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Abstract—Over the past two decades, the popularity of mes-
saging systems has increased both in enterprise and consumer
level. Many of these systems used secure protocols like end-to-
end encryption to ensure strong security features such as “future
secrecy” for one-to-one communication. However, the majority of
them rely on centralized servers owned by big IT companies, which
allows them to use their users’ personal data. Also it allows the
government to track and regulate their citizens’ activities, which
poses significant threats to “digital freedom”. Also, these systems
have failed to achieve security attributes like confidentiality,
integrity, privacy, and future secrecy for group communications. In
this paper, we present a novel blockchain-based secure messaging
system named Quarks that overcomes the security pitfalls of
the existing systems and eliminates the centralized control. We
have analyzed our design of the system with security models and
definitions from existing literature to demonstrate the system’s re-
liability and usability. We have developed a Proof of Concept (PoC)
of the Quarks system leveraging Distributed Ledger Technology
(DLT), and conducted load testing on that. We noticed that our
PoC system achieves all the desired attributes that are prevalent
in a traditional centralized messaging scheme despite the limited
capacity of the development and testing environment. Therefore,
this assures us the applicability of such systems in near future if
scaled up properly.

Index Terms—instant messaging, blockchain, group communi-
cation, system security.

I. INTRODUCTION

The popularity of Messaging Systems has been increasing for

its prompt response time, convenient user experience, and ease

of multi-tasking in both informal and formal communication

and collaboration. Despite it’s uprising popularity, there is

also some concerns about the resiliency of these services and

users’ control over data. Because all popular messaging systems

leverage central servers to route text messages [1]. This gives

more control to big tech companies and government to provision

the user activities.

The Internet’s provision of digital freedom is not a new thing.

It started with the use of metadata by big tech companies for

profit-making opportunities. Centralized systems provide more

control over user personal data, which can be sold to third

parties or used for targeted marketing. Moreover, centralized

systems are frequently monitored by governments in order

to keep track of their citizens’ activities, and some countries

impose regulatory laws that potentially jeopardize user privacy.

Telegram, for example, was banned in Russia in April 2018

because it refused to provide the Russian Federal Security

Service (FSB) with access to encrypted messages, as required

by anti-terrorism laws [2]. Centralized architectures are more

likely to pose the biggest threats to privacy and freedom of

speech, including single point of failure, data leakage, and

control over private conversations [3]. Therefore, the current

Web 2 foundation cannot guarantee privacy or freedom of

expression.

To tackle mass surveillance of conversations by government

agencies and large corporations, all major messaging applica-

tions are integrating end-to-end encryption to their protocols,

such as Signal [4], WhatsApp [5], Threema [6], Google Allo

[7], and Facebook Messenger [8]. End-to-end encryption has

been proven [9] to be an outstanding way to implement secure

messaging protocol that ensures additional security properties

like future secrecy [10]. However, we have seen these messaging

systems are vulnerable to malicious attacks due to the improper

implementations and imbalance between “usability first” or

“privacy first”. These attacks include server-based attacks, such

as vulnerability of Apple’s iMessage [11] and Signal Protocol

[12]. Moreover, researchers have been able to decipher the

message database at end-users’ devices of major messaging

apps like WhatsApp, WeChat and Viber [13], [14], [15], [16].

Conventional models of data security rely on creating harder

and harder walls– adding multiple factors of authentication

to ensure access control and emphasizing stronger encryption.

With Blockchain, there exists the potential to scatter the stack,

rendering the cost of any one breach or combination of breaches

much lower. Combined with strong encryption methods and

zero knowledge proofs, Blockchain-based messaging systems

can be a much more secure method of storing, accessing, and

transmitting data; enhancing the ability of data managers to

protect critical information.

Research Questions. The following research questions

(RQs) intrigued us to investigate existing messaging systems

and conduct this research. RQ1: Can blockchain-based messag-

ing systems be utilized to ensure digital freedom and eliminate

control over user data? RQ2: Is it possible to build a blockchain-

based messaging system that includes all the features of a

traditional messaging system? and RQ3: Can blockchain-based
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(decentralized) messaging systems overcome the security flaws

of existing centralized messaging models?

In this paper, we try to address the above-mentioned re-

search questions by proposing Quarks, a novel application of

Blockchain in decentralized messaging system which has not

been explored before. Quarks eliminates central control over

data and ensures true decentralization, security, privacy, and

trust. The following are the major contributions of the paper.

• We developed a PoC of Quarks system that ensures

“Message Integrity” and “Trust in Federation” using Dis-

tributed Ledger Technology (DLT).

• Quarks ensures digital freedom, future secrecy, and guar-

antees no single point of failure.

• We conducted performance and security analysis, which

demonstrate that our PoC meets all intended features of a

truly decentralized messaging system.

The rest of the paper is organized as follows. In Section II, we

discuss some related work on the existing messaging systems.

The architecture of the Quarks is presented in Section III.

In Section IV, we describe the protocol flow of our Quarks
system. We present implementation, system performance, and

informal security analysis of Quarks in Section V. Finally, we

conclude the paper in Section VI.

II. RELATED WORKS

Sarıtekin et al. [17] and Mirzaei et al. [18] propose communi-

cation applications named ‘CrypTouch’ and ‘Simorgh’ respec-

tively, where both the schemes used IPFS (InterPlanetary File

System) to store the messages off-chain. However, details about

their network structure and protocol flow was not presented in

the paper. Also, IPFS is suitable only for storing large files. In

case of messaging systems, storing the messages in IPFS will

add extra overhead as most of the messages are smaller in size.

And it will require extra resources for each nodes to store and

maintain the whole messaging system.

A chat application using Ethereum’s Whisper protocol is

proposed by Abdulaziz et al. [19]. This protocol is designed

to “communicate darkness” (i.e., the content of the message is

inaccessible to those who intercepts the messages, and that com-

municating nodes cannot be easily identified) at high cost. It is a

off-chain protocol in which every message is sent to every node,

and every node tries to decrypt the message. Consequently, the

protocol has high traffic, high processor and memory usages.

Hence, this is not an efficient protocol for chatting applications.

Menegay et al. [20] attempt to implement a communication

application using ‘Steem’, which is commonly referred as

the “social blockchain”, designed to power blockchain-based

blogging and social media platforms. However, “Steem” is a

public content platform which is not suitable for implementing

communication application. A blockchain-based secure commu-

nication framework for community interaction is proposed by

Sharma et al. [21]. Their scheme manages identity of network’s

user through third party centralized service (Google) and all

communication data are kept in centralized database.

Currently, in most of the popular messaging systems, text

messages are routed through central servers [1]. It makes the

system prone to single-point of failure, although it provides

the service-provider with fine-grained control over the system.

Many companies, namely Signal [4], WhatsApp [5], Threema

[6], Google Allo [7], and Facebook Messenger [8], have servers

that are maintained by the service providers and they have full

access to the sensitive conversation data which raises privacy

concerns. Furthermore, researchers have been able to intercept

sensitive information from WhatsApp [22], [23], [24], which

has over two billion users worldwide. Rösler et al. [25] have

analyzed the group communication of Whatsapp, Threema,

and Signal. Their analysis disclosed that the communication
integrity and the groups’ closeness are not end-to-end protected.

In addition, they proved that Signal protocol can not maintain

strong security properties like future secrecy in group commu-

nication.

III. BACKGROUND AND SYSTEM ARCHITECTURE

In this section, we first review some preliminaries and then

present our system architecture.

A. Background

Blockchain. Blockchain is a smartly engineered distributed

system featuring an immutable ledger of transactions shared and

validated by a number of distributed Peer-to-Peer (P2P) nodes

[26]. The ledger is an ordered data structure consisting of many

blocks chained together by cryptographic mechanisms.

Smart Contract (SC). Smart Contracts are computer pro-

grams deployed on top of the respective blockchain [27]. Being

part of the ledger makes SC and their executions immutable

and irreversible, a sought-after property having a wide range of

applications in different domains.

Future Secrecy. Future secrecy is a prime feature of key

agreement protocols in messaging systems which prevents an

adversary (i.e., who compromises the message keys of a target

user) from decrypting any future messages in the conversation

to some extent. This is achieved by a unique technique called

“ratcheting” in which session keys are updated with every

message sent [28].

B. Quarks Components

The following four are the key components and participants

of our proposed Quarks System. i. User: Users are the actors

who use the system to communicate with their acquaintances;

ii. Quarks Channel: A channel is a message thread between

two or more users; iii. Quarks Node: A Quarks node

independently hosts multiples users and their messages and iv.
Quarks Network: A Quarks Network consists of multiple

Quarks nodes where users from different nodes interact with

each other.

C. High Level View of Quarks System

The high level semantics of the proposed system is illustrated

in Fig. 1, where we can see that, our decentralized network

can consist of multiple nodes that are hosted independently. A

person can register as a user of a node. A user can: (a) create a

channel, (b) invite other users to a channel, (c) join a channel

upon invitation, (d) send messages to a channel, and (e) read
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Fig. 1: High level view of Quarks System

TABLE I: Notations for Protocol Flow

Notations Description
Qi A Quarks node in the network

CNH Channel Name of Channel H
SKH Symmetric Secret Key of Channel H
JQi

A user registered in node Qi

UNJ Username of JQi

AdrsQi
Domain address of Qi

AdrsJQi
Domain address of Qi where JQi

has registered

WJ Wallet of JQi

C
Qi
U Certificate of JQi

issued by Qi

KJ Public key of JQi

K−1
J Private key of JQi

Ni A fresh nonce
{}K Encryption operation using a public key K

{}K−1 Signature using a private key K−1

H(.) A hash function
[]https Communication over an HTTPS channel

msg A text message
msgi ith msg in list of all textual messages

MsgL List of text messages

MsgLK Every element is encrypted using K in this list
ts A timestamp in nanoseconds

QB Quarks Blockchain Network
SCH Smart Contract in Channel H

LdgrH Ledger of Channel H

messages from a channel. Each node creates a blockchain ledger

for every channel and hosts the messages of that channel in that

ledger. A node hosts only the ledgers of which it’s users are

part of.

IV. QUARKS PROTOCOL FLOW

In this section, we present the protocol flow between different

components of our proposed system. The mathematical nota-

tions and symbols used to describe this protocol flow are listed

in Table I. The protocol has seven phases: i) user registration;

ii) channel creation; iii) node addition; iv) channel member

addition; v) channel secret key retrieval; vi) message sending

and vii) receiving.

1. User Registration Phase. [Table II]

M1. Firstly, the user (AQ1
) generates a pair of public and

private keys (KA, K−1
A ). Next, the user sends it’s username,

public key, and digital signature to the Quarks node (Q1)

through a https request.

M2. The node (Q1) validates the signature, generates a digital

certificate (CQ1

A ) for the user, and makes an entry in the off-

chain database. Finally, the node returns the certificate and

the nonce (N1) to the user. A fresh nonce is used in every

transmission to combat replay attacks.

2. Channel Creation Phase. [Table III]

M3. The user (AQ1
) requests the node (Q1) to create a new

TABLE II: User Registration Protocol

M1 AQ1
→ Q1 : [N1, UNA,KA, {N1, UNA}

K−1
A

]
https

M2 Q1 → AQ1
: [N1, C

Q1
A ]

https

TABLE III: Channel Creation Protocol

M3 AQ1
→ Q1 :

[N1, C
Q1
A , {SKH}KA

,
CNH , {N1, CNH}

K−1
A

]https

M4 Q1 → AQ1
: [N1]https

channel through a https request. The request includes the

name of the new channel (CNH ), certificate (CQ1

A ), signature,

and the channel secret key encrypted with the user’s public

key ({SKH}KA
). The secret key will be generated by the user

creating the channel.

M4. The node (Q1) validates the user’s certificate (CQ1
A),

digital signature, and then creates a new ledger for this

channel. Furthermore, the node sets up the smart contract

for this channel and initiates the ledger for messaging. At

initiation, the smart contract stores the encrypted secret key

(SKH ) for this channel.

3. Node Addition Phase. [Table IV and Algorithm-1 (lines

8-14)]

M5. A member (AQ1
) of the channel sends a request to

the node (Q1) for federating with a new node (Q2) for the

channel. The request includes member’s certificate, signature,

name of the channel, and the domain address of the new node.

M6. The node (Q1) validates the request, fetches the

certificate, and invokes smart contract function for adding the

node (Q2) in the channel. The node (Q1) then sends it’s own

certificate (CQ1

A ) and the new node’s certificate (CQ2

A ).

M7. The smart contract function validates the request and

add the new node’s certificate (Algorithm 1, lines 9-10) in the

authorized list of nodes and sends back a response (N2) to the

node (Q1).

M8. After receiving the success response from the smart

contract function, the node asks the new node to join the

channel, synchronizes the ledger (LdgrH ), and the smart

contract (SCH ). The message contains the encrypted ledger

and the smart contract.

M9. The new node (Q2) validates the request, creates a

replica of the ledger, and sets up the smart contract in the

ledger. Finally, the new node starts synchronizing the ledger

and the smart contract with all the participating nodes of the

channel and sends back a nonce (N3) to the node(Q1).

M10. Upon successful addition of a new node (Q2) in the

channel, the node (Q1) sends back a “success message” to the

the requesting member (AQ1
) of the channel.

4. Channel Member Addition Phase. [Table V and

Algorithm-1 (lines 15-19)]

M11. At first, a member (AQ1 ) of the channel sends a request

to the node (Q1) to add a user (UNB) to the channel. The

request contains certificate of the member (CQ1

A ), the signature

of the member, new username (UNB), and the node’s address

(AdrsBQ1
) of the user.
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TABLE IV: Node Addition Protocol

M5 AQ1
→ Q1 :

[N1, C
Q1
A ,

AdrsQ2 , CNH , {N1, CNH}
K−1

A
]https

M6 Q1 → SCH : [N2, CQ1
, CQ2

]
https

M7 SCH → Q1 : [N2]https
M8 Q1 → Q2 : [N3, CQ1

, LdgrH , SCH ]
https

M9 Q2 → Q1 : [N3]https
M10 Q1 → AQ1

: [N1, success msg]https

Algorithm 1: Smart Contract

1 Input: req � function name and parameters
2 Output: resp � output of function
3 Start
4 ChNodes ← GetChNodeCerts()
5 � get certificate list of the nodes of the channel
6 ChUsers ← GetChUsersCerts()
7 � get certificate list of the users of the channel
8 fn addNode(N2, CQ1 , CQ2 )
9 if CQ1 ∈ ChNodes then

10 ChNodes ← ChNodes ∪ CQ2

11 � add the new certificate to the set
12 PutChNodeCerts(ChNodes)
13 � put the updated list in the ledger
14 return N2

15 fn addMember(N3, CQ1 , C
Q1
A , CQ1

B , {SKH}KB )
16 if CQ1 ∈ ChNodes ∧ CQ1

A ∈ ChUsers then
17 PutSK(CQ1

B , {SKH}KB)
18 � put encrypted secret key in the ledger
19 return N3

20 fn getChannelSK(N2, CQ1 , C
Q1
A )

21 if CQ1 ∈ ChNodes ∧ CQ1
A ∈ ChUsers then

22 {SKH}KA ← GetSK(CQ1
A )

23 � get encrypted secret key from ledger
24 return N2, {SKH}KA

25 fn sendMsg(N2, CQ1 , C
Q1
A , {msg}SKH )

26 if CQ1 ∈ ChNodes ∧ CQ1
A ∈ ChUsers then

27 ts ← GetTs()
28 � get current timestamp in nanoseconds
29 PutState(ts, {msg}SKH)
30 � store encrypted message in the ledger
31 return N2

32 fn readMsg(N2, CQ1 , C
Q1
A , ts)

33 if CQ1 ∈ ChNodes ∧ CQ1
A ∈ ChUsers then

34 tsf ← ts
35 tst ← GetTs()
36 � get current timestamp in nanoseconds

37 MsgLSKH ← GetStateByRange(tsf , tst)
38 � get messages sent between tsf and tst
39 return N2 ,MsgLSKH

M12. After request validation, the node fetches the user’s

certificate using user’s node address and username. If the new

member was registered on the same node, the node will be

able to fetch it from it’s local database. Otherwise, the node

has to request the user’s node to share the certificate of the

user. Next, the node sends the requesting member (AQ1 ) the

public key (KB) of the user.

M13. The member (AQ1
) now encrypts the channel’s secret

key (SKH ) using the received public key (KB) and send it to

the node (Q1).

TABLE V: Add Member Protocol

M11 AQ1
→ Q1 :

[N1, C
Q1
A , UNB , AdrsBQ1

CNH , {N1, CNH}
K−1

A
]https

M12 Q1 → AQ1
: [N1,KB ]https

M13 AQ1
→ Q1 : [N2, {SKH}KB

]https

M14 Q1 → SCH :
[N3, CQ1 , C

Q1
A ,

CQ1
B , {SKH}KB

]https
M15 SCH → Q1 : [N3]https
M16 Q1 → AQ1 : [N2, success msg]https

M14. The node invokes the smart contract of the channel to

store the encrypted channel secret key. The node then sends

the certificate of itself, the requesting member’s certificate, the

new user’s certificate, and the encrypted channel secret key.

M15. The smart contract function (Algorithm 1, line 17)

stores the encrypted secret key in the ledger. As the key was

encrypted using user’s public key, only the entity having the

private key will be able to decrypt this secret key.

M16. Finally, after successfully invoking add member

function of the smart contract, the node sends the requesting

member a success message.

5. Channel Secret Key Retrieval Phase. [Table VI and

Algorithm-1 (lines 20-24)]

M17. The user requests the node to get the encrypted

channel secret key. The request includes name of the channel,

user’s certificate, and the digital signature.

M18. The node validates the user’s request and checks if the

channel exists. If the channel is found, the node invokes smart

contract function (Algorithm 1, lines 21-22) for retrieving the

encrypted secret key (SKH ) of the channel.

M19. Upon validating the parameters, smart contract

retrieves the encrypted secret key from the ledger and sends

back the encrypted key to the node.

M20. The node (Q1) responds to user’s request by sending

back the encrypted key. The user (AQ1
) will be able to

decipher the key (SKH ) using it’s private key (K−1).

TABLE VI: Get Channel Secret Key Protocol

M17 AQ1 → Q1 :
[N1, C

Q1
A ,

CNH , {N1, CNH}
K−1

A
]https

M18 Q1 → SCH : [N2, CQ1
, CQ1

A ]https
M19 SCH → Q1 : [N2, {SKH}KA

]
https

M20 Q1 → AQ1
: [N1, {SKH}KA

]
https

6. Message Sending Phase. [Table VII and Algorithm-1

(lines 25-31)]

M21. The user (AQ1 ) sends, the message encrypted with the

channel secret key, user’s certificate, name of the channel, and

the signature to the node (Q1).

M22. The node (Q1) validates the request, invokes the smart

contract function (Algorithm 1, line 25) for sending messages

in the channel.

M23. The smart contract (SCH ) function validates the user’s

membership in the channel (Algorithm 1, line 26) and if

succeeds, puts the encrypted message in the ledger.

M24. Finally, the node (Q1) sends back a success message

to the user (AQ1
) after a successful smart contract invocation.
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TABLE VII: Send message protocol

M21 AQ1
→ Q1 :

[N1, C
Q1
A , {msg}SKH

CNH , {N1, CNH}
K−1

A
]https

M21 Q1 → SCH : [N2, CQ1
, CQ1

A ,
{msg}SKH

]https
M23 SCH → Q1 : [N2]https
M24 Q1 → AQ1

: [N1, success msg]https

7. Message Reading Phase. [Table VIII and Algorithm-1

(lines 32-39)]

M25. The user (AQ1
) asks the node (Q1) to fetch all messages

in a period of time. The request includes the channel’s name,

certificate, signature, and a timestamp (in nanoseconds).

M26. After validating the request, the node invokes the smart

contract function (Algorithm 1, lines 32) to read the contents

of the channel. The node passes the timestamp along with the

certificates of the node and the user as function parameters.

M27. Once the validation of parameters is done, the smart

contract queries the encrypted messages from the ledger and

sends back the message list (MsgLSKH ) to the node.

M28. The node (Q1) sends back the message list to the

user (AQ1 ). Finally, the user will be able to read the message

contents by decrypting the messages using channel secret key.

TABLE VIII: Read message protocol

M25 AQ1
→ Q1 :

[N1, C
Q1
A , ts

CNH , {N1, CNH}
K−1

A
]https

M26 Q1 → SCH : [N2, CQ1 , C
Q1
A ,

ts]https
M27 SCH → Q1 : [N2,MsgLSKH ]https
M28 Q1 → AQ1

: [N1,MsgLSKH ]https
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Fig. 2: Proof-of-Concept of Quarks System

V. IMPLEMENTATION

We have implemented a proof-of-concept and analyzed it’s

performance. We have recorded the throughput and latency

of (a) Send Message and (b) Read Message; simulating with

increasing loads using an open source load testing tool named

Locust [29].

A. Proof of Concept (PoC)

We leveraged Hyperledger Fabric [30] to implement the

blockchain network. Here, every Quarks node have their

own Certificate Authority (CA), an Orderer, and multiple

peers. We developed fabric chaincode using golang [31] for

implementing Smart Contract. For Ledger, a fabric-channel

[32] is opened for every quarks channel. We built a backend

service using NodeJs [33] so that our clients can interact with

the blockchain. We used ReactJS [34] for our Frontend and

MongoDB [35] for the off-chain database.

B. Performance Analysis

For testing the performance of our PoC, we have set up

a controlled simulation environment targeting a maximum of

100 users. Figure 2 shows the structure of our environment. It

contains a Locust and 2 Ubuntu servers containing 3 nodes of

the Quarks system. The simulation is carried out in a series

of cycles that vary depending on the number of users. First, we

start with 20 users and add 20 more users in each cycle till 100

users. Each cycle contains the following three steps: i) each

simulated user sends and reads messages from the Quarks
using a REST API; ii) for each API request, the response time

is measured (in ms); and iii) on the Locust end, the throughput

is measured by calculating the number of requests served per

second.

After simulating for 100 users, we also performed a stress test

on our environment. We added 50 additional users in 5 more

cycles to check if the system can handle excessive loads. Figure

3(a) and 3(b) shows the median response time for all our test

cycles. For usual test cycles (20-100 users), the response time

is decent considering the decentralized architecture. It increases

linearly as the number of users increases. And for stress testing

cycles, the response time is respectively higher. However, our

system can handle all requests of up to 150 users with its limited

capacity. In figure 3(c), the system’s throughput increases with

the number of users in usual test cycles. As the number of users

grows, so does the number of requests per second (throughput).

However, in stress test cycles figure 3(d), the throughput reaches

a saturated level. This indicates that our PoC has reached its

maximum capacity.

Though we tested our PoC in a small simulation environment,

it showed 100% availability and decent performance in sending

and reading messages. We believe that with proper resources,

Quarks could be scaled to use as a decentralized messaging

system. Also, in the upcoming era of 5G and the increasing

popularity of DApps (Decentralized Applications), Quarks
will be more feasible to use and can be integrated with other

decentralized systems for secured message sharing.

C. Informal Security analysis of Quarks

Confidentiality. Every message in the ledger in Quarks is

encrypted with a secret key unique to a channel. This channel’s

secret key is only known to the members of the channel. This

guarantees protection against potential data breaches.

Integrity. In Quarks all the messages are stored on-chain.

That means it is impossible to delete or tamper the previous

messages.

Non-Repudiation. As every message-write is digitally signed

by the members and signatures are being verified by smart

contract, Quarks diminishes repudiation attempts.

Authentication and Authorization. Users interact with the

Quarks by authenticating with their private keys which enables
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Fig. 3: Performance evaluation of Quarks (Median Response Time and Throughput)

the Quarks nodes to prevent unauthorized access to the users’

data.

Resilient to DDoS Attacks. DDoS attackers may successfully

make a single node unavailable for some time; however, the

decentralized nature of the Quarks network will keep the

service intact.

VI. CONCLUSION

To ensure private and secure communication over a decen-

tralized network, we have designed and developed a messaging

system leveraging distributed ledger technology. Going forward,

we believe that our design will empower individuals to set-up

nodes and communicate with their peer nodes securely. Our

implemented PoC assured us of the feasibility of such systems.

We envision that, our novel approach to solve the current secu-

rity issues of the existing messaging systems will open up new

school of thoughts and pioneer the next generation messaging

services that we would be using for secure communication and

collaboration.
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