Learning Multi-agent Skills for Tabular
Reinforcement Learning using Factor Graphs

Jiayu Chen, Jingdi Chen, Tian Lan, and Vaneet Aggarwal

Abstract—Covering skill (a.k.a., option) discovery has been
developed to improve the exploration of reinforcement learning
in single-agent scenarios, where only sparse reward signals are
available. It aims to connect the most distant states identified
through the Fiedler vector of the state transition graph. However,
the approach cannot be directly extended to multi-agent scenarios,
since the joint state space grows exponentially with the number
of agents thus prohibiting efficient option computation. Existing
research adopting options in multi-agent scenarios still relies on
single-agent algorithms and fails to directly discover joint options
that can improve the connectivity of the joint state space.

In this paper, we propose a new algorithm to directly compute
multi-agent options with collaborative exploratory behaviors while
still enjoying the ease of decomposition. Our key idea is to
approximate the joint state space as the Kronecker product of
individual agents’ state spaces, based on which we can directly
estimate the Fiedler vector of the joint state space using the
Laplacian spectrum of individual agents’ transition graphs. This
decomposition enables us to efficiently construct multi-agent joint
options by encouraging agents to connect the sub-goal joint
states which are corresponding to the minimum or maximum
of the estimated joint Fiedler vector. Evaluation on multi-agent
collaborative tasks shows that our algorithm can successfully
identify multi-agent options, and significantly outperforms prior
works using single-agent options or no options, in terms of both
faster exploration and higher cumulative rewards.

Impact Statement—Multi-agent reinforcement learning (MARL)
has become increasingly important due to growing complexity
of real-world decision making problems. A key performance
bottleneck for MARL is the lack of efficient coordinated
exploration among multiple agents. The proposed multi-agent
option discovery approach addresses this problem by alleviating
the exponential complexity involved in multi-agent explorations.
The approach achieves significantly improved exploration and
higher cumulative rewards in challenging multi-agent decision
making scenarios.

Index Terms—Multi-agent Reinforcement Learning, Skill Dis-
covery, Kronecker Product

I. INTRODUCTION

EINFORCEMENT Learning (RL) has achieved impres-
sive performance in a variety of scenarios, such as
robotic control [1], [2] and games [3]-[5]. However, most of
its applications rely on carefully-crafted, task-specific reward
signals to drive exploration and learning, limiting its use in

Jiayu Chen and Vaneet Aggarwal are with the School of Industrial Engineering,
Purdue University, West Lafayette IN 47907, USA, email: {chen3686,
vaneet} @purdue.edu. V. Aggarwal is also with Computer Science, King
Abdullah University Of Science And Technology, Thuwal 23955, Saudi Arabia.
Jingdi Chen and Tian Lan are with the Department of Electrical and Computer
Engineering, George Washington University, Washinton DC 20052, USA,
email:{jingdic, tlan} @gwu.edu.

This work was supported in part by Meta Platforms, Inc., Cisco Systems, Inc.,
and the U.S. National Science Foundation under grant 2114415.

real-life scenarios often with sparse or no rewards. To this
end, acquiring skills from the experience in a task-agnostic
manner by extracting temporal action-sequence abstractions,
i.e., option discovery [6], to support efficient exploration can be
essential. The acquired skills/options can then be employed by a
meta-controller to solve downstream tasks more effectively. For
instance, in a robotic navigation task, the robot can first learn
locomotion skills in the environment, and then an agent only
needs to learn a controller to give out point-to-point navigation
commands which would be implemented through these skills.
Thus, given useful skills, the downstream task can be greatly
simplified from a continuous control task to a discrete one.
Among recent developments on option discovery, Covering
Option Discovery [7], [8] has been shown to be effective to
accelerate the exploration in sparse reward environments. In
particular, it first computes the second smallest eigenvalue and
the corresponding eigenvector (i.e., Fiedler vector [9]) of the
Laplacian matrix extracted from the state transition process in
RL. Then, options are built to connect the states corresponding
to the minimum or maximum in the Fiedler vector, which has
been proven to greedily improve the algebraic connectivity of
the state space [10]. With these options, the accessibility from
each state to the others will be enhanced, due to which the
exploration in the state space can be accelerated a lot.

In this paper, we consider the problem of constructing and
utilizing covering options in multi-agent reinforcement learning
(MARL). Due to the exponentially-large state space in multi-
agent scenarios, a commonly-adopted way to solve this problem
[11]-[15] is to construct the single-agent options as if in a
single-agent environment first, and then learn to collectively
leverage these individual options to tackle multi-agent tasks.
This method fails to consider the coordination among agents
in the option discovery process, and thus can suffer from very
poor behavior in multi-agent collaborative tasks. To this end,
in our work, we propose a framework that makes novel use of
Kronecker product of factor graphs to directly construct the
multi-agent options in the joint state space, and adopt them
to accelerate the joint exploration of agents in MARL. We
show through experiments that agents leveraging our multi-
agent options significantly outperform agents with single-agent
options or no options in MARL tasks. For some challenging
tasks, the adoption of multi-agent options can improve the
convergence speed by two orders of magnitude and the episodic
cumulative reward by about 100%. Also, instead of directly
adopting the Covering Option Discovery to the joint state space
since its size grows exponentially with the number of agents,
we build multi-agent options based on the individual state
transition graphs, making our method much more scalable.

Specifically, the main contributions are as follows: (1)
We propose Multi-agent Covering Option Discovery — it
approximates the joint state transition graph as a Kronecker
product of the individual ones, so that we can estimate the
Fiedler vector of the joint state space based on the Laplacian
spectrum of the individual state spaces to enjoy the ease of
decomposition. Then, the joint options composed of multiple
agents’ temporal action sequences can be directly constructed
to connect the joint states corresponding to the minimum
or maximum in the Fiedler vector, resulting in a greedy
improvement of the joint state space’s algebraic connectivity.
(2) We propose that the multi-agent options can be adopted
to MARL in either a decentralized or centralized manner and
present the comparisons between these two approaches. For
the centralized manner, different agents jointly decide on their
options. In contrast, for the decentralized manner, agents can
choose their options independently and select different options
to execute simultaneously.

II. RELATED WORK

Option Discovery: Temporal abstraction allows representing
knowledge about courses of action at different time scales,
which is key to scaling up learning and planning in RL.
The temporal abstraction in RL can be modeled with the
option framework proposed in [6], which extends the usual
notion of actions to include options — the closed-loop policies
for taking actions over a period of time. While planning
with options is well understood in researches about Semi-
MDP [16], [17] and Hierarchical Reinforcement Learning
[18], [19], constructing options autonomously from data, i.e.,
option discovery, has remained challenging. Literature on option
discovery is summarized as follows.

Some works, such as [20]-[23], are based on task-related
reward signals. Specifically, they directly define or learn
through gradient descent the options that can lead the agent
to the rewarding states in the environments, and then utilize
these trajectory segments (options) to compose the completed
trajectory toward the goal state. These methods rely on dense
reward signals, which are usually hard to acquire in real-life
tasks. Other works define the sub-goal states (i.e., termination
states of the options) based on the visitation frequency of the
states. For example, in [24]-[26], they discover the options by
recognizing the bottleneck states in the environment, through
which the agent can transfer between the sub-areas that are
loosely connected in the state space, which are denoted as
betweenness options. Recently, there are some state-of-the-art
option generation methods based on the Laplacian spectrum of
the state-transition graph, such as [7], [8], [27], [28], since the
eigenvectors of the Laplacian of the state space can provide
embeddings in lower-dimensional space, based on which we
can obtain good measurements of the accessibility/connectivity
from one state to another. Through adding options between
states with poor connectivity, the exploration in the state space
can be accelerated a lot. Note that all the approaches mentioned
above are for single-agent scenarios, and in this paper we will
extend the construction and adoption of options to MARL.
Adopting options in multi-agent scenarios: Current re-
searches on adopting options in MARL, such as [11]-[15],

[29], try to first learn the options for each individual agent
with the option discovery methods we mentioned above, and
then learn to collaboratively utilize these individual options.
Therefore, the options they use are still single-agent options,
and the coordination in the multi-agent system can only be
shown/utilized in the option-choosing process while not the
option discovery process. We can classify these works by the
option discovery methods they use: the algorithms in [11],
[12] directly define the options based on their task without the
learning process; the algorithms in [13]-[15] learn the options
based on the task-related reward signals from the environment;
the algorithm in [29] trains the options based on a reward
function that is a weighted sum of the environment reward and
information-theoretic reward proposed in [30].

To the best of our knowledge, we are the first to propose
multi-agent covering option discovery. Specifically, we propose
algorithms for directly constructing multi-agent options based
on Laplacian spectrum of the individual state transition graphs
to encourage efficient exploration in the joint state space,
and explore how to utilize the multi-agent options in MARL
effectively, so as to leverage the coordination among the agents
in both the option discovery and adoption process.

III. BACKGROUND
A. Basic Conceptions and Notations

In this section, we will introduce the necessary conceptions
and corresponding notations used in this paper. We provide a
table of predefined symbols in Appendix A.

Markov Decision Process (MDP): The RL problem can be
described with an MDP, denoted by M = (S, A, P, R,~),
where S is the state space, A is the action space, P : S X A X
S — [0, 1] is the state transition function, R : S x A — R! is
the reward function, and v € (0, 1] is the discount factor.
State transition graph in an MDP: The state transitions in
M can be modelled as a state transition graph G = (V, Eq),
where Vi is a set of vertices representing the states in S, and
Eq is a set of undirected edges representing state adjacency
in M. We note that:

Remark 1. There is an edge between state s and s' (i.e., s and
s are adjacent) if and only if 3 a € A, s.t. P(s,a,s’) >0
OR P(s',a,s) > 0.

The adjacency matrix A of G is an [S| x |S| matrix

whose (i,7) entry is 1 when s; and s; are adjacent, and
0 otherwise. |S| denotes the cardinality of S. The degree
matrix D is a diagonal matrix whose entry (i,4) equals the
number of edges incident to s;. The Laplacian matrix of G
is defined as L = D — A. Its second smallest eigenvalue
A2(L) is called the algebraic connectivity of the graph G,
and the corresponding eigenvector is called the Fiedler vector
[9]. Further, the normalized Laplacian matrix is defined as
L=D"3LD 3.
Kronecker product of graphs [31]: Let G; = (Vig,, Fg,) and
G2 = (Vg,, Ec,) be two state transition graphs, corresponding
to the individual state space S; and Sy respectively. The
Kronecker product of them denoted by G; ® G is a graph
defined on the set of vertices Vi, x Vg,, such that:

(a) The joint state transition graph of agent 1 and agent 2

(b) The joint state transition graph after adding individual options

Fig. 1. An illustrative example showing the limitations of utilizing single-agent options alone for MARL.

Remark 2. Two vertices of G1QGa, namely (g, h) and (¢', h'),
are adjacent if and only if g and g’ are adjacent in G1 and h
and h' are adjacent in G-.

Thus, the Kronecker Product Graph can capture the joint
transitions of the agents in their joint state space very well. In
Section IV-B, we propose to use the Kronecker Product Graph
as an effective approximation of the joint state transition graph,
so that we can discover the joint options based on the factor
graphs. Further, A1 ® A is an |S1||S2| x |S1]|Sz2| matrix with
elements defined by (4; ® As)(I,J) = A1(4,7)A2(k, 1) with
Equation (1), where A; and As are the adjacency matrices of
G; and Go, A1(i,7) is the element lies on the i-th row and
j-th column of A; (indexed from 1).

T=(i—-1)%x|S|+k J=0G-1) xS+l ()

B. Covering Option Discovery

As defined in [6], an option w consists of three components:
an intra-option policy 7, : § x A — [0,1], a termination
condition 3, : § — {0,1}, and an initiation set I, C S. An
option < I,,m,, B, > is available in state s if and only if
s € 1,. If the option w is taken, actions are selected according
to m, until w terminates according to 3, (i.e., B, = 1). In
order to get an option, we need to learn the intra-option policy,
define the termination condition and initiation set.

The authors of [8] propose Covering Option Discovery —
discovering options by minimizing the upper bound of the
expected cover time of the state space. First, they compute the
Fiedler vector F' of the Laplacian matrix of the state transition
graph. Then, they collect the states s; and s; with the largest
(F; — F;)? (F; is the i-th element in F), based on which they
construct two symmetric options:
< Iwij = {Si}, Twjs ﬂwq‘,_j = {SJ} >

wji = < ij'i = {Sj}7 Tajis 601;‘1‘ = {si} >
to connect these two subgoal states bidirectionally, where
7, is defined as the optimal path between the initiation and
termination state. This whole process is repeated until they get
the required number of options. The intuition is as follows.

The authors of [10] prove that (F; — F;)? gives the first
order approximation of the increase in \y(L) (i.e., algebraic
connectivity) by connecting (s;,s;). Based on that, they
propose a greedy heuristic to improve the algebraic connectivity
of a graph: adding a certain number of edges one at a time,
and each time connecting (s;, s;) corresponding to the largest
(F; — F})2. Thus, applying this greedy heuristic to the state
transition graph can effectively improve its connectivity, leading
to a smaller upper bound of the expected cover time and
accelerated exploration of the state space, as shown in [8].

wij =

2)

IV. PROPOSED ALGORITHM
A. System Model

In this paper, we consider to compute covering options
in multi-agent scenarios, with n being the number of agents,
S =81 xSy x -+ - xS, being the set of joint states, A = A; X
A x -+ -x A, being the set of joint actions, S; and .4; being the
individual state space and action space of agent ¢. Apparently,
the size of the joint state space, i.e., |S| = [[;_, |Si|, grows
exponentially with n. Thus, it is prohibitive to directly compute
the covering options based on the joint state transition graph
using the approach introduced in Section III-B for a large n.

A natural method to tackle this challenging problem is to
compute the options for each individual agent by considering
only its own state transitions, and then learn to collaboratively
leverage these individual options. However, it fails to directly
recognize joint (i.e., multi-agent) options composed of multiple
agents’ temporal action sequences for encouraging the joint
exploration of all the agents. In this case, the connectivity of the
joint state space may not be improved with these single-agent
options. We illustrate this with a simple example.

Ilustrative example: Figure 1(a) shows a joint state
transition graph G of two agents, where agent 1 has two states
&1 = {1,2} and agent 2 has four states Sy = {1,2,3,4}. In
order to compute the individual options, we can restrict our
attention to the state transition graph of each agent, namely
G and Ga, with Laplacian given by L; and Ly respectively:
(Please refer to Appendix C for derivation.)

L=

To compute the options for each agent, we first compute
the Fiedler vectors of (G; and G, (i.e., the eigenvectors
corresponding to the second smallest eigenvalues of L; and
L), namely F and Fy:

-1
-V2+1

V2 -1
1

-1 1

= , By = —
8 —4v/2

4)

Sl
[N}
-

Then, according to the option discovery approach described
in Section III-B, we can get the individual options for agent 1
to connect its state 1 (minimum) and state 2 (maximum), and

B

19

(a) The joint state transition graph upddted with option w1

<> OS>
@ Tan Gl @

(b) The joint state transition graph updated with option wa

Fig. 2. The joint state transition graph updated with the detected multi-agent options

individual options for agent 2 to connect its state 1 (minimum)
and state 4 (maximum). With these options, the joint transition
from (1,1) to (2,4) G.e., (1,1) — (2,4): agent 1 going from
1 to 2 and agent 2 going from 1 to 4) is possible, so are the
transitions: (2,4) — (1,1) and (2,1) < (1,4). The newly
updated transitions are shown as the green dashed lines in
Figure 1(b). These options fail to create a connected graph. It
implies that utilizing the single-agent options alone may not
be sufficient for encouraging efficient joint exploration.

Therefore, we propose to build Multi-agent Covering Options
to enhance the connectivity of the joint state space and acceler-
ate the joint exploration of the agents within the scenario. We
can represent it as a tuple: < I, my, 8., >, where I, C S'is the
set of initiation joint states, 3, : S — {0, 1} indicates the joint
states to terminate, 7, = (7}, .-+, 7") (7% : S;x A; — [0,1]),
is the joint intra-option policy that can lead the agents from the
initiation states to the termination states. The key challenge is
to calculate the Fiedler vector of the joint state space according
to which we can define < I, 7,3, > like Section III-B.
Given that |S| grows exponentially with n, we propose to
estimate the joint Fiedler vector based on the individual state
spaces in the next section.

B. Theory results

We propose to use the Kronecker Product Graph to decom-
pose the eigenfunction calculation to single-agent state spaces,
making our approach much more scalable. This decomposition
is based on the facts: (1) the Kronecker product of individual
state transition graphs ®;_,G; = G1 @ --- ® Gy, provides
a good approximation of the joint state transition graph G;
(2) The Fielder vector of ®]' ;G; can be estimated with the
Laplacian spectrum of G;(i =1,--- ,n).

We note that the use of ®;__; G; as a factorized approximation
of G introduces noise, since G = ®]_; G; becomes exact only
in the case where agents’ transitions are not influenced by the
others. However, for the purpose of option discovery, we only
need to identify areas in the state space with relatively low or
h~igh values in the Fielder vector, so an exact calculation of
G and its Fiedler vector is not necessary. Moreover, the state
transition influence among agents, e.g., collisions and blocking,
would most likely result in local perturbations of the transition
graph and thus is inconsequential to global properties of G,
like its algebraic connectivity and Fiedler vector. Therefore,
approximating G by ®]*_; G; allows efficient options discovery.
Further, in Section V-B, we empirically show in Figure 10
that superior exploration can still be achieved under such
approximation noise, numerically validating the robustness of
our proposed approach to the approximation error. Moreover,

we provide a quantitative study on the approximation error in
Section V-B, showing that ®]' ;G; can be used as a simple
yet powerful approximation of G for option discovery.

Next, we show how to effectively approximate the Fiedler
vector of ®]'_ ; G; based on the Laplacian spectrum of the factor
graphs, which enables an effective decomposition of multi-
agent option discovery. Inspired by [32] which proposed an
estimation of the Laplacian spectrum of the Kronecker product
of two factor graphs, we have the following THEOREM 1.

Theorem 1. For graph G= ®7_,G,, we can approximate the
eigenvalues \ and eigenvectors v of its Laplacian L by:

DY { 1- f[1— A7)] I1ds } (5)
i=1

G;
Uklv“-akn = ®:L:1Uk?,, (6)

where)\kc'} and vg" are the k;-th smallest eigenvalue and
corresponding eigenvector of L, (normalized Laplacian
matrix of G;), and de is the k;-th smallest diagonal entry of
Dg, (degree matrix of G;).

The proof of THEOREM 1 is provided in Appendix
B. Through enumerating (k1,--- ,ky), we can collect the
eigenvalues of ®}_; G; by Equation (5) and the corresponding
eigenvectors by Equation (6). Then, the eigenvector Vi e
corresponding to the second smallest eigenvalue)\klk
is the estimated Fiedler vector of the joint state transition
graph, namely Fz. Based on it, we can define the joint states
corresponding to the maximum or minimum in Fg as the
initiation or termination joint states, which can be connected
with joint options. As discussed in Section III-B, connecting
these two joint states with options can greedily improve the
algebraic connectivity of the joint state space and accelerate
the joint exploration within it.

Ilustrative example: Now we consider again the example
in Figure 1(a), where G = G ® G2. We can approximate
the Fiedler vector of G using THEOREM 1. As a result, we
get two approximations of the Fiedler vector: (Please refer to
Appendix C for computing details.)

T
1 1 1 1 1
é: = |:a 17 17 = 17 17 :| (7)
V6 [V2 V2 V2 V2
1 1 11 11"
F% = = |:_7 17 _17 T =y T = _1a 17 _:|
¢ Vel V2 V2 V2 V2

®)
Based on the two approximations and the indexing relationship
between G and its factor graphs (Equation (1)), we can get

Algorithm 1 Multi-agent Covering Option Discovery

1: Input: number of agents n, list of adjacency matrices Aj.,,, number of options to generate tot_num

2: Output: list of multi-agent options €2
3: Q<+ 0, cur_num + 0
4: while cur_num < tot_num do

R R AN

agent ¢, based on the equation:

Collect the degree list of each individual state transition graph D;.,, according to Aj.,

Obtain the list of normalized laplacian matrices L;.,, corresponding to A;.,

Calculate the eigenvalues U; and corresponding eigenvectors V; for each £; and collect them as U, and V7.,
Obtain the Fielder vector Fé of the joint state space using THEOREM 1 based on Ds.,, U;., and V1.,

Collect the list of joint states corresponding to the minimum or maximum in Fx, named M IN and M AX respectively
10: Convert each joint state s;4ns in MIN and MAX to (sq,---

,Sn), where s; is the corresponding individual state of

ind(sjoint) = ((ind(s1) * dim(Asz) + ind(s2)) * dim(Asz) + - - - + ind(sp—1)) * dim(A,) + ind(sy)
where dim(A;) is the dimension of A;, ind(s;) is the index of s; (indexed from 0) in the state space of agent 4

11: Generate a new list of options 2’ through Algorithm 2

12: Q<+ QUL cur_num <« cur_num + len(QY)
13: Update A;., through Algorithm 3
14: end while

Algorithm 2 Generate Multi-agent Options

1: Input: MIN, M AX: list of joint states corresponding to the minimum or maximum in the Fielder vector
2: Output: list of multi-agent options '
3«0
4: for s = (s1, -+ ,8,) in (MIN UMAX) do
5: Define the initiation set [, as the joint states in the known region of the joint state space
6: Define the termination condition: 8, (Scur) ¢ L if (Seur ==) or (scur s unknozl{n)
0 otherwise

where s, is the current joint state
7: Train the intra-option policy 7, = (7}

o

-, "), where 7!, maps the individual state of agent i to its action aiming at

leading agent ¢ from any state in its initiation set to its termination state s;

8: QO+« QYUui< 1,,7,, LB, >}
9: end for

Algorithm 3 Update Adjacency Matrices

1: Given: list of adjacency matrices A;.,, MIN, MAX
2: for spin = (s} -, sm..)in MIN do

mins "’ -
30 for spee = (s L S1ap) I MAX do

maz) "’

4 for i =1 to n do
5 Ai [’Lnd(sfmzn)] [an(sinai)]
o Aqfind(stm)ind(shn)
7
8
9

1
1

end for
end for
- end for

two sets of multi-agent options: {I,, = {(1,2), (1,3), (2,2),
(2a3)}76w1 = {(171)7 (1,4), (2,1), (274)}} and {Iwz =
{(1,2), (2,3)}, 0, = {(1,3), (2,2)}}, where we set the
joint states corresponding to the maximum and minimum as
the initiation and termination states respectively. For example,
in Fé (Equation (7)), the 7-th element (indexed from 1) is
a maximum, so the 7-th joint state is within the initiation
set I,, and denoted as (2, 3) according to Equation (1), i.e.,
7=(2—1) x |S2] + 3 where |Sz| = 4. As shown in Figure 2,
the green dashed lines represent the joint options which connect
the states in the initiation and termination set bidirectionally.

It can be observed that both of the two options can lead to
a connected graph when applied to GG. Thus, the adoption of
multi-agent options has the potential to encourage efficient
exploration of the joint state space by improving its algebraic
connectivity, and we can discover multi-agent options based
on individual agents’ state spaces, so that we can enjoy the
ease of decomposition. Next, we will formalize our algorithm.

C. Multi-agent Covering Option Discovery

In this paper, we adopt Algorithm 1 to construct multi-
agent options, based on the individual state transition graphs
of each agent which are represented as a list of adjacency
matrices Aj.,. First, in Line 5-9 of Algorithm 1, we acquire
the estimation of the Fielder vector Fiz of the joint state space
through THEOREM 1 based on A;.,, so that we can collect the
joint states corresponding to the minimum or maximum of F.
Then, in Line 10 of Algorithm 1, we split each joint state into a
list of individual states. For example, after getting a pair of joint
states (Smin, Smazx), We convert them into ((sl,,.,---,s%.),
(8L 0wr " s 8Maz)), SO that we can connect (Syin, Smaz) in
the joint state space by connecting each (s? ;. , st) in the
corresponding individual state space.

After decentralizing the joint states, we can define the multi-
agent options as follows. For each option w, we define I, as the
explored joint states, and (,, as a joint state in MINUMAX
or the unexplored area. Option w is available in state s if
and only if s € I,,. Therefore, instead of constructing a point
option between (Spin, Smaz)s €-&., setting {sm,in} as I, and
{Smaz} as B, we extend I, to the known area to increase the
accessibility of w. As for the intra-option policy m,, used for
connecting the initiation and termination joint state, we divide
it into a list of single-agent policies 7, (i = 1,--- ,n), where
7, can be trained with any single-agent RL algorithm aiming at
leading agent 7 from its own initiation state to the termination
state s’ .. (st). At last, before entering the next loop, we
adopt Algorithm 3 to update the individual state transition
graphs with the newly-discovered options. This whole process
(Line 5-13 in Algorithm 1) is repeated until we get a certain
number of options.

To sum up, the proposed algorithm first discovers the joint
states that need to be explored most, and then build multi-
agent options to encourage agents to visit these sub-goals.
More precisely, we project each sub-goal joint state into its
corresponding individual state spaces and train the intra-option
policy for each agent to visit the projection of the sub-goal
state in its individual state space.

At last, we give out the computational complexity of our
approach. Consider an MDP with n agents and r states for each
agent. To compute the Fiedler vector directly from the joint
state transition graph would require time complexity O(r3"),
since there are in total r™ joint states and the time complexity
of eigenvalue decomposition (Line 7 in Algorithm 1) is cubic
with the size of the joint state space. While, with our Kronecker
factor graph approach, we can decompose the original problem
into computing eigenvectors of the individual state transition
graphs, of which the overall time complexity is O(nr?3). Thus,
our solution significantly reduces the problem complexity from
O(r®™) to O(nr?) for multi-agent problems. Also, note that for
problems with continuous or large state space (i.e., r is large),
our approach could be directly integrated with sample-based
techniques for eigenfunction estimation (Line 7 in Algorithm
1), like [33], [34]. Hence, the bottleneck on computational
complexity can be overcome. More precisely, the Laplacian
spectrum of the factor graphs can be estimated using neural
networks, and then leveraged by our proposed algorithm to
find the Fiedler vector of the joint state transition graph, which
is considered as future work.

D. Adopting Multi-agent Options in MARL

In order to take advantage of options in the learning process,
we adopt a hierarchical algorithm framework, shown in Figure
3. When making decisions, the RL agent first decides on which
option w to use according to the high-level policy (the primitive
actions can be viewed as one-step options), and then decides
on the action to take based on the corresponding intra-option
policy . The agent does not decide on a new option with
the high-level policy until the current option terminates.

For a multi-agent option w : < I, = {the explored joint
states}, m, = (wl, -+, 7), By = {(s1,-*+ ,8,)} >, it can

- = |

1
1
1 ven 1
Agent 1 Agent n (i:R iL /:gint_l_ i |_A_gc_nt_n_I
High-level
Policy
Primitive Multi-agent Vs Multi-agent
Actions Option 1 Option &
Low-level
(Intra-option)
Policy Primitive Primitive
Actions Actions

Fig. 3. Hierarchical algorithm framework: When making decisions, the agent
first decides on which option w to use according to the high-level policy,
and then decides on the primitive action to take based on the corresponding
intra-option policy 7. The agents can decide on their options independently
(the left side) or jointly (the right side).

be adopted either in a decentralized or centralized way. As
shown by the purple arrows in Figure 3, the agents choose
their own options independently, and they may choose different
options to execute in the meantime. If agent ¢ selects option w,
it will execute 7, until it reaches its termination state s; or an
unknown individual state. On the other hand, we can force the
agents to execute the same multi-agent option simultaneously.
To realize this, as shown by the blue arrows in Figure 3, we
view the n agents as a whole, which takes the joint state as
the input and chooses primitive actions or the same multi-
agent option to execute at a time. Once a multi-agent option
w is chosen, agent 1 : n will execute 7r3j” until they reach
the termination joint state (s1,-- -, S,) or an unexplored joint
state. Note that if there are j primitive actions and k& multi-
agent options, the size of the search space would be (5 + k)"
for the decentralized approach and j" + k for the centralized
approach. Therefore, the decentralized manner is more flexible
but has a larger search space. While, the centralized way fails
to consider all the possible solutions but makes it easier for
the agents to visit the sub-goal joint states, since the agents
simultaneously select the same joint option which will not
terminate until the agents reach the sub-goal. In this paper, we
use Independent Q-Learning [35] (adopting Q-Learning [36]
to each individual agent) to train the decentralized high-level
policy, and Centralised Q-Learning (viewing the n agents as a
whole and adopting Q-Learning to it) to train the centralised
high-level policy. We present comparisons in Section V.

Further, we note that the centralized high-level policy may
not be applicable when the number of agents n is large, since
both the input space (i.e., joint states) will grow exponentially
with n. Thus, we propose to partition the agents into some
sub-groups first, and then learn the joint options within each
sub-group. The intuition behind this is as follows. In practice,
a multi-agent task can usually be divided into some sub-tasks,
each of which can be completed by a sub-group of the agents.
For each sub-group, we can learn a list of multi-agent options,
and then the agents within this group can make use of these
options in a decentralized or centralized way as mentioned
above. Further, if there is no way to divide the (identical)
agents based on sub-tasks, we can still group them randomly
to a list of two-agent or three-agent sub-groups. Agents within
the same sub-group will co-explore their joint state space using
the algorithm framework shown as Figure 3. In Section V, we
show that the adoption of grouping techniques can not only

(a) n-agent four-room task (b) m X m-agent four-room task

(c) n-agent maze task

(d) m X n-agent maze task

Fig. 4. Simulators for Evaluation: All the agents (triangles) must reach the
goal area (circles) simultaneously to complete the task, based on only their
current locations. In (b) and (d), agents are assigned with different goals. The
agents and their corresponding goals are labeled with the same color.

accelerate the exploration but also can greatly improve the
scalability of our algorithm.

V. EVALUATION AND RESULTS
A. Simulation Setup

As shown in Figure 4, the proposed approach is evaluated
on four multi-agent goal-achieving tasks. (1) For tasks shown
as Figure 4(a) and 4(c), n (2~8) agents agents (triangles) must
reach the goal area (circles) at the same time to complete this
task, without going through the walls (squares). If some agents
have reached the goal and the others haven’t, the n agents
will continue to move until all of them reach the goal in the
meantime. (2) For tasks shown as Figure 4(b) and 4(d), there

are m groups of agents, and each group contains n agents.

Each group of agents has a special goal area labeled with the
same color. Note that all the m X n agents should get to their
related goal areas at the same time to complete this task, and
the agents don’t know which goal area is related to them at
first. We only show the 4-agent and 3 x 2-agent cases for the
four-room task in Figure 4. For the illustrations of other cases
used in the following evaluations, please refer to Appendix
D. For all the four tasks, different agents can share the same
grid, and only when the agents complete the task can they
receive a reward signal r = 1.0, which is shared by all the
agents; otherwise, they will receive » = 0.0. In the following
experiments, we use the episodic cumulative reward as the
metric, which is defined as: Zi:o Air. X = 0.99 is the discount
factor of the MDP, and [is the horizon of each episode of
which the maximum is set as 200.

Note that these evaluation tasks are multi-agent versions of
the simulators used in [8] (i.e., one of our baselines) which
are quite challenging. On one hand, the agents need to make
decisions based on only their current locations (i.e., without
knowing where the goal area is). On the other hand, the reward

space is very sparse: for example, in the eight-agent four-room
task, there are in total 104 states (i.e., non-wall grids) for each
agent and 4 of them are the rewarding states (i.e., goals), so the
ratio of the rewarding joint states is (4/104)% ~ 4.8 x 107!2,
which is also the probability that the 8 agents can complete
this task through the random walk [38]. Hence, agents without
highly-efficient exploration strategies cannot complete these
tasks. In Section V-B, we evaluate on tasks of increasing
complexity (e.g., Figure 6 and 8). The more difficult the task
is, the more advantageous our approach becomes.

We compare our approach — agents with multi-agent options,
with two baselines: (1) Agents without options: the high-level
policy is directly used to choose primitive actions, rather than
choosing the option first and then choosing the primitive action
with the corresponding intra-option policy. Comparisons with
this baseline can show the effectiveness of using options to
aid the exploration. (2) Recent works on adopting options in
MARL: As mentioned in Section II, these works [11]-[15], [29]
first construct single-agent options for each agent based on their
individual state spaces and then learn to collaboratively utilize
them in MARL, so we denote these methods as agents with
single-agent options in the following. However, they either rely
on predefined options or adopt the option discovery methods
that depend on dense task-related reward signals and suffer from
poor performance in environments with only sparse rewards
like ours. In this case, we adopt the state-of-the-art algorithm
proposed in [8] to replace the option discovery algorithm
component in these methods, which claims to outperform
previous option discovery algorithms, including [26], [27], [30],
for sparse reward scenarios. Comparisons with this baseline
can show the superiority of our approach to directly identify
and adopt joint options in multi-agent scenarios. To be fair,
we set the number of single-agent and multi-agent options for
each agent to select as the same. Also, we extend the initiation
set of each single-agent option to the known area to increase
their accessibility, like what we do with multi-agent options.

There are two kinds of policies in Figure 3: the high-
level policy for selecting among options, and the low-level
policy for selecting among primitive actions. In the following
experiments, we evaluate the performance of agents with five
different algorithms as the high-level policy: random policy,
Independent Q-Learning [35], Distributed Q-Learning [37]
(each agent decides on their own option based on the joint state),
Centralized Q-Learning and Centralized Q-Learning + Force,
to make sure that the performance improvement is not specific
to a certain algorithm. Table I shows the comparisons among
these algorithms: (1) If adopting “Independent Q-Learning”
as the high-level policy, agents need to make decisions based
on only their local states; otherwise, agents within the same
sub-group can share their views and make decisions based on
their joint states. (2) For “Centralized Q-Learning + Force”,
agents are forced to choose the same multi-agent option at
a time (centralized); while, for the others, agents can choose
different options to execute simultaneously (decentralized). As
for the low-level policy, we adopt Value Iteration [39] to find
the optimal path between each pair of initiation and termination
state for each agent i as 7’ . Compared with Baseline (2), our
approach doesn’t cost additionally for learning the low-level

Table I. Comparisons among different high-level policy algorithms

Algorithm H Input Output How to utilize multi-agent options
Random - Individual action Decentralized
Independent Q-Learning [35] Individual state Individual action Decentralized
Distributed Q-Learning [37] Joint state Individual action Decentralized
Centralized Q-Learning Joint state Joint action Decentralized
Centralized Q-Learning + Force Joint state Joint action Centralized

400 600 800 1000 0 200 100
2 ¢ Tra

Cumulative Reward

(b) Independent Q-Learning

) 200 400 600 800 1000
Training Episode

(d) Centralized Q-Learning

600 800 1000 0 200 400 600 800 1000
d

aining Episode Training Episode

Cumulative Reward

[200 400 600 800 1000
Training Episode

(e) Centralized Q-Learning + Force

Fig. 5. Comparisons on the two-agent four-room task: (a)-(e) show the results of using different algorithms as the high-level policy. No matter which algorithm
we adopt, agents with multi-agent options can converge faster than the baselines. Also, our approach converges to a higher cumulative reward.

policy, since the number of single-agent and multi-agent options
are the same for each agent.

B. Main Results

For each experiment, we present comparisons among the
performance of agents with multi-agent options (blue line),
agents with single-agent options (red line) and agents without
options. We run each experiment five times with different
random seeds and plot the change of the mean (the solid
line) and standard deviation (the shadow area) of the episodic
cumulative reward during the training process (1000 episodes).

Two-agent four-room task: As shown in Figure 5, we
present comparisons on the two-agent four-room task, with
different algorithms (listed in Table I) as the high-level policy. It
can be observed that no matter which algorithm we adopt as the
high-level policy, agents with multi-agent options can converge
faster than the baselines. However, when using Independent
Q-Learning to train the high-level policy, the performance of
our approach and the baselines are very close. Thus, in the
follow-up experiments, we compare these approaches on more
challenging tasks with Independent Q-Learning as the high-
level policy to see if there will be more significant performance
increase. Also, we will adopt Centralized Q-Learning + Force
to train the high-level policy in the following experiments,
to compare the two manners (decentralized or centralized) to
utilize the multi-agent options.

N-agent four-room task: In Figure 6(a)-6(c), we test these
methods on n-agent four-room tasks (n = 3 ~ 5), using
Independent Q-learning as the high-level policy. We can observe
that the performance improvement brought by our approach are
more and more significant as the number of agents increases.
When n = 5, both the baselines fail to complete the task,
while agents with five-agent options can converge within 200
episodes. Further, in Figure 6(d)-6(f), we show the results of
using Centralized Q-Learning + Force as the high-level policy
on the same tasks. We can see that the centralized way to
utilize the n-agent options leads to faster convergence since
the joint output space of the agents is pruned. As mentioned
in Section IV-D, the size of the joint output space is (j + k)"
for the decentralized manner and ;™ + k for the centralized
manner if there are j primitive actions and k options for the n
agents to select. Note that when the number of agents is three,
the agents with single-agent options already fail to complete
the four-room task. We don’t include the results of agents
with single-agent options in Figure 6(e)-6(f), because it takes
a tremendously long time to run those experiments and it can
be predicted that the results will be the same as Figure 6(d).

Four-room task with sub-task grouping: The size of the
joint state space grows exponentially with the number of agents,
making it infeasible to directly construct n-agent options and
adopt Centralized Q-Learning for a large n. However, in real-
life scenarios, a multi-agent task can usually be divided into

—— Q_multi_option
—— Q single_option

—— Q multi_option
—— Q_single_option

Q

8 Q la] T T1 08
o I
- 04
00 Ll o0 H

—— Q multi_option
—— Q single_option

Cumulative Reward

[| 1

) 200 400 600 800 1000) 200
Training Episode

(a) 3-agent four-room task

Training Episode

(b) 4-agent four-room task

600 800 1000) 200 800 1000

400 600
Training Episode

(c) 5-agent four-room task

CentQ_force_multi_option
CentQ

— CentQ _fc
— CentQ
CentQ

Cumulative Reward

—— CentQ_force_multi_option
04 CentQ

Cumulative Reward

o 200 400 600 800 1000) 200
Training Episode

(d) 3-agent four-room task

400
Training Episode

(e) 4-agent four-room task

600 800 1000 0 200 600 800 1000

50
Training Episode

(f) 5-agent four-room task

Fig. 6. Evaluation on n-agent four-room tasks: (a)-(c) using Independent Q-Learning as the high-level policy. The performance improvement of our approach
are more and more significant as the number of agents increases. (d)-(f) using Centralized Q-Learning + Force as the high-level policy. Agents with single-agent
options start to fail since the 3-agent case. Also, it can be observed that the centralized way to utilize the n-agent options leads to faster convergence.

10 10{ — Q muli_option
—— Q single_option

—— Q multi_option
04] — Q single_option

Al

0 200 400 0 00 1000 0 20 00 0 00 1000
Training Episode ‘Training Episode

Cumulative Reward

(a) 2x2-agent four-room task (b) 3x2-agent four-room task

06
— CentQ_force_mu
—— CentQ_force_single_opior

cenQ

04

Cumulative Reward

00

0 200 400 0 00 1000 0 200 40 60 800 1000

‘Training Episode Training Episode

(c) 2x2-agent four-room task (d) 3x2-agent four-room task

Fig. 7. Comparisons on the m X n four-room tasks with sub-task grouping: (a)-
(b) Independent Q-Learning; (c)-(d) Centralized Q-Learning + Force. Agents
with pairwise options can learn these tasks much faster than the baselines,
even when both the baselines fail on the 3 X 2 four-room task. Also, agents
trained with Centralized Q-Learning + Force have faster convergence speed
and higher convergence value.

sub-tasks, and the agents can be divided into sub-groups based
on the sub-tasks they are responsible for. Thus, we test our
proposed method on the m x n four-room tasks shown as Figure
4(b), where we divide the agents into m sub-groups, each of
which contains n agents with the same goal area. Figure 7
shows comparisons between our method and the baselines on
m x n four-room tasks. Note that, in the 2 x 2 (3 x 2) four-room
task, we use two-agent (pairwise) options rather than four-agent
(six-agent) options, and when using Centralized Q-Learning
+ Force, we only use the joint state space of the two agents
as input to decide on their joint option choice. We can see

that agents with pairwise options can learn to complete the
tasks much faster than the baselines (e.g., improved by about
two orders of magnitude in the 2 x 2 four-room task), even
when both the baselines fail to complete the 3 x 2 four-room
task. Note that the red line is covered by the yellow line in
Figure 7(d). Also, we see that agents trained with Centralized
Q-Learning + Force (Figure 7(c)-7(d)) have faster convergence
speed and higher convergence value.

Four-room task with random grouping: Our method also
works with random grouping when sub-task grouping may not
work. The intuition is that adopting two-agent or three-agent
options can encourage the joint exploration of the agents in
small sub-groups, which can increase the overall performance
compared with only utilizing single-agent explorations. As
shown in Figure 8, we compare the performance of agents
with pairwise options, single-agent options and no options on
the n-agent four-room tasks (n = 4,6,8). We can observe
that when n = 6 or 8, agents with single-agent options or no
options can’t complete this task, while we can get a significant
performance improvement with only pairwise options. On
the other hand, agents with pairwise options can’t complete
the most challenging eight-agent four-room task, if we use
Independent Q-Learning to train the high-level policy, shown
as Figure 8(c). However, if we adopt Centralized Q-Learning
+ Force, agents with pairwise options can still complete this
challenging task with satisfaction, shown as Figure 8(f).

Further, in Figure 9, we show how the performance of
agents using pairwise options would change with the number
of options, based on the eight-agent four-room tasks (the
orange line: number of steps to complete the task; the blue
line: episodic cumulative reward). Note that for each step,
every agent will make a decision to move one grid in any
of the four directions (i.e., up, down, left, or right), and the
maximum of the decision steps for each episode is 200. When
increasing the number of options, the performance of agents

Cumulative Reward
°
2

P | h —— Q multi_option . .h

—— Q_multi_option
—— Q_single_option 204

Q

—— Q multi_option
—— Q single_option

0.00

Cumulative Reward

0.02

—— Q_single_option

Q

0.04

) 200 400 600 800 1000 o 200
Training Episode

(a) 4-agent four-room task

—— CentQ_force_multi_option
—— CentQ_force_single_option
CentQ

o 600
Training Episode

(b) 6-agent four-room task

800 1000) 200 400 600 500 1000
Training Episode

(c) 8-agent four-room task

—— CentQ_force_multi_option
—— CentQ_force_single_option
CentQ

—— CentQ

multi_option

ce_single_option
CentQ

Cumulative Reward
S

) 200 400 600 800 1000 o 200
Training Episode

(d) 4-agent four-room task

00
Training Episode

(e) 6-agent four-room task

600 800 1000

600 800 1000) 200 60
Training Episode

(f) 8-agent four-room task

Fig. 8. Comparisons on the n-agent four-room tasks with random grouping: (a)-(c) Independent Q-Learning; (d)-(f) Centralized Q-Learning + Force. When
n-agent options are not available, we can still get a significant performance improvement with only pairwise options.

200.00 199.94
od72

200.00 200.00 200.00

—®— Cumulative Reward |
Step.

001 {18431

0.00 . . s . ® s
0.000 0000 0.000 0.000 0.000 0.000

6 S0 100

o 20 40
Number of Options

(a) Independent Q-Learning

0.730 0.727

200 200

—®— Cumulative Reward |
Step. -

Step

75.96 76.02
651317

004 40.00 39.98 o

[20 50 100

40 0
Number of Options

(b) Centralized Q-Learning + Force

Fig. 9. Performance change of the agents as the number of options increase, evaluated on the eight-agent four-room task with random grouping. As the number
of options increases, the performance of agents with Centralized Q-Learning + Force as the high-level policy can be improved further. While, if for Independent

Q-Learning, the agents’ performance would go worse.

with pairwise options and using Centralized Q-Learning +
Force as the high-level policy can be improved further. While,
if using the Independent Q-Learning as the high-level policy, the
agents’ performance would go worse as the number of options
increases. The reason is that, as mentioned in Section IV-D, the
joint output space of the agents will grow exponentially with
the number of options if we utilize the multi-agent options in a
decentralized way. In contrast, the size of the joint output space
is linear with the number of options when we use multi-agent
options in a centralized manner.

Four-room task with random grouping and dynamic
influences among agents: Further, we show that even if
in environments where an agent’s state transitions can be
strongly influenced by the others, we can still obtain good
approximations of the multi-agent options to encourage joint
exploration using THEOREM 1. For this new setting, we make
some modifications based on the n-agent four-room task (Figure
4(a)) — different agents cannot share the same grid so that an
agent may be blocked by others when moving ahead, and this
influence is highly dynamic. We use the Centralized Q-Learning
+ Force as the high-level policy, of which the results are shown
as Figure 10. We can see that although this modification affects

the performance of agents with single-agent options, we can
still get significant performance improvement with pairwise
options discovered with Theorem 1.

Table II. Quality of the estimated joint transition graph

o [03 | o5 | o7 |
o (x1073) || 8.1131 | 8.1131 | 8.1131
A2 (x1073) || 8.1129 | 8.0988 | 8.0996
D222l gy (| 0.0025 | 0.1771 | 0.1662
Ao
IE_Flp 0.0223 | 0.0989 | 0.1418
[Fl2

As mentioned in Section IV-B, the approximation error
occurs when the state transitions of an agent are influenced
by others. In Figure 10, we have evaluated on the case where
an agent’s state transitions will be influenced by others’ states
(i.e., blocking by other agents when going ahead). However,
the transition influence for an agent may also come from the
action choices of other agents. Thus, we further evaluate on
a modified two-agent four-room task. We set agent 1 as the
leading agent and agent 2 will follow the moving direction
of agent 1 with the probability «, so the state transition of

Cumulative Reward

Cumulative Reward
°
z

—— CentQ_force
—— CentQ_force
CentQ

multi_option
single_option

Cumulative Reward

1000 0 200

Training Episode

(a) 4-agent four-room task

400

(b) 6-agent four-room task

600
ng Episode

800 1000 0 200 400
Tra

600 800
aining Episod

de

1000

(c) 8-agent four-room task

Fig. 10. Comparisons on the n-agent four-room tasks with random grouping where agent’s state transitions can be influenced by the others, using Centralized
Q-Learning + Force as the high-level policy. On this setting, we can still obtain good approximations of the multi-agent options based on the theory introduced

in Section IV-B and use them to get superior performance.

CentQ_force
CentQ_force

multi_option

single_option

600 800 1000

(b) 3 x 2-agent maze task

Fig. 11. Comparisons on the more challenging maze tasks using Centralized
Q-Learning + Force as the high-level policy, where (a) and (b) are with random
and sub-task grouping respectively. Although both baselines fail to complete
the tasks, our approach can converge within 500 episodes with high rewards.

agent 2 can be influenced by the action choice of agent 1.
With a certain «, we collect a million state transitions (i.e.,
(s,a,s")) through Monte Carlo sampling, based on which we
can build the joint state transition graph G and the individual
state transition graphs G; (i = 1,2) and then get ®2_, G;. Then,
as shown in Table II, we compare the algebraic connectivity
z}pd Fiedler vector of G (i.e., A2, F) and ®§=1Gi (i.e., Ao,
F) as « increases, which are closely related to the covering
option discovery. We can see that the approximation error on
these global properties of G caused by the transition influence
among the agents is inconsequential. Thus, approximating G
with ®;,G; allows accurate option discovery. There are in
total 1042 joint states which is also the size of F and F, and
the complexity for the eigen decomposition is already O(10%2)
(i.e., (104%)%), so we limit the number of agents to 2.

Maze task with random grouping or sub-task grouping:
Finally, in order to show the effectiveness of our approach
on more challenging tasks, we compare it with the baselines
on the maze tasks shown as Figure 4(c) and 4(d), of which
the results are shown in Figure 11(a) and 11(b) respectively.
Compared with the four-room task, the state space of the maze
task is larger and the path finding toward the goal-area is

Table III. Performance of SOTA MARL baselines

Algorithm Mean Std.
COMA [40] 0.0 0.0
CWQMIX [41] 0.0 0.0
OWQMIX [41] 0.0 0.0
MAVEN [42] 0.0 0.0

much more difficult. Again, both baselines fail to complete the
tasks, while our approach can converge within 500 episodes
with a fairly high cumulative reward. Note that, for both tasks,
we first group the agents based on sub-tasks (Figure 4(d)) or
randomly (Figure 4(c)), then learn the pairwise options for each
sub-group and utilize these options in a centralized manner
to aid the exploration. To further show the difficulty of this
task and significance of our algorithm, we apply SOTA MARL
algorithms, including COMA [40], Weighted QMIX [41] and
MAVEN [42], on the 6-agent maze task, each of which is
repeated three times with different random seeds. The mean
and standard deviation of the cumulative rewards in the training
process (50000 episodes) of these baselines are shown in Table
II1, showing that none of these algorithms can learn to complete
this task. The reason is that as a challenging cooperative search
problem, the reward space is highly sparse since only when
the six agents arrive at the goal area at the same time can they
receive the reward signal, so efficient exploration strategies
in the joint state space like ours is required. The code for
reproducibility of these results has been made available at [43].

VI. CONCLUSION

In this paper, we propose to approximate the joint state
space in MARL as a Kronecker graph and estimate its Fiedler
vector using the Laplacian spectrum of the individual agents’
state transition graphs. Based on the approximation of the
Fiedler vector, multi-agent covering options are constructed,
containing multiple agents’ temporal action sequence towards
the sub-goal joint states which are usually infrequently visited,
so as to accelerate the joint exploration in the environment.
Further, we propose algorithms to adopt these options in MARL,
using centralized, decentralized, and group-based strategies,
respectively. We empirically show that agents with multi-agent
options have significantly superior performance than agents
relying on single-agent options or no options.

A future direction would be to scale our algorithm for real-
life applications with SOTA representation learning techniques,
like [33], [34]. On the other hand, there will be non-negligible
differences between ®;’_; GG; and the joint state transition graph
G, if the state transitions of an agent are hugely influenced by
the others. Therefore, mechanisms to detect these situations in
a task scenario and integrate them with ®;__;G; for a better
approximation of G will also be an interesting future direction.

[1

—

[2]

[3]

[4

=

[6]

[7

—

[8

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” CoRR, vol. abs/1812.00568, 2018.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proceedings of the 4th International Conference on Learning
Representations, ICLR 2016, 2016.

N. Brown and T. Sandholm, “Superhuman ai for multiplayer poker,”
Science, vol. 365, pp. 885-890, 2019.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever, T. P.
Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484-489, 2016.

I. Hosu and T. Rebedea, “Playing atari games with deep reinforcement
learning and human checkpoint replay,” CoRR, vol. abs/1607.05077,
2016.

R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, pp. 181-211, 1999.

Y. Jinnai, D. Abel, D. E. Hershkowitz, M. L. Littman, and G. D. Konidaris,
“Finding options that minimize planning time,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, vol. 97,
2019, pp. 3120-3129.

Y. Jinnai, J. W. Park, D. Abel, and G. D. Konidaris, “Discovering options
for exploration by minimizing cover time,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, vol. 97,
2019, pp. 3130-3139.

M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-
ical Journal, vol. 23, pp. 298-305, 1973.

A. Ghosh and S. P. Boyd, “Growing well-connected graphs,” in 45th
IEEE Conference on Decision and Control, CDC 2006. 1EEE, 2006,
pp. 6605-6611.

C. Amato, G. D. Konidaris, and L. P. Kaelbling, ‘“Planning with
macro-actions in decentralized pomdps,” in International conference
on Autonomous Agents and Multi-Agent Systems, AAMAS 2014. TFAA-
MAS/ACM, 2014, pp. 1273-1280.

C. Amato, G. Konidaris, L. P. Kaelbling, and J. P. How, “Modeling
and planning with macro-actions in decentralized pomdps,” Journal of
Artificial Intelligence Research, vol. 64, pp. 817-859, 2019.

J. Shen, G. Gu, and H. Liu, “Multi-agent hierarchical reinforcement
learning by integrating options into maxq,” in Proceedings of the
Ist International Multi-Symposiums on Computer and Computational
Sciences, IMSCCS 2006, vol. 1, 2006, pp. 676-682.

J. Chakravorty, P. N. Ward, J. Roy, M. Chevalier-Boisvert, S. Basu,
A. Lupu, and D. Precup, “Option-critic in cooperative multi-agent
systems,” in Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2020. IFAA-
MAS/ACM, 2020, pp. 1792-1794.

Y. Lee, J. Yang, and J. J. Lim, “Learning to coordinate manipulation
skills via skill behavior diversification,” in 8th International Conference
on Learning Representations, ICLR 2020, 2020.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, 1994.

R. Fruit and A. Lazaric, “Exploration-exploitation in mdps with options,”
in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, vol. 54, 2017, pp. 576-584.
A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, ser. Proceedings of
Machine Learning Research, vol. 70, 2017, pp. 3540-3549.

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]

[40]

S. Pateria, B. Subagdja, A. Tan, and C. Quek, “Hierarchical reinforcement
learning: A comprehensive survey,” ACM Computing Surveys, vol. 54,
pp. 109:1-109:35, 2021.

A. McGovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in Proceedings of the Sth
International Conference on Machine Learning ICML 2001, 2001, pp.
361-368.

I. Menache, S. Mannor, and N. Shimkin, “Q-cut - dynamic discovery
of sub-goals in reinforcement learning,” in Proceedings of the 13th
European Conference on Machine Learning, ECML 2002. Springer,
2002, pp. 295-306.

D. J. Mankowitz, T. A. Mann, and S. Mannor, “Adaptive skills adaptive
partitions (ASAP),” in Advances of the 30th Conference on Neural
Information Processing Systems, NIPS 2016, vol. 29, 2016, pp. 1588-
1596.

J. Harb, P. Bacon, M. Klissarov, and D. Precup, “When waiting is not an
option: Learning options with a deliberation cost,” in Proceedings of the
32nd AAAI Conference on Artificial Intelligence, AAAI 2018. AAAI
Press, 2018, pp. 3165-3172.

M. Stolle and D. Precup, “Learning options in reinforcement learning,”
in Proceedings of the 5th International Symposium on Abstraction,
Reformulation and Approximation, SARA 2002, vol. 2371. Springer,
2002, pp. 212-223.

0. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals
in reinforcement learning by local graph partitioning,” in Proceedings of
the 22nd International Conference on Machine Learning, ICML 2005,
vol. 119, 2005, pp. 816-823.

0. Simsek and A. G. Barto, “Skill characterization based on betweenness,”
in Proceedings of the 22nd Conference on Neural Information Processing
Systems, NIPS 2008, vol. 21, 2008, pp. 1497-1504.

M. C. Machado, M. G. Bellemare, and M. H. Bowling, “A laplacian
framework for option discovery in reinforcement learning,” in Proceed-
ings of the 34th International Conference on Machine Learning, ICML
2017, vol. 70, 2017, pp. 2295-2304.

M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and
M. Campbell, “Eigenoption discovery through the deep successor
representation,” in Proceedings of the 6th International Conference on
Learning Representations, ICLR 2018, 2018.

J. Yang, 1. Borovikov, and H. Zha, “Hierarchical cooperative multi-agent
reinforcement learning with skill discovery,” in Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2020. TFAAMAS/ACM, 2020, pp. 1566-1574.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you
need: Learning skills without a reward function,” in Proceedings of the
7th International Conference on Learning Representations, ICLR 2019,
2019.

P. M. Weichsel, “The kronecker product of graphs,” in Proceedings of
the 13th American Mathematical Society, AMS 1962, vol. 13. JSTOR,
1962, pp. 47-52.

M. Basic, B. Arsic, and Z. Obradovic, “Another estimation of laplacian
spectrum of the kronecker product of graphs,” CoRR, vol. abs/2102.02924,
2021.

Y. Wu, G. Tucker, and O. Nachum, “The laplacian in RL: learning
representations with efficient approximations,” in Proceedings of the
7th International Conference on Learning Representations, ICLR 2019,
2019.

K. Wang, K. Zhou, Q. Zhang, J. Shao, B. Hooi, and J. Feng, “Towards
better laplacian representation in reinforcement learning with generalized
graph drawing,” in Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, vol. 139, 2021, pp. 11003-11012.

M. Tan, “Multi-agent reinforcement learning: Independent versus coop-
erative agents,” in Proceedings of the 10th International Conference on
Machine Learning, ICML 1993, 1993, pp. 330-337.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279-292, 1992.

M. Lauer and M. A. Riedmiller, “An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems,” in Proceedings of the
17th International Conference on Machine Learning, ICML 2000, 2000,
pp. 535-542.

K. Pearson, “The problem of the random walk,” Nature, vol. 72, pp.
342-342, 1905.

R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, AAAI 2018. AAAI Press,
2018, pp. 2974-2982.

[41]

[42]

[43]

[44]

[45]

T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted QMIX:
expanding monotonic value function factorisation for deep multi-agent
reinforcement learning,” in Proceedings of the 34th Conference on Neural
Information Processing Systems, NIPS 2020, vol. 33, 2020.

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “MAVEN: multi-
agent variational exploration,” in Proceedings of the 33th Conference on
Neural Information Processing Systems, NIPS 2019, vol. 32, 2019, pp.
7611-7622.

J. Chen, J. Chen, T. Lan, and V. Aggarwal, “Multi-agent option discovery
based on kronecker product,” https://github.itap.purdue.edu/Clan-labs/
MAOD_via_KP, 2022.

H. Sayama, “Estimation of laplacian spectra of direct and strong product
graphs,” Discrete Applied Mathematics, vol. 205, pp. 160-170, 2016.
D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

https://github.itap.purdue.edu/Clan-labs/MAOD_via_KP
https://github.itap.purdue.edu/Clan-labs/MAOD_via_KP

APPENDIX A
NOTATIONS

Table IV. Glossary of the predefined symbols

’ Variable ‘ Definition H Variable ‘ Definition
M M= (S, A, P,R,v): MDP L L = D — A: Laplacian matrix of G
) Individual state space L £ =D~ 2LD™%: Normalized Laplacian matrix of G
3 S =81 X -+ x Sp: Joint state space, which is the o The i-th smallest eigenvalue and
S . . L Ai, Vi . . .
Cartesian product of the individual ones of n agents corresponding eigenvector of L
A Individual action space A2 Algebraic connectivity of G
A A= A1 x --- X Ap: Joint action space of the n agents F Fielder vector of G: the eigenvector corresponding to A
. . Gy =G1 ® - ® Gyt Kronecker Product
. . G =11
P P+ 8 x Ax S~ [0,1]): State transition function ®iGi of the state transition graphs of the n agents
¥ ~ € (0, 1]: Discount factor w w =< Iy, Ty, Bw >: Option
G = (Vg, E¢): Individual state transition graph, where o
G Vi and Eg denote the set of vertices and undirected edges Lo Initiation set of w
=~ Joint state transition graph, which is defined on S and I . .
tra-opt 1 f
¢ related to the joint state transitions of the agents T fira-option poticy of @
A Adjacency matrix of G B Termination condition of w
o MIN, Joint states corresponding to
b Degree matrix of G MAX the minimum or maximum in F

APPENDIX B
PrOOF OF THEOREM 1

For convenience, we use G; to represent the i-th factor graph and its adjacency matrix. Also, we denote the number of nodes
in G, as K; and an identity matrix with K; diagonal elements as If,.
Proof: The normalized laplacian matrix of the Kronecker product of n factor graphs ®}_;G; can be written as:

_1 _1
Lop 6, = Oinlk, — (@21 Dg !) (@1, Gi)(Qi2, Dg) ®)
Using the property of the Kronecker product of matrices, (A ® B)(C ® D) = AC ® BD, we can obtain that:

_1 _1
Lor 6, = @11k, —@;21(Dg?GiDg?)

(10)
= ®;L=1IK1, - ®?=1(IK1' - ‘CG1)
Let {)\gl},{/\%},...,{)\g:} be the eigenvalues of matrices L¢,,Lq, ,...,Lq,. with the corresponding orthonormal
eigenvectors {v;’" }, {v%}, ...,{v,f';"}, where k; = 1,2, ..., K;. Also, denote the diagonal matrices, whose diagonal elements
are the values {1—)\gll HA{1-— /\g; oo {1-)\kG: toas Ag,, Ag,, - - -, Ag,, and the square matrices containing the eigenvectors
{v,ﬁl},{v%}, ce {v,i”} as the column vectors as Vg,,Va,,..., Vg, . Using the spectral decomposition of the matrix
I, — Lg, (i=1,...,n), we can obtain that:

£®?:1Gi = ®?:11K1' - ®;L:1(VGiAGq' Vg;b)
= ®?:1IK'£ - (®’?:1VG¢)(®?:1AGi)(®?:1VGi)T (an
= (®?:1VG1‘,)(®?:1IK1‘ - ®?:1AG1‘)(®?:1VG7:)T7
since @7 I, = @71[(Va,)(Va,)'] = (972, Va,) (®7-, Va,)" . This implies that Lgn ¢, has eigenvalues {[1 — [T, (1 —
)\kGL‘)]} and corresponding eigenvectors {®?:1Ul§:}'
Then, we let A = ®]_ Ik, — ®?=]1AG1' and D = ®]_; D¢,. Since the normalized Laplacian could be expressed in terms of
Laplacian matrix as £ = D~3 LD~ 2, we can get Lgr ¢, (@1, Vg,) = D3 Lgn 1GiD%(®?:1VGi). By making assumption
N = P
(used and testified in [32], [44]) that DéiVGi = VGiDg;i, for i =1,2,...,n, we can derive that:

n 1 n 1
L®?£1Gi (®i=1VG1) ~ D2£®?£1Gi(®i=1VG1)D2 (12)
= DEA(®),Vg,)D?.
After applying the same assumption again, we finally obtain that:

L®?:1G7: (®?:1VG1‘) ~ (DA)(®;{L:1VG1) (13)

Based on Equation (13), we can get an approximation of the Laplacian spectrum, including the eigenvalues and corresponding
eigenvectors, of the Kronecker product of n factor graphs, shown as THEOREM 1.

Next, we will prove that the estimated eigenvalues Ay, x,,... %, in THEOREM 1 are non-negative. It is obvious that dG’ and
I, de are non-negative. Then, we need to prove [1 — [(1 — X 1")] is non-negative. We know that if A is an elgenvalue

of a normalized Laplacian matrix, we can get 0 < A < 2. Hence, —1 <1 —)\g <1, fori=1,2,...,n. Based on this, we
can get that |[]" (1 —)x,?) <1and thus [1 -] ,(1— Ai)] is non-negative. [
APPENDIX C

FINDING THE JOINT FIEDLER VECTOR FOR THE ILLUSTRATIVE EXAMPLE SHOWN IN FIGURE 1(A)
(1) According to the definitions [45], the adjacency (i.e., A1, A2) and degree matrices (i.e., D1, Ds) of G and G, are:

01 00 1 0 00
0 1 010 02 00
Al*) Dl*) A2) D2: (14)
1 0 1 01 0 1 00 20
0 010 00 0 1
(2) Compute the Laplacian matrix of G; and G2, namely L; and L
1 -1 0 0
1 -1 -1 2 -1 0
Li=Dy— A = y Lo=Dy— Ay = : (15)
-1 1 0o -1 2 -1
o 0 -1 1
(3) Compute the normalized Laplacian matrix of G; and G5, namely £; and Lo
[1
1 v 0 0
1 -1 _ -+ 1 -1 o0
Ly=D ?L,D;? = Lo=D,%L,D,"=| V2 o (16)
-1 1 0 -3 1 v
1
i 0 0 -5 1
(4) Compute the eigenvalues and eigenvectors of £1 and Lo:
1 1 -1
>\G1 = O’ AGI = 2’ ’Uql = — 5 (17)
1 2 12 = 5))
1 1
Vi -1 1 Vi
G2 G2 Ga G2 G2 1 1 _% _% -1
AP =0, A2 =05, A2 =15, *=2, vj]= ﬁ ,) , | , (18)
1 7 -7 1
1 1
7 1 1 R
(5) Compute the degree list of G; and G5 (sorted in ascending order), namely d“* and d2:
d =11, 1]7, a% =11, 1, 2, 27. (19)

(6) According to THEOREM 1, we can get two approximations of the Fiedler vector, namely F. and F2: (Note that the
eigenvalues corresponding to the two vectors, i.e., A\;; and Aoy, are the same and the second smallest among all the eigenvalues
of G1 ® GG, so both v1; and vo4 can be viewed as the Fielder vector.)

A1y = 1—(1—)\f1)(1—)\f2)} A9 49> = 0, Aoy = {1—(A9 -)\GQ)} 51 dS> = o, (20)
T
11 11 1
F~—'U —U ®U == 771 777 —, L, 1, —= s 21
n=n \@[ﬁ VI V2 \/i} @D
T
1] 1 11 1
F2 = vpg =05 @ 0F :{—, 1, —1, —, —, —1, 1, —} . 2
G NN ViR V3 .

APPENDIX D
MORE SIMULATION SETUP

Figure 12 shows the setup of the n-agent (n = 2,3,5,6,8) and 2 x 2-agent four-room tasks which are not illustrated in
Figure 4. The triangles represent the initial positions of the agents and circles denote the goal area.

(a) 2-agent four-room (b) 3-agent four-room (c) 5-agent four-room (d) 6-agent four-room (e) 8-agent four-room (f) 2 x 2 four-room

Fig. 12. Simulators for Evaluation: All the agents (triangles) must reach the goal area (circles) simultaneously to complete the task, based on only their current
locations. In (f), agents are assigned with different goals. The agents and their corresponding goals are labeled with the same color.

	Introduction
	Related Work
	Background
	Basic Conceptions and Notations
	Covering Option Discovery

	Proposed Algorithm
	System Model
	Theory results
	Multi-agent Covering Option Discovery
	Adopting Multi-agent Options in MARL

	Evaluation and Results
	Simulation Setup
	Main Results

	Conclusion
	References
	Appendix A: Notations
	Appendix B: Proof of THEOREM 1
	Appendix C: Finding the Joint Fiedler vector for the illustrative example shown in Figure 1(a)
	Appendix D: More Simulation Setup

