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ABSTRACT
Website fingerprinting is an attack that uses size and timing char-
acteristics of encrypted downloads to identify targeted websites.
Since this can defeat the privacy goals of anonymity networks such
as Tor, many algorithms to defend against this attack in Tor have
been proposed in the literature. These algorithms typically consist
of some combination of the injection of dummy “padding” packets
with the delay of actual packets to disrupt timing patterns. For
usability reasons, Tor is intended to provide low latency; as such,
many authors focus on padding-only defenses in the belief that
they are “zero-delay.” We demonstrate through Shadow simulations
that by increasing queue lengths, padding-only defenses add delay
when deployed network-wide, so they should not be considered
“zero-delay.” We further argue that future defenses should also be
evaluated using network-wide deployment simulations.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and untrace-
ability.
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1 INTRODUCTION
Tor [9] is a low-latency anonymity network and web browser used
daily by millions of users to evade state and corporate surveillance
and censorship. Tor redirects connections through multiple inter-
mediaries using layered encryption so that no single entity knows
both the source and destination of a connection. This hides which
sites a user visits and any contents requested from those sites.

However, Tor has been shown to be vulnerable to several traffic
analysis attacks, includingWebsite Fingerprinting (WF) attacks [15].
WF attacks use information about the timing, sequence, and volume
of packets sent between a client and the Tor network to detect
whether a client is downloading a targeted, or “monitored,” website.
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These attacks have been found to be highly effective against Tor,
identifying targeted websites with accuracy as high as 99% [6] under
some conditions.

This has led to many proposed defenses that modify the char-
acteristics of a connection in order to confuse a WF attacker. A
canonical “high-overhead” WF defense is BuFlo [10]: BuFlo sets
a constant traffic rate for every connection; in every fixed-length
time slot, a Tor node sends one packet on each connection. If multi-
ple packets are pending on a connection, some must be delayed to
the next slot, and if no packets are pending, an encrypted padding
packet is sent instead. By making all downloads have roughly the
same sequence, timing, and volume characteristics, BuFlo greatly
reduces the accuracy of WF attacks, but it has a very high cost in
terms of the additional bandwidth overhead and latency incurred.

Because of the resource constraints of the Tor network and
its focus on providing low latency, the literature contains many
proposals forWF defense schemes that have lower costs than BuFlo;
we briefly describe several of these in Section 2. Typically, the cost
of these defenses is measured either by trace simulation, in which
the traces of several page downloads over Tor are captured and a
simulator is used to add or delay packets in the trace according to the
defense; or by implementing the defense as a pluggable transport [1]
that encapsulates the connection between a single Tor client and
relay in a defended connection. Researchers then compute the
bandwidth overhead by comparing the number of bytes transmitted
when downloading a site with and without the WF defense, and if
the defense involves adding packet delays, the latency overhead is
computed by comparing the overall time to download a site with
and without the defense.

For padding-only defenses, this evaluation will not add any la-
tency, and so such defenses are sometimes referred to as “zero-
delay.” However, if such defenses were to be implemented on a
network-wide scale, the added packets sent as padding would nec-
essarily consume resources that could otherwise be used to send
non-padding packets to other clients. If enough padding is added,
such a defense may actually delay connections more than a defense
that uses less padding but sometimes delays packets. Thus, we con-
tend that it is important when evaluating WF defenses to account
for the effects of deploying to the full Tor network.

In this paper, we use the Shadow [17] network simulator to eval-
uate the effect of deploying three padding-only defenses – REB [25],
Spring, and Interspace [28] – on a network-wide basis. By measur-
ing the progress of downloads over time compared to results from
the same network without padding, and comparing the download
time for files to the number of padding packets injected per down-
load, we show that padding-only defenses cause delay and that
more padding causes additional delay. This illustrates that previous
methodologies for measuring delay overhead give an incomplete
picture of the costs of WF defense techniques.
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Our contributions. We make the following contributions:

• We give the first full-network simulations of padding defense
deployments. These show the importance of evaluating ad-
ditional defenses in this setting.

• We propose a new methodology for WF defense evaluation,
time-to-nth-byte. Tracking download progress over time
gives a more accurate and complete depiction of the delay
incurred by a WF defense mechanism.

• We show that “zero-delay” padding defenses cause delay and
should not be over-prioritized in comparison with timing-
based defenses.

2 BACKGROUND
Tor. The Tor network [9] includes several thousand volunteer op-

erated relays distributed globally, which provide service to roughly
one million concurrent users at any time [18]. To connect to a web-
site using Tor, a client constructs a three-hop circuit consisting of
a guard relay, a middle relay, and an exit relay. The circuit uses
layered encryption so that the guard can only see that it forwards
from the client to the middle relay, the middle relay can only see
that it forwards from a guard to an exit relay, and the exit relay
can see the destination traffic but not the client identity. All traffic
between the client and relays is encapsulated into 512-byte cells.

Website fingerprinting attacks. While neither an ISP on the net-
work path between the client and the guard nor the guard relay
itself can see the contents or ultimate destination of Tor cells, they
can observe the timing, sequence, and volume of cells sent in each
direction on this connection, which are fairly consistent for any
given website. WF attacks use statistical and machine-learning
techniques to build “fingerprints” of these sequences for a set of tar-
geted websites. A series of results [6, 13, 14, 24, 27, 30, 31, 33, 35] has
shown with increasing accuracy that with no defenses in place to
modify these sequences, WF attacks can identify visits to a targeted
web page with over 99% accuracy in some settings.

Defenses. To defend against such attacks, it is necessary to mod-
ify the sequence of cells observed by the attacker. One way to do
this is to inject extra “dummy cells” into either the connection be-
tween the client and the guard relay or the tunnel between the
client and the middle relay (depending on whether the guard is
considered a potential WF attacker or not). Based on the results of
Shmatikov and Wang [32], and Juarez et al. [21], the Tor project
has implemented a circuit padding framework [2] that can deploy
stochastic state machines that adaptively pad a connection to fill
unlikely gaps between cells. Matthews, Sirinam, and Wright used
this framework to implement the “Random Extend Burst” (REB)
defense mechanism [25], and Pulls used genetic algorithms to find
the locally optimal padding machines Spring and Interspace [28].
Several other defenses [4, 5, 11] also use padding to disrupt fin-
gerprints, but none have been implemented in the circuit padding
framework.

In addition to padding, a defense could elect to delay the trans-
mission of some actual cells to disrupt fingerprints, in an attempt
to make a website’s fingerprint match a different sequence, such
as constant-rate traffic [7, 8], a “decoy trace” [36], a common but

evolving traffic rate [16, 23], or an adversarially generated pat-
tern [12, 26]. These defenses often have more easily stated security
arguments, but because they induce latency by sometimes delaying
cells, they are seen as unacceptable in the low-latency context of
Tor.

Attack and Defense Evaluation. Juarez et al [20] argued in 2014
that research on WF attacks was unfairly privileging the attacker
by restricting to an unrealistic setting. These advantages include
the use of “closed world” assumption in which only a fixed number
of websites could be visited, the “single tab browsing” assumption,
the use of website frontpages rather than subpages, and the lack of
consideration of the effects of network conditions and retraining.
Subsequent works have relaxed many of these conditions, though
recently Cherubin, Jansen, and Troncoso [3] showed that modern
techniques still degrade quickly with the size of the “monitored”
set.

In contrast, Wang [34] and Pulls and Dahlberg [29] have argued
that WF defenses should be evaluated in the most optimistic setting
for attacks, assuming a single monitored page and even an oracle
that can eliminate false positives, because preventing these attacks
also protects against weaker attacks.

Since few defense mechanisms can provide such strong protec-
tion, we advocate for a more realistic evaluation of the deployment
cost of WF defenses.

3 EXPERIMENTS AND RESULTS
3.1 Experimental Setup
The main tool we used to collect data was Shadow, a network
simulator designed to enable realistic and reproducible experiments
with Tor. Shadow allows configuration of a network graph, which
specifies nodes (network-connected hosts), how they are connected,
and the processes that they should run. We sought to create a
network graph resembling the live Tor network, with relays running
the Tor process, and clients and servers running Tor and other
processes to send and receive traffic over Tor.

We used TorNetTools [19] for this purpose. TorNetTools uses
Tor Project metrics [22] to create models of the Tor network, which
can be scaled down to account for resource constraints, specifically
memory limitations, while remaining representative of the com-
position of the network. However, this scaling process involves
random sampling, which can introduce error that might affect the
conclusions of an experiment. Similarly, each simulation of a model
involves random sampling, which could also introduce error.

To account for this, we generated multiple models and ran sev-
eral simulations on each to produce our results. Using Tor Project
metrics from March 2022, we generated two models at 0.5% of the
scale of the live Tor network at that time and two models at 0.75%
scale. We ran 5 simulations of each model with the default Tor
configuration, which does not include any WF defenses, for a total
of 20 simulations. We also compiled Tor with the padding-only
defenses REB [25], Spring, and Interspace [28], running a total of
20 simulations with each defense.

The models generated by TorNetTools consist of Tor relays;
clients and servers that generate realistic network traffic and send
it over Tor; and 100 benchmarking clients, which repeatedly perform
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50 KiB, 1 MiB, and 5 MiB downloads throughout a simulation. We
used these benchmarking clients to measure bandwidth overhead,
delay, and failure rate. We begin by looking at bandwidth overhead,
the typical measurement used when reporting the cost of a padding-
only defense, with standard Tor, REB, Spring, and Interspace.

3.2 Bandwidth overhead
To visualize bandwidth overhead, we make a distinction between
bytes of content received during a download and bytes of padding
received. This allows us to examine the bytes of padding that have
been received so far at any point in a download as a percentage of
the bytes of content received. This is often referred to as receive
bandwidth overhead; similarly, send bandwidth overhead is the
padding sent as a percentage of the bytes of content sent, and total
overhead takes both bytes sent and bytes received into account.

During each simulation, we measured the receive bandwidth
overhead at various times throughout every download made by the
benchmark clients. After filtering out the partial results of failed
downloads, we calculated the median at each time for the three
download sizes with standard Tor (the control), REB, Spring, and
Interspace. We omit the results for REB since its median receive
bandwidth overhead was 0% for every download size. We also
exclude all 50 KiB results as overhead was 0% for the control and
with each defense; the data for the 1 MiB and 5 MiB download sizes
is shown in Figure 1.

For both download sizes, we observed lower values than those
originally reported by the authors of the three defenses (for REB,
83% [25]; for Spring, 89%; and for Interspace, 88% [28]). This is likely
due to two factors: first, the different traffic patterns induced by
single-file downloads as opposed to the web page downloads used
as a basis for comparison in previous work will naturally lead to
different patterns of adaptive cover traffic; and second, we observed
a large fraction of failed downloads apparently caused by errors in
the Tor circuit padding framework code, which we explore in the
next section.

3.3 Delay
To measure delay, we recorded a timestamp and number of bytes
each time data was received by a benchmark client. This allowed us
to determine the time taken to reach any given byte count; that is,
to examine the progress of each download over time.We aggregated
these results over all simulations to obtain the median time to reach
a number of progress points for the control and three defenses. In
Figure 2, we compare the results for the 50 KiB, 1 MiB and 5 MiB
download sizes.

It may be noted that the 50 KiB results are quite counterintuitive:
the control actually had the highest median latency to every byte,
and the median time to reach the 50 KiB mark for REB specifically
was 5.5% shorter than that of the control. The results for 5 MiB
downloads are similar: although Interspace appears to have caused
some additional delay, REB and Spring had shorter median times
to 5 MiB than the control.

As with the bandwidth overhead data in Figure 1, we note that
the time-to-byte data in Figure 2 does not include the partial results
of failed downloads. Since REB had a very high failure rate but little
padding overhead, it is likely that download failures kept the total

load on the network below that of the control throughout each
simulation, allowing downloads that did succeed to complete more
quickly.

Similarly, although Spring and Interspace incurred more padding
overhead, they both had very high failure rates for download sizes
greater than 50 KiB. It is likely that these download failures reduced
the load on the network enough to affect the timing of successful
downloads, including 50 KiB downloads, as downloads of varying
sizes were performed in parallel throughout each simulation.

To further illustrate this, we note that the time-to-byte data for
5 MiB downloads would seem to indicate that Spring had a median
time to 5 MiB that was 9.6% lower than that of the control. However,
Spring had a 99% failure rate for the 5 MiB download size, whereas
the control had a 25% failure rate, so this data is based on a much
smaller pool of downloads that likely occurred when there was less
load on the network.
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Figure 4: Download time vs
padding count (1 MiB)

The 1 MiB download
size data comes closer
to reflecting our expec-
tations: it indicates that
Spring and Interspace
did add delay, although
REB remained similar
to the control. At the
25% mark, Spring had
a median latency over-
head of 2.7% and Inter-
space of 6.3%; at com-
pletion, Spring and In-
terspace had median latency overheads of 1.6% and 7.8%, respec-
tively. REB finished slightly below the control, but had the highest
median failure rate (89%), which supports our conclusions about
download failures. Figure 4 also shows this trend, with download
time increasing as a function of padding cells, but with an R2 of
only 0.21 for Interspace and 0.28 for Spring.

Ultimately, even though we can’t conclude that these defenses
would result in a similar failure rate on the live Tor network, we sus-
pect that latency overhead would be greater than what we observed
in practice. Both cases represent potentially significant impacts on
the usability of the Tor network, suggesting that rigorous evaluation
of all potential usability factors is necessary before the deployment
of any defense.

4 CONCLUSIONS AND FUTUREWORK
Due to the prevalence of download failures in our simulations,
it is difficult to draw precise conclusions about the relationship
between padding overhead and delay, but it is clear that padding-
based defenses place additional stress on the Tor network, leading
to nonzero added delays. This is especially true since download
failures will either lead to higher delays as users reload pages and
resources that fail to download, or simply lead to more severe user
frustrations than those caused by the increased latency WF defense
designers hope to avoid.

Our results highlight the fact that WF defenses require more
complete evaluation than simple trace-based simulation or single-
edge deployments, because these evaluations fail to capture the
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Figure 1: Bandwidth overhead: Median of receive bandwidth overhead with standard Tor, Spring, and Interspace

0 20 40

1,000

1,200

1,400

50KiB Download progress (KiB)

Ti
m
e
si
nc
e
st
ar
t(
m
s)

Control

Spring

Interspace

REB

0 500 1,000
1,000

2,000

3,000

1MiB Download progress (KiB)

Ti
m
e
si
nc
e
st
ar
t(
m
s)

0 2,000 4,000

2,000

4,000

6,000

8,000

5MiB Download progress (KiB)

Ti
m
e
si
nc
e
st
ar
t(
m
s)

Figure 2: Delay: Time-to-byte data with standard Tor, Spring, Interspace, and REB
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Figure 3: Failure rate: Percentage of attempted downloads that failed with standard Tor, REB, Spring, and Interspace

interaction between multiple defended circuits in the Tor network.
They also suggest that the existing circuit padding framework may
not be ready for deployment on the live network. Finally, in light
of this need for further evaluation, it may be desirable to consider
allowing cell delays, since adding padding already incurs latency,
and cell delays may in fact reduce the resource stress caused by WF
defenses.

Thus, an interesting avenue for future work is to explore how the
circuit padding framework can be modified to allow delays, and to
implement more recent low-overhead defenses such as FRONT [11],
RegulaTor [16] and Surakav [12]. This will also allowmore complete
evaluations of these defenses. Similarly, considering our observa-
tion that TorNetTools measurements lead to different bandwidth
overheads than previous workloads, another interesting avenue for
future work is to explore the overhead of WF defenses on more

realistic workloads. Time-to-byte measurements can help to nor-
malize comparisons across workloads, but other metrics based on
time-to-event for various browser events may also be useful.
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A FAILURE RATES
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Although the pre-
cisemechanisms by
which failures oc-
curred are unclear,
we found that down-
loads were more
likely to fail as
the total number
of pad-ding cells
sent and received
increased (except
with REB, since
it had negligible
padding overhead)
as seen in Figure 5. That is, most of the downloads which did suc-
ceed involved a relatively low number of padding cells. This means
that, in the absence of failures, the delay incurred by each defense
should be expected to be higher than what we report.
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