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1. Introduction

1.1. Let g be a complex semisimple Lie algebra and Upg its quantised enveloping
algebra. The starting point of the present paper is the construction of Upg from the
dynamical Knizhnik—Zamolodchikov (DKZ) equations obtained by the first author [23].

Let (-,-) be an invariant inner product on g, @ € g ® g the corresponding Casimir
element, and h C g a Cartan subalgebra. Consider the DKZ on n = 2 points, that is the
End(Ug®?)-valued connection on C 3 z = 21 — 25 given by

Q
d— (h; + adw)) dz (1.1)

where p € b, p = ® 1, and h is a formal deformation parameter. Just as its non—
dynamical counterpart which is obtained for pu = 0, the connection (1.1) has a regular
singularity at z = 0, and admits a canonical fundamental solution Ty which is asymptotic
to 2" as z — 0.

1.2.  The dynamical term ad pu(!) gives rise to an irreqular singularity at z = oo.
Assuming that p is real, so that all Stokes rays lie in R, and regular, it is proved in
[23] that (1.1) admits two canonical fundamental solutions Y4 which are asymptotic to
ezad i hQ a5y o0 with Tm 2 2 0, where Qg € h ® b is the projection of 2.

Consider now the regularised holonomy of (1.1) from +i00 to 0 i.e., the element
Ji € Ug®?[h] given by Jx = To(2)! - T (2), where Im z = 0. One of the main results
of [23] is that Ji, regarded as a twist, kills the KZ associator ®y, which arises from the
(non—dynamical, reduced) KZ equations on n = 3 points

d—h<%+ QQ?’)dz
z z—1

Let Ay = J{'A()Jy and Ry = (J2) 7 1e™¥2]. be the corresponding twisted
coproduct and R-matrix, where i = 2mch. It follows that (Ug[h], Ay, Ry) is a qua-
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sitriangular Hopf algebra, which can be shown to be isomorphic to the quantum group
Uhg.

1.3.  In contrast to earlier constructions of Upg from the (non-dynamical) KZ equa-
tions [8,17,11-13], the above construction is entirely transcendental i.e., does not rely on
cohomological arguments or the representation theory of g, and perhaps more naturally
explains how Upg arises from such equations.

One additional feature is its compatibility with the Casimir equations of g introduced
in [6,18,20,14]. Specifically, the twist J1 is a smooth function of p € hIrReg, and satisfies
the PDE

h do 1 9
dls =3 g}; % (A2 = eV + Ka))
where @ is a chosen system of positive roots, and I, the Casimir of the slo—subalgebra
of g corresponding to a. This compatibility is a key ingredient in proving that the
monodromy of the Casimir connection of g is given by Lustzig’s quantum Weyl group
operators [21-23,1].

1.4. Let now G be the connected and simply connected complex Lie group corre-
sponding to g. Irregular singularities were exploited earlier by Boalch to linearise the
Poisson structure on the Poisson—Lie group G* dual to G [3,4].

Boalch considered connections on the holomorphically trivial G-bundle over P! of the

d— (;2 + g) dz (1.2)

where A € b is regular, and B € g.
Assume that A is real, so that the Stokes rays of (1.2) lie in R,! and set Hy = {z €

C| Im z = 0}. Then, there are unique holomorphic fundamental solutions vy : Hy — G
—A/z . 1B

form

of (1.2), which are asymptotic to e as z — 0 in H4, where [B] is the projection
of B onto b.

Define the Stokes matrices S1 € G by the analytic continuation identities
V=718 and =4S .

where - denotes counterclockwise analytic continuation, and the identities hold in H
and H_ respectively. The elements Sy € G are unipotent. Specifically, A determines a
partition ® = &, LI ®_ of the root system by &1 = {a € ®|a(A) = 0}, and Sy lies in
the unipotent subgroup N1 C G with Lie algebra ny = @aeéi o

b Contrary to the reality assumption made in 1.2, the assumption that A € hR is inessential, and is only
made in the Introduction to simplify the exposition.
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1.5.  Let B1 C G be the Borel subgroups corresponding to &, H = B, N B_ the
maximal torus with Lie algebra b, and consider the fibred product

By xg B ={(by,b-) € By x B_|my(by)m—(b-) =1}

where 71 : BL — H are the quotient maps. Following [4], we define the Stokes map to
be the analytic map S : g — B, Xy B_ given by

s (55 o) 13

1.6.  The pair (B4, B_) gives rise to a solution r € b_ ® b of the classical Yang—
Baxter equations given by

o1
r=x; " + §ta®t“ (1.4)
where {z;}, {2’} are bases of n_,n, which are dual with respect to (-,-), and {t,}, {t*}
are dual bases of fj. The element r gives g the structure of a quasitriangular Lie bialgebra,
with cobracket 6 : g — gA g given by §(z) =[z® 1+ 1® x,r].
The dual Lie bialgebra (g*, d%, [+, -]") may be identified, as a Lie algebra, with

by xp b ={(X4, X_) € b D b_[my (Xy) +7_(X_) =0}

where 74 : by — b is the quotient map. This endows G* = By x g B_ with the structure
of a Poisson—Lie group, which is dual to G.

1.7.  Endow g* with its standard Kirillov-Kostant—Souriau Poisson structure

{f, 9} (x) = ([ds f, dzg], 7)

where d;h € Tg* = g is the differential of h at z, and [-, -] is the Lie bracket on g.
Let v : g* — g be the isomorphism induced by the bilinear form (-,-), and identify g
and g* by using v¥ = —1/(2m)v. The following remarkable result is due to Boalch [3,4].

Theorem. The map S : g* — G* is a Poisson map, and generically a local complex
analytic diffeomorphism. In particular, S gives a linearisation of the Poisson structure
on G*.

1.8.  One of goals of the present paper is to prove that Boalch’s linearisation result,
specifically the fact that S is a Poisson map, can be obtained as a semiclassical limit of
the transcendental construction of Upg.

Our overall strategy is the following. Since S is holomorphic, it suffices to show that
its Taylor series Sat0e g* is a formal Poisson map. This in turn follows if S can
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be quantised. We therefore seek quantisations C[g*] and Cp[G*] of the algebras of
functions on the formal Poisson—Lie groups corresponding to g* and G*, together with
an algebra isomorphism 3‘; : Ch[G*] — Ci[g*] such that the following diagram is
commutative

Cole] > 6] (15)

| |

Clg*] T ClG7]

where the vertical arrows are the specialisations at A = 0, and the bottom one is the
pullback of S.

1.9. A formal quantisation of the dual P* of a Poisson-Lie group P can be obtained
from Drinfeld’s quantum duality principle as follows [7,15]. Let 4 be a quantised envelop-
ing algebra which deforms the Lie bialgebra p of P. Thus, 4 is a topologically free Hopf
algebra over C[A] such that 4(/Asl is isomorphic to Up and, for any x € p with cobracket
d(z)epAp

A(@) — A?Y(T)

o(x) = -

h=0

where T € {4l is an arbitrary lift of x. Then, 4 admits a canonical topological Hopf
subalgebra U’ which is commutative mod %, and endowed with a canonical Poisson
isomorphism u : ' /RSl — C[P*].

The simplest example of Drinfeld duality arises when P is the Lie group G endowed
with the trivial Poisson structure. The corresponding Lie bialgebra is g with the trivial
cobracket, and P* is the additive abelian group g* with cobracket given by the transpose
of the bracket on g. In this case, { can be taken to be Ug[h] with undeformed product
and coproduct. The corresponding subalgebra {1’ is the (completed) Rees algebra of
formal power series ) ., z,h" where the filtration order of x,, is at most n, and 2 is
the symbol map W' /A’ — [I,>05"s =C[g"].

1.10.  To obtain a formal quantisation of G*, we seek a QUE deforming the quasi-
triangular Lie bialgebra (g,r), where r € b_ ® by is the canonical element (1.4). One
such quantisation is the Drinfeld—Jimbo quantum group Upg corresponding to g. That,
however, shifts the problem of filling in the diagram (1.5) to one of finding an algebra
isomorphism (Upg)’ — £, where 4 = Ug[h], and showing that the latter quantises S*.

Alternatively, we may resort to a preferred quantisation of g, that is a QUE which
is equal to 4 as algebras. A class of such quantisations may be obtained as a twist
quantisation, that is by using an element J € 1+ Zj + h2U®? satisfying j — j?! = r — r?!,
together with the twist equation
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D Jiag-Jiog=Ji23-Ja3

where ® is a given associator. Then, ; = (117 J7 1A (), J{llehQ/QJ) is a QUE which
quantises (g, r), and (4;)" is a formal quantisation of G*.

1.11. A general result of Enriquez—Halbout asserts that if the twist J is admissible,
that is such that hlog(J) € (L')®2, the Drinfeld algebras (4;)" and ' coincide [10]. In
this case, the equality e : (Ll;)" — 4l clearly is an algebra isomorphism, and descends to
a Poisson isomorphism e ; : C[G*] — C[g*] given by the composition

-1
€cl,J = U0 €0 O Ly,

where 1y : ' /AU — C[g*] is the symbol map, s, : () /h(Ll;)" — C[G*] the canonical
identification mentioned in 1.9, and eg = id the reduction of e mod #.

One of the main results of this paper is that if J = Jy is (one of) the twist(s) arising
from the dynamical KZ equations described in 1.2, with ® is the KZ associator, then J is
admissible, and the corresponding map e, is equal to the Stokes map S*. In particular,
the latter is a Poisson map.

1.12. A key ingredient in proving the identity eq ; = S* is a result of Enriquez—
Etingof-Marshall [9] which gives an explicit formula for e, y, under the additional
assumptions that @ is a Lie associator and that the admissible twist J lies in ' @ UNURLL .

Consider to that end the quotient U @ ' /Al @ 8" = Ug[g*], where the latter is the
algebra of Ug—valued formal power series on g*. Let G[g*]+ C Ug[g*] be the prounipo-
tent group of C[g*]-points of G such that their value at 0 € g* is equal to 1. Then, the
following holds [9]

(1) The semiclassical limit 3 = scl (J), that is the image of J in Ug[g*], lies in G[g*]+
and is therefore a formal map g* — G.
(2) Let
B:G* =G, (by,b_) = by -b"

be the big cell map. Then, the composition of e ; with 3 is the formal map g* = G
given by the twisted exponential map

e(N) = 3N e -5 (1.6)
where v : g* — g is the isomorphism given by the inner product.

1.18. Since ﬂ is an 1somorph1srn when regarded as a formal map, it suffices to prove
that ec1, s oﬁ =5* oﬁ* —ﬂoS that is, by (1.6) that
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BoS =\ e (N (1.7)

By definition of S (1.3), the composition 8 o S is the map B — S;l 2Bl g7t
which is the clockwise monodromy around z = 0 of (1.2) expressed in the solution ~_.
By parallel transport to z = oo, where (1.2) has a regular singularity with residue —B,
B oS is also equal to

B— (Ol ™mB . O (1.8)

where C_ = C_(B) € G is the connection matriz, that is the element relating y_ to the

canonical fundamental solution ., which is asymptotic to 225 near z = cc.
Comparing the right—hand sides of (1.7) and (1.8), and recalling that g* and g are

identified by —1/2m - v, it therefore suffices to show that B — C_ is the semiclassical

limit of the DKZ twist J.2

1.14. The fact that J is a quantisation of the connection matrix C_ follows from the
uniqueness of canonical fundamental solutions of (1.2), when the structure group is an
arbitrary affine algebraic group, specifically the prounipotent group G[g*]+ [5]. It stems
from the basic, but seemingly novel observation that the semiclassical limit of the DKZ
equation (1.1) is equal to the ODE (1.2).

More precisely, if T is a solution of

ax = (adu(l) + hg> T
z

dz

with values in 4 ® ', the semiclassical limit v of T, as a formal function of A\ € g* with
values in Ug, is readily seen to satisfy

dy _ v(A)

dz (adu—l— 2mz K
where v(\) = id ®A(Q2) which, after the change of variable z — 1/z, and the replacement
adp — —A,v()\) — —2mB is precisely the equation (1.2).%

1.15. Outline of paper

In Sections 2 and 3, we review the definition of the Stokes data and map for the
connection (1.2), and the transcendental construction of Upg given in [23]. In Section 4,

2 The problem of obtaining a quantisation of the connection matrix C_ formulated in [25], together with
our intuition that such a quantisation should be given by the DKZ twist J, were in fact the original impetus
of this project.

3 This is related to, but different from, the fact that a different semiclassical limit of the KZ equations
are the (non—linear) Schlesinger equations [19].

4 The appearance of the factor 2m¢ is due to the fact that the identification Ll'/hY’ = é\g is given by
mapping = € g to hx = 2mhx € W'.
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we show that quantum R—matrix of Ug is a Stokes matrix of the dynamical KZ equation.
Section 5 reviews Drinfeld’s duality principle. Section 6 contains the first part of our
main results, namely the fact that the semiclassical limits of the DKZ equations and
its canonical solutions at 0 and oo are equal to the connection (1.2) and its canonical
solutions, after a change of variables. Section 7 describes the linearisation formula of
Enriquez—Etingof-Marshall. Finally, in Section 8, we prove that the Stokes map is Poisson
and, in Section 9 relate quantum and classical isomonodromic equations.

Acknowledgements

We would like to thank Anton Alekseev and Pavel Etingof for their helpful discussions
and useful comments.

2. Stokes phenomena and Poisson—Lie groups
2.1. G-valued irreqular connections on P!

Let G be an affine algebraic group defined over C, H C G a maximal torus, and h C g
the Lie algebras of H and G respectively. Let ® C h* be the set of roots of g relative to
b, and breg = b\ U, cq Kera the set of regular elements in b.

Let P be the holomorphically trivial, principal G-bundle on P!, and consider the
meromorphic connection V on P given by

A B
V=d- (; + ;) dZ7 (21)

where A, B € g. We assume henceforth that A € h,ee. By definition, the Stokes rays of V
are the rays R~g - a(A) C C*, o € ®, that is the rays through the non—zero eigenvalues
of ad(A). A ray r is called admissible if it is not a Stokes ray.

2.2. Canonical fundamental solutions

To each admissible ray r, and determination of log z, there is a canonical fundamental
solution -, of V with prescribed asymptotics in the open half—plane

H, = {ue*’|uer,¢ € (—m/2,7/2)}
Specifically, the following result is proved in [2] for G = GL,(C), in [4] for G reductive,

and in [5] for an arbitrary affine algebraic group.” Denote by [B] the projection of B
onto h corresponding to the root space decomposition g =bh P, 4 da-

5 We use the formulation of [5], which does not rely on formal power series solutions.
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Theorem. Let » = Rwq - e be an admissible ray. Then, there is a unique holomorphic
function h, : H, — G such that

(1) h, tends to 1 as z — 0 in any closed sector of H,. of the form

larg(z- e < = — 4, 0>0

0
2
(2) For any determination of log z with a cut along the ray ¢, the function
Ap = by - e~ A7 1B
where 2Pl = exp([B]log z), satisfies V. =0 on H,. \ c.
2.3. Stokes phenomena

For a given determination of log z, with a cut along a ray ¢, the canonical solution ~,
is locally constant with respect to the choice of 7, so long as r does not cross a Stokes
ray. More precisely, the following holds. For any subset ¥ C C, let g C g be the direct
sum of the eigenspaces of ad(A) corresponding to the eigenvalues contained in 3,

g = @ Ja

acPU{0}:
a(A)ex

where go = b. Note that [gx,, 9s,] C g5, +5,- In particular, if ¥ is an open convex cone,
gs is a nilpotent subalgebra of g.

Proposition. Let 7’ be admissible rays such that r # —r’, so that H, NH,, # 0, and
denote by X(r,r') C C* the closed convex cone bounded by r and r'. Let

S:HTQHT/\CHG
be the locally constant function defined by 7y, = =, - S. Then, the following holds.
(1) S takes values in the unipotent elements of G, and log S in the nilpotent subalgebra
gf(r,r’)' o
(2) In particular, if X(r,7’) does not contain any Stokes rays, the solutions 7, and

coincide on H, NH,. \ c.

Proof. The asymptotic behaviour of v, and ~,» implies that

Bl g~ Alz . g Alr . 1B (7 oA/ .Z—[B})*l e B 1 (29)
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as z — 0 along any ray p in H,. N H,. \ ¢. By [4, Lemma 6] and [5, Prop. 6.3], the
restriction of S to p is unipotent, and log S lies in gy,

Up to a permutation, we may assume that the counterclockwise angle from r to r’ is
—im/2

less than 7, so that H, N H,. is the open convex cone bound by the rays r’e and

rei™/2,

If the cut c is not contained in H,. NH,., S takes a single value. Since the intersection
of the half-planes H, as p varies in H, N H,. is the closed convex cone bounded by r
and 1, it follows that log S € g5y

If, on the other hand, ¢ disconnects H, N H,  into two open cones ¥.,¥, listed

rrl)”

in counterclockwise order, then v, = v,» - S¢ on Yg, for some S¢ € G. The previous
argument then shows that Sg are unipotent, and that

log S< € O5(e—1m/2¢,0) and log Ss € O5(r,e07/2¢)

Analytic continuation across ¢ implies that S = e2™Bl. §_ . ¢=2m(B],

stable under Ad(e?™*!B]), this implies that

Since any gy is

IOg S§ € gi(e*”/zc,r’) N gf(r,e”/zc) = gi(r,r’)
2.4. Stokes data

For any two rays r, 7/, let <(r,7’) C C* be the (not necessarily convex) closed sector
swept by e? - 7, as 6 ranges from 0 to the positive angle between 7 and 7. If r,r’ are
admissible, and different from the log cut ¢, define an element S,.,. € G by the identity

2mi[B]eS
| = Al - See - 2P
r

where the left-hand side is the counterclockwise analytic continuation to r’ of the re-

striction of 7, to r, and €S, is 1 if ¢ lies in <(r,7’), and 0 otherwise.

T

Proposition. The following holds

(1) If the positive angle formed by r and v’ is at most w, Sy is unipotent, and its
logarithm lies in the nilpotent subalgebra g, ,)-

(2) If the admissible ray ' # c lies in <(r,r"), the following factorisation holds

c c
ST”’I' = ST.//,,./ . 627”[3]67'”7'/ . S’r"’l' . 8727”[B]57.N,,-/

Proof. (1) Let £ be a ray in H, NH, \ ¢. Then

2mi[B]-€j T oL Bl-e¢
'Yr‘rez %o|é.e (B]-€g,. and ’Yr/|g r/: ’Yr/|rz'6 [B]-€7r,
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By Proposition 2.3, v.|, = |, - S, where S € G is a unipotent element whose log lies
n g5, /). Computing analytic continuation in stages yields

—_~—

= 7, ,

2Bl i,

r!

77“7" = Py'r‘|é

r!

r!
——

2m1[B]-€; 2mi[B]-€S 2mi[B]-€j
_ ’YT’|e’T,'S'e T ]EZT:'YT"r/'e | ]ETIE.S.G wi[B) €5,

7r/|rl . Ad(EQﬂL[B]-eﬁ,e)(S) . e2muBle,

so that S, = Ad(e?™[Bl<ve)(8).
(2) Computing analytic continuation from r to r” in stages yields

—~—

= /|
Yool ,

2mi[Ble, .
rYT‘T Sy -e [Bleyr,

P
1"

c c
— 7T”|T// . Sr,,r, . 62TFL[B]€T//T/ . S’r"’r’ . eQTI’L[B]ET/T

Since the result is also equal to | ., = Sprry - e2mUBlerr the result follows.

P

2.5. Stokes factors

Given a Stokes ray ¢, the Stokes factor Sy is the unipotent element of G defined
by S¢; = Sy, where r,r’ # ¢ are admissible rays such that <(r,7’) contains no other
Stokes rays than ¢, and does not contain the cut c if the latter is different from ¢. By
Proposition 2.4, the definition of S, is independent of the choice of r,7’. The following
is a direct consequence of Proposition 2.4.

Proposition. The following holds

(1) If ¢ does not lie in <(r,r"), then

Sr’r :Hé SZ

where £ ranges over the Stokes rays contained in <((r,r"), and Sy is placed to the left
of Se if € is contained in <(¢',r").
(2) If ¢ lies in <(r,7"), then

S _ﬁ S, .ele'L[B]. ﬁ S .e—QTI'L[B]
r'r = ‘ 14 ‘ 14

where the leftmost product ranges over the Stokes rays contained in <(c,r’), and the
rightmost one over those contained in <((r,c) except for c is the latter is a Stokes
ray.
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2.6. Stokes matrices

Let r be a ray such that both +r are admissible, and distinct from the log cut c.
Assume further that c lies in the cone <t(—r,7).° By definition, the Stokes matrices S’
are the unipotent elements of G defined by

ST =8, and ST =5 _,
The pair (A,r) determines a partition ® = &, U &_ of the root system given by
by = {a € ®|a(A) € <«(£r,Fr)}. By Proposition 2.4, the Stokes matrices S”, S” lie
in N4, N_ respectively, where Ny = Ny (A,r) C G is the unipotent subgroup with

Lie algebra nq = @aebi ga. Moreover, if A is fixed, the Stokes matrices S%. (and the
subgroups Ny) are locally constant in 7, so long as £ do not cross a Stokes ray or c.

2.7. Connection matriz

Recall that the connection V is said to be non-resonant at z = oo if none of the
eigenvalues of ad(B) are positive integers. The following is well-know (see, e.g., [24] for

G = GL,(C)).

Lemma. If V is non-resonant, there is a unique holomorphic function g : P*\{0} — G

such that goo(00) = 1 and, for any determination of log z, the function Yoo = goo - 27 is

a solution of Vs = 0.

Fix a log cut ¢ and, for any admissible ray r distinct from ¢, define the connection
matriz C, € G by

Yoo = Yr* Cr

where the identity is understood to hold on r. By Proposition 2.3, C,. is locally constant
with respect to r, so long as r does not cross a Stokes ray or c.

2.8. Monodromy relation

The connection matrix C, is related to the Stokes matrices S’ by the following mon-
odromy relation.

Proposition. The following holds

C, - eQﬂLB . C;l =S e27rL[B] . S:_

6 This condition is only necessary so that the monodromy relation of Proposition 2.8 is neater.
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Proof. By definition of S’ , the monodromy of «, around a positive loop py around 0
based at a point zg € r is the right—hand side of the stated identity. On the other hand,
the monodromy of 74, around pg is e?™5. Since 7, = 75 - C;71, the former monodromy
is conjugate to the latter by Ci..

2.9. The Stokes map

Let N1 C G be the unipotent subgroups corresponding to (A,r), and By = Hx Ny C
G the solvable subgroups with Lie algebras b+ = h x ny. Consider the fibred product

By xg Bo ={(by,b-) € By x B_|my(by)m_(b-) =1}

where 73 : By — H are the quotient maps. Following [4], we define the Stokes map to
be the analytic map S, : g — By xg B_ given by

B — ((87)71emrlB) g7 enle)

Note that B_ x g By maps to G via the map £ : (by,b_) — by - b—"."7 Moreover, by
Proposition 2.8, the composition 8o S, is the map g — G given by

B —» (Si)fl . 6727‘“[3] . (Si)fl =C, - 67271'LB . C;l
2.10. Linearisation of G*

Assume now that G is reductive, and fix a symmetric, non—degenerate, invariant
bilinear form (+,-) on g. The pair of opposite Borel subalgebras by of g then gives rise
to a solution r € b_ ® by of the classical Yang—Baxter equations given by

o1
r=x; Qx' + §ta ® t* (2.3)

where {x;}, {z'} are bases of n_,n, respectively which are dual with respect to (-,-),
and {t,}, {t*} are dual bases of b.

The element r gives g the structure of a quasitriangular Lie bialgebra, with cobracket
d:9—gAggiven by 6(z) = [z ®1+1®x,r]. The dual Lie bialgebra (g*,d, [+, ]*) may
be identified, as a Lie algebra, with

b+ Xh b = {(X+,X7) € b+ D b7|71'+(X+) +7T7(X7) = O}

where w1 : by — b is the quotient map. This endows G* = B x iy B_ with the structure
of a Poisson—Lie group, which is dual to G.

7 B is a principal bundle over its image with structure group the order two elements in H.



14 V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189

Endow now g* with its standard Kirillov—Kostant—Souriau Poisson structure given by

{f, 9} (x) = ([ds f, dzg], 7)

where d,h € Trg* = g is the differential of h at z, and [-, -] is the Lie bracket on g.
Let v : g* — g be the identification induced by the bilinear form (-,-), and set
vV = —1/(2m)v. The following remarkable result is due to Boalch [3,4].

Theorem. The map Sov" : g* — G* is a Poisson map, and generically a local analytic
diffeomorphism.

In particular, Sov" gives a linearisation of the Poisson-Lie structure on G*. We shall
give an alternative proof of the fact that Sov" : g* — G* is a Poisson map in Section 8.

3. Stokes phenomena and quantum groups

This section is an exposition of [23]. We explain in particular how the dynamical KZ
equations give rise to a twist which kills the KZ associator. Sections 3.1-3.3 contain back-
ground material required to do calculus with values in infinite-dimensional filtered vector
spaces and their endomorphisms. Throughout the paper, h, i are two formal parameters
related by i = 2meh.

3.1. Filtered vector spaces
Let V be a vector space over a field k endowed with a decreasing filtration
V=Vy2V1 2V 2.
and ¢ the map ¥V — lim V/V,,. Recall that V is said to be separated if ¢ is injective, and
—
complete if 1 is surjective.

If k = C, and the quotients V/V),, are finite-dimensional, we shall say that a map
F: X — V, where X is a topological space (resp. a smooth or complex manifold) is
continuous (resp. smooth or holomorphic) if its truncations F,, : X — V/V,, are. If V is
separated and complete, giving such an F' amounts to giving continuous (resp. smooth
or holomorphic) maps F, : X — V/V, such that F,, = F,,, mod V,,/V,, for any n > m.
3.2. Filtered endomorphisms

Let V be as in 3.1, and £ C Endy(V) the subalgebra defined by

£ = {T € Endi(V)| T(V) C Vi, m > 0}
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Consider the decreasing filtration £ = & 2 & 2 --- where &, C & is the two—
sided ideal given by &, = {T € &| Im(T) C V,}. Note that if the quotients V/V,, are
finite-dimensional, the same holds for

£/En 2 {T € Ende(V/V,)| T(Vin/Via) € Vin/ Vi, 0 < m < n}

In particular, if k = C, we may speak of a continuous (resp. smooth, holomorphic) map
with values in £.

Lemma.

(1) If V is separated, so is E.
(2) If V is complete, so is E.

Proof. (1) holds because (,~q & = {T € €| Im(T) C (,,>0 Vn}- (2) Let T,, € /&, be
such that T, = T,, mod 5/5_m for any n > m. It suffices to find T € End(V) such that
T =T, mod &, for any n > 0, for it then follows that T € €. Let {v; };cs be a basis of
V. For any ¢ € I, {T,v;} is a well-defined element of lim,, V/V,,. By completeness of V,
there exists u; € V such that v = T,,v; mod V,, for any n. Setting Tv; = wu; gives the
required 7.

3.3. Filtered algebras

Let A be a k—algebra endowed with an increasing algebra filtrationk = A9 C A; C - - -
and A[h]° the (completed Rees) algebra given by

AR ={>_ axh* € A[h]| ax € A}

k>0

Endow A[A]° with the decreasing filtration
A[R]S = A[A]° N A" A[R] (3.1)

with respect to which it is easily seen to be separated and complete. Note that each
A[R]S is a two—sided, C[h]-ideal in A[A]°, and that the quotients

A[R]°JA[R]S = Ag @ hAL & --- @ "1 A,y
are finite-dimensional if A is filtered by finite—dimensional subspaces.
3.4. Example

We shall be interested in the case when A = Ug®™ is a tensor power of an enveloping
algebra, with filtration given by A, = (Ug<y)®™. Then,
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Ug®m [[h]]o _ ﬂl ® u@m—l A ® u/ ® u@m—? N---N u@m—l ® L[I (32)

where 4 = Ug[h] and &' = Ug[h]°. Note that Ug®™[h]° N Ug®™ = k. However, if
re€Ug<k,1=1,...,m, and

W =191 g2 @19 e Ug®™
then h*~lad 2 is a derivation of Ug®™[h]°, which preserves the filtration Ug®™[h]2.
3.5. The dynamical KZ equations

Let now g be a complex reductive Lie algebra, h C g a Cartan subalgebra, and (-, -)
an invariant inner product on g. Let ® = {a} C h* be the root system of g relative to b,
choose z,, € g, for any a € ® such that (2,,2_,) =1, and set

Ko =2aT_o +2_aa
Endow A = Ug®?[h]° with the filtration A,, = Ug®?[A]° N h"Ug®? as in (3.1), and
filter £ = {T € Endc(A)|T(A,) C Ay} as in 3.2. Since the quotients A/ A, and £/&,
are finite—dimensional, we may speak of continuous, smooth or holomorphic functions

with values in A and €.
The dynamical KZ (DKZ) connection is the E-valued connection on C given by

Q
Vpkz = d — (hz + adu(l)) dz (3.3)

where p € h, Q € g® g is the invariant tensor corresponding to (-,-) and, given an
element a € A, we abusively denote by a the corresponding left multiplication operator
L(a) € €.

3.6. Fundamental solution at z =0

Proposition.

(1) For any p € b, there is a unique holomorphic function Hy : C — A such that
Hy(0,u) =1 and, for any determination of log z, the £—valued function

To(z, 1) = €224 . Hy(z, p) - 21

satisfies Vpxz Yo = 0.
(2) Hoy and Yo are invariant under the diagonal action of b.
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(3) Ho and Yo are holomorphic functions of u, and Yo satisfies

da h da
dy— 5 Y —A(Ka) - zaddu! | To =T dy = 5 > —A(Ka)
acd acd

3.7. Fundamental solutions at z = 0o
Let Hy = {z € C| Im(z) = 0}.
Theorem.

(1) For any p € f)iReg, there are unique holomorphic functions Hy : Hy — A such that

Hy(z,p) tends to 1 as z — oo in any sector of the form |arg(z)| € (6,7 —§), 6 >0
and, for any determination of log z, the £—valued function

Ti(za,u) = H:I:(Z7/L) . ZhQO . 6zad;¢(1)

satisfies Vpxz T+ = 0.
(2) Hy and YTy are invariant under the diagonal action of b.
(3) Hi and Yy are smooth functions of p, and Ty satisfies

h d h d
dy— 2 Y CAKL) - zaddp®™ | Ty =T dy—3 Y ;a(/ca“u/ca@))
acd acd

3.8. Remark

The PDEs (3) in Proposition 3.6 and Theorem 3.7 do not take values in &, since
left multiplication by hA(ICa),hIC,(ll) and hKC? does not preserve A. Let, however,
A C A C Ug®?[h] be the Rees algebra with respect to the laxer filtration (Ug®?); =
> atb—ok Ub<a ® Ug<p, and & the corresponding algebra of endomorphisms. Then,

Yo, T4, and left multiplication by hA (K, ), hY and hiC? all lie in &, and these PDEs
should be understood as holding in £.

3.9. Zo—equivariance

Let U C C be an open subset. For any functions F': i/ — A and G : U — &, define
FV:-U—-Aand GV : —U — € by

FV(Z) _ ezad(u(1>+u(2>)(F(_Z>21) and G\/<Z) _ ezad(u<1)+u(2)) -G(—Z)21

where G(—2)*! = (12) - G(—2) - (12). If F,G are local solutions of the dynamical KZ
equations with values in A and & respectively, then so are F'V,GV.
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Lemma. The following holds

(1) For z € Hy,

TY(2) = To(z) - 7710
(2) For z € He,

TL(z) = T (z) - 27

Proof. (1) The uniqueness of the holomorphic part Hy of YT implies that (e?2d nt

Hy)Y = e*adn™ L Fy. Tt follows that Yy (2) = Ho(z) - (=2)M = To(2) - TS0 since
log(—z) = log z F v, depending on whether Im z 2 0.
Si

(2)

milarly, for z € Hx,

TY (2) = 220 (19)  Hy (—2) - ezl (i (19)

—_ Hl(z) . €7 ad u(l) . (7Z)hQO
The uniqueness of Hy implies that HY = H, from which the result follows.
3.10. Another Zo—equivariance

Let & C C be an open subset. For any functions F' : Y — A and G : U — &, define
F:U—Aand G:U — & by

F(z) = e =W+ (P()2) and  G(z) = e #2401 (12) . G(2) - (12)

If F,G are local solutions of the dynamical KZ equations with parameter p € h, then
F,G are solutions of the DKZ equations with parameter — .

Lemma. The following holds
To(zip) = Tolzi—p)  and  Tuzp) = Ti(zi—p)
Proof. By definition,
To(z;u) — ozad(uP+u®@) | zadpu® .Hgl(z;u) G pmzadu® .Hgl(z;u) )
which coincides with Yo(z; —p) by uniqueness. Similarly,

~ _ (1) (2) (2)
Ti(zip)=e zad(p' +p ).Hil(z;ﬂ).ezadu . "0

— HZ (2 ) - 77241 L 20% — (2 )



V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189 19

where the second equality uses the fact that H is of weight zero, and the third follows
by uniqueness.

3.11. Differential twist

Fix henceforth the standard determination of log z with a cut along the negative real
axis, and let Yo, Y4 be the corresponding fundamental solutions of the dynamical KZ
equations given in 3.6 and 3.7 respectively. We shall consider Ty and Y1 as (single—
valued) holomorphic functions on C \ R<g.

Definition. The differential twist is the smooth function Jy : h]ﬁg — Ug®?[Rh]° defined
by

Je="To(z)" - TL(2)
where z € C \ R<g.
Remark. J4 takes in fact values in £. However, the form of Yo and T4+ shows that
Ji =2 Ho(2)71 - exp(—zad ) (Hy) - 2%

so that it is a left multiplication operator. We therefore abusively identify Ji and
Ji(1®2).

Proposition. The following holds

J = eTthQ . J21 A e—ﬂ'Lth
- +

Proof. Let GY(z) = €7 ad(nD+u®) G(—2)1?) be the involution defined in 3.9. By def-
inition, J2' = (Ty)~! - TY, where the right-hand side is evaluated for Imz < 0. By
Lemma 3.9, this is equal to ™™ . Yo1. YT _ . emthSo,
3.12.  For any p € h]rReg, set @4 (p) = {a € D|a(n) > 0}.
Theorem.
(1) Jy kills the KZ associator ®y, € Ug®3[h]°, that is
By Aid(J1) Jr ®1=id@A(JL) 18 Jy

(2) Jy =192+ %ji mod h2, where

. 1
j+ = FOQ_+ E Z (loga + ’7) (Qa + Qfoz)
a€®y (1)
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with Qo = Ta @ Toa; Ve = D peq, (uy tar and 7 = lim, (}p_; + — log(n)) the
FEuler—Mascheroni constant. In particular,

i3 =00 - 0f (3.4)

(3) As a function of u € bR, Jyi satisfies

reg’

3 %0‘ (AU = Tl ™ + K0 ™))

a€dy (1)

.
Remark. Note that the PDE satisfied by Ji is independent of the chamber which p
lies in since dloga = dlog(—«) and K, = K_,. Note also that this PDE takes values
in A. Indeed, although neither the left multiplication operator L(hA(K,)) nor the right
multiplication R(hIC((xl) + hICg?)) leaves A inavariant, the fact that A(K,) = K&+ kP +
2(Qq + Q_4) implies that

L(hA(K)) — RWKY + hK@) = 2L(hQ, + hQ_4) + ad(hKP + hk?)
which preserves A since h(2, € A, and ad(h/C,(li ) ) leave A invariant by 3.3.
3.13. Quantisation of (g,r)

Fix a chamber C C hR , and set &, = &, (i), p € C. Let

reg’

1 1
FZQ++590: E xa®$_a+§ﬂo
acd

be the Drinfeld—Sklyanin r—matrix corresponding to C, and (g, r) the corresponding qu-
asitriangular Lie bialgebra.®
Set Ryy = €2 and let

(Ug[[hﬂv AO» RKZ7 (I)KZ>

be the quasitriangular quasi—-Hopf algebra structure on Ug[A] underlying the monodromy
of the KZ equations [8], where Aq is the standard cocommutative coproduct on Ug. If
u € C, the differential twist J = Ji(n) allows to twist this structure, and yields a
quasitriangular Hopf algebra (Ug[h], Ax, R+), where’

Ap(z)=J Aglz)-Jx and Ry = (J&H?' Ris - Jx

8 Note that the r considered in 2.10 corresponds to the antifundamental chamber.

9 Note that A+ and R+ depend on the additional choice of u € C. Specifically, if po, u1 € C, p:[0,1] = C
is a path with p(0) = po,p(1) = p1, and ap € Ug[h]o is the holonomy of the Casimir connection along p,
then
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Theorem.

(1) (Ug[h], Ay, Ry) is a quantisation of (g,r).

(2) (Uglh],A_,R_) is a quantisation of (g, r*!).

(3) (Ug[h], A+, Ry) is isomorphic, as a quasitriangular Hopf algebra, to the Drinfeld—
Jimbo quantum group corresponding to g.

Proof. (1)-(2) By (3.4), the coefficient of & in Ry is 1(Q=+ Q4 FQ_), which is equal to
r for Ry and r?! for R_.

(3) This follows, for example, from Drinfeld’s uniqueness of the quantisation of (g, r)
[7] given that the Chevalley involution of g clearly lifts to (Ug[h], Ay, R1).

Remark. Tt follows from (4) of Theorem 3.12 that

R_ =Ry, Ry - (Ry,)™ (3.5)
4. The R-matrix as a quantum Stokes matrix
4.1. Quantum Stokes matrices

Recall that Hy = {z € C| Im(z) 2 0}. Define the quantum Stokes matrices Sy €
Ug®?[h]° by

Y,="T_-S, and TYT_.eo=71,.5_

where the first identity is understood to hold in H_ after T, has been continued across
the ray R>¢, and the second in H after Y_ has been continued across R<g.

Proposition. The following holds

(1) S_ = efLTth() . S—2i-1 . 6”th0.
(2) ;1 A eQ‘n’LhQ . J+ _ S;l A e27thQo A S:l

J
(3) As functions of p € C, the quantum Stokes matrices St satisfy

Ay(z)(p) = ag? - Ax(a, 'wap)(po) - (a*)™"  and  Ri(m) = ay” - Ra(uo) - (a)®) ™"

In particular, the quasitriangular Hopf algebras corresponding to different values of u € C are all isomorphic.
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Proof. (1) Let f be a holomorphic function on Hy, and denote by Py (f) the analytic
continuation of f to Hx across the half-axis R3¢. By Lemma 3.9, and the definition of
5,

’P_(Ti) — P_(T_) . ewtho — T+ .S . efutho
On the other hand, if 2 : C — C is the inversion z — —z,

P_(YY) = 22 L (19) P (T, 00) - (12)
= 28+ (19) P (T, )00 (12)
= 22 (19) .7 045, - (12)
21
=Tv.S bt
— TJF . e—wthO . Sil
where the last identity uses Lemma 3.9.
(2) By construction, the monodromy of the fundamental solution T around a pos-

itively oriented loop 7o around 0 is €™M, Let now 7., be a clockwise loop around oo

based at x¢ € H,. Since such a loop crosses the negative real axis before the positive

2mhQo

one, the monodromy of T around ~ is S;l -e -S~1. The result now follows from

the fact that v, is homotopic to vy, and T, = Tq - J4.
(3) follows from the PDE satisfies by Yo and Y.

4.2. The R—matriz as a quantum Stokes matriz
Theorem. The following holds
R+ — eTI‘LhQO . S:l and R = e‘ITLth . S;l

Proof. By definition of 4, Y =Y _-S4, when both T4 are considered as single-valued
functions on C \ R<q. On the other hand, by definition of Ji,

Ty =Yo-Jo="T_-J ' Jy
Using Proposition 3.11 therefore yields
Sy = e (JrIy2L L gmimh g Qo (2l
where the last equality uses the fact that Ry, = exp(mthQ) = RZL. The first stated

identity now follows from (1) of Proposition 4.1. The second one follows from the first
and (3.5).



V. Toledano Laredo, X. Xu / Advances in Mathematics 429 (2023) 109189 23

5. Quantum duality principle and semiclassical limits
5.1. Quantised universal enveloping algebras

Let k be a field of characteristic zero, and 4l a quantised universal enveloping algebra
(QUE) over k, that is a topologically free Hopf algebra over k[[A]] such that ${/hLl is
isomorphic to the enveloping algebra Ug of a Lie algebra g over k. Then, 4 induces a Lie
bialgebra structure on g, with cobracket § : g — g ® g given by

A(@) - A%(3)

o) = h h=0

where z € 4l is an arbitrary lift of x.

5.2. The algebra

Let n: C[A] — Y and € : & — C[A] be the unit and counit, respectively. 4 splits as
Ker(e) @ C[A] - 1, with projection onto the first summand given by 7 = id —n o €. Let
AM) 2§ — ®" be the iterated coproduct recursively defined by A = ¢ AM = id,
and AM™ = A @id®"2 o A(=1) for > 2.

Following Drinfeld, define the subspace $' C 4 by [7,15]

= {x Eil’Tr@" o A (z) € F"U®" n > 1}

The definition of i’ extends that of the completed Rees algebra of Ug to an arbitrary
QUE. Specifically, the following holds.

Lemma. If {4 = Ug|[A]] with undeformed coproduct, then x = ano xR lies in Y if,
and only if the filtration order of x,, in Ug is less than or equal to n.

Proof. It is easy to see that, for any z1,...,zx € g
7T®"OA(")($1"'$I€)= Z T, ® - Qmp,
Lu---ur,={1,..., k}
[1;|7#0
where, for any I = {i1,...,4m}, with iy < -+ < i, we set 7 = x;, - - 2; . In particular,

7@ o A (1 - 2;) = 0 if n > k + 1. This implies that iz, - -z € & if, and only if
k<UL

5.8. Quantum duality principle

Assume now that g is finite-dimensional, let (g*, &%, [-,-]*) be the dual bialgebra, and
G* the formal Poisson-Lie group with Lie algebra g. By definition, the algebra of func-
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tions on G* is the topological Poisson Hopf algebra given by k[[G*]] = (Ug*)*. The
following result is due to Drinfeld.

Theorem ([7,15]). $8' is a topologically free k[[h]]-module, and a topological sub Hopf
algebra of L. Its multiplication is commutative mod h, and W' /RSl is isomorphic, as a
local, complete Poisson Hopf algebra to k[[G*]].

5.4. The isomorphism ' /Al = k[[G*]]

If &L = Ug|[[A]] with undeformed coproduct, then 6 = 0 and g* has trivial bracket. In
this case G* is the (germ at 0 of the) abelian group g* and, by Lemma 5.2, 4l'/Asl =
g/rU\g = k[[g*]], where ~is the graded completion.

More generally, the isomorphism /Al = Ug induces a canonical isomorphism

in R — K[[GH]

as follows [10, Rem. 3.7]. Identify Ug* as the quotient of the tensor algebra T'g* endowed
with the standard concatenation product and (cocommutative) shuffle coproduct, and
(Ug*)* with a sub Hopf algebra of its dual (T'g*)* = TE{ =11,,50 %", where the latter is
endowed with the (commutative) shuffle product and deconcatenation coproduct. Then,
the isomorphism ia : &' /R — Kk[[G*]] = (Ug*)* C Tg is given by noticing that if = € &',

(&7 o A (z)) lies in g®" C (Ug)®" for any n, and setting

|h:0

, [ 7®"o A ()
ZA(JJ) = {T

5.5. Semiclassical limit

. } e [ ¢ (5.1)

n>0

If {4 is a QUE which deforms Ug, and A € 4 ® Y, we denote by scl (A) the semi—
classical limit of A, that is its class in 4 ® ' /(AU @ Y'). By Theorem 5.3, scl (A) lies in
Ug®k[[G*]], and is therefore a (formal) function on G* with values in Usg.

6. Semiclassical limit of the dynamical KZ equation
The goal of this section is to prove that the Stokes data of the ODE (2.1) are the

semiclassical limits of the Stokes data of the dynamical KZ equations (3.3). Technicalities
aside, this stems from the observation that if T is a solution of

ax = (ad,u(l) + hg> T
dz z

with values in 4 ® ', the semiclassical limit v of T, as a formal function of A € g* with
values in Ug, satisfies
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dry v(A)

— = lad

dz (a ah omz )
where v(A) = id ®A(Q2) which, after the change of variable z — 1/z, and the replacement
adp — —A,v(\) — —2m.B is precisely the equation (2.1).°

6.1. Formal Taylor series groups

Let G be an affine algebraic group over C. The ring of regular functions C[G] is a
Hopf algebra, with coproduct Af(g1,g92) = f(g192), counit ¢(f) = f(1), and antipode
Sf(g)=flg™").

If (R,mg,1g) is a commutative, unital C—algebra, the R—points of G are, by defi-
nition, the set of C—algebra morphisms G(R) = Alge (C[G], R). G(R) is a group, with
multiplication ¢ -1 = mrod @1 o A, unit 1g o€, and inverse ' =¢poS. Let m C R
be a maximal ideal, and denote by G(R)m C G(R) the normal subgroup consisting of
maps 7 : Spec R — G(C) such that y(m) = 1, that is

G(R)m = {p € Algc(C[G], R)| p(I) C m}
where I = Ker € is the augmentation ideal. We shall need the following elementary

Lemma. If R is a complete local ring with unique mazimal ideal m, then G(R)m may be
identified with the set of grouplike elements of the topological Hopf algebra

Ug®R =1limUg ® R/m?
p

Proof. Let C[[G]] = lim C[G]/I™ be the completion of C[G] at the identity, and identify
Ug, as a Hopf algebra, with the continuous dual

Cl[G]]" = {¢ € Homc (C[G], C)| p(I") = 0,n > 0}

If mP = 0 for some p, and ¢ € G(R)m, ¢ vanishes on I? and therefore lies in (C[G]/I?)" ®
R C C[[G]]* ® R. In general, m is of finite order in R/m? for any p > 1, so that
G(R)m = lim, G(R/mP)y, embeds into lim, Ug @ R/m?.

We shall be interested below in the case when R = CJ[[V]] is the completion of the
algebra of regular functions on the vector space V =g or V = g* at 0. We denote in this
case G(R),G(R)w and Ug®R by G[[V]], G[[V]]+ and Ug[[V]] respectively. As algebraic
groups over C, G[[V]] and G[[V]]+ are the inverse limits

GV =tmG[V]]™  and  G[V] = lmG[V])"

—

10 The appearance of the factor 27 is due to the fact that the identification $1’/hl’ = §g is given by
mapping = € g to hx = 2mthz € L.
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where G[[V]](™ = G(C[[V]]/I™), respectively, and G[[V]]. is prounipotent.
6.2. Semiclassical limit of canonical solutions of the DKZ equations

Consider the ODE

dy A B
%: (Z—Q'F;)’Y (6.1)
and the dynamical KZ equation
dY Q
— =(adp® +h=) 7 6.2
= (aau4?) (62

where A, it € breg, and B € g.

Fix throughout the standard determination of the logarithm, with a cut along R .
The following result shows that the semiclassical limits of the canonical fundamental
solutions of (6.2) at z = 0, co are the canonical fundamental solutions of (6.1) at z = o0, 0,
after the change of variable z — 1/z.

Proposition. Let v : g* — g be the isomorphism given by A — A ® id(Q), and set

v = —v/2m.

(1) Let voo be the canonical solution of (6.1) near z = 0o, and write
Yoo = @7A/z . hoo . ZB

where hoo : P2\ 0 — G is such that ho(00) = 1. Regard ho, as a holomorphic
function of B € gny such that hoo(2)|g_y = 1, and let

hoo 1 P\ 0 — Gllg]]+
be its formal Taylor series at B = 0.
Let Yo = e#20™" . Hy - 22 be the canonical solution of (6.2) near z=0. Then, the

semiclassical limit of Hy takes values in G[[g*]]+ C Ug[[g*]]. Moreover, if u = —A,
then

sel (Ho(2))(A) = hoo (1/2:Y (V)
(2) Assume now that A € hR . Let

reg*

Yt =hy-e A7 LB HL o @
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be the canonical solution of (6.1) at z = 0 corresponding to the half-plane Hy =
{z € C|Im(z) = 0}. Regard hy as a holomorphic function of B € g such that
hi(z)|g_g =1, and let

hy:Hy — Gllall+

be its formal Taylor series at B = 0.

Let Y = Hy - ezadnt - 2" - be the canonical solution of (6.2) at z = oo corre-
sponding to the half-planes H.. Then, the semiclassical limit of Hy takes values in
Gllg*]]+ € Ugllg*]].- Moreover, if u = —A, then

sel (H (2))(N) = h=(1/207 (V)
Proof. (1) By definition, Hy is a solution of

b (i o)

dz 2

where ¢, p denote left and right multiplication respectively. Thus, as en element of 4 ®
/R @ U = Ug[[g*]], the semiclassical limit hg of Hy satisfies

Ao _ 1 (g0 () — p(w)) ho

dz  2mz

together with the initial condition ho(0) = 1. We claim that hg takes values in G[[g*]]+ C
Ug[lg*]]- Indeed, both A @ id(hg) and h{3h3? satisfy

dh 1
dz  2miz

(E(efzad”(l/1 + %)) = pv* + %)) h

and the result follows by uniqueness. The claimed equality now follows from the unique-
ness statement of Lemma 2.7, applied to the affine algebraic groups G[C[g*]/I™], m > 1.
(2) is proved similarly.

6.3. Semiclassical limit of the differential twist

Theorem. Assume that A € h]rReg, and let Cy = ’y£1 ‘Yoo be the connection matriz of
(6.1) (see 2.7). Regard Cy as a G-valued holomorphic function of B € gny such that
Cilp_o =1, and let Cy € Gllg]]+ be its formal Taylor series at B = 0.

Let Jy = To_l - YTy be the differential twist defined in 3.11. Then, if p = —A, the

semiclassical limit of J+ is given by

sel (J1)(A) = C(v¥ (A) !
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Proof. By definition, Jy = 27" Hy(2)~! - exp(—zad p™M)) (Hy) - 2"% where 2z € H.
By Proposition 6.2,

scl (J1) = 272 hoo (1) 2 —v/2m) "t - exp(zad(A)) (ﬁ;(l/z; —V/27TL)> - ZV1/2m
On the other hand,
Ci(B) =w Bl A py ()™t e b (w) - w®
where w € Hy.
6.4. Semiclassical limit of the quantum Stokes matrices

Theorem. Let A € hg{;g, and Sy the Stokes matrices of the ODE (6.1) relative to the ray
—tR~¢ (see 2.6). Regard Sy as a G-valued holomorphic function of B € g such that
Stlg_g =1, and let Sy € Glg]]+ be its formal Taylor series at 0.

Let € f)]r%g, and S% the Stokes matrices of the dynamical KZ equation (6.2) (see
J.1). Then, St take values in URYW , and its semi-classical limit in G[[g*]]y C Ug[[g*]].

Moreover, if u = —A, then
scl (S)(N) = Se (v (V)

Proof. Let Y = Hy-e* adu ™ hQ b the canonical solutions of the DKZ equations cor-

(1)
.e? ad p

responding to the halfplanes H, and TJF = ﬁ+ -2"% the analytic continuation

of T across Rs¢. By definition,
Sf_ =71 Y, =2 exp(—zad u™) (H:l : Eﬁ.) - 2

for z € H_. By Proposition 6.2,

scl (ST = 22T exp(—zad () <ﬁ+(1/z; —v/2m) "t o (1) 7 —1//27n)> ZV1/2me

where h_ is the analytic continuation of h_ across R.g.

On the other hand, if v (w) = ha (w)-e~4/* . wlPl are the canonical solutions of (6.1)
corresponding to w € Hy, and 7_ is the analytic continuation of y_ across R, then, by
definition

S, = 7;1 Ao =w B A ()T b (w) e A !B

The Taylor series of Sy at B = 0 therefore coincides with scl (S%) provided A = —p,
w = 1/z, and B is replaced by —v()\)/27:. The proof that scl (S*) = S_(—v/2m) is
identical.
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7. Formal linearisation via quantisation

7.1.  Let (p,r) be a finite-dimensional quasitriangular Lie bialgebra over a field k of
characteristic zero. Thus, p is a Lie algebra, r € p ® p satisfies the classical Yang-Baxter
equations (CYBE)

[r12,r23 + riz] + [riz,ra3] =0

and is such that Q = r 4+ r?! is invariant under p. In particular, p is a Lie bialgebra with
cobracket 0 : p = pAp given by 6(z) = [z @1+ 1 x,r].

Let p* be the dual Lie bialgebra to p, and P, P* the formal Poisson—Lie groups with
Lie algebras p, p*. The CYBE imply that the maps ¢,p : p* — p given by

L) = A ®id(r) and p(A) = —1id ®@A(r)

are morphisms of Lie algebras. We denote the corresponding morphisms of formal groups
P* — P by L and R respectively, and by 5 : P* — P the big cell map
9" — L(g")-R(g")™

The differential of 8 at 1is £ — p : A = A ®id(Q) =: v(A). In particular, 5 is an
isomorphism of formal manifolds if r is non—degenerate, that is such that v : p* — p is
an isomorphism.

7.2.  Set 4 = Up[[h]] and let ® € 4U®3 be an associator, that is an element satisfying
del+ %[ng, Qo3] + A2U®3 | and such that (4, Ag, ™2 @) is a quasitriangular quasi—
Hopf algebra. Let J € 1 + 2j + h2U®? be a twist such that j — j2! = r — r?!, and the
following twist equation holds

D Jiog-Jio=Ji23Jo3 (7.1)
Then, 4y = (U, Ay = J1A()J, Ry = J5'e™¥2]) is a quasitriangular Hopf algebra,

which is a quantisation of (p,r). By Theorem 5.3, ({17)" is therefore a quantisation of the
Poisson algebra k[[P*]].

7.3.  Assume that the twist .J is admissible, that is such that hlog(J) € (U')®2. The
following linearisation result is due to Enriquez—Halbout [10, Prop. 4.2].

Proposition. The subalgebras ' and ($5)" of U coincide. Their equality therefore induces
a formal Poisson isomorphism mwy : p* — P* given by the composition

K[[P"]] = ()" /h(els)" = W /het” = K[[p"]] (7.2)

where the first and last isomorphisms are given by (5.1).
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The explicit form of the isomorphism 7 ; is given by the following result of Enriquez—
Etingof-Marshall [9, §3.3.2].

Theorem. Assume further that ® = W(h{)1a, hila3) where ¥ is a Lie associator, and that
J lies in U@ U NW @ 4. Then,

(1) The semiclassical limit y = J mod hiA@' lies in P[[p*]]ls C Ug&k[[p*]], that is, is
a formal map p* — P.

(2) The composition of the Poisson isomorphism mwy : p* — P* with the big cell map
B :P* — P is the map e, : p* — P defined by

e;(N) =N 71 e ()

In particular, if r is non—degenerate, the map ' oe, : p* — P* is an isomorphism of
formal Poisson manifolds.

Proof. We outline the proof for the reader’s convenience. By assumption, R = J2_11 .
V2. Jliesin U@ =4, ® (4Ly)", and similarly Roy € Uy ® (L)'
Consider now the identity

Ry -R=J1. M. g (7.3)

Let b € 4y @ (L)' /hshy @ () = Up[[P*]] be the semiclassical limit of the left-hand
side, and a € U @ W /AU @ W' = Up[[p*]] that of the right-hand side. Clearly, bom; = a.
It therefore suffices to show that b = 5 and a = e,.

The identity Ay ® id(R) = Ry3 - Ros implies that the semiclassical limit R’ of R lies
in P[[P*]]4+, and id ® A j(R) = Ri3 - Ry that R is an antihomomorphism P* — P. Tts
differential at the identity is readily seen to be the map p* — p given by A — id ®A(r),
so that R'(g*) = R(g*)~!. Similarly, the semiclassical limit of R?! is the homomorphism
L : P* — P, and it follows that b = .

Since the semiclassical limit of e"? is e € P[[p*]]+, we have a = e, and there remains
to prove that j lies in P[[p*]]+, that is satisfies Ag®id(y) = 71,3-J2,3. This is a consequence
of the reduction of the twist equation (7.1) mod A ® U ® LI, as follows. Note first that
since J € 1+ MU Jy o € 1+ U@ U . Next, it is easy to see that for any z € 4/,
Ao(z) e 1@x+ IR, hence Jy 23 € J13+ @U@ Finally, i{d15 € Al @ U@ U,
hence ® = U (AQ2, ila3) = (0, ifds3) = 1 mod AU R U R L.

8. Analytic linearisation via Stokes data
Let G be a complex reductive group, and By C G a pair of opposite Borel subgroups

intersecting along the maximal torus H. Let g,b4,h be the Lie algebras of G, By, and
H respectively, ® C h* the corresponding root system, and &+ C ® the set of positive
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and negative roots, so that by = h@aeéi 0o Fix an invariant inner product (-,-) on g,
and let r € b ® b_ be the corresponding canonical element (see (2.3)). Then, (g,r) is a
quasitriangular Lie bialgebra, and G and G* = B_ x g B, are dual Poisson—Lie groups.
Moreover, the homomorphisms L, R : G* — G defined in 1.12 correspond to the first
and second projection, respectively.

Let A € breg, and consider the connection

V—d(éJrE)dz
z z

Set b® = {t € bla(t) € R,a € D}, and let C = {t € h|a(t) > 0, @ € D1} C X, be the
fundamental chamber corresponding to ®,. Note that the rays £tR~( are admissible
if A€ hﬁg + hR Breg- Moreover, by 2.6, the Stokes matrices S+ corresponding to

r=—tRso liein By(A,r) =Bz if Ae -C+ thR. Let
Sig— G B (Sptenmlfl g emlt])

be the Stokes map defined in 2.9.
Let v : g* — g be the identification determined by (-, ), and set v = —v /2.

Theorem. If A € —C, the map Sov" : g* — G* is a Poisson map.

Proof. Since S o vV is complex analytic, it is sufficient to prove that its formal Taylor
series at 0 is a Poisson map.

Set uw = —A € C, and let J; = J;(p) the differential twist defined in 3.11. By
Theorem 3.12, J, € 1+ gj+ + R2U®2, where j, fjﬁ_l =r—r? and J, kills the KZ
associator ®,.

Write Q = Qo+ > co Qa, where Qo = >, ¢; @ t*, with {t;}, {t'} dual bases of h with
respect to (v, -), and Qy = T4 ® T_q, With z4, € gio such that (x4, 2_,) = 1. Then,
one can show that logJ is a Lie series in the variables i€)q, if),. Since the subspace
A, = {z € U2 hx € (W)®"} is a Lie algebra for any n > 1, and hQo, i, € Ao, it
follows that log J4 € 2As.

Since J lies in W @UNURL by 3.11, we may apply Theorem 7.2 to the pair (Py,, J1).
Let 4 e U@ W /U@ U = G[[g*]]+ be the semiclassical limit of J,, and e, € G[[g*]]+
the map A — 74, (A\)~' - e . 5, (\). By Theorem 6.3

e, (A\) = C_(—v(\)/2m1; —p) - €N - C_(—v(N) /2705 —p) !

) A) - OB () )

2

(
= (S 4) - T LG (Y () 4))
(

\2 ~ v 71
(Vv(/\);A)_l ,e—m[u (A)}) . (S_(VV(/\);A) . em[u (A)])
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= LS/ (\); 4)) - RISEY (V); 4)) 7

where the third equality follows from the monodromy relation (Proposition 2.8), and the
fifth from the definition of the Stokes map, as well as the assumption that A € —C, so
that S+ (B;A) € Nx(A,r) = N.

It follows that the composition 37! o e,, is equal to So vV, and is therefore a Poisson
map by Theorem 7.2.

9. Isomonodromic deformations

Let Si € Ug®?[h]° be the Stokes matrices of the dynamical KZ equations, and
S5l € G[[g*]]+ their semiclassical limit.
For any o € ®, let Q, € S?g C C[g*] be given by Qo = 70 - 70 = Q_q.

Proposition.

(1) As a function of p € f)]ig, S5l satisfies the following PDE

1 da
d Sscl — - Sscl
bt 2L <. @ {@ +
acdy

(2) Regard B € g as a function of i € R .. Then, the Stokes matrices (of the classical

reg*
ODE) are locally constant as p varies in hreg if, and only if B satisfies the nonlinear

PDE

1 do

dyB = —— —

b 21 o
acd

H,

where Hy = {Qq, —} is the Hamiltonian vector field corresponding to Q..

Proof. (1) By Proposition 4.1, Si satisfy

1 da
_ (1) (2)
d;,Si—4m eg(b - {hICa + Ak, ,S’i}
acLt

Note that h?K, € Y, and that its image in U /Al is 2Q,. As pointed out in 3.3,
had(K,) is a derivation of 8. Since [A,, —] = h™A%K,, —], had(K,) induces the
derivation {Q,, —} on C[g*]. The result now follows from the fact that hKd e nte
so that its image in Ug[g*] is zero.
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1 da
dy ST = o > ;{Qa,Sf}—kdg*Sf(de)
ae'~1>+
1 d
—dg- ¥ | 5= E“Ha+d,,3
OLE‘I)+

This is the time-dependent Hamiltonian description of the isomonodromic deforma-
tion given by [16,4]. Here, we give a quantum algebra proof, which enables us to interpret
the symplectic nature of the isomonodromic deformation from the perspective of the
gauge action of Casimir operators on quantum Stokes matrices.
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