
Acta Astronautica 212 (2023) 643–653

A
0

Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Inertia tensor estimation of tethered debris through tether tracking
Derek Bourabah, Chris Gnam, Eleonora M. Botta ∗

Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States

A R T I C L E I N F O

Keywords:
Unscented Kalman filter
Space debris
Moments of inertia
Estimation
Tethered capture
Camera model

A B S T R A C T

Tethered systems, such as tethered harpoons or nets, are promising methods to capture uncooperative space
debris, but suffer from complicated post-capture dynamics and control; control strategies could benefit from
knowledge of the mass moments of inertia of the target debris, usually unknown without estimation. In this
work, an Unscented Kalman Filter is proposed to estimate the moments of inertia, angular velocity, and attitude
of tethered debris in the absence of end effectors and of sensors on the target. This is achieved by leveraging
camera measurements of features on the target debris and a tension sensor. Estimation of the properties of
(1) a symmetric target with a centered tether attachment point and of (2) a non-symmetric target with a non-
centered tether attachment point is performed in simulation. The filter is found to be capable of accurately
and precisely estimating both the attitude and angular rates of debris, although sustained loss of a tracked
feature heavily impairs these estimates. The principal moments of inertia estimates are unaffected by the loss
of a tracked feature and can be made both accurately and precisely when the tether is taut. Asymmetry of the
target and of the tether attachment point can have a positive effect on the performance of the filter.
1. Introduction

The necessity of removing the largest and more massive pieces of
debris from low-earth orbit has been made clear by multiple collisions
and an increased space junk density [1–3]. Numerous space debris
removal methods have been proposed to clean the space environment.
Among the considered debris removal strategies, two methods of par-
ticular interest are tethered nets [4–8] and harpoons [9–11], where the
debris is captured and connected to the chaser spacecraft via a tether.
Tether-based methods of capture are characterized by increased safety
over traditional methods of debris capture, such as robotic arms, since
they allow the chaser to maintain a larger distance from the target.
However, tether-based capture introduces additional challenges. As the
physical connection between the target and chaser is a tether, which
is flexible and cannot withstand compression, control of the target
is both particularly important and difficult. Post-capture control is
complicated by the fact that debris is uncooperative and unresponsive,
and its properties are largely unknown. Moreover, the coupled target
and chaser dynamics can introduce chaotic motion [12,13], further
complicating control of the tethered system. Control of the attitude
motion of the debris has been studied by several authors [14–18]
and would help mitigate the onset of chaos. The proposed methods,
however, can be improved if the moment of inertia parameters of the
debris – otherwise unknown – could be determined. In fact, knowing
the moments of inertia provides the ability to estimate how the target
debris will rotate and react to different control inputs.
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To estimate the moments of inertia of the target, there must be a
determinable moment affecting the target, or else only the ratios of
the principal moments of inertia may be found [19,20]. Often, only
the ratios are found prior to debris capture, when the debris is freely
rotating [21,22]. However, robotic capture of debris allows estimation
of all moment of inertia parameters due to the rigid connection between
the target and chaser spacecraft [23–28]. Although some estimation
for tethered satellite systems has been performed (i.e., for the tether’s
curvature [29,30]), work on the estimation of the individual principal
moments of inertia following the capture of space debris via a tether is
scarce. Zhang et al. achieved estimation of the difference between two
principal moments of inertia, and of the value of one principal moment
of inertia of a tethered target [31]. In previous work, Bourabah et al.
showed that it is possible to obtain precise and accurate estimates of the
principal moments of inertia of tethered debris when perfect knowledge
of the tension in the tether and angular rate measurements of the
target debris are available [32]. The performance of two Extended
Kalman Filters and of an Unscented Kalman Filter (UKF) was also
compared, and it was found that improvements from the UKF were
significant [32].

In this work, numerous assumptions are relaxed from our prior
work, in which angular rate measurements were required: Instead of
assuming that direct measurements of the angular velocity of a tethered
target are available – which would mean that a gyroscope on the
target is able to provide information to the chaser spacecraft – pixel
vailable online 21 August 2023
094-5765/© 2023 IAA. Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.actaastro.2023.08.021
Received 2 March 2023; Received in revised form 20 July 2023; Accepted 17 Augu
st 2023

https://www.elsevier.com/locate/actaastro
http://www.elsevier.com/locate/actaastro
mailto:derekbou@buffalo.edu
mailto:crgnam@buffalo.edu
mailto:ebotta@buffalo.edu
https://doi.org/10.1016/j.actaastro.2023.08.021
https://doi.org/10.1016/j.actaastro.2023.08.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2023.08.021&domain=pdf


Acta Astronautica 212 (2023) 643–653D. Bourabah et al.
measurements are simulated to mimic feature (or landmark) tracking
of the target debris via a camera on the chaser spacecraft. In releasing
this assumption, the tether may truly be passive with no manipulator
at the end to provide measurements to the chaser, or thrust on the
target. Here, the only available force for estimation is the tension force
in the tether, which can be measured at the chaser’s side. Moreover,
the assumption that tension in the tether is perfectly known is relaxed
by considering that the tension in the tether is measured and affected
by sensor noise. By estimating the tension vector and the attitude of
the target, the torque applied on the debris by the tension force can be
estimated, which in turn allows for estimating the principal moments
of inertia.

A combined UKF and Unscented Quaternion Estimator (USQUE)
formulation is applied to tethered debris systems for the first time, to
estimate the attitude, angular rates, and principal moments of inertia
of the tethered target. The proposed estimation methodology is applied
to two test cases: (1) a symmetric target with a centered tether at-
tachment point and (2) a non-symmetric target with a non-centered
tether attachment point. The results of estimation demonstrate that
tracking two points via a camera and employing a single tension sensor
allows estimating the principal moments of inertia of tethered debris
both accurately and precisely, in both the simulated cases. Therefore,
no additional hardware to attach sensors on the target or to impart a
known torque or force on the debris is required to estimate the principal
moments of inertia. It is also demonstrated that asymmetry of the target
and of the tether attachment point can have a positive effect on the
performance of the filter.

The rest of this paper is organized as follows. Section 2 discusses
the system model and dynamics of the chaser–tether–target system, and
the UKF methodology is explained in Section 3. Section 4 details the
generation of synthetic measurements and the estimation results of the
UKF in the case of a symmetric target with a centered tether attachment
point, whereas Section 5 reports the main estimation results for the case
of a non-symmetric target with a non-centered tether attachment point.
Finally, the conclusions of the work are provided in Section 6.

2. System dynamics

The system under consideration consists of a chaser spacecraft and
target debris connected by a single tether (see Fig. 1). In this work,
the chaser spacecraft and target debris are modeled as rigid bodies,
whereas the tether is modeled as a single Kelvin–Voigt viscoelastic
element, non-linearized to represent the inability of the tether to with-
stand compression. In Fig. 1, the Earth-Centered Inertial (ECI) reference
frame is represented by frame , whereas the chaser and target body
frames are marked as  and  , respectively. The position vectors of
the tether attachment point on the chaser and target in their respective
body frames are indicated with 𝒓𝑡𝑝,𝐶 and 𝒓𝑡𝑝,𝑇 . The unit vector 𝒆̂ denotes
the direction of the tether – from the target to the chaser – and the
vectors 𝑹𝐶 and 𝑹𝑇 denote the chaser’s and target’s center of mass
positions in the ECI frame.

Although the complete dynamic formulation for this system can be
found in previous work [32], key equations for the simulation of the
dynamics of the system are reported here for the sake of completeness.
The attitude dynamics and kinematics of the chaser and target are given
by Eq. (1)1:

𝒒̇ = 1
2

[

𝐼3×3𝑞4 + 𝑆(𝒒𝑣)
−𝒒𝑣𝑇

]

𝝎 (1a)

𝝎̇ = 𝐽−1 (𝝉 + 𝒓𝑡𝑝 × (𝐴𝑻 ) − 𝝎 × 𝐽𝝎
)

(1b)

1 Here, subscripts for the target and chaser are omitted for the sake of
simplicity. With the exception of the tension vector 𝑻 , all variables are in
the corresponding body-fixed frame.
644
Fig. 1. System model with reference frames and notable vectors.

where 𝒒 is the quaternion representation of the attitude of the chaser
or target and 𝝎 is the angular velocity vector. The quaternion array
follows 𝒒 = [𝒒𝑇𝑣 , 𝑞4]

𝑇 , where 𝒒𝑣 = [𝑞1, 𝑞2, 𝑞3]𝑇 is the vector component
and 𝑞4 is the scalar component. The operator 𝑆(∗) denotes the skew-
symmetric matrix (i.e., the cross-product matrix) with components of
∗, and 𝐼 is an identity matrix. In the angular rate dynamics, the moment
of inertia matrix is denoted with 𝐽 , the tether attachment point is given
by 𝒓𝑡𝑝, and the symbol 𝝉 represents all external moments on the body
other than the moment generated by the tension force. In this work, the
only external moments affecting the system are those generated by the
control forces on the chaser craft, and there are no external moments
affecting the target debris other than the moment generated by the
tension force. Vector 𝑻 denotes the tension vector in the ECI frame,
whereas 𝐴 is a rotation matrix transforming a vector from frame 
to frame  , where  represents the target or chaser body frame.

In accordance with the non-linearized visco-elastic tether model, the
magnitude of the tension force is calculated using 𝑇 = max(𝑘(𝑙 − 𝑙0) +
𝑐𝑙̇, 0), where the natural tether length is denoted by 𝑙0, the current tether
length is denoted by 𝑙, and 𝑙̇ denotes the relative speed of the tether
attachment point on the target with respect to the tether attachment
point on the chaser in the tether direction, 𝒆̂. The stiffness and damping
coefficients of the tether are given by 𝑘 and 𝑐, respectively. The tension
vector can then be calculated in the inertial frame with 𝑻 = 𝑇 𝒆̂ for the
target and 𝑻 = −𝑇 𝒆̂ for the chaser.

3. Unscented Kalman filtering

To estimate the inertial parameters of the target using simulated
pixel and tension measurements, a UKF is implemented. Among the
existing filtering techniques, the UKF is selected due to the nonlin-
ear dynamics of the system and its proven performance in previous
work [32]. The implementation of the UKF is standard for the moment
of inertia and angular rate estimates. However, the attitude component
of the filter follows an USQUE formulation as was presented by Cras-
sidis and Markley [33,34]. For the reader’s convenience, the main steps
are covered in the remainder of this Section.

3.1. Dynamics model

The UKF uses a finite set of deterministically selected samples,
known as sigma points, to represent a Gaussian distribution. If the
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covariance matrix 𝑃𝑘 at the 𝑘th estimate has dimension 𝑛 × 𝑛, where
𝑛 is the number of estimated states, a matrix of sigma points (𝜒𝑘) is
generated by taking the columns of the 𝑛×2𝑛 matrix 𝜎𝑘 = ±

√

(𝑛 + 𝜆)𝑃𝑘.
Here, the matrix square root is obtained through Cholesky decomposi-
tion, 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 is a scaling parameter, and 𝛼 and 𝜅 are tuning
parameters, where 𝛼 controls the spread of the sigma point distribution,
while 𝜅 is used to fine-tune higher-order moments [35].

In this work, the states are given by three Euler error angles 𝜹𝒑 =
[𝛿𝑝𝑥, 𝛿𝑝𝑦, 𝛿𝑝𝑧]𝑇 about the roll, pitch, and yaw axes, three corresponding
angular rates 𝝎 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]𝑇 , and three principal moments of inertia
parameters 𝑱 = [𝐽𝑥, 𝐽𝑦, 𝐽𝑧]𝑇 for the target debris. While not a state, an
initially estimated quaternion attitude representation of the target, 𝒒̂0,
must also be provided to the filter.

If 𝝁𝑘 is the mean of the distribution representing the estimated states
at the 𝑘th iteration, then the sigma points are

𝜒𝑘(𝑖) =

{

𝝁𝑘 = [𝜹𝒑𝑇𝑘 , 𝝎̂
𝑇
𝑘 , 𝑱̂

𝑇
𝑘 ]

𝑇 for 𝑖 = 0
𝜎𝑘(𝑖) + 𝝁𝑘 for 𝑖 = 1, 2, … , 2𝑛

(2)

where (𝑖) denotes the 𝑖th column of a matrix. The sigma points are
separated into three sections of three parameters according to 𝝌𝑘 =
𝜒𝑘(𝑖) = [(𝝌𝛿𝑝

𝑘 )𝑇 , (𝝌𝜔
𝑘 )

𝑇 , (𝝌𝐽
𝑘 )

𝑇 ]𝑇 . A matrix of quaternions, 𝑞𝑘, is then
generated using the Euler error components of the 𝑘th 𝝌𝑘 points, 𝝌𝛿𝑝

𝑘 ,
through the corresponding error quaternion 𝛿𝑞𝑘(𝑖), as:

𝒒̂𝑘 = 𝑞𝑘(𝑖) = 𝛿𝑞𝑘(𝑖)⊗ 𝑞𝑘(0) (3)

where ⊗ indicates the quaternion product and

𝛿𝑞𝑘(𝑖) =

[

𝛿𝜚𝑘(𝑖)

𝛿𝑞4𝑘 (𝑖)

]

=

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑎 + 𝛿𝑞4𝑘 (𝑖)
)

𝝌𝛿𝑝
𝑘 ∕𝜙

−𝑎‖‖
‖

𝝌𝛿𝑝
𝑘
‖

‖

‖

2
+𝜙

√

𝜙2+(1−𝑎2)‖‖
‖

𝝌𝛿𝑝
𝑘
‖

‖

‖

2

𝜙2+‖‖
‖

𝝌𝛿𝑝
𝑘
‖

‖

‖

2

⎤

⎥

⎥

⎥

⎥

⎦

(4)

here 𝑎 is a number between 0 and 1, 𝜙 is calculated as 2 (𝑎 + 1),
nd the first column of the quaternion matrix, 𝑞𝑘(0), is set to the
th mean estimated quaternion. In this work, 𝑎 is selected to be 1.
he modified sigma points in the UKF are now given as 𝝌𝑘,𝑚 =

𝑘,𝑚(𝑖) = [𝒒̂𝑇𝑘 , (𝝌
𝜔
𝑘 )

𝑇 , (𝝌𝐽
𝑘 )

𝑇 ]𝑇 . These modified sigma points are prop-
gated through the system dynamics, converted back to the original
igma points, and then weighted to give the propagated mean and
ovariance:

̂−𝑘+1 =
2𝑛
∑

𝑖=0
𝑊 mean

𝑖 𝜒𝑘+1(𝑖) (5a)

−
𝑘+1 =

2𝑛
∑

𝑖=0
𝑊 cov

𝑖 𝜳𝜳 𝑇 +𝑄𝑘+1 (5b)

here 𝜳 ≡ 𝜒𝑘+1(𝑖) − 𝒙̂−𝑘+1, 𝑄𝑘+1 is the discrete-time process noise
ovariance –which takes into account uncertainties in the dynamics
nd modeling errors–, and 𝑊 mean

𝑖 and 𝑊 cov
𝑖 are the weights for the

th sigma point, given by:

mean
0 = 𝜆

𝑛 + 𝜆
(6a)

cov
0 = 𝜆

𝑛 + 𝜆
+ (1 − 𝛼2 + 𝛽) (6b)

𝑊 mean
𝑖 = 𝑊 cov

𝑖 = 1
2(𝑛 + 𝜆)

, 𝑖 = 1, 2,… , 2𝑛 (6c)

where 𝛽 becomes the third tuning parameter and is used to incorporate
prior knowledge of the distribution [35].

The dynamics for each 𝝌𝑘,𝑚 point in the UKF is propagated using a
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Runge–Kutta 4th order integrator and follows: 𝒚
𝝌̇𝑚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̇̂𝑞1
̇̂𝑞2
̇̂𝑞3
̇̂𝑞4
̇̂𝜔𝑥
̇̂𝜔𝑦
̇̂𝜔𝑧
̇̂𝐽𝑥
̇̂𝐽𝑦
̇̂𝐽𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑞4𝜔̂𝑥 − 𝑞3𝜔̂𝑦 + 𝑞2𝜔̂𝑧)∕2

(𝑞3𝜔̂𝑥 + 𝑞4𝜔̂𝑦 − 𝑞1𝜔̂𝑧)∕2

(𝑞1𝜔̂𝑦 − 𝑞2𝜔̂𝑥 + 𝑞4𝜔̂𝑧)∕2

(−𝑞1𝜔̂𝑥 − 𝑞2𝜔̂𝑦 − 𝑞3𝜔̂𝑧)∕2

(𝑟𝑦𝑇̂𝑧 − 𝑟𝑧𝑇̂𝑦 − 𝜔̂𝑦𝐽𝑧𝜔̂𝑧 + 𝜔̂𝑧𝐽𝑦𝜔̂𝑦)∕𝐽𝑥
(𝑟𝑧𝑇̂𝑥 − 𝑟𝑥𝑇̂𝑧 − 𝜔̂𝑧𝐽𝑥𝜔̂𝑥 + 𝜔̂𝑥𝐽𝑧𝜔̂𝑧)∕𝐽𝑦
(𝑟𝑥𝑇̂𝑦 − 𝑟𝑦𝑇̂𝑥 − 𝜔̂𝑥𝐽𝑦𝜔̂𝑦 + 𝜔̂𝑦𝐽𝑥𝜔̂𝑥)∕𝐽𝑧

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

here 𝑟𝑥, 𝑟𝑦, and 𝑟𝑧 are used to represent the corresponding compo-
ents of the position of the tether attachment point on the target debris
n the target body frame (i.e.,  𝒓𝑡𝑝,𝑇 ). As the individual components of
he tension are not measured and are instead based on the estimated
ttitude of the target debris, the tension components are denoted by a
aret (i.e., 𝑇̂𝑥, 𝑇̂𝑦, and 𝑇̂𝑧). To obtain the estimated tension components,
he tension unit vector is created using the relative position of the
atellites and the positions of the tether attachment points on the
orresponding spacecraft or debris following:

𝒆̂ =
(

𝑹𝐶 + 𝐴𝒓𝑡𝑝,𝐶
)

−
(

𝑹𝑇 + 𝐴  𝒓𝑡𝑝,𝑇
)

̂ =  𝐴𝑇̃ 𝒆̂
(8)

here  𝐴 and 𝐴 are created using the estimated attitude quater-
ion of the target debris. The inertial positions and respective body
rame tether attachment points of the chaser and target are assumed
o be known (i.e., 𝑹𝐶 , 𝑹𝑇 , 𝒓𝑡𝑝,𝐶 , and 𝒓𝑡𝑝,𝑇 ), whereas the tension mag-
itude, 𝑇̃ , is measured.

The propagated points are now given by 𝝌𝑘+1,𝑚 = [𝒒̂𝑇𝑘+1, (𝝌
𝜔
𝑘+1)

𝑇 ,
𝝌𝐽
𝑘+1)

𝑇 ]𝑇 . To recover the unmodified 𝝌𝑘+1 points in terms of the error
ngle representation, each quaternion must be converted back to 𝝌𝛿𝑝

𝑘+1
i.e., the quaternions are converted back to Euler error angles) by:

𝛿𝑝
𝑘+1(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝟎 if 𝑖 = 0
𝜙𝛿𝜚𝑘+1(𝑖)
𝑎+𝛿𝑞4𝑘+1 (𝑖)

if 𝑖 = 1, 2, … , 2𝑛 (9)

where 𝛿𝜚𝑘+1(𝑖) and 𝛿𝑞4𝑘+1 (𝑖) are given by:

𝜹𝒒𝑘+1 = 𝛿𝑞𝑘+1(𝑖) =
[

𝛿𝜚𝑘+1(𝑖)
𝛿𝑞4𝑘+1 (𝑖)

]

= 𝑞𝑘+1(𝑖)⊗ 𝑞𝑘+1(0) (10)

Using the restored sigma points, 𝝌𝑘+1 = [(𝝌𝛿𝑝
𝑘+1)

𝑇 , (𝝌𝜔
𝑘+1)

𝑇 , (𝝌𝐽
𝑘+1)

𝑇 ]𝑇 ,
he mean estimates can be found (through Eq. (5)) and updated using
easurements. For this work, it is assumed that two points on the target

re being tracked, with the first being the tether attachment point on
he target debris and the second being a randomly selected point on
he debris whose body-fixed position on the target debris is assumed to
e known. Measurements of these points are assumed to come from a
inhole projection model of a camera. It is further assumed that these
oints are never hidden from the camera by the geometry of the target.
t should be noted that, in reality, the optical tracking of these features
ill require image processing. However, image processing algorithms
re beyond the scope of this work; instead, it is assumed here that the
etection and matching of features is done as a pre-processing step and
hat the resulting pixel measurements are fed directly to the filter.

.2. Measurement model

At discrete observation times, the states are updated with the in-
ormation contributed by the measurement. Measurements are of the
orm:

̃
𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘 (11)
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Fig. 2. Geometry of the camera measurement model.

where 𝒚̃𝑘 is the measurement vector and 𝒗𝑘 is the measurement noise,
which is assumed to be a vector of zero-mean Gaussian random vari-
ables with covariance 𝑅𝑘. The predicted measurement for each sigma
point is computed as:

𝛾𝑘+1(𝑖) = 𝒉(𝜒𝑘+1(𝑖)) (12)

The specific pinhole projection model used for pixel coordinate
measurements can be written as:

𝛾𝑘+1(𝑖) =

[

𝑑𝑥′

𝑑𝑦′

]

=
⎡

⎢

⎢

⎣

𝑐𝑥′ − 𝑠𝑥′
(

𝜖1
𝜖3

)

𝑐𝑦′ + 𝑠𝑦′
(

𝜖2
𝜖3

)

⎤

⎥

⎥

⎦

(13)

where 𝑑𝑥′ and 𝑑𝑦′ are pixel coordinates in the image, 𝑐𝑥′ and 𝑐𝑦′ are the
𝑥′- and 𝑦′- pixel coordinates of the center of the image, 𝑠𝑥′ and 𝑠𝑦′ are
the scales between the image space and the world space – calculated
by dividing the image resolution by the sensor size – and 𝝐 is given by:

𝝐 =
⎡

⎢

⎢

⎣

𝜖1
𝜖2
𝜖3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑓 0 0
0 𝑓 0
0 0 1

⎤

⎥

⎥

⎦

⋅ 𝒓𝐿 (14)

where 𝑓 is the focal length of the camera, and 𝒓𝐿 is the position of a
landmark 𝐿 in the camera frame, . A diagram of this frame is shown
in Fig. 2.

3.3. Estimate update

To update the predicted states, the output covariance matrix 𝑃 𝑦𝑦
𝑘+1

and the cross-correlation matrix 𝑃 𝑥𝑦
𝑘+1 are first found as:

𝑃 𝑦𝑦
𝑘+1 =

2𝑛
∑

𝑖=0
𝑊 cov

𝑖
[

𝛾𝑘+1(𝑖) − 𝒚̂−𝑘+1
] [

𝛾𝑘+1(𝑖) − 𝒚̂−𝑘+1
]𝑇 (15a)

𝑃 𝑥𝑦
𝑘+1 =

2𝑛
∑

𝑖=0
𝑊 cov

𝑖
[

𝜒𝑘+1(𝑖) − 𝒙̂−𝑘+1
] [

𝛾𝑘+1(𝑖) − 𝒚̂−𝑘+1
]𝑇 (15b)

The innovation is defined as:

𝒆−𝑘+1 ≡ 𝒚̃𝑘+1 − 𝒚̂−𝑘+1 (16)

where 𝑦̂−𝑘+1 is the weighted sum of all of the predicted measurements
for each sigma point:

𝒚̂−𝑘+1 =
2𝑛
∑

𝑖=0
𝑊 mean

𝑖 𝛾𝑘+1(𝑖) (17)

The innovation covariance is the total output uncertainty due to state
and measurement uncertainty:

𝑃
𝑒𝑦𝑒𝑦
𝑘+1 = 𝑃 𝑦𝑦

𝑘+1 + 𝑅𝑘+1 (18)

The gain is then computed as:

𝐾𝑘+1 = 𝑃 𝑥𝑦
𝑘+1(𝑃

𝑒𝑦𝑒𝑦
𝑘+1 )

−1 (19)

The estimated state and covariance updates are given by:

𝒙̂+ = 𝒙̂− +𝐾 𝒆− (20a)
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𝑘+1 𝑘+1 𝑘+1 𝑘+1
Table 1
Chaser, target, and tether parameters.

Parameter Value

Chaser inertia matrix 𝐽𝐶 (kg-m2) diag(83.3, 83.3, 83.3)
Target inertia matrix 𝐽𝑇 (kg-m2) diag(15 000, 3000, 15 000)
Chaser mass 𝑚𝐶 (kg) 500
Target mass 𝑚𝑇 (kg) 3000
Tether Young’s modulus 𝐸 (Pa) 60 × 109

Tether diameter 𝑑 (m) 0.001
Tether natural length 𝑙0 (m) 30
Tether damping 𝑐 (N s/m) 16
Tether attachment point, chaser 𝒓𝑡𝑝,𝐶 (m) [0.5, 0, 0]𝑇

Tether attachment point, target 𝜏𝒓𝑡𝑝,𝑇 (m) [0, 0.875, 0]𝑇

Secondary landmark 𝜏𝒓𝐿 (m) [−0.6490,−1.1812, 0.7585]𝑇

Table 2
Initial conditions.

Variable Value

Chaser position 𝑹𝐶 (km) [−6.176,−0.4207, 2.973]𝑇 × 103

Target position 𝑹𝑇 (km) [−6.176,−0.4208, 2.973]𝑇 × 103

Chaser velocity 𝑽 𝐶 (km/s) [−2.45779,−4.40429,−5.71241]𝑇

Target velocity 𝑽 𝑇 (km/s) [−2.45776,−4.40428,−5.71242]𝑇

Chaser attitude quaternion 𝒒𝐶 (–) [−0.5564, 0.6637, 0.4699, 0.1708]𝑇

Target attitude quaternion 𝒒𝑇 (–) [0.3214,−0.3830, 0.8138, 0.2962]𝑇

Chaser angular velocity 𝝎𝐶 (rad/s) [0, 0, 0]𝑇

Target angular velocity 𝝎𝑇 (rad/s) [0,−0.05, 0]𝑇

𝑃+
𝑘+1 = 𝑃−

𝑘+1𝐾𝑘+1𝑃
𝑒𝑦𝑒𝑦
𝑘+1 𝐾

𝑇
𝑘+1 (20b)

A full derivation of the UKF can be found in Ref. [33] or Ref. [34].

4. Simulation and results for symmetric target, centered tether
attachment point

4.1. System simulation and measurement generation

As actual data does not yet exist for this problem, synthetic data
needs to be created through simulation. The full dynamics and con-
trol of the chaser–tether–target system are simulated in MATLAB to
gather the required data for estimation (see Bourabah et al. [32]).
The tension magnitude is saved and corrupted with noise to simulate
tether tension measurements, whereas the chaser’s and target’s orbital
positions, the chaser’s attitude quaternion, and the chaser and target
tether attachment points in their respective body frames are saved to
generate tracking measurements, as per Section 3.

During simulation, the chaser attitude is controlled through sliding
mode control such that the 𝑥-axis of the chaser always points in the
tether direction [32]. Additionally, proportional–integral–derivative
(PID) control is implemented to determine thrust on the chaser that
allows to achieve and then maintain a desired elongation in the tether
throughout the simulation [32], to ensure tension and prevent whiplash
effects and possible collisions (that were observed, for example, in [36]
for bang–bang control). The PID control determines the thrust force
on the chaser along the tether unit vector, and the control law is
given by: 𝐹 = 𝐾𝑃 𝑒 + 𝐾𝐼 ∫

𝑡
0 𝑒 𝑑𝑡 + 𝐾𝐷 𝑒̇. The proportional, integral, and

derivative gains are chosen to be 𝐾𝑃 = 300 kg∕s2, 𝐾𝐼 = 300 kg∕s3, and
𝐾𝐷 = 2000 kg∕s, respectively, and 𝑒 is given by 𝑒 = 𝛿𝑙 + 𝑙0 − 𝑙, where 𝛿𝑙
is the desired elongation. The chaser, tether, and target parameters for
the simulated system are presented in Table 1. With the parameters
in the table, the tether’s spring constant can be calculated as 𝑘 =
𝐸𝜋(𝑑∕2)2∕(𝑙0). The initial conditions to simulate the entire system are
provided in Table 2. An initial tether elongation of (𝑙 − 𝑙0) = −1 m is
selected, such that the tether is initially slack by 1 m.

As discussed in Section 2, the gravity gradient torque on the target is
neglected in this work. To verify that such an assumption is reasonable,
the magnitude of the gravity gradient torque that would be experienced
by the target is compared to the magnitude of the torque generated by
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Fig. 3. Torques created by the tension and by the gravity gradient on the target.

tension on the debris in Fig. 3. The gravity gradient torque is evaluated
as [37]:

𝝉𝑔(𝑡) =
3𝜇𝑒

‖

‖

 𝑹𝑇 (𝑡)‖‖ 5
𝑆( 𝑹𝑇 (𝑡))𝐽 ( 𝑹𝑇 (𝑡)) (21)

here 𝜇𝑒 is the standard gravitational parameter for Earth and  𝑹𝑇 (𝑡)
denotes the inertial position of the center of mass of the target, ex-
pressed in the target body frame. As is clear from the zoom in Fig. 3,
the minimum torque generated by the tension in the tether (occurring
at approx. 390 s) is more than 10 times the maximum torque generated
by the gravity gradient. Therefore, this comparison confirms that the
gravity gradient torque may be reasonably ignored.

The measurements are taken to be the tether tension and the pixel
coordinates of 2 features being tracked on the target. To generate these
measurements, the tension history and pixel coordinates of tracked
features must be saved and injected with noise. The magnitude of
the tension in the tether is saved at each time step throughout the
simulation and corrupted with noise as per Eq. (11), where 𝒉(𝒙𝑘)
represents the saved tension magnitude 𝑇 and 𝒗𝑘 is the simulated noise.
On the other hand, the pixel coordinate measurements need to be
created from the attitude information of the target. The features being
tracked are first selected as the tether attachment point on the target
and one additional feature with random target body-frame coordinates.
As the tether attachment point is on the 𝑦-axis of the debris, a second
feature that is not on the 𝑦-axis must be added to obtain moment
information around all three axes, which is expected to be sufficient
for estimation. These features are then processed through the pinhole
projection model to generate pixel coordinate measurements, which
are then corrupted by noise. The position of the secondary landmark
selected in this work is provided (expressed in the target reference
frame) in Table 1 as 𝜏𝒓𝐿.

Tension measurements are based on the TE-RFS tension sensor,2
where the noise added to the true tension measurements is taken to
have a Gaussian distribution with 0 mean and a standard deviation of
10 N. An example of the generated tension magnitude measurements
can be seen in Fig. 4, where the blue line represents the measured ten-
sion value and the black line is the true simulated tension magnitude.
In cases where the measured tension is negative, the measurement is
taken to be 0 N. It can be seen that the control implemented for the
simulation maintains a true tension magnitude of approx. 15 N after
undergoing a brief spike of approx. 420 N. This behavior is caused by

2 TE-RFS Multi-Configuration Tension Sensor. https://www.checkline.com/
ension_sensors/te-rfs. Last accessed 24 Feb. 2023.
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a

Fig. 4. True and measured tension magnitude. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the tether being initially slack and confirms the proper operation of
the PID controller. As the tether remains taut after an initial spike, a
moment force is continuously applied to the target debris, which can
therefore be used for the estimation of the principal moments of inertia
of the debris.

The pinhole camera frame is centered on the chaser spacecraft. The
model of the pinhole camera depends on the focal length, sensor size,
sensor resolution, and the principal point offset, and is built as per
Eqs. (13)–(14), which represent 𝒉(𝒙𝑘). As with tension, noise is added
according to 𝒗𝑘 when generating the actual measurement. A longer
ocal length produces a narrower field of view (FOV), while a larger
ensor size produces a wider FOV. For this work, the focal length is
et to 𝑓 = 80 mm, the sensor size is taken to be 20 mm × 11.25 mm,
nd the resolution is assumed to be 1920 × 1080 pixels. The scales
etween the image space and world space can be calculated by dividing
he resolution by the sensor size (i.e., 𝑠𝑥′ = 1920∕20 pixels/mm and
𝑦′ = 1080∕11.25 pixels/mm). For our purposes, it is also assumed that
he principal point offset is zero, meaning that the camera bore sight
oes through the exact center of the image (i.e., 𝑐𝑥′ = 960 pixels and
𝑦′ = 540 pixels).

Fig. 5(a) shows a time history of the projections of the tether at-
achment point and of the secondary tracked point through this camera
odel. The solid blue and dashed pink lines denote the projections of

he true and measured pixel position of the tether attachment point
n the camera sensor, respectively. The solid red and dashed green
ines show the true and measured position of the secondary landmark,
espectively. For both the tether attachment point and the secondary
andmark, the measured pixel coordinates overlap the true pixel coor-
inates closely, but are distinct from the latter — as can be seen from
he zoomed section. Fig. 5(b) shows the corresponding noise over time,
hich has a standard deviation of 2 pixels. Important to notice from
ig. 5(a) is also that there are two periods in which the secondary
andmark exits the camera FOV, with the shorter period occurring
etween 230 s and 240 s into the simulation, and the longer period
ccurring between 270 s and 370 s into the simulation. The effect of
hese will be discussed in the next Section.

.2. Estimation performance

In this Section, the performance of the UKF in estimating the
rincipal moments of inertia, angular velocity, and attitude error of
he target debris is evaluated by means of Monte-Carlo simulations.
t should be recalled that estimation is achieved under the following

ssumptions: (1) The relative position of the target with respect to the

https://www.checkline.com/tension_sensors/te-rfs
https://www.checkline.com/tension_sensors/te-rfs
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Fig. 5. Time history of pixel-coordinate measurements of tracked debris features. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
m

chaser is known while the attitude and angular rates of the target are
estimated. (2) The tension magnitude in the tether is measured, and the
tether attachment point and secondary landmark on the target body in
the target body frame are known. (3) The attitude, angular velocity, and
tether attachment point on the chaser craft, as well as the tether prop-
erties, are assumed to be known. (4) Views of the secondary landmark
and of the tether attachment point are never blocked by the geometry
of the target. (5) The tension and pixel coordinate measurements are
made available every 0.1 s.

Once the required data and measurements are created, the UKF
is initialized with a variance–covariance matrix of 𝑃 = diag((1 ×
10−2 (rad))2, (1 × 10−2 (rad))2, (1 × 10−2 (rad))2, (1 × 10−2 (rad/s))2, (1 ×
10−2 (rad/s))2, (1× 10−2 (rad/s))2, (1250 (kg-m2))2, (250 (kg-m2))2, (1250
(kg-m2))2) where the first three components are the initial uncertainties
in the Euler angles, the central three components (i.e., elements 4, 5,
and 6) are the initial uncertainties in the angular rates, and the last
three components are the initial uncertainties in the principal moments
of inertia. The initially estimated target attitude quaternion is taken to
be the true attitude of the debris. The initial Euler angle errors, angular
rates, and moment of inertia estimates are generated randomly at the
start of each Monte-Carlo run. The Euler angle errors are generated
using a normal distribution with a standard deviation of 1×10−2 (rad),
while the angular rates are perturbed from the true initial angular rate
with a standard deviation of 1 × 10−2 (rad/s). The initial moment of
inertia is assumed to be known within 25% of the true value at the
start of each Monte-Carlo run. The process noise matrix is taken to be
𝑄 = diag(1 × 10−32 (rad), 1× 10−32 (rad), 1× 10−32 (rad), 3× 10−8 (rad/s),
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3×10−8 (rad/s), 3×10−8 (rad/s), 0 (kg-m2), 0 (kg-m2), 0 (kg-m2)), where
the higher process noise for the angular rates is due to the uncertainty
in the tension measurements. As the moments of inertia of the target
are assumed to remain constant, there is no process noise in the dy-
namics of these parameters. Moreover, there are no disturbance sources
affecting the debris, making the process noise for the attitude dynamics
small. The tunable parameters 𝛼, 𝛽, and 𝜅 are set to 0.0001, 14, and
14, respectively.3 The pixel coordinate measurements are corrupted by
noise with a variance of 4 pixels, making the measurement covariance
matrix 𝑅 = diag(4, 4, 4, 4).

The time histories of the errors and their respective bounds for
a single (randomly selected) run of the Monte-Carlo simulation are
presented in Figs. 6–8, along with the actual distribution of the esti-
mation errors across all runs. In particular, blue lines represent errors
for this particular run, and the solid black lines show the 3-𝜎 bound
provided by the UKF. The green, yellow, and red zones show the
areas between the 1-, 2-, and 3-𝜎 bounds of the entire Monte-Carlo
simulation, respectively.

The Euler angle error history is presented in Fig. 6. As can be seen,
the attitude error remains within 1◦ during the majority of the simu-
lation, with the exception of the pitch estimate between approx. 270
s and 370 s. As previously mentioned, during this time the secondary

3 The tunable parameters were selected based on a particle swarm opti-
ization in which the mean error was minimized across 10 runs of the Monte
arlo simulation.
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Fig. 6. Error in the estimated attitude of target debris. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Error in the estimated angular rates of target debris. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

feature being tracked exits the camera FOV. The only visible feature
during this time is the tether attachment point, which cannot provide
information on the torque about the 𝑦-axis of the debris; as a result,
the pitch estimate rapidly degrades, while the roll and yaw estimates
only degrade slightly. Although the actual errors often remain within
1◦, the Monte Carlo 3-𝜎 bounds extend to approx. 2◦ at times for the roll
and yaw axes, and to approx. 21◦ for the pitch axis (with an estimated
bound of 31◦ for the individual run between 280 s and 380 s). It can
also be noticed that the individual run’s 3-𝜎 bounds closely match the
3-𝜎 bounds of the Monte-Carlo simulation results, suggesting that the
filter appropriately estimates the Euler angle error distribution.

The angular rate errors are presented in Fig. 7. Similar to the time
history of the Euler angle error estimates, a brief period of greater
uncertainty in the estimates produced by the UKF is visible between
approx. 270 s and 370 s. In fact, the re-appearance of the secondary
649
Fig. 8. Error in estimated target debris principal moments of inertia. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

feature in the camera FOV is characterized by a noticeable decrease in
the 3-𝜎 bound at approx. 370 s. Unlike the Euler angle error estimates,
the 3-𝜎 bounds calculated by the UKF for this run are approx. twice
as large as the Monte-Carlo 3-𝜎 bounds of approx. 0.13 deg/s. Despite
these larger predicted bounds, the actual estimated angular rates distri-
bution remains within 0.1 deg/s of the true angular rates of the target,
which is within the Monte-Carlo 3-𝜎 bounds. It is clear that the UKF is
too conservative with its angular rate estimates.4 As the Monte-Carlo
distributions of the estimated angular rates are significantly smaller
than the predicted distribution, the predictions made by the UKF for
the angular rates are actually precise and accurate when both tracked
features appear in the camera FOV.

The principal moments of inertia estimates provided by the UKF
during this particular run are presented in Fig. 8. In contrast to the
attitude and angular rate error plots, the 3-𝜎 bounds of the moment of
inertia estimates do not undergo a series of increases and decreases in
uncertainty and are not affected by the secondary feature exiting the
FOV of the camera. In fact, for both the moments of inertia about the
𝑥- and 𝑧-axes, the bounds remain large for a short time, before quickly
converging around 6 s into the simulation. After the initial rapid con-
vergence, the bounds gradually continue converging until the end of the
simulation. The rapid convergence in the bounds occurs approx. at the
same time as the initial spike in tension caused by the initial slackness
in the tether (as demonstrated in Fig. 4). Unlike what is observed for 𝐽𝑥
and 𝐽𝑧, the bounds of the estimated principal moment of inertia errors
about the 𝑦-axis decrease gradually throughout the simulation, rather
than having a period of rapid convergence. Moreover, the bounds
provided by the UKF for this run predict a smaller distribution for the
moments of inertia about the 𝑥- and 𝑧-axes, whereas the moment of
inertia about the 𝑦-axis has a greater predicted distribution compared
to the Monte-Carlo distribution.

Similar trends can be appreciated for the errors in the estimates
of the moments of inertia (see the blue lines). Despite the moments
of inertia about the 𝑥- and 𝑧-axes being characterized by a large

4 Conservative estimates are caused by the selected process noise 𝑄. Angu-
lar rate components were intentionally raised due to uncertainty in the effects
of tension measurement noise on the propagation of the states. Reducing these
components would improve the uncertainty bounds, at the risk of making the
filter over-confident and possibly converging toward an incorrect estimate.
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Fig. 9. Final principal moments of inertia estimate error distributions.
Fig. 10. Tracked feature observations for the non-symmetric case.

initial error, the filter is capable of rapidly converging toward the true
moments of inertia, with the majority of the convergence occurring
around 6 s. In fact, from 5 s to 20 s, the estimate errors for 𝐽𝑥 and
𝐽𝑧 change by approx. 600 kg-m2 and approx. 2300 kg-m2, respectively.
After this initial convergence, the error between the true and estimated
moments of inertia about the 𝑥- and 𝑧-axes change by approx. 150 kg-
m2 between 20 s and 500 s. On the other hand, the moment of inertia
about the 𝑦-axis undergoes the majority of its convergence between 360
s and 380 s, when the error changes by approx. 50 kg-m2; afterward,
the error remains roughly constant until the end of the simulation.

For statistical analysis, the distributions of the errors of the final
moments of inertia estimates made by the UKF across all 1000 runs of
650
Fig. 11. Error in the estimated attitude of non-symmetric target.

the Monte Carlo simulation are presented in Fig. 9. Each bin separates
the final estimate errors every 100 kg-m2 for the 𝐽𝑥 and 𝐽𝑧 final error
distribution plots, and every 50 kg-m2 for the 𝐽𝑦 final error distribution
plot. The solid black lines show the average final estimate errors,
whereas the dashed lines show the 3-𝜎 bounds of the final estimate
errors. The text box provides values for the mean estimate error along
with the 1-𝜎 value of the estimate errors. It is evident that the average
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Fig. 12. Error in the estimated angular rates of non-symmetric target.

Fig. 13. Error in the estimated principal moments of inertia of non-symmetric target.

final errors for all the moments of inertia are within 50 kg-m2, which is
0.33% of the true moments of inertia about the 𝑥- and 𝑧-axes and 1.66%
of the true moment of inertia about the 𝑦-axis. When accounting for
the 3-𝜎 bounds, 99.7% of the final moment of inertia estimates will be
within 6.64%, 13.68%, and 6.79% of the true values of the moments
of inertia about the 𝑥-, 𝑦-, and 𝑧-axes, respectively. These 𝐽𝑥 and 𝐽𝑧
estimates are approx. 5% worse, and the 𝐽𝑦 estimates are approx. 10%
worse than the estimates in previous work [32]; however, this is due
to the fact that previous work assumed perfect knowledge of tether
tension and the availability of angular rate measurements, which are
more ideal conditions.

In all cases, it can be noted that the largest bin of estimate errors is
the first to the left of the zero-error point, signifying that the filter is
more likely to estimate a slightly lower moment of inertia than the true
value, within 100 kg-m2 for the 𝑥- and 𝑧-axes, and within 50 kg-m2 for
the 𝑦-axis. While the final moment of inertia estimate errors about the 𝑦-
axis across all runs follow a normal distribution with a slight skew, the
final moment of inertia estimate errors about the 𝑥- and 𝑧-axes follow
651
a more bimodal distribution curve, in which a larger peak in estimate
errors falls within the 0 to −100 kg-m2 range, and a smaller second
peak appears in the 200 to 300 kg-m2 range.

Overall, these results demonstrate that the implemented UKF is
capable of obtaining estimates of the principal moments of inertia of
the target debris given pixel coordinates of two tracked landmarks and
measurements of the tension in the tether. Nearly all the estimates
are within 7% of the moments of inertia about the 𝑥- and 𝑧- axes,
after a brief period of tension measurements. However, it was also
demonstrated that it is most likely that the UKF will estimate the
principal moments of inertia to within 2% of the true value. Under
the assumptions of this work, the UKF is also capable of estimating
the attitude of the target within 2◦, unless a tracked feature exits the
camera FOV. Finally, the angular rates of the target can be estimated
accurately, to within 0.2 deg/s, despite a significantly lower confidence
in its estimates.

5. Estimation results for non-symmetric target, non-centered
tether attachment point

Although it was shown in Section 4 that the filter can estimate
the principal moments of inertia of a tethered target in the case of
a symmetric object with a tether attached along one of its principal
axes, these specific conditions may not necessarily occur. The esti-
mation performance is therefore evaluated here in a non-symmetric
case, in which the principal moments of inertia matrix of the target
is 𝐽𝑇 = diag(8000, 3000, 15 000) kg-m2 and the position of the tether
attachment point on the target is  𝒓𝑡𝑝,𝑇 = [−0.1, 0.875,−0.25]𝑇 m. All
other parameters are assumed to be the same as in Tables 1 and 2.

The time history of the projections of the tracked features through
the camera model is presented in Fig. 10. The horizontal black lines
represent the limits of the camera frame (i.e., 0 and 1080 pixels) so that
the position of the tracked features when not in the camera frame may
be seen by the reader; as before, measurements are ignored any time
the tracked features are not in the FOV of the camera. Differently from
the symmetric case, there are now three periods in which the secondary
point leaves the FOV of the camera, but of shorter duration, occurring
between 52 s and 71 s, between 410 s and 421 s, and between 453 s
and 468 s.

The estimation performance for each of the states can be appreci-
ated in Figs. 11–13. As in the symmetric case, the attitude estimate
errors (see Fig. 11) often remain within 1◦ of the true value, and their
Monte-Carlo distribution remains within 2◦. Again, when the secondary
feature is not visible to the camera, the uncertainty rapidly grows
(which occurs three times as expected); however, it is contained at 5◦.
The lower values of the uncertainties, compared to what was observed
in Section 4, are attributed to the shorter periods of time in which the
secondary feature is lost and therefore – ultimately – to the dynamics
of the target object.

The angular rate estimation results for the non-symmetric case are
shown in Fig. 12. Again, the 3-𝜎 bounds of the individual run are
larger than the Monte-Carlo 3-𝜎 bounds, indicating that the filter is not
as confident as it could be. Moreover, the average uncertainty bound
remained similar in the two cases, with a 3-𝜎 bound of approx. 0.18 ◦/s.
The angular rate estimates in this case, however, are characterized by
uncertainties that do not vary much in case of loss of a tracked feature.

The greatest difference with respect to the symmetric target case
can be found in the 𝐽𝑦 estimate (see the central plot in Fig. 13), which
now converges in approx. 20 s, with a similar trend to 𝐽𝑥 and 𝐽𝑦. This
result suggests that the torque applied to the target through the non-
centered tether is now sufficient to estimate all three principal moments
of inertia. It is also confirmed from Fig. 13 that the loss of tracked
features does not affect the principal moment of inertia estimation
directly.

A statistical analysis of the distribution of the final principal mo-
ment of inertia estimates across the entire Monte-Carlo simulation is
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Fig. 14. Final principal moments of inertia estimate error distributions for the non-symmetric case.
presented in Fig. 14. The average estimate for 𝐽𝑦 is now observed to be
nearly perfect; when taking into account the standard deviation of the
final estimates across the Monte-Carlo simulation, the filter will predict
𝐽𝑦 within 5.81% of the true value. As far as 𝐽𝑥 and 𝐽𝑧 are concerned,
the average estimates do not vary significantly from the symmetric case
(decreasing by only approx. 10 kg-m2); on the other hand, the standard
deviations decrease by approx. 200 kg-m2 and 100 kg-m2, respectively,
making the filter more precise. In this case, 𝐽𝑥 and 𝐽𝑧 are estimated
within 5.15% and 4.67% of their true values.

Overall, it can be concluded that in the case of a non-symmetric
target and non-centered tether attachment point, the filter can estimate
the principal moments of inertia accurately and precisely, and even
show improvements compared to the symmetric case. The greatest
improvement was observed in the accuracy of the 𝐽𝑦 estimate, while
accuracy remained approximately unchanged for 𝐽𝑥 and 𝐽𝑧; precision
increased for all the principal moments of inertia estimates. The atti-
tude and angular rate estimates improved only slightly, and this was
found to be due to the different rotational motion of the target in this
scenario, which caused shorter periods of tracked feature loss.

6. Conclusion

Estimation of the principal moments of inertia of tethered space
debris, based on tracking of two features on the target and tension
measurements, was investigated in this paper. Synthetic data was gen-
erated through simulation of the dynamics of a chaser–tether–target
system including chaser attitude control and relative distance-based
tension control. A UKF was employed for estimation, in its standard
formulation for angular rates and mass moments of inertia, and in the
USQUE formulation for attitude. Symmetric and non-symmetric capture
cases were investigated.
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Utilizing the target attitude estimates and the tension measure-
ments, the tension vector can be recreated and used to calculate the
moment applied to the target. With this information available, the
moments of inertia can be estimated well by the UKF, irrespective
of possible temporary loss of a tracked feature, in both cases. It was
further shown that estimation of the principal moments of inertia
may benefit from a non-symmetric target or non-centered attachment.
Accurate and precise estimates of the attitude and angular rates of the
target debris were found throughout most of the dynamics, although
in the event that a tracked feature exits the camera FOV, accuracy and
precision drop dramatically until view of that feature is restored. As
a result, this work demonstrated that the attitude, angular rates, and
moments of inertia of tethered debris can be successfully estimated by
a UKF using tension and pixel-coordinate measurements of two tracked
landmarks.
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