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ABSTRACT
We use first-principles energy density method (EDM) to calculate atomic energies for isolated 〈a〉-
type basal and prism screw dislocation cores in Mg and compute line energies and core energy
differences. The atomic energy distribution in the dislocations reflect the slip in the cores and the
elastic energy further afield. Line energies are computed by summing up atomic energies, from
which core energies and energy differences are straightforward to determine. We compare our
results with two different classical potentials.
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This work is the first exact, direct calculation of core energies of isolated dislocations using density
functional theory via atomic energies, applied to core energy differences in magnesium.
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Dislocations are important line defects in crystalline
materials that impact a wide variety of material phenom-
ena such as mechanical strength and plastic deformation
in metals [1,2], gate leakage and carrier mobility in semi-
conductors and electronic devices [3–5], embrittlement
resistance and hydrogen trapping in electrochemical pro-
cesses [6,7], and atomic di!usion and segregation [1,8,9].
Dislocations have a long-range displacement "eld and a
core with local abrupt change in lattice structure which
controls how the dislocation behaves and interacts with
other defects. The energy per length of a dislocation
Edisloc is de"ned in a cylinder of radius r, as the sum of
the logarithmic elastic energy and core energy Ecore

Edisloc = Kb2

4π
ln

r
r0

+ Ecore, (1)

where r0 is the estimated size of the core, b is the Burg-
ers vector, and K is the ‘energy factor’, a function of the
elastic constants.1 The core energy Ecore is di#cult to
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compute analytically due to the failure of elasticity theory
in the core region, however.

The core energy Ecore contains information essential
to understanding dislocation core structure and line ten-
sion, as well as stability, dissociation or splitting, motion
and interactions of the core. The unusual cross-slip of
〈c + a〉 dislocations between pyramidal planes in Mg is
controlled by the core energy di!erence in pyramidal I
and II planes as the elastic energies are the same [10]. In
situ straining experiments of BCC Fe found that disloca-
tion shapes in the material deviate from theoretical pre-
dictions based on elastic calculations, suggesting that dis-
location core energies can re"ne prediction of dislocation
shapes at the vicinity of the screw orientation [11,12]. The
STEM-HAADF observation of Mg-doped GaN suggests
that the 〈c + a〉 dislocation dissociation is in$uenced
by the core energy [13]. In addition, the core energy
makes important contributions to the line energy, which
explains a variety of phenomena like dislocation bowing
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[10], the formation of junctions [14] and the shape of
dislocation loops [15]. Dislocation core energies also pro-
vides inputs and insights for othermodels or simulations,
such as discrete dislocation dynamics (DDD) [16–18]
and phase "eld dislocation dynamics (PFDD) [19–21].

There has been a decades-long interest in building
models that predict dislocation energies both e#ciently
and accurately in various systems. The computationally
simplest approach is an analytical model for disloca-
tion line energies derived from linear elasticity, which
has been applied to graphite [22], polyethylene crys-
tals [23], and Ni-based alloys [24]. In order to correct
for nonlinear displacements in the core of the disloca-
tion, Peierls–Nabarro (PN) models assume sinusoidal
interactions between neighboring planes of atoms in the
core region, which has been applied to Ni [25], Ag [25],
Cu [25,26], Au [26], Mo [27], Zn [26], Be [26], and
Cu-Al alloys [25]. However, classical PN models are
inaccurate for narrow dislocation cores, leading to the
development of semidiscrete variational generalized PN
models [28], as applied to Al [29,30], Si [28], and Mg
alloys [31]. To account for nonlinear displacements more
generally, all-atom methods, such as empirical poten-
tials, are used to compute core energies for a variety
of systems: Al [32], W [33], Fe [17], Ta [34], Nb [35],
Ti [36,37], Mg [38–41], Si [42], MgO [43], GaN [44] and
Ni-Ti alloy [45]. Monte Carlo models are also used to
model dislocation core energy numerically, for example,
by assessing the dislocation pair formation probability in
the case of hard disks [46], or the e!ect of hydrogen on
dislocation line energies in bcc Fe [47]. Increasing the
accuracy of the interatomic interactions from empirical
potentials requires electronic structure-based methods,
but at the expense of increased computational complex-
ity. Tight-binding models have been applied to study
dislocation core energies inMo [48] and GaN [49]. First-
principle approaches based on density functional theory
(DFT) have been used to investigate screw dislocations
in Ti [37] and GaN [50], but core energy di!erences have
to be compared using classical potentials in the "rst case.
Orbital-free DFT can compute Al [51,52] andMg [53,54]
core energies at the expense of accuracy. Dislocation
dipoles in DFT are used to study compact screw disloca-
tion cores in bcc Fe [55–57] as well as other bcc transition
metals (V, Nb, Ta, Cr, Mo, andW) [58], in which the core
energies are deduced using a method combining with
DFT and anisotropic elasticity.

Although many ways have been proposed to calcu-
late dislocation energies as listed above, several issues
remain to be solved. First, non-ab initio methods lack
accuracy or universality, and the complexity of disloca-
tion cores exacerbates this. However, standard ab initio
methods that model isolated dislocation cores nominally

only have access to the total energy of the supercell, and
the core energy is di#cult to separate from spurious con-
tributions from the supercell boundary or free surfaces.
Alternately, ab initio methods for non-isolated disloca-
tion cores require dislocation dipoles or quadrupoles
periodically in a supercell to cancel long-range dis-
placement "elds and boundary e!ects, a technique that
risks dislocation annihilation during geometry relax-
ation, and conditional convergence issues with image
interactions [59] requiring corrections and "nite-size
error studies [55]. In principle, dislocation core prop-
erties are localized and should only be determined by
the atoms in the vicinity of the core, which suggests
that a spatial partitioning of the energy would allow for
computation of dislocation line energies for arbitrary
dislocations.

Here, we use a DFT-based energy density method
(EDM) proposed by Chetty and Martin [60] and devel-
oped by Yu et al. [61] to study energies of isolated basal
and prism screw dislocation cores in magnesium. With
their light weight and high speci"c strength, Mg alloys
are good candidates for structural materials, but their
poor ductility and formability [62–65] limit their appli-
cation. The core energy di!erence between basal and
prism screw dislocations controls cross-slip and in$u-
ences the ductility of Mg [66]. The EDM decomposes
the total DFT energy into atomic contributions, where
uniqueness of the decomposition is ensured by integra-
tion of DFT energy density components over volumes
that preserve gauge independence.With EDM, the inves-
tigation of energies of dislocation cores or other defects
becomes straightforward as the defect energy is simply
the sum of the atomic energies within the defect. We "nd
line energies and core energy di!erences, and compare
with an EAM interatomic potential by Sun et al. [67] and
a MEAM interactomic potential by Wu et al. [68]. As
our method relies only on DFT without empirical data
or external assumptions, it is applicable to other defects
that DFT can model.

In order to handle the long-range displacement "eld
of isolated screw dislocations in Mg, the dislocation
geometries were relaxed using $exible boundary con-
ditions (FBC) [69] with the lattice Green’s function
(LGF) [70,71]. The DFT supercell contains a single dislo-
cation, divided into three regions: region I surrounding
the dislocation core, region III atoms near the supercell
boundaries, and an intermediate region II in between.
With FBC, the system is relaxed iteratively: (1) relax
forces in region I while regions II and III atoms are "xed,
and (2) update all atom positions from the LGF based on
forces from region II atoms, until atomic forces in region
I and II are less than 5meV/Å. The screw dislocation can
be placed inside a periodic cell without adding vacuum,
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and by using partial supercell vectors ( 252 a[11̄00] ×
21
2 c[0001] × a

3 [112̄0] for 525 atoms) the periodic bound-
aries are more ‘bulklike’ with the largest deviations at
the corners; this ‘domain boundary’ approach ensures
that regions I and II accurately represent the dislocation
core environment. In our study, we use EDM energies for
atoms in regions I and II, and use elasticity theory for
energies of atoms outside the range of the DFT supercell.
In this way, we acquire full knowledge of dislocation line
energy characterized by Equation (1), and eliminate any
contributions from region III, which extends out to the
supercell domain boundaries.

The EDM calculations are performed using the EDM
code by M. Yu et al. [61], which is implemented under
the framework of the Vienna ab initio simulation pack-
age (VASP, version 4.6.36) [72–75], a DFT-based code
using a plane-wave basis. The projector augmented-wave
(PAW)method and the generalized-gradient approxima-
tion of Perdew andWang [76] are used for the exchange-
correlation potential. The 2p and 3s electrons are treated
as valence while other electrons are treated as frozen
in the core. A plane-wave cut-o! energy of 370 eV is
used throughout the calculations which ensures energy
convergence of 0.1meV/atom. Gamma-centered k-point
meshes of 1 × 1 × 16 are employed with 16 k-points
along the dislocation line, along with an order-1 Meth-
fessel–Paxton smearing [77] of 0.5 eV to represent elec-
tronic density of states. We compute the charge densities
and energy densities in the EDM calculations on a real-
space grid of 896 × 700 × 40 and 700 × 896 × 40 for
basal and prism cores, respectively.

The atomic energy distribution in the Mg basal screw
dislocation core fromEDMinFigure 1 shows defect ener-
gies arising from volumetric strain and local slip. The
length of arrows show di!erential displacements along
the line direction (perpendicular to the page) between
neighboring atoms in the dislocated lattice compared
to those in the bulk. The di!erential displacements are
modulo b/2 to identify atoms in the partial cores, sepa-
rated by stacking fault. In the core, atoms with energies
signi"cantly higher or lower than the bulk atomic energy
appear in two separated clusters spread along the [11̄00]
direction symmetric to the center, where the magnitudes
of volumetric strains and di!erential displacements also
reach maxima, as the basal core dissociates into par-
tials [38]. In these partials, our data reveal that volumet-
ric compression leads to an increase in atomic energies
while tension leads to a decrease. The components of
EDM atomic energies (Figure S3) show that compression
decreases classical Coulomb and exchange-correlation
energies while increasing kinetic energies. Compressed
volumes increase energy densities as electrons are closer,
leading to stronger Coulombic and exchange-correlation

interactions, and increasing the electron momenta and
kinetic energy; however, it also shrinks the integration
volume. The net change in each EDM energy component
depends onwhich factor dominates; the reverse is true for
tension. Between the partials, four atoms—marked with
magenta in Figure 1—correspond to the stacking fault
area. Our EDM calculation shows that these atoms have
energies of −19, 32, 23 and −21meV, respectively, from
left to right and top to bottom in the "gure; if these are
scaled by the planar area of 11.75Å2, the ‘stacking fault
energy’ of 21.4mJ/m2 is consistent with the basal fault
energy of 34mJ/m2 reported in [38]. Away from the core,
atomic energies decrease as distance from the core region
increases.

Alternately, the Mg prism core in Figure 1 shows a
complex environment where atoms see mixed energy
contributions from di!erent stacking fault components.
The prism core ismetastable [38], corrugated and spreads
rather than completely splitting; di!erential displace-
ments show leading and trailing partials that are cen-
trosymmetric about the dislocation center. EDM data
show atomic energies that are lower than the bulk atomic
energy in the corrugated tensile area connecting the two
partials due to the sharp decrease in EDM kinetic ener-
gies, which matches the basal core (Figure S4). Adjacent
to the tensile area, each partial contains four core sites:
two with low energies (near and far from center, called
sites 1 and 3 in [66]) and two with high energies (near
and far from center, called sites 2 and 4 in [66]). There are
two types of stacking faults in the prism core: ‘easy’ and
‘hard’ that di!er by the choice of slip planes. Density of
states overlap calculations [66] reveal that the low energy
core sites are correlated with stacking fault sites near the
easy fault plane, and the high energy core sites are cor-
related with stacking fault sites near the hard fault plane.
Hence, the low energies in the core sites come from an
easy fault, while the high energies in the core sites from a
hard fault. Similar to the basal core, the atomic energies
decrease when moving away from the core region.

Figure 1 also shows thatWuMEAM [68] better repro-
duces the geometry and energy distributions of the dislo-
cation cores compared with Sun EAM [67]. In the basal
core, similar to results inDFT geometries, both potentials
predict core splitting, along with high atomic energies
in the partials and lower energies in the stacking fault
between the partials, as well as decaying energies moving
away from the core region. Wu MEAM predicts a larger
distance between the partials compared with Sun EAM
and DFT geometries, while Sun EAM predicts a more
compact core with smaller volumetric strains and atomic
energies. For the prism core, both Wu MEAM and EDM
predict low energy sites in the corrugated core despite
the di!erences in spreading, but the Sun EAM does not
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Figure 1. Geometries of basal screw 1
3 〈112̄0〉 (left) and prism screw 1

3 〈112̄0〉 (right) dislocation cores in Mg computed from first princi-
ples (top) and two classical potentials Wu MEAM [68] (middle) and Sun EAM [67] (bottom). The dislocation line is perpendicular to the
page, and atomic columns have blue-to-red face shading for their atomic energies. Volumetric strains are shown in green-to-purple color
contours around atoms, and differential displacements (modulo b/2) between columns are shown with arrows to reveal the partial core
structures, showing large distortion near cores and that the core splits into partials separated by stacking fault. In the top left figure,
magenta circles mark the atoms in the stacking fault region between dissociated partials.

produce low energy sites in the core. Generally, the Wu
MEAM results show a closer match with DFT and EDM
results.

Figure 2 compares EDM atomic energies with elas-
tic energies, showing consistency between EDM and
anisotropic elasticity in region II. Anisotropic elastic
atomic energies are computed from the local atomic
strain after FBC relaxation using the DFT sti!ness con-
stants. Both basal and prism cores show small disagree-
ments between EDM and elastic atomic energies in
region II, with average of ∼ 0.2meV/atom and standard
deviation of∼ 1.6meV/atom in both cases. However, the

energy di!erences increase in region I, due to failure of
elasticity theory in dislocation cores. The negative val-
ues in region I are atoms on the basal stacking fault or
the low energy prism core sites, while the positive values
are atoms on the dislocation partials or the high energy
prism core sites. Region III also shows larger di!erences,
as the EDM atomic energies are spuriously large at the
edges of the supercell where the dislocation displacement
produces domain boundaries. As we plot distance from
the partials, regions I and II and regions II and III show
overlaps, which have similar deviations from elasticity.
This con"rms that our choices for regions I, II and III
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Figure 2. Difference between EDM and anisotropic elastic atomic energies EEDMatomic − Eelasatomic of basal and prism screw dislocations as a
function of minimal distance from dislocation partials (left) and the perspective with narrower energy range (right). Data points corre-
sponding to atoms in regions I, II and III in both geometries are shown in blue, black and green symbols, respectively. The averages of
EEDMatomic − Eelasatomic of region II atoms are marked with black dashed lines in each zoomed-in figure, and the areas spanning over one stan-
dard deviation from the average are shown with a light gray background. The energy differences fluctuate near zero in region II while
diverging in regions I and III in both geometries, indicating good agreement between EDM and anisotropic elasticity theory in elastic
regions.

in FBC method lead to su#cient separation and are not
corrupting the "nal results.

Figure 3 compares the line energies Edisloc(r) of basal
and prism screw dislocations computed using EDM, Wu
MEAM and Sun EAM atomic energies, showing consis-
tency with the elastic part of Equation (1) far from the
center, and deviation from that near the center. Atomic
energies are summed within a cylindrical space of radius
r centered at the dislocation line to calculate line energy
Edisloc(r) as a function of logarithmic radius ln(r/b) from
Equation (1). We use EDM atomic energies for atoms
in regions I and II and anisotropic elastic energies for
region III which goes beyond the EDM supercell. The
line energies are linear with logarithmic radius ln(r/b)
for ln(r/b) > 2, and we do least squares "tting to the
data with ln(r/b) between 2.5 and 4.5 for the slopes
and vertical intercepts, as listed in Table 1. Theoretical
slopes Kb2/4π can be calculated from anisotropic elas-
ticity theory using elastic constants; for 〈a〉-type screw
dislocations in an HCP lattice [2], K =

√
C44C66. Note

that slopes are di!erent for the same core calculated with
di!erent methods because of di!erences in elastic con-
stants, but within the same method slopes are the same

for basal and prism cores because they have the same
Burgers vector and line direction. The "tted slopes agree
well with theoretical slopes, indicating consistency with
the elastic part of Equation (1).

Table 1 gives the dislocation line energies and core
energy di!erences "Ecore from EDM, Wu MEAM, and
Sun EAM. The elastic contributions to the line ener-
gies are the same for basal and prism dislocations, thus
the di!erence in vertical intercepts is the di!erence in
core energies. We con"rm that the prism core is less
stable than the basal core. For the EDM "Ecore, we cal-
culate both EDM and anisotropic elastic energies for
region II atoms and compute the core energy di!er-
ences separately, getting close results of 0.0684 eV/b and
0.0637 eV/b respectively, which shows that the EDM core
energy di!erence is insensitive to whether EDM or elas-
tic atomic energies are used for region II atoms. Had
we chosen to instead simply subtract the total energy
of the two supercells—as in this case they are the same
size—we get 0.1178 eV/b, which is nearly double the
EDM value due to region III di!erences. Orbital-free
density-functional theory [54] gives a signi"cantly higher
core energy for the basal dislocation of 0.425 eV/b, which
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Figure 3. Line energy (Edisloc) of basal and prism screw dislocations in Mg, calculated using EDM and anisotropic elasticity theory (EDM,
elas) (left), Wu MEAM (middle) and Sun EAM (right) interatomic potentials. The energies are shown as a function of logarithmic distance
from the center r in units of Burgers vector b. For (EDM, elas), atomic energies in regions I and II are determined using EDMwhile those in
region III are determined using anisotropic elasticity. The overlapping parts of regions I and II, as well as regions II and III are highlighted
with cyan backgrounds. For large r, the energies for both basal and prism screw dislocations have linear relationships with ln(r/b) and
the slopes are the same. The core energy difference "Ecore between the two dislocations can be found from the difference in vertical
intercepts (Table 1).

Table 1. Properties associated with line energies of basal and prism screw dislocations in Mg computed using EDM (top two rows) and
interatomic potentials and orbital-free DFT (bottom rows) as shown in Figure 3. For EDM, we compare using EDM energies for regions I
and II [EDM (I,II)] and using EDMonly for region I [EDM (I)]. Dislocation energies grow as ln(r/b) far from the core, with a Kb2/4π prefactor
and a constant core energy Ecore, c.f. Equation (1). Difference in core energies per unit length"Ecore is estimated by taking the difference
between vertical intercepts of prism and basal curve extrapolations.

Kb2/4π (eV/b) Ecore (eV/b) "Ecore (eV/b)

Elasticity theory Basal Prism Basal Prism (Prism− Basal)

EDM (I,II) 0.2851 0.2860 0.2860 0.1199 0.1883 0.0684
EDM (I) 0.2851 0.2860 0.2860 0.1632 0.2268 0.0637
Wu MEAM 0.3004 0.3004 0.3005 0.2461 0.3120 0.0659
Sun EAM 0.2707 0.2695 0.2695 0.2457 0.2464 0.0006
OFDFT [54] 0.361 – – 0.425 – –
DFT-drag [78] – – – – – < 0.0614
DFT-NEB [79] – – – – – <0.075

suggests that while the core geometry may be similar to
that of standard density-functional theory, orbital-free
methods can have di#culty producing accurate energet-
ics. Itakura et al. [78] used a ‘drag method’ to change
basal into prismatic cores in quadrupole supercells; "t-
ting three di!erent sized supercells to in"nite separation
produces a closer, but still inaccurate energy barrier of
0.0614 eV/b, as it is supposed to be no less than the core
energy di!erence. Tsuru and Chrzan [79] used nudged-
elastic band to examine the barrier for basal slip along
the prismatic plane; after correcting for periodic image
e!ects, they compute a barrier of 0.075 eV/b. The dif-
ferences in the periodic calculation may be caused by
dislocation interactions on the core "elds as the cores
are neither fully compact nor have the same size. For
the interatomic potentials,WuMEAMpredicts"Ecore of
0.0659 eV/b which agrees well with the EDM 0.0684 or
0.0637 eV/b, while Sun EAM potential predicts a much
smaller 0.0006 eV/b.

First-principles EDM calculations of isolated 〈a〉-type
basal and prism screw dislocation core geometries in
Mg are able to compute accurate core energy di!erences,
which can be used to model screw dislocation motion by

cross-slip. It provides a simple approach for computing
dislocation energies from"rst principles for arbitrary dis-
location types, in awide range ofmaterials using standard
DFT methods. Furthermore, it can check for possible
spurious e!ects of boundary conditions by comparison
with elasticity. EDM can provide more accurate disloca-
tion core energies for DDD simulations, which is essen-
tial for predicting critical stresses that determine several
phenomena such as how dislocations loop or cut pre-
cipitates, or how dislocation junctions form and break.
Also, EDM data can improve atomistic potential devel-
opment for modeling complex defects. Lastly, using the
energy distribution calculated by EDM helps simulate
more complex systems involving multiple defects as well,
for example, solute-core interaction or alloys, through
only one single calculation.

Notes

1. In isotropic systems, for screw dislocations K = Ks = G
while for edge dislocations K = Ke = G/(1 − ν), where G
is the shear modulus and ν is the Poisson ratio.
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