ⊂ Ug[[g∗]]. Moreover, if μ = −A, 

then

scl (H0(z))(λ) = ĥ∞(1/z; ν∨(λ))

(2) Assume now that A ∈ hR
reg. Let

γ± = h± · e−A/z · z[B] : H± → G
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be the canonical solution of (6.1) at z = 0 corresponding to the half–plane H± =

{z ∈ C| Im(z) ≷ 0}. Regard h± as a holomorphic function of B ∈ g such that 

h±(z)|B=0 ≡ 1, and let

ĥ± : H± −→ G[[g]]+

be its formal Taylor series at B = 0.

Let Υ± = H± · ez ad μ(1)

· zhΩ0 , be the canonical solution of (6.2) at z = ∞ corre-

sponding to the half–planes H±. Then, the semiclassical limit of H± takes values in 

G[[g∗]]+ ⊂ Ug[[g∗]]. Moreover, if μ = −A, then

scl (H±(z))(λ) = ĥ∓(1/z; ν∨(λ))

Proof. (1) By definition, H0 is a solution of

dH0

dz
=

h

z

(
ℓ(e−z ad μ(1)

(Ω)) − ρ(Ω)
)

H0

where ℓ, ρ denote left and right multiplication respectively. Thus, as en element of U ⊗

U′/�U ⊗ U′ = Ug[[g∗]], the semiclassical limit h0 of H0 satisfies

dh0

dz
=

1

2πιz

(
ℓ(e−z ad μ(ν) − ρ(ν)

)
h0

together with the initial condition h0(0) = 1. We claim that h0 takes values in G[[g∗]]+ ⊂

Ug[[g∗]]. Indeed, both Δ ⊗ id(h0) and h13
0 h23

0 satisfy

dh

dz
=

1

2πιz

(
ℓ(e−z ad μ(ν1 + ν2)) − ρ(ν1 + ν2)

)
h

and the result follows by uniqueness. The claimed equality now follows from the unique-

ness statement of Lemma 2.7, applied to the affine algebraic groups G[C[g∗]/Im], m ≥ 1.

(2) is proved similarly.

6.3. Semiclassical limit of the differential twist

Theorem. Assume that A ∈ hR
reg, and let C± = γ−1

± · γ∞ be the connection matrix of 

(6.1) (see 2.7). Regard C± as a G–valued holomorphic function of B ∈ gnr such that 

C±|B=0 = 1, and let Ĉ± ∈ G[[g]]+ be its formal Taylor series at B = 0.

Let J± = Υ−1
0 · Υ± be the differential twist defined in 3.11. Then, if μ = −A, the 

semiclassical limit of J± is given by

scl (J±)(λ) = Ĉ∓(ν∨(λ))−1
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Proof. By definition, J± = z−hΩ · H0(z)−1 · exp(−z ad μ(1)) (H±) · zhΩ0 , where z ∈ H±. 

By Proposition 6.2,

scl (J±) = z−ν/2πι · ĥ∞(1/z; −ν/2πι)−1 · exp(z ad(A))
(

ĥ∓(1/z; −ν/2πι)
)

· z[ν]/2πι

On the other hand,

C±(B) = w−[B] · eA/w · h±(w)−1 · e−A/w · h∞(w) · wB

where w ∈ H±.

6.4. Semiclassical limit of the quantum Stokes matrices

Theorem. Let A ∈ hR
reg, and S± the Stokes matrices of the ODE (6.1) relative to the ray 

−ιR>0 (see 2.6). Regard S± as a G–valued holomorphic function of B ∈ g such that 

S±|B=0 = 1, and let Ŝ± ∈ G[[g]]+ be its formal Taylor series at 0.

Let μ ∈ hR
reg, and S�

± the Stokes matrices of the dynamical KZ equation (6.2) (see 

4.1). Then, S�
± take values in U⊗̂U′, and its semi–classical limit in G[[g∗]]+ ⊂ Ug[[g∗]]. 

Moreover, if μ = −A, then

scl (S�

±)(λ) = Ŝ±(ν∨(λ))

Proof. Let Υ± = H± ·ez ad μ(1)

·zhΩ0 be the canonical solutions of the DKZ equations cor-

responding to the halfplanes H±, and Υ̃+ = H̃+ ·ez ad μ(1)

·zhΩ0 the analytic continuation 

of Υ+ across R>0. By definition,

S�

+ = Υ−1
− · Υ̃+ = z−hΩ0 · exp(−z ad μ(1))

(
H−1

− · H̃+

)
· zhΩ0

for z ∈ H−. By Proposition 6.2,

scl (S�

+) = z−[ν]/2πι · exp(−z ad(μ))

(
ĥ+(1/z; −ν/2πι)−1 ·

˜̂
h−(1/z; −ν/2πι)

)
z[ν]/2πι

where 
˜̂
h− is the analytic continuation of ĥ− across R>0.

On the other hand, if γ±(w) = h±(w) ·e−A/w ·w[B] are the canonical solutions of (6.1)

corresponding to w ∈ H±, and γ̃− is the analytic continuation of γ− across R+ then, by 

definition

S+ = γ−1
+ · γ̃− = w−[B] · eA/w · h+(w)−1 · h̃−(w) · e−A/w · w[B]

The Taylor series of S+ at B = 0 therefore coincides with scl (S�
+) provided A = −μ, 

w = 1/z, and B is replaced by −ν(λ)/2πι. The proof that scl (S�
−) = Ŝ−(−ν/2πι) is 

identical.
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7. Formal linearisation via quantisation

7.1. Let (p, r) be a finite–dimensional quasitriangular Lie bialgebra over a field k of 

characteristic zero. Thus, p is a Lie algebra, r ∈ p ⊗ p satisfies the classical Yang–Baxter 

equations (CYBE)

[r12, r23 + r13] + [r13, r23] = 0

and is such that Ω = r + r21 is invariant under p. In particular, p is a Lie bialgebra with 

cobracket δ : p → p ∧ p given by δ(x) = [x ⊗ 1 + 1 ⊗ x, r].

Let p∗ be the dual Lie bialgebra to p, and P, P ∗ the formal Poisson–Lie groups with 

Lie algebras p, p∗. The CYBE imply that the maps ℓ, ρ : p∗ → p given by

ℓ(λ) = λ ⊗ id(r) and ρ(λ) = − id ⊗λ(r)

are morphisms of Lie algebras. We denote the corresponding morphisms of formal groups 

P ∗ → P by L and R respectively, and by β : P ∗ → P the big cell map

g∗ −→ L(g∗) · R(g∗)−1

The differential of β at 1 is ℓ − ρ : λ → λ ⊗ id(Ω) =: ν(λ). In particular, β is an 

isomorphism of formal manifolds if r is non–degenerate, that is such that ν : p∗ → p is 

an isomorphism.

7.2. Set U = Up[[�]] and let Φ ∈ U⊗3 be an associator, that is an element satisfying 

Φ ∈ 1 + �
2

24 [Ω12, Ω23] +�3U⊗3, and such that (U, Δ0, e�Ω/2, Φ) is a quasitriangular quasi–

Hopf algebra. Let J ∈ 1 + �

2 j + �2U⊗2 be a twist such that j − j21 = r − r21, and the 

following twist equation holds

Φ · J12,3 · J1,2 = J1,23 · J2,3 (7.1)

Then, UJ =
(
U, ΔJ = J−1Δ0(·)J, RJ = J−1

21 e�Ω/2J
)

is a quasitriangular Hopf algebra, 

which is a quantisation of (p, r). By Theorem 5.3, (UJ )′ is therefore a quantisation of the 

Poisson algebra k[[P ∗]].

7.3. Assume that the twist J is admissible, that is such that � log(J) ∈ (U′)⊗2. The 

following linearisation result is due to Enriquez–Halbout [10, Prop. 4.2].

Proposition. The subalgebras U′ and (UJ)′ of U coincide. Their equality therefore induces 

a formal Poisson isomorphism πJ : p∗ → P ∗ given by the composition

k[[P ∗]] ∼= (UJ)′/�(UJ)′ = U′/�U′ ∼= k[[p∗]] (7.2)

where the first and last isomorphisms are given by (5.1).
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The explicit form of the isomorphism πJ is given by the following result of Enriquez–

Etingof–Marshall [9, §3.3.2].

Theorem. Assume further that Φ = Ψ(�Ω12, �Ω23) where Ψ is a Lie associator, and that 

J lies in U ⊗ U′ ∩ U′ ⊗ U. Then,

(1) The semiclassical limit j = J mod � U ⊗U′ lies in P [[p∗]]+ ⊂ Ug⊗̂k[[p∗]], that is, is 

a formal map p∗ → P .

(2) The composition of the Poisson isomorphism πJ : p∗ → P ∗ with the big cell map 

β : P ∗ → P is the map ej : p∗ → P defined by

ej(λ) = j(λ)−1 · eν(λ) · j(λ)

In particular, if r is non–degenerate, the map β−1 ◦ ej : p∗ → P ∗ is an isomorphism of 

formal Poisson manifolds.

Proof. We outline the proof for the reader’s convenience. By assumption, R = J−1
21 ·

e�Ω/2 · J lies in U ⊗ U′ = UJ ⊗ (UJ)′, and similarly R21 ∈ UJ ⊗ (UJ)′.

Consider now the identity

R21 · R = J−1 · e�Ω · J (7.3)

Let b ∈ UJ ⊗ (UJ)′/�UJ ⊗ (UJ)′ ∼= Up[[P ∗]] be the semiclassical limit of the left–hand 

side, and a ∈ U ⊗ U′/�U ⊗ U′ ∼= Up[[p∗]] that of the right–hand side. Clearly, b ◦ πJ = a. 

It therefore suffices to show that b = β and a = ej.

The identity ΔJ ⊗ id(R) = R13 · R23 implies that the semiclassical limit R′ of R lies 

in P [[P ∗]]+, and id ⊗ΔJ(R) = R13 · R12 that R′ is an antihomomorphism P ∗ → P . Its 

differential at the identity is readily seen to be the map p∗ → p given by λ → id ⊗λ(r), 

so that R′(g∗) = R(g∗)−1. Similarly, the semiclassical limit of R21 is the homomorphism 

L : P ∗ → P , and it follows that b = β.

Since the semiclassical limit of e�Ω is eν ∈ P [[p∗]]+, we have a = ej and there remains 

to prove that j lies in P [[p∗]]+, that is satisfies Δ0⊗id(j) = j1,3 ·j2,3. This is a consequence 

of the reduction of the twist equation (7.1) mod �U ⊗ U ⊗ U′, as follows. Note first that 

since J ∈ 1 + �U ⊗ U, J1,2 ∈ 1 + �U ⊗ U ⊗ U′. Next, it is easy to see that for any x ∈ U′, 

Δ0(x) ∈ 1 ⊗ x + �U ⊗ U′, hence J1,23 ∈ J1,3 + �U ⊗ U ⊗ U′. Finally, �Ω12 ∈ �U ⊗ U ⊗ U′, 

hence Φ = Ψ(�Ω12, �Ω23) = Ψ(0, �Ω23) = 1 mod �U ⊗ U ⊗ U′.

8. Analytic linearisation via Stokes data

Let G be a complex reductive group, and B± ⊂ G a pair of opposite Borel subgroups 

intersecting along the maximal torus H. Let g, b±, h be the Lie algebras of G, B±, and 

H respectively, Φ ⊂ h∗ the corresponding root system, and Φ± ⊂ Φ the set of positive 



V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189 31

and negative roots, so that b± = h 
⊕

α∈Φ±
gα. Fix an invariant inner product (·, ·) on g, 

and let r ∈ b+ ⊗ b− be the corresponding canonical element (see (2.3)). Then, (g, r) is a 

quasitriangular Lie bialgebra, and G and G∗ = B− ×H B+ are dual Poisson–Lie groups. 

Moreover, the homomorphisms L, R : G∗ → G defined in 1.12 correspond to the first 

and second projection, respectively.

Let A ∈ hreg, and consider the connection

∇ = d −

(
A

z2
+

B

z

)
dz

Set hR = {t ∈ h|α(t) ∈ R, α ∈ Φ}, and let C = {t ∈ h| α(t) > 0, α ∈ Φ+} ⊂ hR
reg be the 

fundamental chamber corresponding to Φ+. Note that the rays ±ιR>0 are admissible 

if A ∈ hR
reg + ιhR ⊂ hreg. Moreover, by 2.6, the Stokes matrices S± corresponding to 

r = −ιR>0 lie in B±(A, r) = B∓ if A ∈ −C + ιhR. Let

S : g → G∗ B →
(

S−1
+ · e−ιπ[B], S− · eιπ[B]

)

be the Stokes map defined in 2.9.

Let ν : g∗ → g be the identification determined by (·, ·), and set ν∨ = −ν/2πι.

Theorem. If A ∈ −C, the map S ◦ ν∨ : g∗ → G∗ is a Poisson map.

Proof. Since S ◦ ν∨ is complex analytic, it is sufficient to prove that its formal Taylor 

series at 0 is a Poisson map.

Set μ = −A ∈ C, and let J+ = J+(μ) the differential twist defined in 3.11. By 

Theorem 3.12, J+ ∈ 1 + �

2 j+ + �2U⊗2, where j+ − j21
+ = r − r21, and J+ kills the KZ 

associator ΦKZ.

Write Ω = Ω0 +
∑

α∈Φ Ωα, where Ω0 =
∑

i ti ⊗ ti, with {ti}, {ti} dual bases of h with 

respect to (·, ·), and Ωα = xα ⊗ x−α, with x±α ∈ g±α such that (xα, x−α) = 1. Then, 

one can show that log J+ is a Lie series in the variables �Ω0, �Ωα. Since the subspace 

An = {x ∈ U⊗n| �x ∈ (U′)⊗n} is a Lie algebra for any n ≥ 1, and �Ω0, �Ωα ∈ A2, it 

follows that log J+ ∈ A2.

Since J+ lies in U′⊗U ∩U ⊗U′ by 3.11, we may apply Theorem 7.2 to the pair (ΦKZ, J+). 

Let j+ ∈ U ⊗ U′/U ⊗ U′ = G[[g∗]]+ be the semiclassical limit of J+, and ej+
∈ G[[g∗]]+

the map λ → j+(λ)−1 · eν(λ) · j+(λ). By Theorem 6.3

ej+
(λ) = Ĉ−(−ν(λ)/2πι; −μ) · eν(λ) · Ĉ−(−ν(λ)/2πι; −μ)−1

=
(

Ĉ−(ν∨(λ); A) · e2πιν∨(λ) · Ĉ−(ν∨(λ); A)−1
)−1

=
(

Ŝ−(ν∨(λ); A) · e2πι[ν∨(λ)] · Ŝ+(ν∨(λ); A)
)−1

=
(

Ŝ+(ν∨(λ); A)−1 · e−πι[ν∨(λ)]
)

·
(

Ŝ−(ν∨(λ); A) · eπι[ν∨(λ)]
)−1



32 V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189

= L(Ŝ(ν∨(λ); A)) · R(Ŝ(ν∨(λ); A))−1

where the third equality follows from the monodromy relation (Proposition 2.8), and the 

fifth from the definition of the Stokes map, as well as the assumption that A ∈ −C, so 

that S±(B; A) ∈ N±(A, r) = N∓.

It follows that the composition β−1 ◦ ej+
is equal to Ŝ ◦ ν∨, and is therefore a Poisson 

map by Theorem 7.2.

9. Isomonodromic deformations

Let S± ∈ Ug⊗2���o be the Stokes matrices of the dynamical KZ equations, and 

Sscl
± ∈ G[[g∗]]+ their semiclassical limit.

For any α ∈ Φ, let Qα ∈ S2g ⊂ C[g∗] be given by Qα = xα · x−α = Q−α.

Proposition.

(1) As a function of μ ∈ hR
reg, Sscl

± satisfies the following PDE

dhSscl
± =

1

2πι

∑

α∈Φ+

dα

α
{Qα, Sscl

± }

(2) Regard B ∈ g as a function of μ ∈ hR
reg. Then, the Stokes matrices (of the classical 

ODE) are locally constant as μ varies in hreg if, and only if B satisfies the nonlinear 

PDE

dhB = −
1

2πι

∑

α∈Φ+

dα

α
Hα

where Hα = {Qα, −} is the Hamiltonian vector field corresponding to Qα.

Proof. (1) By Proposition 4.1, S± satisfy

dhS± =
1

4πι

∑

α∈Φ+

dα

α

[
�Kα

(1) + �Kα
(2), S±

]

Note that �2Kα ∈ U′, and that its image in U′/�U′ is 2Qα. As pointed out in 3.3, 

� ad(Kα) is a derivation of U′. Since [�Kα, −] = �−1[�2Kα, −], � ad(Kα) induces the 

derivation {Qα, −} on C[g∗]. The result now follows from the fact that �K
(1)
α ∈ �U ⊗U′, 

so that its image in Ug�g∗� is zero.



V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189 33

(2)

dhSscl
± =

1

2πι

∑

α∈Φ+

dα

α
{Qα, Sscl

± } + dg∗Sscl
± (dhB)

= dg∗Sscl
±

⎛
⎝ 1

2πι

∑

α∈Φ+

dα

α
Hα + dhB

⎞
⎠

This is the time–dependent Hamiltonian description of the isomonodromic deforma-

tion given by [16,4]. Here, we give a quantum algebra proof, which enables us to interpret 

the symplectic nature of the isomonodromic deformation from the perspective of the 

gauge action of Casimir operators on quantum Stokes matrices.
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