

1

2 Ammonia recovery from organic nitrogen in synthetic dairy 3 manure with a microbial fuel cell

4

5

6 *McKenzie Burns¹ and Mohan Qin^{1,2*}*

7 *1. Department of Civil and Environmental Engineering, University of Wisconsin–Madison,*
8 *Madison, Wisconsin 53706, USA*

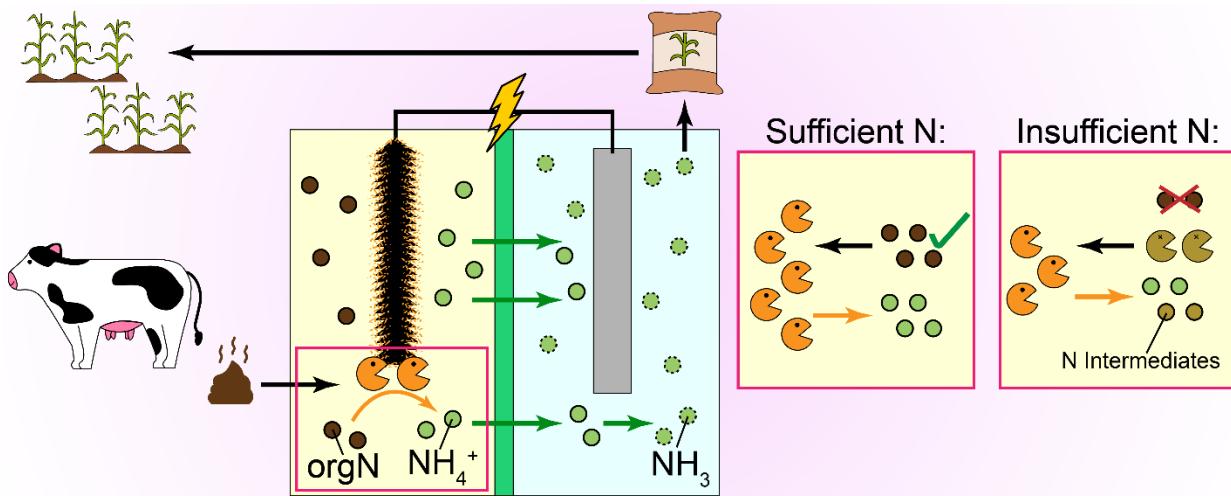
9 2. *Environmental Chemistry and Technology Program, University of Wisconsin–Madison,*
10 *Wisconsin 53706, USA*

11

12

13

14


¹⁵ * Corresponding author. E-mail: mohan.qin@wisc.edu

16 **Abstract**

17 Increasing pressures on the animal and cropland agriculture sectors have led to the
18 realization of problems with animal waste management and ammonia-based fertilizer supply.
19 Bioelectrochemical systems (BES) are a new-age technology that offer a way to address these
20 problems. Microbial fuel cells (MFCs), one type of BES, are traditionally used for electricity
21 generation from microbial degradation of organic matters, but can also be used to recover
22 nutrients from wastes simultaneous with treatment. This research investigated an MFC for
23 ammonia recovery from the organic nitrogen (orgN) fraction of synthetic dairy manure, using the
24 simple amino acid glycine as the orgN source. We used five different synthetic manure
25 compositions to determine their effects on MFC performance, and found minimal sacrifices in
26 performance under orgN conditions when compared to the base condition without orgN. The
27 MFC achieved greater than 90% COD removal in all orgN conditions. Nitrogen (N) removal
28 efficiencies of between 40% and 60% were achieved in orgN conditions, indicating that organic
29 nitrogen can be used as the substrate for ammonia mineralization and further recovery as
30 fertilizer. In addition, we found the MFC was largely populated by electrogenic organisms from
31 the phyla Bacteroidota, Firmicutes, Proteobacteria, and Halobacterota, with organisms in both
32 Bacteroidota and Firmicutes capable of N mineralization present. Lastly, we found that in
33 conditions where orgN is scarce and the only N source provided, microbes preferentially
34 degraded organic matter from other dead organisms, especially as an N source. This increases the
35 concentration of N in the MFC system and introduces important operational constraints for
36 MFCs operated for ammonia recovery from orgN.

37 **Keywords:** Microbial fuel cells, organic nitrogen, ammonia recovery, microbial nitrogen
38 mineralization, manure remediation

39 Graphical Abstract

40

41

42 **1. Introduction**

43 Global population growth continues to drive demand for food higher than ever before,
44 putting excess pressure on both crop and livestock agriculture sectors. Nitrogenous fertilizers are
45 among the most widely used stimulants for crop growth and yield, with the majority of fertilizer
46 nitrogen (N) in the form of ammonia (NH₃) (Wang et al., 2021). More than 96% of this ammonia
47 is produced via the Haber-Bosch process, which is a high pressure, high temperature
48 thermochemical reaction combining atmospheric N₂ and H₂ (Smith et al., 2020). The Haber-
49 Bosch process is largely powered by fossil fuels, and greenhouse gas emissions from this process
50 are responsible for nearly 1% of global emissions (Wang et al., 2021). With the demand for NH₃-
51 based fertilizers expected to further increase, sustainable NH₃ production represents an
52 increasingly important challenge.

53 Simultaneously, increasing production in the livestock agriculture sector has led to
54 exponential growth in both the number and size of animal feeding operations nationally. In 2020,
55 the United States Environmental Protection Agency (US EPA) reported nearly 21,000
56 concentrated animal feeding operations (CAFOs) throughout the country (EPA, 2022). Under
57 The Clean Water Act, CAFOs are operations which house confined animals for more than 45
58 days per year and meet specified size thresholds, for example, more than 1000 beef cattle or 700
59 dairy cows, or discharge manure or wastewater directly into a waterway (EPA, 2008; Long et al.,
60 2018). CAFOs are under pressure to become more environmentally sustainable. Many issues
61 stem from the mismanagement of livestock manure, a mixture of animal feces, urine, and other
62 system by-products (e.g., wash waters, waste feed). Manure constituents, including nutrients,
63 pathogens, and organic matter, can be lost to the environment, degrading both surface and

64 ground water quality, contributing to climate change, causing nuisance odors, and creating
65 environmental and human health issues.

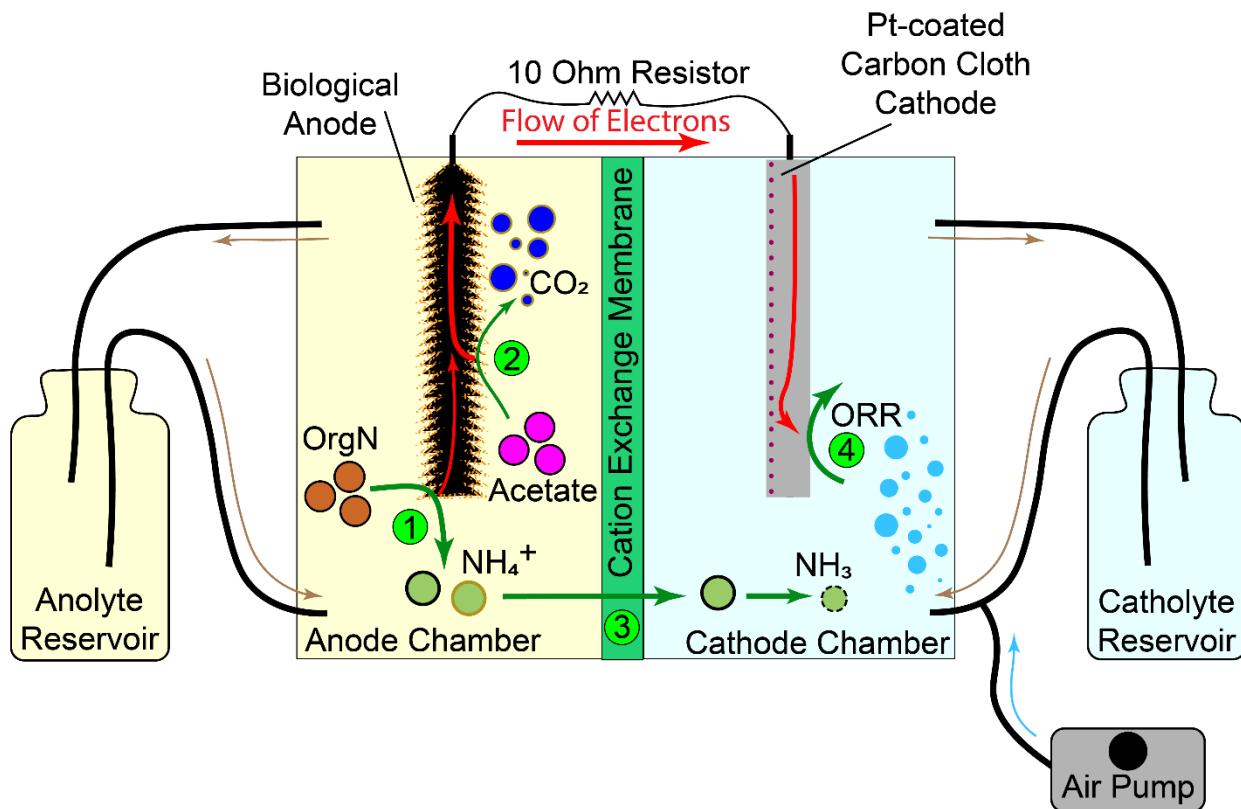
66 Current manure remediation techniques include direct land application and
67 microbiological processing; however, the unique properties of animal manures complicate these
68 approaches. For example, direct land application of manure is often limited to geographic areas
69 immediately surrounding the CAFO of origin. Manure properties like high water content and low
70 nutrient density increase transportation costs, restricting effective use of manure. Additionally,
71 the majority of nutrients in manure are in organic forms, which are unusable to plants without
72 prior mineralization to inorganic forms. While this mineralization can happen *in situ* once
73 manure is applied to croplands, it is a slow, microbial process that is difficult to control. The
74 combination of delayed fertilization effects and challenging transport of manure often leads to
75 excess manure application in one geographic area. This results in localized manure nutrient
76 loading to exceed agronomic need, increasing nutrient losses to the environment and reducing
77 nutrient use efficiency. Microbiological processes, such as anaerobic digestion (AD) and
78 composting, are somewhat effective at treating the organic load of animal manures; however,
79 these remediation techniques do not address the high concentrations of nutrients in manure.
80 Oftentimes, the orgN and NH₃ contained in manure inhibits the activity of microorganisms in
81 AD, and N losses in composting due to NH₃ off gassing typically exceed losses from
82 conventional manure storage (Hansen et al., 1998; Pardo et al., 2015). Additionally, methane gas
83 can leak from these processes, increasing the potential for greenhouse gas emissions. These
84 shortcomings support the need for development of new technologies capable of both treating the
85 organic load of manure and recovering nutrients in readily usable forms. Bioelectrochemical
86 systems (BES) are a relatively new approach to waste treatment, and when applied to manure

87 remediation, BES optimized for nutrient recovery offer a unique solution to both NH₃ production
88 and manure management issues.

89 BES are traditionally categorized as microbial electrolysis cells (MECs), microbial
90 desalination cells (MDCs), or microbial fuel cells (MFCs) depending on the desired treatment
91 and output (Wang and Ren, 2013; Kelly and He, 2014; Lu and Ren, 2016; Gul and Ahmad,
92 2019; Chu et al., 2020). Generally, BES operation combines principles of microbiology and
93 electrochemistry to engineered systems which utilize microbe-mediated degradation reactions to
94 treat waste streams and produce value-added products, such as electricity, hydrogen fuel, or
95 concentrated chemical solutions (Gul and Ahmad, 2019; Kelly and He, 2014; Lu and Ren, 2016).

96 When an ion exchange membrane is placed between the anode and cathode chambers of an
97 MFC, ion transport across the membrane is enabled by simultaneous current generation.
98 Therefore, MFCs are considered an efficient chemical recovery system, especially for recovering
99 NH₃ from waste streams (Kelly and He, 2014; Zhang et al., 2014; Rodríguez Arredondo et al.,
100 2015; Rodríguez Arredondo et al., 2017). In MFCs operated for NH₃ recovery, free ammonium
101 (NH₄⁺) in the anode chamber is transported to the cathode chamber across a cation exchange
102 membrane (CEM) via both electromigration and diffusion (Liu et al., 2016). The NH₄⁺ is then
103 converted to NH₃ due to the high pH of the catholyte and can be recovered via air stripping. This
104 recovery is dependent on an abundance of NH₄⁺ in the anolyte, which is heavily influenced by
105 the anolyte composition.

106 Although MFCs have been demonstrated to effectively recover NH₄⁺ from wastewater,
107 little research has been conducted related to anodic conversions of organic nitrogen (orgN) to
108 NH₄⁺ prior to recovery. Previously, substrates used in MFC research have contained minimal
109 orgN, and in the cases where N recovery has been studied, the anolyte N is typically already in


110 the form of NH_4^+ when fed to the MFC. As such, NH_3 recovery is solely the product of NH_4^+
111 transport from anode to cathode chamber to balance the influx of electrons in the cathode
112 chamber. The majority of N in animal manures is as orgN, which would first need to be
113 converted to NH_4^+ via N mineralization before transport across the CEM and recovery in the
114 catholyte. Microbial N mineralization can be cultivated in the biological anode of the MFC under
115 the proper conditions. It is important to study the impact that this additional step of N
116 mineralization will have on MFC performance if MFCs are to be used as future manure
117 remediation and NH_3 recovery technologies.

118 In contribution to the application of MFCs as chemical resource recovery mechanisms,
119 this research investigated MFC operation for NH_3 recovery from orgN in a synthetic dairy
120 manure substrate. Glycine, a simple amino acid, was used as a model orgN substrate. Multiple
121 electrolyte compositions were evaluated to determine their impacts on overall MFC performance,
122 the orgN to NH_4^+ conversion pathway, and NH_4^+ removal from the anolyte. This work focused
123 specifically on anodic processes, and as such, the recovery of NH_3 gas was outside the scope;
124 however, this has been studied in detail elsewhere (Kuntke et al., 2012; Kim et al., 2021). The
125 objectives of this work were to (1) determine if it is possible for microbes in an MFC anode to
126 mineralize orgN to NH_4^+ , (2) investigate the optimal MFC conditions for N mineralization and
127 removal from the anolyte, and (3) propose potential degradation pathways for simple orgN
128 compounds and acetate in an MFC operated for NH_3 recovery from orgN.

129 **2. Materials and Methods**

130 *2.1. MFC setup and operation*

131 The MFC used in this study was a two-chamber design with a biological anode and a
132 chemical cathode, separated by a cation exchange membrane (Logan et al., 2006; Cord-Ruwisch
133 et al., 2011; Kuntke et al., 2012; Qin and He, 2014; Qin et al., 2016; Yang et al., 2017; Ye et al.,
134 2019) (Figure 1). Dual-chamber MFC operation relies on a biological anode cultivated with
135 exoelectrogenic microbes and fed with the wastewater as the anolyte (Logan et al., 2006). As the
136 microbes degrade the organic matter available in the anolyte, extracellular electrons are produced
137 and sent to the cathode, where they are consumed by a reduction reaction (Logan et al., 2006). In
138 this study, we cultivated for microbial N mineralization in the anode chamber, and selected
139 varying conditions to investigate the optimization of N mineralization on the anode and NH_4^+
140 transport to the cathode across the CEM, as shown in Figure 1.

141

142 **Figure 1.** Schematic of the microbial fuel cell (MFC) set up. The essential processes and
143 reactions occurring during operation include microbial degradation of acetate (1) and organic
144 nitrogen (orgN) (2), transport of NH_4^+ across the cation exchange membrane (CEM) (3), and
145 consumption of electrons at the cathode by the oxygen reduction reaction (ORR) (4). Two
146 carbon fiber brushes were entwined with titanium wire for the anode and the cathode consisted
147 of a platinum-catalyst treated carbon cloth supported with metal mesh and wrapped in titanium
148 wire. Electrodes were connected via a 10Ω resistor and a voltage multimeter recorded the
149 potential drop across the resistor. An air pump was connected in-line with the catholyte
150 recirculation system to deliver oxygen to the cathode to fuel the ORR. Electrolyte solutions were
151 replaced at the beginning of each experimental cycle, such that the hydraulic retention time for
152 each cycle was 48h. Chemical components added as part of anolyte feed solution(s) are indicated
153 in black outlines and chemical components produced through microbial metabolism are indicated
154 in brown outlines.

155

156 A stacked-plate MFC was constructed with two endplates (McMaster-Carr, Chicago, IL,
157 USA) and three inner rubber frames (McMaster-Carr, Chicago, IL, USA). The rubber frames
158 were sandwiched between the endplates to create the internal chamber volumes of 200 mL and
159 100 mL for the anode and cathode chambers, respectively. Electrode chambers were separated
160 by a cation exchange membrane (CMI 7000S, Membranes International, Inc., Ringwood, NJ,
161 USA). The anode chamber housed two carbon fiber brushes (The Mill-Rose Company, Mentor,
162 OH, USA) as the electrode, and was inoculated with mesophilic anaerobic digestion sludge from
163 Nine Springs Wastewater Treatment Plant (Madison, WI, USA). A carbon cloth cathode (area =
164 39 cm^2 , Zoltek Companies, Inc., Bridgeton, MO, USA) was coated with a platinum-carbon

165 catalyst (10% wt/wt Pt/C, Fuel Cell Earth, Woburn, MA, USA) (Zhang et al., 2013; Qin et al.,
166 2017). Electrolyte solutions were continuously recirculated at a rate of 76 mL min⁻¹ between the
167 internal chambers and external reservoirs (500 mL total anolyte volume and 600 mL total
168 catholyte volume) for hydraulic retention times of 48h per experimental cycle. This recirculation
169 rate allowed for the entire internal chamber volume to be replaced every 1-3 minutes, ensuring
170 adequate mass transfer conditions were sustained.

171 *2.2. Experimental Conditions*

172 Experiments were conducted in five stages corresponding to five different electrolyte
173 conditions: the original acetate and NH₄Cl feeding condition (“Original”), a glycine and
174 phosphate buffer anolyte condition (“GP”), a glycine and reduced phosphate buffer condition
175 (“GP_{red}”), a glycine only anolyte condition (“GO”), and an ultra-low glycine only anolyte
176 condition (“GO_{low}”) (Table 1). For all electrolyte conditions, 0.024 M sodium acetate served as
177 the main source of organic carbon (Angenent and Sung, 2001; Qin et al., 2017). Detailed notes
178 on trace solution composition are provided in the SI. The simple amino acid glycine was used as
179 the source of orgN in these experiments. Different concentrations of phosphate buffer solution
180 (PBS) were used as the catholyte, based on the electrolyte condition under investigation (Table
181 1). In later stages of the experimental work, the concentration of catholyte PBS was decreased in
182 order to more closely mimic the conductivity of typical tap water while still yielding significant
183 control over specific solution composition. Other chemical components of the electrolyte
184 solutions varied throughout the study in correspondence with the purpose for studying the given
185 condition, as described in Table 1 and in the SI. Within each electrolyte condition, data from at
186 least three, 48h cycles (determined as the time required for current density to drop below ~ 0.25
187 A m⁻² cathode area, the chosen threshold for significant COD removal) was collected. Chemicals

188 used for preparation of the stock and electrolyte solutions were purchased from Carolina
189 Chemical (Charlotte, NC, USA), Alfa Aesar (Thermo Fisher Scientific, Tewksbury, MA, USA),
190 and Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). Anolyte solutions were purged with
191 N₂ gas for ~ 15 minutes immediately prior to use.

192 **Table 1.** Electrolyte compositions for each condition and a brief description of the purpose for
193 investigating each electrolyte condition. Exact compositions for the stock, trace, and phosphate
194 buffer (PBS) solutions can be found in Table S1.

Electrolyte Condition	Purpose	Anolyte Composition [†]	Catholyte Composition
Original feeding conditions (“Original”)	Facilitated microbial growth on anode and collection of baseline cell performance	0.56 M NH ₄ ⁺ -N 0.01 M stock 0.1 M PBS	0.02 M PBS
Glycine Phosphate Anolyte (“GP”)	Introduced glycine as orgN source	0.14 M glycine-N 0.01 M stock 0.02 M PBS	0.02 M PBS
Glycine and Reduced Phosphate (“GP _{red} ”)	Investigated MFC capacity to self-buffer under orgN conditions via removal (anolyte) and reduction (catholyte) of the buffer solution	0.14 M glycine-N 0.01 M stock	0.002 M PBS
Glycine Only Anolyte (“GO”)	Investigated orgN degradation capability in absence of readily available inorganic N-source	0.14 M glycine-N 0.01 M stock*	0.002 M PBS
Ultra-low Glycine Only Anolyte (“GO _{low} ”)	Investigated MFC performance under ultra-low orgN concentrations	0.005 M glycine-N 0.01 M stock*	0.002 M PBS

195 [†]Anolyte under all conditions was prepared with 0.024 M sodium acetate and 0.001 M trace
196 solution.

197 *A separate stock solution without NH₄Cl was prepared and used in place of the original stock
198 solution for these preparations. See Table S1 for further information.

199 *2.3. Analytical Methods*

200 *2.3.1. Electrolyte Characterizations*

201 pH and conductivity of electrolyte solutions were measured via electrode probe and
202 benchtop meter (Orion Versa Star Pro, Thermo Fisher Scientific, Waltham, MA, USA).
203 Chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃-N, measured
204 as the sum of NH_{3(aq)} and NH₄⁺) were measured via standard colormetric methods (COD
205 Digestion Vials High Range, Total Nitrogen Persulfate Digestion Test 'N Tube, and High Range
206 Ammonia Nitrogen AmVer Salicylate Test 'N Tube, Hach, Loveland, CO, USA). The difference
207 in TN and NH₃-N concentrations for individual samples was assumed to be entirely organic
208 nitrogen (orgN) in the form of glycine, although later analysis determined this to be unlikely
209 under certain operative conditions (see section 3.3). Percent removal of nutrients, *R*, was
210 calculated via Eq. 1:

$$211 R = \frac{C_i - C_f}{C_i} * 100 \quad (\text{Eq. 1})$$

212 where *C_i* is the initial anolyte concentration of the nutrient of interest and *C_f* is the final anolyte
213 concentration of the nutrient of interest.

214 *2.3.2. MFC Electrochemical Characterization*

215 The current generation was continuously monitored using a data acquisition and logging
216 multimeter system from Keithley Instruments (Tektronix, Inc., Beaverton, OR, USA). The cell
217 was operated with an external resistance of 10 Ohms throughout the study. The current density

218 was normalized to the area of cathode electrode. For each cycle, the total charge transferred (Q ,
219 in Coulombs) between anode and cathode was computed as the area under the current-time curve
220 using the trapezoidal method for approximate integration (Eq. 2):

221

$$Q = \sum_{i=0}^{n=t_f} \left(\frac{I_t + I_{t+\Delta t}}{2} \right) \Delta t \quad (\text{Eq. 2})$$

222 where I_t is the current (in Amperes) at time t , $I_{t+\Delta t}$ is the current (in Amperes) at time $t+\Delta t$, t_f is
223 the final recorded time of the cycle, and Δt is 5 minutes. The total nitrogen removal efficiency
224 (R_N , in mole N mole⁻¹ electrons) is a measure of how current was partitioned to drive nitrogen
225 transport from anode to cathode chambers. R_N was calculated via Eq. 3:

226

$$R_N = \frac{V_{an}F(TN_{i,an} - TN_{f,an})}{Q} \quad (\text{Eq. 3})$$

227 where V_{an} is the total volume of anolyte (in L), F is Faraday's constant (96,485 Coulombs per
228 mole of electrons), and $TN_{i,an}$ and $TN_{f,an}$ are the initial and final total nitrogen concentrations in
229 the anolyte (in M), respectively.

230 *2.3.3. Microbial Community Analysis*

231 Microbial community analysis was performed on selected replicates of samples taken
232 during 5 different sampling conditions throughout the study: the inoculant anaerobic digestate
233 ("Inoculant"), after resistance decrease to cultivate for electrogenic organisms ("Initial
234 Electrogens"), after the completion of several experimental cycles with the original acetate and
235 NH₄Cl electrolyte condition ("Original", see Table 1), during and after the experimental cycles
236 in the glycine only electrolyte condition ("GO", see Table 1), and during and after the
237 experimental cycles in the ultra-low glycine only electrolyte condition ("GO_{low}", see Table 1).
238 Samples for microbial community analysis were further divided into three intra-condition

239 sampling time categories, denoting samples either taken at the start (“Condition Start”), middle
240 (“Mid-Condition”), or end (“Condition End”) of the cycles in the relevant electrolyte condition.
241 Sample replicates labeled with “No Time” indicate those collected at only one time within the
242 electrolyte condition cycles.

243 DNA extraction was performed using the DNeasy PowerSoil Pro Kit (Qiagen,
244 Germantown, MD, USA) per the manufacturer’s procedure. DNA samples were sent to the
245 University of Wisconsin—Madison Biotechnology Center (Madison, WI, USA) for 16S rRNA
246 analysis. Sequenced reads were denoised and filtered for quality using the DADA2 program.
247 Resultant amplicon sequence variants (ASVs) were assigned taxonomy according to a Bayesian
248 classifier based on a pre-trained silva database curated to the 16S rRNA amplicon region.
249 Diversity analysis and statistical comparison were performed in R using the “phyloseq” and
250 “DivNet” packages for microbiome analysis (McMurdie and Holmes, 2013; Team, 2022; Willis
251 and Martin, 2022). Alpha diversity of each sample was calculated as the Shannon diversity
252 index, H , via Eq. 4:

$$253 \quad H = -\sum p * \ln p \quad (\text{Eq. 4})$$

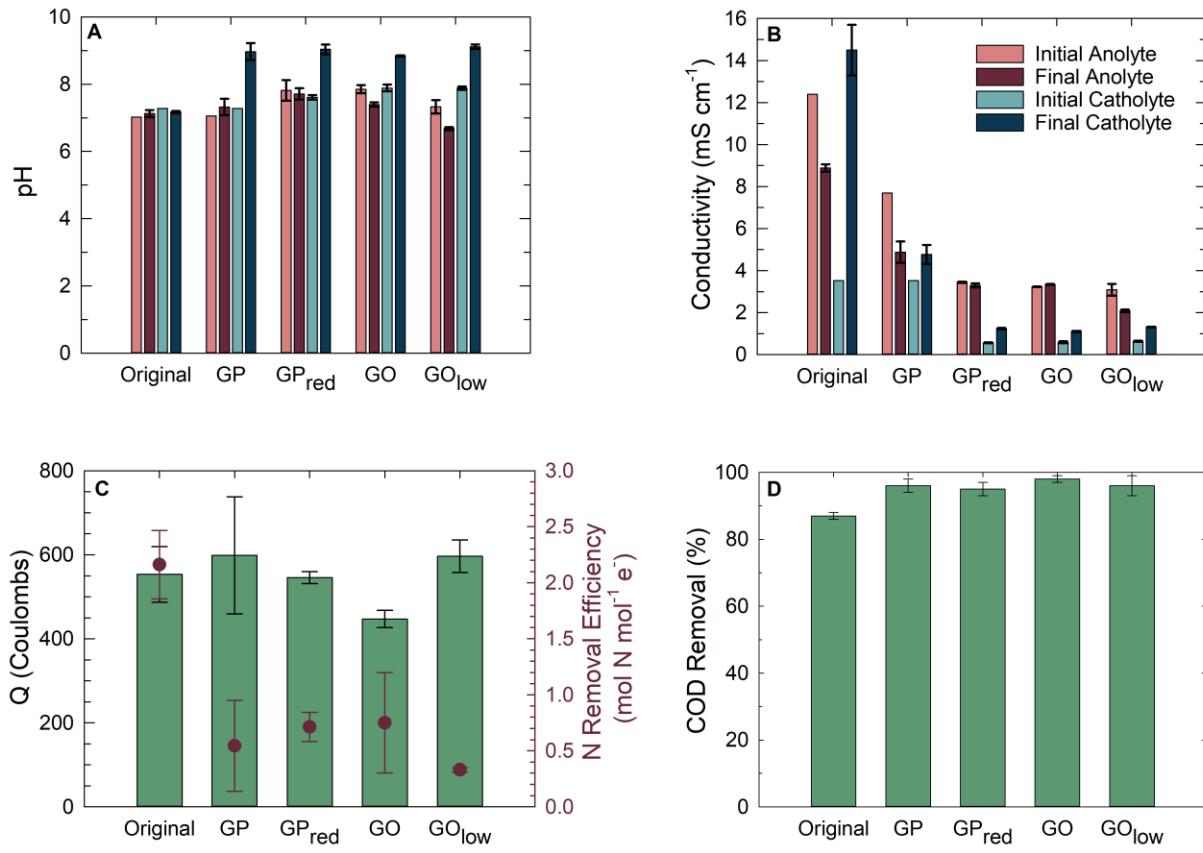
254 where p is the number of appearances of a given operational taxonomic unit (OTU) normalized
255 to the total number of OTU appearances in the sample. Beta diversities were calculated using
256 Bray-Curtis dissimilarity, BC_{ij} , via Eq. 5:

$$257 \quad BC_{ij} = 1 - \frac{2C_{ij}}{s_i + s_j} \quad (\text{Eq. 5})$$

258 where C_{ij} is the lower count of OTU appearances for a given OTU that appears in both samples i
259 and j , and S_i and S_j are the total number of OTU appearances in each sample i and j , respectively
260 (Bray and Curtis, 1957).

261 **3. Results and Discussion**

262 *3.1. MFC Performance*


263 MFC performance was evaluated at five different conditions: the original acetate and
264 NH_4Cl (“Original”) condition to establish the baseline performance, a glycine-phosphate (“GP”)
265 and a reduced glycine-phosphate (“ GP_{red} ”) condition to introduce organic nitrogen to the system
266 and to test the MFC’s ability to self-buffer, a glycine-only (“GO”) condition to test the MFC’s
267 ability to operate on only orgN, and an ultra-low glycine only (“ GO_{low} ”) condition to test the
268 MFC performance in an N-limiting environment (Table 1). The anolyte solution compositions
269 represented a synthetic dairy manure, and sequential removal/replacement of various
270 components of the original electrolyte conditions allowed for slow, selective optimization of the
271 microbial anode. MFC performance was evaluated based on pH, conductivity, and total charge
272 transfer per cycle, as well as COD, TN, and NH_3 removal from the anolyte, and total nitrogen
273 removal efficiency.

274 *3.1.1. Electrochemical Performance*

275 Results from the original electrolyte condition were used as a basis for comparison with
276 results from the orgN electrolyte conditions. In the original electrolyte condition, the average pH
277 values of final electrolyte solutions remained neutral at 7.13 ± 0.10 and 7.17 ± 0.03 for anolyte
278 and catholyte solutions, respectively, which was relatively unchanged from the initial solution
279 pH values of 7.03 and 7.28 for anolyte and catholyte solutions, respectively. This indicates stable

280 acid/base conditions for the entirety of the cycles and condition. For the orgN electrolyte
281 conditions, different patterns in electrolyte pHs were observed (Figure 2a). All of the orgN
282 conditions showed a significant increase in average final catholyte pH; from 7.61 ± 0.07 to 8.97 ± 0.25 for the GP condition, 7.61 ± 0.07 to 9.04 ± 0.15 for the GP_{red} condition, 7.89 ± 0.10 to
283 8.85 ± 0.02 for the GO condition, and 7.88 ± 0.05 to 9.12 ± 0.07 for the GO_{low} condition. The GP
284 and GP_{red} conditions showed no change from initial to final anolyte pH (7.06 to 7.32 ± 0.24 and
285 7.82 ± 0.31 to 7.71 ± 0.17 , respectively). The GO and GO_{low} conditions showed slight decreases
286 from initial to final anolyte pH measurements (7.85 ± 0.12 to 7.40 ± 0.06 and 7.33 ± 0.20 to 6.68 ± 0.04 , respectively). The increase in final catholyte pH under orgN conditions is likely due to
287 reduced NH₄⁺ transfer, as there is less readily available NH₄⁺ in these conditions. Additionally,
288 the decreases in concentrations of catholyte PBS in the GP_{red}, GO, and GO_{low} conditions could
289 result in reduced catholyte buffering capacity and thus the decreases in catholyte pH.

292 Comparatively, the stagnant nature of the anolyte pH across all conditions is
293 advantageous for current production. Many studies have shown that a neutral anodic pH yields
294 higher current generation in MFCs (Gil et al., 2003; Cheng et al., 2007; Ren et al., 2007; He et
295 al., 2008; Ren et al., 2008; Zhang et al., 2012). Additionally, the stability of anodic pH in the
296 absence of an added buffer solution (as in the GP_{red}, GO, and GO_{low} conditions) indicates that
297 MFCs can successfully operate on decreased added resources and are likely to be more cost
298 effective. He et al. (2008) suggest that bacterial metabolism can act as a buffering system within
299 the anode chamber, as microbes continuously produce weak acids to maintain appropriate pH for
300 life that can buffer the increase in pH resulting from proton transport out of the anode chamber
301 via the CEM. The slight decrease observed from initial to final anolyte pH in GO and GO_{low}
302 conditions is likely due to partial degradation of substrates to organic acids (see section 3.3).

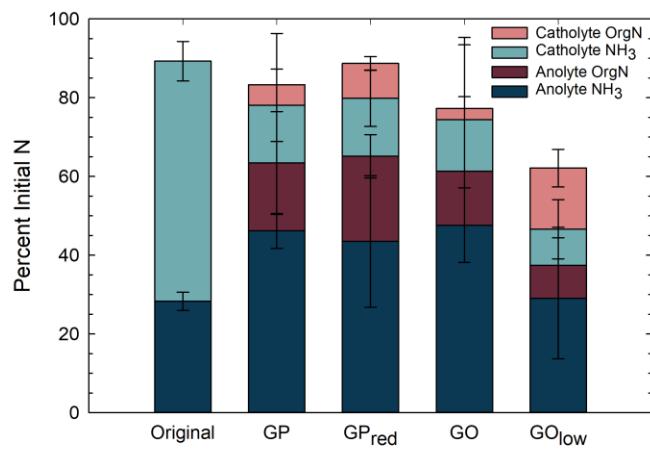
303

304 **Figure 2.** System performance at different feed conditions: the original acetate and NH₄Cl
 305 feeding condition (“Original”), a glycine and phosphate buffer anolyte condition (“GP”), a
 306 glycine and reduced phosphate buffer condition (“GP_{red}”), a glycine only anolyte condition
 307 (“GO”), and an ultra-low glycine only anolyte condition (“GO_{low}”). (A) initial and final pH in
 308 anolyte and catholyte, (B) initial and final conductivity in anolyte and catholyte; (C) total charge
 309 transfer (Q) and total nitrogen removal efficiency, calculated via Eq. 2, and (D) COD removal
 310 efficiency, calculated via Eq. 1.

311

312 The original condition showed a decrease in anolyte conductivity from 12.4 mS cm⁻¹ to
 313 8.88 mS cm⁻¹ and an increase in catholyte conductivity from 3.52 mS cm⁻¹ to 14.5 mS cm⁻¹ from

314 initial to final measurements, which supports the occurrence of desired NH_4^+ transport from
315 anolyte to catholyte (Figure 2b). Similar trends in anolyte and catholyte initial and final
316 conductivities were observed for the GP and GO_{low} conditions (from 7.69 mS cm^{-1} to 4.88 mS
317 cm^{-1} in the anolyte and from 3.52 mS cm^{-1} to 4.77 mS cm^{-1} in the catholyte for the GP condition,
318 and from $3.09 \pm 0.28 \text{ mS cm}^{-1}$ to $2.08 \pm 0.06 \text{ mS cm}^{-1}$ in the anolyte and $0.634 \pm 0.03 \text{ mS cm}^{-1}$ to
319 $1.32 \pm 0.02 \text{ mS cm}^{-1}$ in the catholyte for the GO_{low} condition). The GP_{red} and GO conditions
320 exhibited unchanged anolyte conductivities from initial to final measurements. The catholyte
321 conductivities in the GP_{red} and GO conditions exhibited the increases from initial to final
322 measurements, as seen in other experimental conditions (from $0.57 \pm 0.02 \text{ mS cm}^{-1}$ to $1.24 \pm$
323 0.03 mS cm^{-1} in the GP_{red} condition and from $0.59 \pm 0.04 \text{ mS cm}^{-1}$ to $1.11 \pm 0.03 \text{ mS cm}^{-1}$ in the
324 GO condition). The decreases in magnitude of the electrolyte conductivities correspond with
325 decreasing concentrations of available ions, which changed with varied electrolyte compositions
326 outlined in Table 1. In later experimental conditions (GP_{red} , GO, and GO_{low}), the decreased
327 conductivity and corresponding low concentration of ions in the catholyte solutions likely
328 increased the resistance of the solution, introducing important charge transfer constraints.
329 However, there were minimal sacrifices observed in average total charge transfer in these
330 conditions (Figure 2c), and the increases in catholyte conductivity observed from initial to final
331 measurements (Figure 2b) indicate that flow of ions from anode to cathode chambers was not
332 greatly inhibited by the increased resistance of the catholyte.


333 The average total charge transfer, Q , for almost all electrolyte conditions was between
334 500 and 600 Coulombs, except for the GO condition, where Q dropped to around 450 Coulombs
335 (Figure 2c). A baseline average maximum current density of $1.44 \pm 0.29 \text{ A m}^{-2}$ was generated in
336 the original electrolyte condition, and the average maximum current densities recorded for the

337 orgN cycles were all within the one standard deviation of the baseline (Figure S1). The highest
338 recorded average current density was $1.69 \pm 0.31 \text{ A m}^{-2}$ in the GO_{low} condition, and the lowest
339 was $1.37 \pm 0.01 \text{ A m}^{-2}$ in the GP_{red} condition. The Q values and average maximum current
340 densities generated in this study are equal to or greater than those produced in previous MFC
341 research, where the sole focus was electricity production from organic removal in wastes (Pant et
342 al., 2010; Syed et al., 2022). Additionally, our MFC achieved COD removal efficiencies greater
343 than those reported in studies where electricity produciton and organic removal were the only
344 focus and nitrogen removal/recovery was not investigated (see section 3.1.2) (Liu et al., 2004;
345 Rasouli Sadabad and Badalians Gholikandi, 2018; Syed et al., 2022). These findings support our
346 conclusion that nitrogen recovery is an advantageous application of MFC technology (Pant et al.,
347 2010; Kuntke et al., 2012; Kelly and He, 2014; Rodríguez Arredondo et al., 2015; Gude, 2016;
348 Gul and Ahmad, 2019).

349 *3.1.2. Nutrient Removal Performance*

350 Under all electrolyte conditions, the MFC achieved excellent organics removal (measured
351 as COD) efficiencies, at 87% removal in the original condition and above 95% removal for all
352 orgN electrolyte conditions, as shown in Figure 2d. COD removal in this study was higher than
353 what has been previously reported for similar systems (Liu et al., 2004; Rozendal et al., 2009; De
354 Paepe et al., 2020; Syed et al., 2022). This may suggest that more complex substrates and
355 cultivation for N mineralizing organisms provide compounding advantages, however, more
356 research is needed to definitively substantiate this statement. Total nitrogen removal efficiency,
357 R_N , decreased from $2.16 \pm 0.31 \text{ mol N mol}^{-1}$ electrons in the original condition to between 0.3
358 and 0.8 mol mol^{-1} in the orgN electrolyte conditions, with the GO_{low} condition having the lowest
359 R_N ($0.33 \pm 0.02 \text{ mol mol}^{-1}$) and the GO condition having the highest R_N ($0.75 \pm 0.45 \text{ mol mol}^{-1}$)

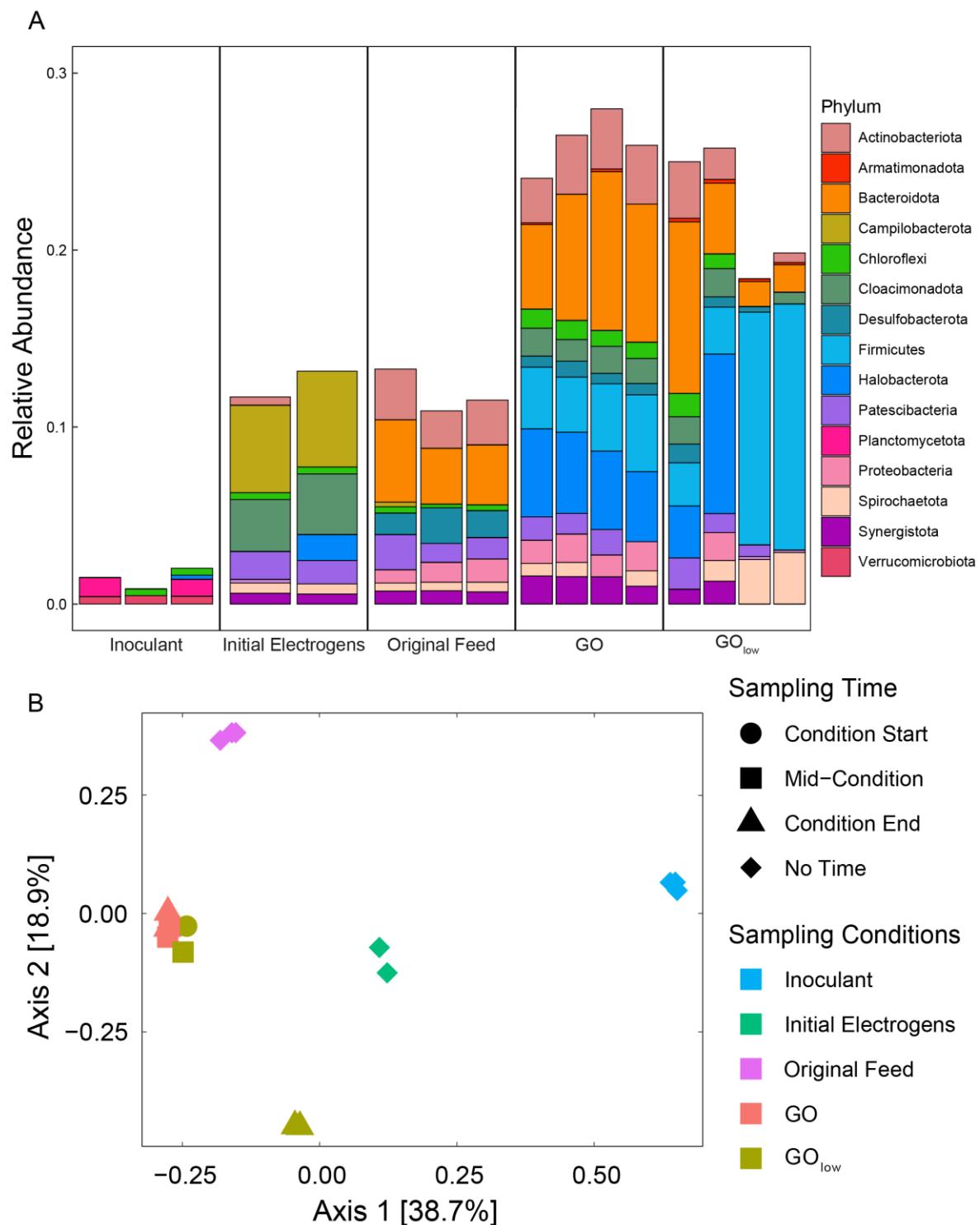
360 (Figure 2c). This decrease is likely due to the change in initial available NH_4^+ concentration from
361 the Original to the orgN conditions. For all the orgN conditions, the majority of substrate N was
362 orgN, with readily available NH_4^+ omitted from the substrate entirely in the GO and GO_{low}
363 conditions. Regardless of availability of NH_4^+ in the feed substrate, all final anolyte
364 measurements in orgN conditions indicated the majority of nitrogen was in the form of NH_4^+
365 (Figure 3). This finding, coupled with measured $\text{NH}_3\text{-N}$ in the final catholyte solutions for all
366 conditions, indicates the occurrence of N mineralization in the anode chamber and subsequent
367 NH_4^+ transfer to the cathode chamber via the CEM. It is inferred that microbes capable of N
368 mineralization were responsible for these reactions, as discussed in section 3.2.1. In the orgN
369 conditions, the microbe-mediated process of N mineralization was a limiting process, meaning it
370 had to occur before NH_4^+ was available for transport across the CEM. This added step resulted in
371 decreased R_N compared to the original condition, in which there was ample NH_4^+ available for
372 transport via the feed anolyte solution. This phenomenon is further discussed in section 3.3.

373
374 **Figure 3.** Nitrogen partitioning in final electrolyte solutions as percentages of initial anolyte total
375 nitrogen at different feed conditions. NH_3 is the sum of $\text{NH}_{3\text{(aq)}}$ and NH_4^+ . Organic nitrogen

376 (OrgN) fractions are omitted for the Original feed condition as all N-addition was as NH₄Cl.
377 Categories along the *x*-axis correspond to feed conditions as outlined in Table 1: the original
378 acetate and NH₄Cl feeding condition (“Original”), a glycine and phosphate buffer anolyte
379 condition (“GP”), a glycine and reduced phosphate buffer condition (“GP_{red}”), a glycine only
380 anolyte condition (“GO”), and an ultra-low glycine only anolyte condition (“GO_{low}”).

381

382 In the Original electrolyte condition, a baseline anolyte nitrogen removal efficiency of
383 approximately 72% was established. Under orgN electrolyte conditions, anolyte N removal
384 dropped to around 60% for the GO_{low} condition and to around 40% for the GP, GP_{red}, and GO
385 conditions (Figure 3, represented as the difference between 100%, the maximum bar height
386 possible, and the sum of the remaining anolyte N). The majority of N remaining in the anolyte in
387 orgN conditions was NH₃-N, with a maximum of 22 ± 19% of initial N remaining in the anolyte
388 as orgN in the GP_{red} condition. While the majority of nitrogen transferred to the catholyte was
389 NH₃-N, some orgN was observed to have transferred into the catholyte (5.1 ± 4.2% in the GP
390 condition, 8.5 ± 8.8% in the GP_{red} condition, 2.9 ± 2.6% in the GO condition, and 15 ± 3.5% in
391 the GO_{low} condition). In the GO_{low} condition, this orgN made up the majority of remaining N in
392 the catholyte (Figure 3). Glycine was ruled out as the source of this catholyte orgN through
393 diffusion experiments (Table S2), so it is inferred that the catholyte orgN consists of small
394 degradation intermediates. Future work investigating the speciation of anolyte and catholyte
395 orgN is necessary to fully understand the degradation pathways in the MFC.


396 *3.2. Microbial Community Analysis*

397 Microbial communities collected at five representative cell conditions were analyzed via
398 16S rRNA sequencing to evaluate changes in anode microbial community structure under
399 varying electrolyte conditions. Sampling conditions included the “Inoculant” anaerobic digestate,
400 the “Initial Electrogens” present directly after resistance decrease to 10 Ohms, and the
401 “Original”, glycine only (“GO”), and ultra-low glycine only (“GO_{low}”) electrolyte conditions
402 (see Table 1 for descriptions of each condition). Samples from both the GO and GO_{low} conditions
403 were collected at multiple time points throughout the sampling condition, denoted as either
404 “Condition Start”, “Mid-condition”, or “Condition End”. Community composition and structure,
405 as well as alpha and beta diversities, were evaluated.

406 *3.2.1. Community Composition*

407 The top four most abundant phyla across all samples were Bacteroidota (4.7%),
408 Firmicutes (2.2%), Proteobacteria (2.0%), and Halobacterota (1.7%) (Figure 4a). The phyla
409 Bacteriodota, Firmicutes, and Proteobacteria are of the kingdom Bacteria, and all contain
410 organisms capable of electricity generation (Sun et al., 2014; Chen et al., 2016; Yuan et al.,
411 2017; Jin et al., 2018; Liu et al., 2018; Guang et al., 2020; Shi et al., 2021; Li et al., 2022). The
412 phylum Halobacterota is in the kingdom Archaea, and is the phylum of many known
413 methanogenic and methanotrophic microorganisms (Sun et al., 2014). Operation at the Original
414 feed condition, which constituted frequent changing of the electrolyte solutions to replenish
415 depleted COD and nutrient concentrations (as opposed to the infrequent solution changes during
416 the resistance decrease that helped characterize the Initial Electrogens sampling condition),
417 enriched the number of Bacteroidota and Actinobacterota present in the community. Of the
418 organisms of phylum Bacteriodota present, the top three most abundant operational taxonomic
419 units (OTUs) were identified as belonging to the genus *Lentimicrobium*. Organisms of this genus

420 are known to have electron-dense extracellular polymeric substances (EPS) on their cell surfaces,
421 making them good facilitators of extracellular electron transport (EET) in the anode chamber
422 (Liu et al., 2018). Other prominent Bacteroidota genera identified were *Petrimonas* (protein-
423 degrading, fermentative organisms having known synergistic interactions with exoelectrogenic
424 bacteria), *PHOS-HE36* (sulfur oxidizing bacteria), and *Blvii28* (fermentative organisms with
425 known synergistic interactions with exoelectrogenic bacteria) (Sun et al., 2014; Chen et al.,
426 2016; Shi et al., 2021). The top genus among the organisms of Actinobacteriota present was
427 identified as *Rhodococcus*, a genus of organism responsible for acetate degradation and
428 possessing exoelectrogenic capabilities (Cheng et al., 2018).

429

430 **Figure 4.** Microbial community analysis for anodic biomass under different feed conditions and
 431 at different intra-condition sampling times: (A) relative abundances of the top 15 most abundant
 432 phyla across all electrolyte conditions for which biomass samples were collected, and (B)

433 principle coordinate analysis (PCoA) comparing community diversities for different electrolyte
434 conditions and intra-condition sampling times. Sampling Conditions are as follows: “Inoculant”
435 indicates the community in the mesophilic anaerobic sludge used to inoculate the MFC, “Initial
436 Electrogens” indicates the community present directly following resistance decrease to 10 Ω ,
437 “Original Feed” indicates the community present after several experimental cycles were
438 completed at the original acetate and NH₄Cl feed condition (see Table 1), “GO” indicates the
439 community present during and after several experimental cycles at the glycine only (GO) feed
440 conditions (see Table 1), and “GO_{low}” indicates the community present during and after several
441 experimental cycles at the ultra-low glycine only (GO_{low}) feed condition (see Table 1). Sampling
442 Time denotes the relative time within the specific Sampling Condition of the community sample
443 collection; prior to the start of the Sampling Condition (“Condition Start”), during the course of
444 the Sampling Condition (“Mid-condition”), or directly after the completion of the Sampling
445 Condition (“Condition End”). Samples indicated as having “No Time” denote those that were
446 collected in replicate at only one time. PCoA is based on Bray-Curtis dissimilarity. Community
447 composition data was obtained via 16S rRNA sequencing. Graphic prepared using the “ggplot2”
448 package in R (Wickham, 2016; Team, 2022).

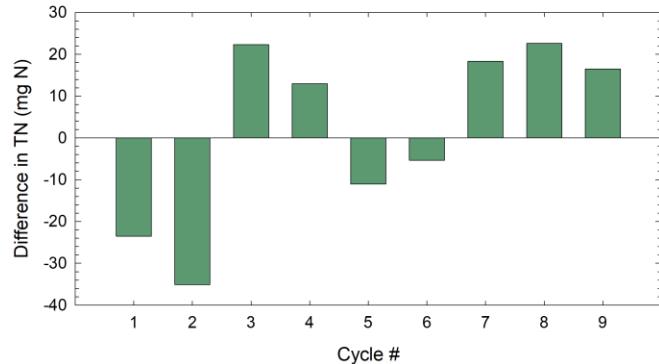
449 Under orgN conditions (e.g. GO and GO_{low}), organisms of phyla Bacteroidota and
450 Actinobacteriota continue to persist, but decrease in number towards the end of the GO_{low}
451 condition (Figure 4a). Instead, the phylum Firmicutes emerges as an increasingly dominant
452 group. Of the Firmicutes present, organisms belonging to the genera *Bacillus* are the most
453 abundant. *Bacillus* organisms are known to facilitate N mineralization, which converts orgN to
454 inorganic nitrogen, usually NH₄⁺ (Mandic-Mulec et al., 2016). Furthermore, members of the
455 phylum Firmicutes have been shown to exhibit exoelectrogenic capabilities (Wrighton et al.,

456 2008; Zhou et al., 2019). It is possible that the decrease in abundance of Bacteriodota and
457 Actinobactriota phyla and corresponding increase in relative abundance of Firmicutes phyla
458 indicates a selection for organisms capable of both exoelectrogenic and nitrogen mineralizing
459 abilities as the conditions increasingly select for both capabilities.

460 Interestingly, the presence of the phyla Campilobacterota, a known sulfate oxidizer
461 which can use nitrate as an electron acceptor, is unique to the initial electrogenic community.
462 This indicates that, under the imposed selection pressures for electrogenic N mineralizers, the
463 need for sulfate oxidation is diminished (Begmatov et al., 2021). Furthermore, the phylum
464 Cloacimonadota, while present under both GO and GO_{low} conditions, decreases in relative
465 abundance as selection pressures are increased from the initial electrogenic community to that
466 present under the GO_{low} condition (Figure 4a). Cloacimonadota contains members known to
467 perform propionate oxidation, and decreased numbers of Cloacimonadota in anaerobic digestion
468 processes are suggested to indicate instability due to increasing NH₃-N concentrations (Bi et al.,
469 2020; Christou et al., 2021). As NH₃-N production is a desired outcome of this research, the
470 decrease in Cloacimonadota organisms is a promising finding.

471 *3.2.2. Diversity Metrics*

472 Alpha diversity of each sample was calculated using Shannon diversity (Eq. 3) for the
473 richness of a microbial community; for the inoculant, initial electrogenic, and original feed
474 communities, Shannon diversity was equal to 2.11, dropped to 2.08 for the community present
475 during the GO condition, and then varied from 2.11 at the start of the GO_{low} condition to 2.02 at
476 the end of the experimental cycles in this condition. Statistical analyses revealed that the initial
477 electrogenic community was the only community where the electrolyte condition was not a
478 statistically significant predictor of Shannon diversity (p-value = 0.346). Interestingly, when

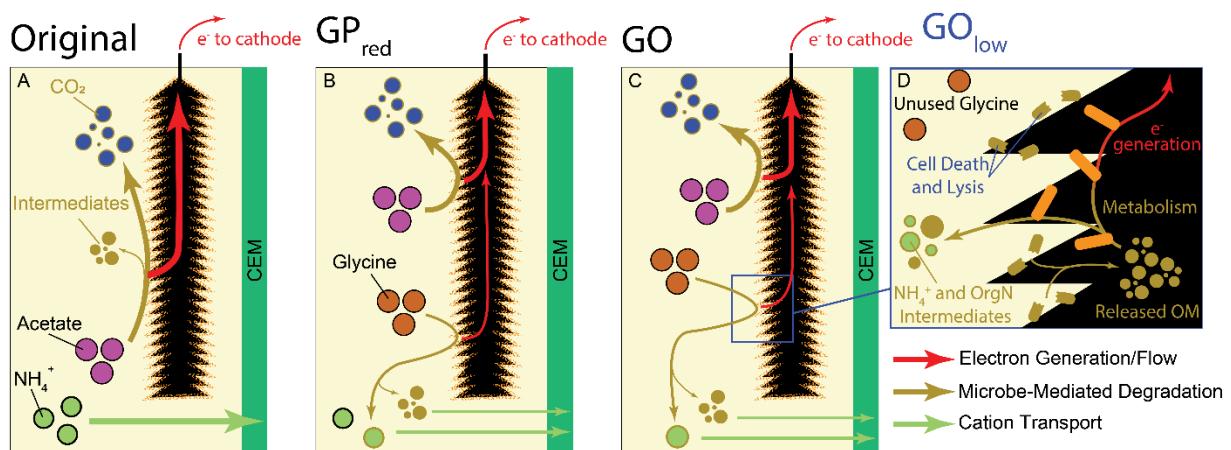

479 tested against only the GO condition samples, the samples from the end of the GO_{low} condition
480 were not significant predictors of Shannon diversity (p-value = 0.593), despite the large
481 difference in calculated Shannon diversities (2.08 for GO samples versus 2.02 for GO_{low} samples
482 at the end of the condition). The generally decreasing trend in the Shannon diversity of samples
483 as the electrolyte conditions progress from unchanged inoculant to highly cultivated orgN
484 conditions (i.e. GO and GO_{low}) suggests that the changes in electrolyte compositions permitted
485 cultivation of an increasingly specific microbial community. The comparatively large Shannon
486 diversity of the initial GO_{low} community warrants further research and evaluation.

487 Figure 4b presents a principle coordinate analysis (PCoA) based on Bray-Curtis
488 dissimilarity metrics comparing the community diversities for different electrolyte conditions
489 (color) and intra-condition sampling times (marker shape), with both axis representing > 57% of
490 total dissimilarity. The majority of the sampling conditions tested present as highly clustered and
491 distinctly different, indicating distinct communities in each sampling condition. For the GO and
492 GO_{low} conditions, multiple samples were collected at various time points within the sampling
493 condition. In the GO sampling condition, the microbial community showed no change in respect
494 to intra-condition sampling time, indicated by the clustering of the GO sample points in Figure
495 4b. For the GO_{low} condition, the microbial community differed from the beginning and middle to
496 the end of the sampling condition, as indicated by the split clustering for this condition at
497 different time points in Figure 4b. This split clustering is further evidence of community
498 adaptation to varying conditions, as is discussed in section 3.3.

499 *3.3. Microbial degradation pathways under differing electrolyte conditions*

500 The electrolyte condition had significant effects on the MFC's nutrient removal
501 efficiency, leading to several key inferences regarding the microbial degradation pathways for

502 organic matter in different conditions. Of specific interest are the total and NH₃-N concentrations
503 measured in initial and final electrolyte solutions while the MFC was operated in the GO_{low}
504 condition. Figure 5 shows the difference in TN removed from the anolyte and accumulated in the
505 catholyte for nine separate experimental cycles in the GO_{low} condition. Cycles 1 and 2 have final
506 anolyte TN concentrations higher than that of the initial anolyte solution (Figure S2), implying
507 an increase of TN within the system. Furthermore, the final NH₃-N concentration is greater than
508 that of the initial NH₃-N concentration in only 4 of the 9 cycles at this condition (Figure S2), in
509 contradiction to the hypothesis that, with no other form of N provided, orgN (in the form of
510 glycine) will be degraded to NH₄⁺, thus increasing NH₃-N concentration from initial to final
511 measurements. Additionally, cycles 1, 2, 5, and 6 exhibited excessive accumulation of catholyte
512 TN throughout the cycle, meaning that the amount of TN accumulated in the catholyte was
513 greater than that which was removed from the anolyte (Figure 5). Based on how samples were
514 collected and analyzed, which included a filtration step prior to measuring the nutrient
515 concentrations for all solutions, it is inferred that this excess N, which appears in the catholyte as
516 both NH₃-N and orgN, is N that was previously contained within microbial cells. We infer that
517 this release of N occurred due to a combination of system instability and ultra-low concentrations
518 of available N in the anolyte. The early cycles in the GO_{low} condition (cycle 1-6) saw
519 fluctuations in TN and NH₃-N removal and accumulation as the system worked to re-establish
520 equilibrium after the changed condition. This instability was compounded by the low
521 concentration of available orgN which characterized the GO_{low} condition, as it led to cell death
522 and lysis, releasing more organic matter and orgN into the system and pushing it further from an
523 equilibrium state (Figure 6). The proposed microbial metabolism and its impacts on MFC
524 operation are discussed further below.


525

526 **Figure 5.** Difference between TN removed from the anolyte and that accumulated in the
 527 catholyte for experimental cycles in the ultra-low concentration glycine only (GO_{low}) condition.
 528 Negative values indicate higher accumulated catholyte N than removed anolyte N, based on
 529 measurements of filtered samples.

530

531 Figure 6 depicts the suspected pathways for microbial degradation of orgN and acetate in
 532 representative electrolyte feed conditions. Under the original feed condition (Figure 6a), acetate
 533 degradation to carbon dioxide (CO₂) and a small quantity of partially-degraded intermediates is
 534 the main source of electron generation, while NH₄⁺ in the anolyte feed is transferred to the
 535 cathode chamber to maintain the charge neutrality. Under the GP_{red} condition (Figure 6b), acetate
 536 degradation is still the main source of electron production for current generation, but glycine
 537 degradation to NH₄⁺ and orgN intermediates also contributes a small portion of current. We note
 538 that NH₄⁺ produced from orgN degradation also contributes to the NH₄⁺ flux from anolyte to
 539 catholyte. The GO condition (Figure 6c) is the same, except for the omission of readily available
 540 NH₄⁺ in the anolyte feed solution, making all available N for electro-driven transport a product
 541 of microbe-mediated degradation. Finally, in the GO_{low} condition (Figure 6d), competition for
 542 scarce orgN resources leads to cell death on the anode brush. This microbial necromass

543 represents an additional source of organic matter, specifically orgN, for the active microbes, and
 544 is preferentially degraded as an N source over the complex and scarce glycine orgN provided in
 545 the feed. The NH_4^+ and orgN intermediates produced from the degradation of microbial
 546 necromass are measured in the final solution characteristics, but did not appear in the initial
 547 solution measurements due to a filtration step. Thus, the preferential degradation of microbial
 548 necromass shows as an overall increase in nitrogen within the MFC at ultra-low orgN conditions
 549 (Figure 5).

550

551 **Figure 6.** Schematic representation of anodic microbial processes occurring under selected
 552 representative feed conditions: (A) the Original acetate and NH_4Cl feed condition (see Table 1),
 553 where current generation was solely the result of acetate degradation and NH_4^+ transport was
 554 physically/chemically mediated; (B) the glycine and reduced phosphate buffer (GP_{red}) condition
 555 (see Table 1) where orgN as glycine was introduced and it's degradation contributed to both the
 556 current generation and the mediation of NH_4^+ transport; (C & D) the glycine only (GO) and
 557 ultra-low glycine only (GO_{low}) conditions (see Table 1), respectively, where orgN was the only
 558 N-source and it's degradation contributed to current generation and was the main mediator of

559 NH_4^+ transport, or, in the GO_{low} condition, was unused in preference of easily-degradable
560 microbial necromass and released organic matter (OM). Chemical components added as part of
561 the anolyte feed solution at the given condition are indicated in black outlines and chemical
562 components produced through microbial metabolism are indicated in brown outlines.

563

564 **4. Conclusions**

565 Microbial fuel cells are considered a promising technology for NH_3 recovery from dairy
566 manure as they can convert the orgN fraction into NH_4^+ and also recover this NH_4^+ as NH_3
567 fertilizer. This work specifically investigated the impacts of various anolyte feed compositions
568 on the MFC's ability to recover NH_3 from orgN. We demonstrate that MFCs operated for NH_3
569 recovery can achieve similar performance to those operated for electricity generation, with the
570 added benefit of recovering NH_3 from the orgN fraction of a synthetic dairy manure. This work
571 also provides insight to the microbial degradation pathways governing orgN to NH_4^+ conversion
572 in MFCs fed with synthetic dairy manure. The findings in this research can be used to inform
573 future work regarding optimizing MFC conditions for orgN to NH_4^+ conversion in the anode
574 chamber and NH_4^+ transport from anode to cathode chambers. Namely, it is important to balance
575 the feed concentration of orgN, as it is shown that low orgN concentration can lead to
576 preferential degradation of microbial biomass for N instead of from converting orgN in manure
577 to NH_4^+ .

578 **Declaration of Interests**

579 The authors declare that they have no known competing financial interests or personal
580 relationships that could have appeared to influence the work reported in this paper.

581 **Acknowledgements**

582 The authors would like to thank the support from National Science Foundation CBET 2219089.
583 In addition, the authors would like to thank the startup fund from the Department of Civil and
584 Environmental Engineering, College of Engineering, the Office of the Vice-Chancellor for
585 Research and Graduate Education (OVCRGE) at the University of Wisconsin–Madison, and the
586 Wisconsin Alumni Research Foundation (WARF) for the support of this study. The authors
587 thank the Next Generation Sequencing Core Facility of the Biotechnology Center at UW–
588 Madison for performing library preparation and DNA sequencing, and Sailendharan Sudakaran
589 of the Microbiome Hub and **UW Biotechnology Center Bioinformatics Resource Center** for
590 assistance with sequencing data analysis. The authors gratefully acknowledge the support from
591 Jackie Cooper of the Environmental Engineering Core Facility at the University of Wisconsin–
592 Madison and use of facilities and equipment. We also thank Abigail Monahan for her
593 contributions to the microbial community analysis portion of this work supported by
594 Water@UW-Madison/Fresh Water Collaborative of Wisconsin Undergraduate Research
595 Experience. Finally, the authors thank Christina Segar for her assistance in creation of graphics
596 and icons used in some of the figures presented in this work.

597

598 Angenent, L.T., Sung, S., 2001. Development of anaerobic migrating blanket reactor (AMBR), a
599 novel anaerobic treatment system. *Water Res.* 35, 1739-1747.

600 Begmatov, S., Savvichev, A.S., Kadnikov, V.V., Beletsky, A.V., Rusanov, I.I., Klyuvitkin, A.A.,
601 Novichkova, E.A., Mardanov, A.V., Pimenov, N.V., Ravin, N.V., 2021. Microbial
602 Communities Involved in Methane, Sulfur, and Nitrogen Cycling in the Sediments of the
603 Barents Sea. *Microorganisms* 9, 2362.

604 Bi, S., Westerholm, M., Qiao, W., Xiong, L., Mahdy, A., Yin, D., Song, Y., Dong, R., 2020.
605 Metabolic performance of anaerobic digestion of chicken manure under wet, high solid, and
606 dry conditions. *Bioresour. Technol.* 296, 122342.

607 Bray, J.R., Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern
608 Wisconsin. *Ecol. Monogr.* 27, 325-349.

609 Chen, Y., Chen, M., Shen, N., Zeng, R.J., 2016. H₂ production by the thermoelectric
610 microconverter coupled with microbial electrolysis cell. *Int. J. Hydrog. Energy* 41, 22760-
611 22768.

612 Cheng, P., Shan, R., Yuan, H.-R., Deng, L.-f., Chen, Y., 2018. Enhanced *Rhodococcus*
613 *pyridinivorans* HR-1 anode performance by adding trehalose lipid in microbial fuel cell.
614 *Bioresour. Technol.* 267, 774-777.

615 Cheng, S., Dempsey, B.A., Logan, B.E., 2007. Electricity Generation from Synthetic Acid-Mine
616 Drainage (AMD) Water using Fuel Cell Technologies. *Environ. Sci. Technol.* 41, 8149-8153.

617 Christou, M.L., Vasileiadis, S., Kalamaras, S.D., Karpouzas, D.G., Angelidaki, I., Kotsopoulos,
618 T.A., 2021. Ammonia-induced inhibition of manure-based continuous biomethanation
619 process under different organic loading rates and associated microbial community dynamics.
620 *Bioresour. Technol.* 320, 124323.

621 Chu, N., Liang, Q., Jiang, Y., Zeng, R.J., 2020. Microbial electrochemical platform for the
622 production of renewable fuels and chemicals. *Biosensors Bioelectron.* 150, 111922.

623 Cord-Ruwisch, R., Law, Y., Cheng, K.Y., 2011. Ammonium as a sustainable proton shuttle in
624 bioelectrochemical systems. *Bioresour. Technol.* 102, 9691-9696.

625 De Paepe, J., De Paepe, K., Gòdia, F., Rabaey, K., Vlaeminck, S.E., Clauwaert, P., 2020. Bio-
626 electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery
627 from urine through membrane aerated nitrification. *Water Res.* 185, 116223.

628 EPA, U., 2008. The Clean Water Act. in: EPA, U. (Ed.). 33.

629 EPA, U., 2022. NPDES CAFO Permitting Status Report: Endyear 2020. US EPA.

630 Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., Park, H.S., Kim, H.J., 2003.
631 Operational parameters affecting the performannce of a mediator-less microbial fuel cell.
632 *Biosensors Bioelectron.* 18, 327-334.

633 Guang, L., Koomson, D.A., Jingyu, H., Ewusi-Mensah, D., Miwornunyuie, N., 2020.
634 Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology.
635 *Int. J. Env. Res. Public Health* 17, 1121.

636 Gude, V.G., 2016. Wastewater treatment in microbial fuel cells – an overview. *J. Clean. Prod.*
637 122, 287-307.

638 Gul, M.M., Ahmad, K.S., 2019. Bioelectrochemical systems: Sustainable bio-energy
639 powerhouses. *Biosensors Bioelectron.* 142, 111576.

640 Hansen, K.H., Angelidaki, I., Ahring, B.K., 1998. ANAEROBIC DIGESTION OF SWINE
641 MANURE: INHIBITION BY AMMONIA. *Water Res.* 32, 5-12.

642 He, Z., Huang, Y., Manohar, A.K., Mansfeld, F., 2008. Effect of electrolyte pH on the rate of the
643 anodic and cathodic reactions in an air-cathode microbial fuel cell. *Bioelectrochemistry* 74,
644 78-82.

645 Jin, X., Guo, F., Liu, Z., Liu, Y., Liu, H., 2018. Enhancing the Electricity Generation and Nitrate
646 Removal of Microbial Fuel Cells With a Novel Denitrifying Exoelectrogenic Strain EB-1.
647 *Front. Microbiol.* 9.

648 Kelly, P.T., He, Z., 2014. Nutrients removal and recovery in bioelectrochemical systems: A
649 review. *Bioresour. Technol.* 153, 351-360.

650 Kim, K.-Y., Moreno-Jimenez, D.A., Efstathiadis, H., 2021. Electrochemical Ammonia Recovery
651 from Anaerobic Centrate Using a Nickel-Functionalized Activated Carbon Membrane
652 Electrode. *Environ. Sci. Technol.* 55, 7674-7680.

653 Kuntke, P., Śmiech, K.M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T.H.J.A., Hamelers,
654 H.V.M., Buisman, C.J.N., 2012. Ammonium recovery and energy production from urine by a
655 microbial fuel cell. *Water Res.* 46, 2627-2636.

656 Li, J., Yao, C., Song, B., Zhang, Z., Brock, A.L., Trapp, S., Zhang, J., 2022. Regulating Sulfate-
657 Reducing and Sulfur-Oxidizing Bacteria via S-doped NiFe₂O₄ nanosheets as Microbial Fuel
658 Cell anode for simultaneous enhancement of sulfur and energy recovery.

659 Liu, D., Wang, R., Chang, W., Zhang, L., Peng, B., Li, H., Liu, S., Yan, M., Guo, C., 2018.
660 Ti₃C₂MXene as an excellent anode material for high-performance microbial fuel cells. *J.
661 Mater. Chem. A* 6, 20887-20895.

662 Liu, H., Ramnarayanan, R., Logan, B.E., 2004. Production of Electricity during Wastewater
663 Treatment Using a Single Chamber Microbial Fuel Cell. *Environ. Sci. Technol.* 38, 2281-
664 2285.

665 Liu, Y., Qin, M., Luo, S., He, Z., Qiao, R., 2016. Understanding Ammonium Transport in
666 Bioelectrochemical Systems towards its Recovery. *Sci. Rep.* 6, 22547.

667 Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P.,
668 Verstraete, W., Rabaey, K., 2006. Microbial Fuel Cells: Methodology and Technology†.
669 *Environ. Sci. Technol.* 40, 5181-5192.

670 Long, C.M., Muenich, R.L., Kalcic, M.M., Scavia, D., 2018. Use of manure nutrients from
671 concentrated animal feeding operations. *J. Great Lakes Res.* 44, 245-252.

672 Lu, L., Ren, Z.J., 2016. Microbial electrolysis cells for waste biorefinery: A state of the art
673 review. *Bioresour. Technol.* 215, 254-264.

674 Mandic-Mulec, I., Stefanic, P., van Elsas, J.D., 2016. Ecology of Bacillaceae. The Bacterial
675 Spore, pp. 59-85.

676 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive
677 Analysis and Graphics of Microbiome Census Data. *PLoS ONE* 8, e61217.

678 Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K., 2010. A review of the substrates used
679 in microbial fuel cells (MFCs) for sustainable energy production. *Bioresour. Technol.* 101,
680 1533-1543.

681 Pardo, G., Moral, R., Aguilera, E., Del Prado, A., 2015. Gaseous emissions from management of
682 solid waste: a systematic review. *Global Change Biol.* 21, 1313-1327.

683 Qin, M., He, Z., 2014. Self-Supplied Ammonium Bicarbonate Draw Solute for Achieving
684 Wastewater Treatment and Recovery in a Microbial Electrolysis Cell-Forward Osmosis-
685 Coupled System. *Environ. Sci. Technol. Lett.* 1, 437-441.

686 Qin, M., Liu, Y., Luo, S., Qiao, R., He, Z., 2017. Integrated experimental and modeling
687 evaluation of energy consumption for ammonia recovery in bioelectrochemical systems.
688 *Chem. Eng. J.* 327, 924-931.

689 Qin, M., Molitor, H., Brazil, B., Novak, J.T., He, Z., 2016. Recovery of nitrogen and water from
690 landfill leachate by a microbial electrolysis cell-forward osmosis system. *Bioresour.*
691 *Technol.* 200, 485-492.

692 Rasouli Sadabad, H., Badalians Gholikandi, G., 2018. Simultaneous effective sludge
693 stabilization and direct electricity generation by merging microbial fuel cell (MFC) and
694 Fered-Fenton reactor: An experimental study. *Biomass Bioenergy* 119, 75-89.

695 Ren, Z., Steinberg, L.M., Regan, J.M., 2008. Electricity production and microbial biofilm
696 characterization in cellulose-fed microbial fuel cells. *Water Sci. Technol.* 58, 617-622.

697 Ren, Z., Ward, T.E., Regan, J.M., 2007. Electricity Production from Cellulose in a Microbial
698 Fuel Cell Using a Defined Binary Culture. *Environ. Sci. Technol.* 41, 4781-4786.

699 Rodríguez Arredondo, M., Kuntke, P., Jeremiassie, A.W., Sleutels, T.H.J.A., Buisman, C.J.N.,
700 Ter Heijne, A., 2015. Bioelectrochemical systems for nitrogen removal and recovery from
701 wastewater. *Environ. Sci. Water Res. Technol.* 1, 22-33.

702 Rodríguez Arredondo, M., Kuntke, P., Ter Heijne, A., Hamelers, H.V.M., Buisman, C.J.N.,
703 2017. Load ratio determines the ammonia recovery and energy input of an electrochemical
704 system. *Water Res.* 111, 330-337.

705 Rozendal, R.A., Leone, E., Keller, J., Rabaey, K., 2009. Efficient hydrogen peroxide generation
706 from organic matter in a bioelectrochemical system. *Electrochim commun* 11, 1752-1755.

707 Shi, C., Xu, Y., Liu, M., Chen, X., Fan, M., Liu, J., Chen, Y., 2021. Enhanced bisphenol S
708 anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. *J.*
709 *Hazard. Mater.* 403, 124053.

710 Smith, C., Hill, A.K., Torrente-Murciano, L., 2020. Current and future role of Haber–Bosch
711 ammonia in a carbon-free energy landscape. *Energy Environ. Sci.* 13, 331-344.

712 Sun, R., Xing, D., Jia, J., Liu, Q., Zhou, A., Bai, S., Ren, N., 2014. Optimization of high-solid
713 waste activated sludge concentration for hydrogen production in microbial electrolysis cells
714 and microbial community diversity analysis. *Int. J. Hydrol. Energy* 39, 19912-19920.

715 Syed, Z., Sonu, K., Sogani, M., 2022. Cattle manure management using microbial fuel cells for
716 green energy generation. *Biofuel Bioprod Biorefin* 16, 460-470.

717 Team, R.C., 2022. R: A language and environment for statistical computing. R Foundation for
718 Statistical Computing, Vienna, Austria.

719 Wang, H., Ren, Z.J., 2013. A comprehensive review of microbial electrochemical systems as a
720 platform technology. *Biotechnol. Adv.* 31, 1796-1807.

721 Wang, M., Khan, M.A., Mohsin, I., Wicks, J., Ip, A.H., Sumon, K.Z., Dinh, C.-T., Sargent, E.H.,
722 Gates, I.D., Kibria, M.G., 2021. Can sustainable ammonia synthesis pathways compete with
723 fossil-fuel based Haber–Bosch processes? *Energy Environ. Sci.* 14, 2535-2548.

724 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York,
725 New York.

726 Willis, A., Martin, B.D., 2022. *DivNet: Diversity Estimation in Networked Ecological
727 Communities*.

728 Wrighton, K.C., Agbo, P., Warnecke, F., Weber, K.A., Brodie, E.L., Desantis, T.Z., Hugenholtz,
729 P., Andersen, G.L., Coates, J.D., 2008. A novel ecological role of the Firmicutes identified in
730 thermophilic microbial fuel cells. *ISME J* 2, 1146-1156.

731 Yang, Y., Qin, M., Yang, X., He, Z., 2017. Enhancing hydrogen production in microbial
732 electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic
733 polarity reversal. *Journal of Power Sources* 347, 21-28.

734 Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Chang, S.W., Nguyen, D.D., Ren, J., Liu, Y., Zhang, X.,
735 2019. Feasibility study on a double chamber microbial fuel cell for nutrient recovery from
736 municipal wastewater. *Chem. Eng. J.* 358, 236-242.

737 Yuan, H., Sun, S., Abu-Reesh, I.M., Badgley, B.D., He, Z., 2017. Unravelling and
738 Reconstructing the Nexus of Salinity, Electricity, and Microbial Ecology for
739 Bioelectrochemical Desalination. *Environ. Sci. Technol.* 51, 12672-12682.

740 Zhang, E., Liu, L., Cui, Y., 2012. Effect of pH on the performance of the anode in microbial fuel
741 cells. *Adv Mat Res* 608-609, 884-888.

742 Zhang, F., Ge, Z., Grimaud, J., Hurst, J., He, Z., 2013. Long-Term Performance of Liter-Scale
743 Microbial Fuel Cells Treating Primary Effluent Installed in a Municipal Wastewater
744 Treatment Facility. *Environ. Sci. Technol.* 47, 4941-4948.

745 Zhang, F., Li, J., He, Z., 2014. A new method for nutrients removal and recovery from
746 wastewater using a bioelectrochemical system. *Bioresour. Technol.* 166, 630-634.

747 Zhou, H., Mei, X., Liu, B., Xie, G., Xing, D., 2019. Magnet anode enhances extracellular
748 electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems.
749 *Biotechnol. Biofuels* 12.